DOMINATION NUMBER OF GRAPHS WITH MINIMUM DEGREE FIVE

Csilla Bujtás
Faculty of Mathematics and Physics
University of Ljubljana
Ljubljana, Slovenia
e-mail: csilla.bujtas@fmf.uni-lj.si

Abstract

We prove that for every graph G on n vertices and with minimum degree five, the domination number $\gamma(G)$ cannot exceed $n / 3$. The proof combines an algorithmic approach and the discharging method. Using the same technique, we provide a shorter proof for the known upper bound $4 n / 11$ on the domination number of graphs of minimum degree four.

Keywords: dominating set, domination number, discharging method.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

In this paper we study the minimum dominating sets in graphs of given order n and minimum degree δ. For the case of $\delta=5$, we improve the previous best upper bound $0.344 n$ by proving that the domination number γ is at most $n / 3$. For graphs of $\delta=4$, the relation $\gamma \leq 4 n / 11$ was proved by Sohn and Xudong [22] in 2009. Using a different approach, we provide a simpler proof for this theorem.

Standard definitions. In a simple graph G, the vertex set is denoted by $V(G)$ and the edge set by $E(G)$. For a vertex $v \in V(G)$, its closed neighborhood $N[v]$ contains v and its neighbors. For a set $S \subseteq V(G)$, we use the analogous notation $N[S]=\bigcup_{v \in S} N[v]$. The degree of a vertex v is denoted by $d(v)$, while $\delta(G)$ and $\Delta(G)$, respectively, stand for the minimum and maximum vertex degree in G. A set $D \subseteq V(G)$ is a dominating set if $N[D]=V(G)$. The minimum cardinality of a dominating set is the domination number $\gamma(G)$ of the graph. An earlier general survey on domination theory is [11], while two new directions were initiated recently in [6] and [5].

General upper bounds on $\gamma(G)$ in terms of the order and minimum degree. The first general upper bound on $\gamma(G)$ in terms of the order n and the minimum degree δ was given by Arnautov [2] and, independently, by Payan [20]:

$$
\begin{equation*}
\gamma(G) \leq \frac{n}{\delta+1} \sum_{j=1}^{\delta+1} \frac{1}{j} . \tag{1}
\end{equation*}
$$

We remark that a bit stronger general results were later published by Clark et al. [9] and Biró et al. [3]. On the other hand, already (1) implies the upper bound

$$
\begin{equation*}
\gamma(G) \leq n\left(\frac{1+\ln (\delta+1)}{\delta+1}\right) \tag{2}
\end{equation*}
$$

It was proved by Alon [1] that (2) is asymptotically sharp when $\delta \rightarrow \infty$.
Upper bounds for graphs of small minimum degrees. There are several ways to show that $\gamma(G) \leq n / 2$ holds if $\delta(G)=1$ (see [19] for the first proof). Blank [4], and later independently McCuaig and Shepherd [18] proved that $\gamma(G) \leq 2 n / 5$ is true if G is connected, $\delta(G)=2$, and $n \geq 8$. ${ }^{1}$ For graphs G with $\delta(G)=3$, Reed [21] proved the famous result that $\gamma(G) \leq 3 n / 8$. He also presented a connected cubic graph on 8 vertices for which the upper bound is tight.

In the same paper [21], Reed provided the conjecture that the upper bound can be improved to $\lceil n / 3\rceil$ once the connected cubic graph has an appropriately large order. It was disproved by Kostochka and Stodolsky [14] by constructing an infinite sequence of connected cubic graphs such that all of them have $\gamma(G) \geq$ $\left(\frac{1}{3}+\frac{1}{69}\right) n$. Later, in [15], the same authors proved that $\gamma(G) \leq \frac{4}{11} n=\left(\frac{1}{3}+\frac{1}{33}\right) n$ holds for every connected cubic graph of order $n>8$. However, it seems a challenging and difficult problem to close the small gap between $\frac{1}{3}+\frac{1}{69}$ and $\frac{1}{3}+\frac{1}{33}$.

For graphs of minimum degree 4, the best known upper bound is $\gamma(G) \leq \frac{4}{11} n$ that was established by Sohn and Xudong [22]. For the case of $\delta(G)=5$, Xing, Sun, and Chen [23] proved $\gamma(G) \leq \frac{5}{14} n$ which was improved to $\gamma(G) \leq \frac{2671}{7766} n<$ $0.344 n$ by the authors of [7]. It was also shown in [7] that for graphs of minimum degree 6 , the domination number is strictly smaller than $n / 3$. Note that similar upper bounds involving the girth and other parameters of the graph can be found in many papers, e.g. in $[10,12,16,17]$, while results for plane triangulations and maximal outerplanar graphs were established in [13] and [8].

Our approach. In the seminal paper [21] of Reed, the upper bound $3 n / 8$ was proved by considering a vertex-disjoint path cover with specific properties. Later,

[^0]the same method (with updated conditions and thorough analysis) was used in $[15,22,23]$ to establish results on cubic graphs and on graphs of minimum degree 4 and 5. In [7], we introduced a different algorithmic method that resulted in improvement for all cases with $5 \leq \delta \leq 50$. Here, we combine the latter approach with a discharging process. This allows us to prove that already graphs of minimum degree 5 satisfy $\gamma(G) \leq n / 3$.

Residual graph. Given a graph G and a set $D \subseteq V(G)$, the residual graph G_{D} is obtained from G by assigning colors to the vertices and deleting some edges according to the following definitions.

- A vertex v is white if $v \notin N[D]$.
- A vertex v is blue if $v \in N[D]$ and $N[v] \nsubseteq N[D]$.
- A vertex v is red if $N[v] \subseteq N[D]$.
- G_{D} contains only those edges from G that are incident to at least one white vertex.

In G_{D}, we refer to the set of white, blue, and red vertices, respectively, by the notations W, B, and R. It is clear by definitions that $D \subseteq R$ and $W \cup B \cup R=$ $V(G)$ hold. The white-degree $d_{W}(v)$ of a vertex v is the number of its white neighbors in G_{D}. Analogously, we sometimes refer to the blue-degree $d_{B}(v)$ of a vertex. The maximum of white-degrees over the sets of white and blue vertices, respectively, are denoted by $\Delta_{W}(W)$ and $\Delta_{W}(B)$.

Observation 1. Let G be a graph and $D \subseteq V(G)$. The following statements are true for the residual graph G_{D}.
(i) If $v \in W$, then G_{D} contains all edges which are incident with v in G and, in particular, $N[v] \cap R=\emptyset$ and $d_{W}(v)+d_{B}(v)=d(v)$ hold.
(ii) If $v \in B$, then $d_{W}(v)=|W \cap N[v]|<d(v)$ and $d_{B}(v)=0$.
(iii) If $v \in R$, then v is an isolated vertex in G_{D}.
(iv) If $\delta(G)=d$ and v is a white vertex with $d_{W}(v)=\ell<d$, then $d_{B}(v) \geq d-\ell$ holds in G_{D}.
(v) D is a dominating set of G if and only if $R=V(G)$ (or equivalently, $W=\emptyset)$ in G_{D}.
(vi) If $D \subseteq D^{\prime} \subseteq V(G)$ and a vertex v is red in G_{D}, it remains red in $G_{D^{\prime}}$; if v is blue in G_{D}, then it is either blue or red in $G_{D^{\prime}}$.

Structure of the paper. In the next section we prove the improved upper bound $n / 3$ on the domination number of graphs with minimum degree 5 . In Section 3 we consider graphs of minumum degree 4 and show an alternative proof for the theorem $\gamma \leq 4 n / 11$.

2. Graphs of Minimum Degree 5

Theorem 2. For every graph G on n vertices and with minimum degree 5 , the domination number satisfies $\gamma(G) \leq \frac{n}{3}$.
Proof. Consider a graph G and a subset D of the vertex set $V=V(G)$. Let W, B, and R denote the set of white, blue, and red vertices respectively, in the residual graph G_{D}. Further, for the sets of blue vertices that have at least 5 white neighbors, or exactly $4,3,2,1$ white neighbors, we use the notations B_{5}, B_{4}, B_{3}, B_{2}, and B_{1} respectively. A vertex is a blue leaf if it belongs to B_{1}. In the proof, a residual graph G_{D} is associated with the following value:

$$
f\left(G_{D}\right)=35|W|+23\left|B_{5}\right|+21\left|B_{4}\right|+19\left|B_{3}\right|+17\left|B_{2}\right|+14\left|B_{1}\right| .
$$

By Observation $1(\mathrm{v}), f\left(G_{D}\right)$ equals zero if and only if D is a dominating set in G. If G and D are fixed and A is a subset of $V \backslash D$, we define

$$
\mathrm{s}(A)=f\left(G_{D}\right)-f\left(G_{D \cup A}\right)
$$

that is the decrease in the value of f when D is extended by the vertices of A. We define the following property for G_{D} :
Property 1. There exists a nonempty set $A \subseteq V \backslash D$ such that $\mathrm{s}(A) \geq 105|A|$.
Our goal is to prove that every graph G with $\delta(G)=5$ and every $D \subseteq V$ with $f\left(G_{D}\right)>0$ satisfy Property 1 . Once we do it, Theorem 2 will follow easily. In the continuation, we suppose that a graph G with minimum degree 5 and a set D with $f\left(G_{D}\right)>0$ do not satisfy Property 1 and prove, by a series of claims, that this assumption leads to a contradiction.
Claim A. In G_{D}, every white vertex v has at most two white neighbors, and every blue vertex u has at most three white neighbors.
Proof. First suppose that there is vertex $v \in W$ with $d_{W}(v) \geq 6$. Choosing $A=\{v\}$, the white vertex v becomes red in $G_{D \cup A}$ that decreases f by 35. The white neighbors of v become blue or red which decreases f by at least $6 \cdot(35-23)$. Hence, we have $\mathrm{s}(A) \geq 35+72=107>105|A|$ complying with Property 1. This contradicts our assumption on G_{D} and implies that $\Delta_{W}(W) \leq 5$.

Now, suppose that $\Delta_{W}(W)=5$ in G_{D}. Let v be a white vertex with $d_{W}(v)=$ 5 and consider $A=\{v\}$. In $G_{D \cup A}$, the vertex v becomes red and its white neighbors become blue (or red). Since each neighbor u had at most 5 white neighbors in G_{D} and at least one of them, namely v, becomes red, u may have at most 4 white neighbors in $G_{D \cup A}$. Therefore, $\mathrm{s}(A) \geq 35+5 \cdot(35-21)=105|A|$ holds which is a contradiction again.

If $\Delta_{W}(W) \leq 4$ and $\Delta_{W}(B) \geq 6$, let v be a blue vertex with $d_{W}(v) \geq 6$ and define $A=\{v\}$ again. In G_{D}, the vertex v belongs to B_{5}, while we have $v \in R$ in
$G_{D \cup A}$ which causes a decrease of 23 in the value of f. Each white neighbor u of v has at most four white neighbors in G_{D} and, therefore, $u \in B_{4} \cup B_{3} \cup B_{2} \cup B_{1} \cup R$ in $G_{D \cup A}$. Hence, we have $\mathrm{s}(A) \geq 23+6(35-21)=107>105|A|$, a contradiction to our assumption. Note that in the continuation, where we suppose $\Delta_{W}(B) \leq 5$, if a blue vertex loses ℓ white neighbors in a step, it causes a decrease of at least 2ℓ in the value of f.

Assume that $\Delta_{W}(W)=4$ and $\Delta_{W}(B) \leq 5$ and let v be a white vertex with $d_{W}(v)=4$ in G_{D}. Set $A=\{v\}$ and consider the decrease $\mathrm{s}(A)$. As v turns to be red, this contributes by 35 to $\mathrm{s}(A)$. The four white neighbors become blue (or red) and each of them has at most 3 white neighbors in $G_{D \cup A}$. Hence, the contribution to $\mathrm{s}(A)$ is at least $4(35-19)$. Further, we have $d_{W}(u) \leq 4$ for each white vertex u from $N[v]$. This implies, by Observation 1 (iv), that u has at least one blue neighbor in G_{D} the white-degree of which is smaller in $G_{D \cup A}$ than in G_{D}. Even if some blue vertices from $N[N[v]]$ have more than one neighbor from $N[v]$, it remains true that the sum of the white-degrees over $B \cap N[N[v]]$ decreases by at least $d_{W}(v)+1=5$. We may conclude $s(A) \geq 35+4(35-19)+5 \cdot 2=109>105|A|$.

Assume that $\Delta_{W}(W) \leq 3$ and $\Delta_{W}(B)=5$ hold in G_{D} and v is a blue vertex with $d_{W}(v)=5$. Let $A=\{v\}$ and consider the decrease $\mathrm{s}(A)$. Since v belongs to B_{5} in G_{D} and to R in $G_{D \cup A}$, this change contributes by 23 to $s(A)$. The five white neighbors of u become blue or red and belong to $B_{3} \cup B_{2} \cup B_{1} \cup R$ in $G_{D \cup A}$. The contribution to $\mathrm{s}(A)$ is not smaller than $5(35-19)$. By Observation 1(iv) and by $\Delta_{W}(W) \leq 3$, each white vertex has at least two blue neighbors in G_{D}. That is, each white neighbor has at least one blue neighbor that is different from v. As the five white vertices from $N(v)$ turn blue (or red) in $G_{D \cup A}$, the sum of the white-degrees over $B \cap(N[N[v]] \backslash\{v\})$ decreases by at least 5 . We infer that $\mathrm{s}(A) \geq 23+5(35-19)+5 \cdot 2=113>105|A|$ which is a contradiction again.

The next case which we consider is $\Delta_{W}(W)=3$ and $\Delta_{W}(B) \leq 4$. Let v be a white vertex with $d_{W}(v)=3$ and estimate the value of $\mathrm{s}(A)$ for $A=\{v\}$. When D is replaced by $D \cup A$, vertex v is recolored red, the three white neighbors of v become blue or red and belong to $B_{2} \cup B_{1} \cup R$ in $G_{D \cup A}$. Additionally, each of the three white neighbors and also v itself has at least two blue neighbors. The decrease in their white-degrees contributes to $\mathrm{s}(A)$ by at least $4 \cdot 2 \cdot 2$. Consequently, we have $\mathrm{s}(A) \geq 35+3(35-17)+16=105|A|$ that is a contradiction.

The last case is when $\Delta_{W}(W) \leq 2$ and $\Delta_{W}(B)=4$. We assume that v is a vertex from B_{4} in G_{D}. Let $A=\{v\}$ and observe that v is recolored red and the white neighbors of v belong to $B_{2} \cup B_{1} \cup R$ in $G_{D \cup A}$. Since now we have $\Delta_{W}(W) \leq 2$ in G_{D}, each white vertex has at least three blue neighbors. Therefore, each white neighbor of v has at least two blue neighbors which are different from v. We conclude that $\mathrm{s}(A) \geq 21+4(35-17)+4 \cdot 2 \cdot 2=109>105|A|$. This contradiction finishes the proof of Claim A.

From now on we may suppose that $\Delta_{W}(W) \leq 2$ and $\Delta_{W}(B) \leq 3$ holds in the
counterexample G_{D}. This implies that the graph $G_{D}[W]$, which is induced by the white vertices of G_{D}, contains only paths and cycles as components. Before performing a discharging, we prove some further properties of G_{D}.

Claim B. In $G_{D}[W]$, each component is a path P_{1}, P_{2} or a cycle C_{4}, C_{5}, C_{7} or C_{10}.
Proof. First, suppose that $P_{j}: v_{1} \cdots v_{j}$ is a path component on $j \geq 3$ vertices in $G_{D}[W]$. Let us choose $A=\left\{v_{2}\right\}$. In $G_{D \cup A}$ not only v_{2} but also v_{1} becomes red, while v_{3} turns to be either a blue leaf or a red vertex. These changes contribute to $\mathrm{s}(A)$ by at least $2 \cdot 35+(35-14)$. By Observation 1(iv), v_{1}, v_{2}, and v_{3}, respectively, have at least $4,3,3$ blue neighbors in G_{D}. The decrease in their white-degrees contributes to $\mathrm{s}(A)$ by at least 20 . We may infer that $\mathrm{s}(A) \geq 70+21+20=111>105|A|$, a contradiction to our assumption.

We now prove that no cycle of length $3 k$ occurs in $G_{D}[W]$. Assuming that a cycle $C_{3 k}: v_{1} \cdots v_{3 k} v_{1}$ exists, all vertices of it can be dominated by the k-element set $A=\bigcup_{i=1}^{k}\left\{v_{3 i}\right\}$. Then, in $G_{D \cup A}$, all the $3 k$ vertices are red and, by Observation 1 (iv), the sum of the white-degrees of the blue neighbors decreases by at least $3 \cdot 3 k$. Consequently, we get the contradiction $w(A) \geq 35 \cdot 3 k+2 \cdot 9 k=123 k>105|A|$.

Similarly, if we suppose the existence of a cycle $C_{3 k+2}: v_{1} \cdots v_{3 k+2} v_{1}$ with $k \geq 2$ and define $A=\left(\bigcup_{i=1}^{k}\left\{v_{3 i}\right\}\right) \cup\left\{v_{3 k+2}\right\}$, the set A dominates all vertices. Since $k \geq 2$, the relation $\mathrm{s}(A) \geq 35 \cdot(3 k+2)+2 \cdot 3 \cdot(3 k+2)=123 k+82>$ $105(k+1)=105|A|$ clearly holds and gives the contradiction.

In the last case, consider a cycle $C_{3 k+1}: v_{1} \cdots v_{3 k+1} v_{1}$ with $k \geq 4$ and set $A=\left(\bigcup_{i=1}^{k}\left\{v_{3 i}\right\}\right) \cup\left\{v_{3 k+1}\right\}$. In $G_{D \cup A}$, every vertex from the cycle is red and, as before, one can prove that $\mathrm{s}(A) \geq 35 \cdot(3 k+1)+2 \cdot 3 \cdot(3 k+1)=123 k+41>$ $105(k+1)=105|A|$. This contradiction finishes the proof of Claim B.

For $i=0,1,2$, we will use the notation W_{i} for the set of white vertices having exactly i white neighbors in G_{D}. Note that W_{0} consists of the vertices of the components of $G_{D}[W]$ which are isomorphic to P_{1}, while W_{1} and W_{2}, respectively, contain the vertices from the P_{2}-components and the cycles of $G_{D}[W]$.
Claim C. No vertex from B_{3} is adjacent to a vertex from W_{0} in G_{D}.
Proof. In contrary, suppose that a vertex $v \in B_{3}$ has a neighbor u from W_{0}. Let $A=\{v\}$ and denote by u_{1} and u_{2} the further two white neighbors of v. In $G_{D \cup A}$, we have $v, u \in R$ and $u_{1}, u_{2} \in B_{2} \cup B_{1} \cup R$. This contributes to $\mathrm{s}(A)$ by at least $19+35+2(35-17)=90$. By Observation 1(iv), the neighbors u, u_{1} and u_{2} have, respectively, at least $4,2,2$ blue neighbors which are different from v. As follows, $\mathrm{s}(A) \geq 90+2 \cdot 8=106>105|A|$ must be true but this contradicts our assumption on G_{D}.

We call a vertex from B_{2} special, if it is adjacent to a vertex from W_{0}.

Claim D. No special vertex is adjacent to two vertices from W_{0}.
Proof. Suppose that a vertex $v \in B_{2}$ is adjacent to two vertices, say u_{1} and u_{2} from W_{0}. Then, we set $A=\{v\}$ and observe that all the three vertices v, u_{1} and u_{2} are red in $G_{D \cup A}$. By Claim C, all the blue neighbors of u_{1} and u_{2} are from $B_{2} \cup B_{1}$ in G_{D} and, therefore, when the white-degree of these neighbors decreases by ℓ, the value of f falls by at least $(17-14) \ell=3 \ell$. Since, by Observation 1 (iv), each of u_{1} and u_{2} has at least four blue neighbors, we have $s(A) \geq 17+2 \cdot 35+3 \cdot 8=$ $111>105|A|$. This contradiction proves the claim.
Claim E. No special vertex is adjacent to a vertex from a C_{4} or C_{7}.
Proof. Suppose first that a special vertex $v \in B_{2}$ is adjacent to u_{1} which is from a 4 -cycle component $C_{4}: u_{1} u_{2} u_{3} u_{4} u_{1}$ in G_{D}. The other neighbor of v is u_{0} which is from W_{0}. Let $A=\left\{v, u_{3}\right\}$ and observe that all the six vertices v, u_{0}, u_{1}, u_{2}, u_{3} and u_{4} are red in $G_{D \cup A}$. In G_{D}, the white vertex u_{0} has at least four blue neighbors which are different from v and, by Claim C, each of them belongs to $B_{2} \cup B_{1} ; u_{1}$ has at least two neighbors from $\left(B_{3} \cup B_{2} \cup B_{1}\right) \backslash\{v\}$; each of u_{2}, u_{3} and u_{4} has at least three neighbors from $\left(B_{3} \cup B_{2} \cup B_{1}\right) \backslash\{v\}$. Therefore, $\mathrm{s}(A) \geq 17+5 \cdot 35+4 \cdot 3+11 \cdot 2=226>105|A|$, a contradiction.

The argumentation is similar if we suppose that a special vertex v is adjacent to u_{0} from W_{0} and to a vertex u_{1} from the 7 -cycle $u_{1} \cdots u_{7} u_{1}$. Here we set $A=\left\{v, u_{3}, u_{6}\right\}$ and observe that $\mathrm{s}(A) \geq 17+8 \cdot 35+4 \cdot 3+20 \cdot 2=349>105|A|$ that contradicts our assumption on G_{D}.

Claim F. If v_{1} and v_{2} are two adjacent vertices from W_{1}, then at most one of them may have a special blue neighbor.
Proof. Assume to the contrary that v_{1} is adjacent to the special vertex u_{1}, and v_{2} is adjacent to the special vertex u_{2}. Denote the other neighbors of u_{1} and u_{2} by x_{1} and x_{2}, respectively. Hence, $v_{1}, v_{2} \in W_{1}, u_{1}, u_{2} \in B_{2}$ and $x_{1}, x_{2} \in W_{0}$ hold in G_{D}. Consider the set $A=\left\{u_{1}, u_{2}\right\}$ and observe that all the six vertices become red in $G_{D \cup A}$. Further, for $i=1,2$, vertex x_{i} has at least four neighbors from $\left(B_{2} \cup B_{1}\right) \backslash\left\{u_{i}\right\}$ and v_{i} has at least three neighbors from $\left(B_{3} \cup B_{2} \cup B_{1}\right) \backslash\left\{u_{i}\right\}$. Thus, $\mathrm{s}(A) \geq 2 \cdot 17+4 \cdot 35+8 \cdot 3+6 \cdot 2=210=105|A|$ and this contradiction proves the claim.

Having Claims A-F in hand, we are ready to prove that every G_{D} (where D is not a dominating set) satisfies Property 1. The last step of this proof is based on a discharging.

Discharging. First, we assign charges to the (non-red) vertices of G_{D} so that every white vertex gets 35 , and every vertex from B_{3}, B_{2}, and B_{1} gets 19,17 , and 14 , respectively. Note that the sum of the charges equals $f\left(G_{D}\right)$. Then, every blue vertex, except the special ones, distributes its charge equally among the white neighbors. The exact rules are the following.

- Every vertex from B_{3} gives $19 / 3$ to each white neighbor.
- Every non-special vertex from B_{2} gives $17 / 2$ to each white neighbor.
- Every special vertex gives 14 to its neighbor from W_{0}, and gives 3 to the other neighbor.
- Every vertex from B_{1} gives 14 to its neighbor.

After the discharging, every vertex from a P_{1}-component of G_{D} has a charge of at least $35+5 \cdot 14=105$. By Claim F, every P_{2}-component has at least four nonspecial blue neighbors and, therefore, its charge is at least $2 \cdot 35+4 \cdot 3+4 \cdot 19 / 3=$ $321 / 3$. By Claim E, every C_{4}-component has at least $4 \cdot 35+12 \cdot 19 / 3=216$ and every C_{7}-component has at least $7 \cdot 35+21 \cdot 19 / 3=378$ as a charge. Finally, every C_{5}-component has $5 \cdot 35+15 \cdot 3=220$, and every C_{10}-component has $10 \cdot 35+30 \cdot 3=440$ after the discharging. Let the number of $P_{1^{-}}, P_{2^{-}}, C_{4^{-}} C_{5^{-}}$, $C_{7^{-}}$, and $C_{10^{-}}$components of $G_{D}[W]$ be denoted by $p_{1}, p_{2}, c_{4}, c_{5}, c_{7}$, and c_{10}, respectively, and let A be a minimum dominating set in $G_{D}[W]$. Then,

$$
|A|=p_{1}+p_{2}+2 c_{4}+2 c_{5}+3 c_{7}+4 c_{10}
$$

As $D \cup A$ is a dominating set in the graph G, we have $f\left(G_{D \cup A}\right)=0$. Thus, $\mathrm{s}(A)=f\left(G_{D}\right)$, and the discharging shows the following lower bound:

$$
\begin{aligned}
\mathrm{s}(A)=f\left(G_{D}\right) & \geq 105 p_{1}+\frac{321}{3} p_{2}+216 c_{4}+220 c_{5}+378 c_{7}+440 c_{10} \\
& \geq 105\left(p_{1}+p_{2}+2 c_{4}+2 c_{5}+3 c_{7}+4 c_{10}\right)=105|A|
\end{aligned}
$$

As it contradicts our assumption on G_{D}, we infer that every graph G with minimum degree 5 and every $D \subseteq V(G)$ with $f\left(G_{D}\right)>0$ satisfy Property 1 .

To finish the proof of Theorem 2, we first observe that $f\left(G_{\emptyset}\right)=35 n$. Then, by Property 1 , there exists a nonempty set A_{1} such that $f\left(G_{A_{1}}\right) \leq f\left(G_{\emptyset}\right)-$ $105\left|A_{1}\right|$. Applying this iteratively, at the end we obtain a dominating set $D=$ $A_{1} \cup \cdots \cup A_{j}$ such that

$$
f\left(G_{D}\right)=0 \leq f\left(G_{\emptyset}\right)-105|D|=35 n-105|D|
$$

and we may conclude

$$
\gamma(G) \leq|D| \leq \frac{35 n}{105}=\frac{n}{3}
$$

In a graph G, a set $X \subseteq V(G)$ is a 2-packing, if any two distinct vertices from X are at a distance of at least 3 . The proof of Theorem 2 directly corresponds to an algorithm that outputs a dominating set of cardinality at most $n / 3$. If G is 5 -regular and X is a 2 -packing in it, we may start the algorithmic process with choosing the vertices of X one by one. Hence, we conclude the following.
Corollary 1. If G is a 5-regular graph on n vertices and $X \subseteq V(G)$ is a 2packing in G, then X can be extended to a dominating set D of cardinality at most $n / 3$.

3. Graphs of Minimum Degree 4

In this section, we apply the previous approach for graphs of minimum degree four and get a shorter alternative proof for the following theorem which was first proved by Sohn and Xudong [22] in 2009.

Theorem 3. For every graph G on n vertices and with minimum degree 4 , the domination number satisfies $\gamma(G) \leq \frac{4 n}{11}$.
Proof. Consider a graph G of minimum degree 4 and let D be a subset of $V=V(G)$. Let W, B, and R denote the set of white, blue, and red vertices in G_{D}. The set of blue vertices that have at least 4 white neighbors is denoted by B_{4} while, for $i=1,2,3, B_{i}$ stands for the set of blue vertices that have exactly i white neighbors. In the proof, a residual graph G_{D} is associated with the following value:

$$
g\left(G_{D}\right)=16|W|+10\left|B_{4}\right|+9\left|B_{3}\right|+8\left|B_{2}\right|+7\left|B_{1}\right| .
$$

For a set $A \subseteq V \backslash D$, we use the notation

$$
\mathrm{s}(A)=g\left(G_{D}\right)-g\left(G_{D \cup A}\right)
$$

and define the following property for G_{D} :
Property 2. There exists a nonempty set $A \subseteq V \backslash D$ such that $\mathrm{s}(A) \geq 44|A|$.
We now suppose for a contradiction that a residual graph G_{D} with $\delta(G)=4$ and $g\left(G_{D}\right)>0$ does not satisfy Property 2 . We prove several claims for G_{D} and then get the final contradiction via performing a discharging.

Claim G. $\Delta_{W}(W) \leq 2$ and $\Delta_{W}(B) \leq 3$ hold.
Proof. All the following cases can be excluded.
Case 1. $\Delta_{W}(W) \geq 5$. Choose a white vertex v with $d_{W}(v) \geq 5$ and let $A=\{v\}$. In $G_{D \cup A}$, the white vertex v becomes red and its white neighbors become blue or red. This gives $\mathrm{s}(A) \geq 16+5 \cdot(16-10)=46>44|A|$ which contradicts our assumption that G_{D} does not satisfy Property 2.

Case 2. $\Delta_{W}(W)=4$. Consider a white vertex v with $d_{W}(v)=4$ and set $A=\{v\}$. In $G_{D \cup A}$, the vertex v becomes red and its white neighbors become blue or red. Since each white neighbor u had at most four white neighbors in G_{D}, u may have at most three white neighbors in $G_{D \cup A}$. Therefore, $\mathrm{s}(A) \geq$ $16+4 \cdot(16-9)=44|A|$, a contradiction.

Case 3. $\Delta_{W}(W) \leq 3$ and $\Delta_{W}(B) \geq 5$. Let v be a blue vertex with $d_{W}(v) \geq 5$ and define $A=\{v\}$ again. In G_{D}, the vertex v belongs to B_{4}, while we have
$v \in R$ in $G_{D \cup A}$. Further, since $\Delta_{W}(W) \leq 3$, each white neighbor u of v has at most three white neighbors in G_{D} and $u \in B_{3} \cup B_{2} \cup B_{1} \cup R$ in $G_{D \cup A}$. As follows, $\mathrm{s}(A) \geq 10+5(16-9)=45>44|A|$ that is a contradiction to our assumption.

Case 4. $\Delta_{W}(W)=3$ and $\Delta_{W}(B) \leq 4$. First remark that, by the condition $\Delta_{W}(B) \leq 4$, if a blue vertex loses ℓ white neighbors in a step, then $g\left(G_{D}\right)$ decreases by at least ℓ. Select a white vertex v with $d_{W}(v)=3$ and let $A=\{v\}$. In $G_{D \cup A}$, vertex v becomes red and its three white neighbors become blue or red having at most 2 white neighbors. By Observation 1(iv), each of v and its white neighbors has at least one blue neighbor in G_{D}. Thus, we get $\mathrm{s}(A) \geq$ $16+3(16-8)+4 \cdot 1=44|A|$ which is a contradiction.

Case 5. $\Delta_{W}(W) \leq 2$ and $\Delta_{W}(B)=4$. Here, we choose a vertex v from B_{4} and define $A=\{v\}$. First, observe that v belongs to B_{4} in G_{D} and to R in $G_{D \cup A}$. In G_{D}, v has four white neighbors which become blue or red and belong to $B_{2} \cup B_{1} \cup R$ in $G_{D \cup A}$. By Observation 1(iv) and by $\Delta_{W}(W) \leq 2$, each white neighbor has at least one blue neighbor that is different from v. Therefore, $\mathrm{s}(A) \geq 10+4(16-8)+4 \cdot 1=46>44|A|$ that is a contradiction again. This finishes the proof of the claim.

In the continuation, we suppose that $\Delta_{W}(W) \leq 2$ and $\Delta_{W}(B) \leq 3$ hold in the counterexample G_{D} and, therefore, the graph $G_{D}[W]$, which is induced by the white vertices of G_{D}, consists of components which are paths and cycles. We prove some further properties for G_{D}.

Claim H. In $G_{D}[W]$, each component is a path P_{1}, P_{2} or a cycle C_{4} or C_{7}.
Proof. Assume that there is a path component $P_{j}: v_{1} \cdots v_{j}$ of order $j \geq 3$ in $G_{D}[W]$. We set $A=\left\{v_{2}\right\}$ and observe that both v_{1} and v_{2} become red and v_{3} belongs to $B_{1} \cup R$ in $G_{D \cup A}$. This contributes to $s(A)$ by at least $2 \cdot 16+(16-7)$. By Observation $1(\mathrm{iv}), v_{1}, v_{2}$, and v_{3}, respectively, have at least $3,2,2$ blue neighbors in G_{D}. The decrease in their white-degrees contributes to $s(A)$ by at least $7 \cdot 1$. Then, we get $\mathrm{s}(A) \geq 32+9+7=48>44|A|$, a contradiction.

Now, assume that a cycle $C_{3 k}: v_{1} \cdots v_{3 k} v_{1}$ exists in $G_{D}[W]$ and set $A=$ $\bigcup_{i=1}^{k}\left\{v_{3 i}\right\}$. In $G_{D \cup A}$, all the $3 k$ vertices of the cycle are recolored red and, by Observation 1(iv), the sum of the white-degrees of the blue vertices decreases by at least $2 \cdot 3 k$. Consequently, we get the contradiction $w(A) \geq 16 \cdot 3 k+6 k=54 k>$ $44|A|$. A similar argumentation can be given if the cycle is $C_{3 k+2}: v_{1} \cdots v_{3 k+2} v_{1}$, where $k \geq 1$, and $A=\left(\bigcup_{i=1}^{k}\left\{v_{3 i}\right\}\right) \cup\left\{v_{3 k+2}\right\}$. Here, $|A|=k+1$ and we get $\mathrm{s}(A) \geq 16 \cdot(3 k+2)+2 \cdot(3 k+2)=54 k+36>44 k+44=44|A|$ that is a contradiction. For the case when the cycle is of order $3 k+1$, we suppose $k \geq 3$ and obtain a contradiction as follows. Let $C_{3 k+1}: v_{1} \cdots v_{3 k+1} v_{1}$ and let A be the $(k+1)$-element dominating set $\left(\bigcup_{i=1}^{k}\left\{v_{3 i}\right\}\right) \cup\left\{v_{3 k+2}\right\}$. We get $\mathrm{s}(A) \geq$
$16 \cdot(3 k+1)+2 \cdot(3 k+1)=54 k+18>44 k+44=44|A|$ since $k \geq 3$ is supposed. This finishes the proof of Claim H.

Claim I. No vertex from B_{3} is adjacent to any vertices from W_{0} in G_{D}.
Proof. Assume for a contradiction that a vertex $v \in B_{3}$ has a neighbor u_{0} from W_{0}. Let $A=\{v\}$ and denote by u_{1} and u_{2} the further two white neighbors of v. In $G_{D \cup A}, v, u_{0} \in R$ and $u_{1}, u_{2} \in B_{2} \cup B_{1} \cup R$. This change contributes to $s(A)$ by at least $9+16+2(16-8)=41$. By Observation 1(iv), the neighbors u_{0}, u_{1} and u_{2} have, respectively, at least $3,1,1$ blue neighbors which are different from v. Therefore, $\mathrm{s}(A) \geq 41+5 \cdot 1=46>44|A|$ should be true but this contradicts our assumption on G_{D}.

As follows, the vertices from W_{0} may be adjacent only to some vertices from $B_{2} \cup B_{1}$. We call a vertex from B_{2} special, if it is adjacent to a vertex from W_{0}.

Claim J. No special vertex is adjacent to two vertices from W_{0}.
Proof. Suppose that a vertex $v \in B_{2}$ is adjacent to two vertices, say u_{1} and u_{2} from W_{0}. We set $A=\{v\}$ and observe that all the three vertices v, u_{1} and u_{2} are red in $G_{D \cup A}$. By Observation 1(iv), each of u_{1} and u_{2} has at least three blue neighbors different from v. This yields $\mathrm{s}(A) \geq 8+2 \cdot 16+6 \cdot 1=46>44|A|$ that contradicts our assumption on G_{D}.

Claim K. No special vertex is adjacent to a vertex from a C_{4} or C_{7}.
Proof. If a special vertex v is adjacent to a vertex u_{0} from W_{0} and to a vertex u_{1} from a 4 -cycle component $C_{4}: u_{1} u_{2} u_{3} u_{4} u_{1}$ of $G_{D}[W]$, then we set $A=\left\{v, u_{3}\right\}$ and observe that $v, u_{0}, u_{1}, u_{2}, u_{3}$ and u_{4} turn red in $G_{D \cup A}$. In G_{D}, the vertices $u_{0}, u_{1}, u_{2}, u_{3}$ and u_{4}, respectively, have at least $3,1,2,2,2$ neighbors from $\left(B_{3} \cup B_{2} \cup B_{1}\right) \backslash\{v\}$. Thus, $\mathrm{s}(A) \geq 8+5 \cdot 16+10 \cdot 1=98>44|A|$, a contradiction. Similarly, if we suppose that a special vertex v is adjacent to u_{0} from W_{0} and to a vertex u_{1} from the 7 -cycle $u_{1} \cdots u_{7} u_{1}$, we set $A=\left\{v, u_{3}, u_{6}\right\}$ and conclude that $\mathrm{s}(A) \geq 8+8 \cdot 16+16 \cdot 1=152>44|A|$ that contradicts our assumption on G_{D}. \square

Claim L. If v_{1} and v_{2} are two adjacent vertices from W_{1}, then at most one of them may have a special blue neighbor.

Proof. Assume to the contrary that $v_{1} u_{1}, v_{2} u_{2} \in E(G)$ such that u_{1}, and u_{2} are special vertices in G_{D}, and let x_{1} and x_{2} be the further white neighbors of u_{1} and u_{2}. Hence, we have $v_{1}, v_{2} \in W_{1}, u_{1}, u_{2} \in B_{2}$, and $x_{1}, x_{2} \in W_{0}$ in G_{D}. Consider the set $A=\left\{u_{1}, u_{2}\right\}$ and observe that all the six vertices v_{1}, v_{2}, u_{1}, u_{2}, x_{1}, x_{2} become red in $G_{D \cup A}$. For $i=1,2$, by Claim I and Observation 1(iv), the vertex x_{i} has at least three neighbors from $\left(B_{2} \cup B_{1}\right) \backslash\{v\}$ and v_{i} has at least two neighbors from $\left(B_{3} \cup B_{2} \cup B_{1}\right) \backslash\{v\}$. This implies the contradiction $\mathrm{s}(A) \geq 2 \cdot 8+4 \cdot 16+10 \cdot 1=90>44|A|$.

Discharging. Applying Claims $\mathrm{G}-\mathrm{L}$, we now perform a discharging and prove that G_{D} satisfies Property 1. We assign charges to the (non-red) vertices of G_{D} so that every white vertex gets 16 , and every vertex from B_{3}, B_{2}, and B_{1} gets 9 , 8 , and 7 , respectively. We remark that the sum of these charges equals $g\left(G_{D}\right)$. Then, every blue vertex, except the special ones, distributes its charge equally among the white neighbors as follows:

- Every vertex from B_{3} gives 3 to each white neighbor.
- Every non-special vertex from B_{2} gives 4 to each white neighbor.
- Every special vertex gives 7 to its neighbor from W_{0}, and gives 1 to the other neighbor.
- Every vertex from B_{1} gives 7 to its neighbor.

After the discharging, every vertex from a P_{1}-component of $G_{D}[W]$ has a charge of at least $16+4 \cdot 7=44$. By Claim L, every P_{2}-component has at least three non-special blue neighbors and, therefore, its charge is at least $2 \cdot 16+3 \cdot 1+3 \cdot 3=$ 44. By Claim K, every C_{4}-component has at least $4 \cdot 16+8 \cdot 3=88$ and every C_{7}-component has at least $7 \cdot 16+14 \cdot 3=154$ as a charge. Let the number of $P_{1^{-}}, P_{2^{-}}, C_{4^{-}}$, and $C_{7^{-}}$components of $G[W]$ be denoted by p_{1}, p_{2}, c_{4}, and c_{7}, respectively, and let A be a minimum dominating set in $G[W]$. Then,

$$
|A|=p_{1}+p_{2}+2 c_{4}+3 c_{7}
$$

As $D \cup A$ is a dominating set in the graph G, we have $g\left(G_{D \cup A}\right)=0$. Thus, $\mathrm{s}(A)=g\left(G_{D}\right)$, and the discharging proves the following lower bound:

$$
\begin{aligned}
\mathrm{s}(A)=g\left(G_{D}\right) & \geq 44 p_{1}+44 p_{2}+88 c_{4}+154 c_{7} \\
& \geq 44\left(p_{1}+p_{2}+2 c_{4}+3 c_{7}\right)=44|A|
\end{aligned}
$$

As it contradicts our assumption on G_{D}, we infer that every graph G with minimum degree 4 and every $D \subseteq V(G)$ with $g\left(G_{D}\right)>0$ satisfy Property 2 .

To prove Theorem 3, we observe that $g\left(G_{\emptyset}\right)=16 n$ and, by Property 2 , there exists a set A_{1} such that $g\left(G_{A_{1}}\right) \leq g\left(G_{\emptyset}\right)-44\left|A_{1}\right|$. As $G_{A_{1}}$ also satisfies Property 2, we may continue the process if $g\left(G_{A_{1}}\right)>0$, and at the end we obtain a dominating set $D=A_{1} \cup \cdots \cup A_{j}$ such that

$$
g\left(G_{D}\right)=0 \leq g\left(G_{\emptyset}\right)-44|D|=16 n-44|D|
$$

Consequently,

$$
\gamma(G) \leq|D| \leq \frac{16}{44} n=\frac{4}{11} n
$$

holds for every graph G of minimum degree 4.

4. Concluding Remarks

Theorem 2 shows that $\gamma(G) \leq n / 3$ holds for every graph with minimum degree at least 5. However, I do not believe that this upper bound is tight over the class of graphs with $\delta(G) \geq 5$. Examples with $\gamma / n>1 / 4$ can possibly be found among larger graphs via computer search or large constructions, but it seems that $\delta(G) \geq 5$ and $n \leq 12$ together implies $\gamma(G) \leq n / 4$ that is quite far from the proved $n / 3$-upper bound.

Unfortunately, Theorem 3 does not seem sharp either. However, here we have 4 -regular examples where the quotient γ / n equals $1 / 3$ that is relatively close to the proved upper bound $4 / 11$. The smallest such 4 -regular graph is $G=K_{6}-M$ that is obtained from the complete graph K_{6} by the deletion of a perfect matching. Then, we have $\gamma(G)=2=n / 3$. One may guess that this is the sharp upper bound for graphs of minimum degree 4 or, at least, it is true under the following stronger condition:

Conjecture 1. There exists a constant n_{0} such that for every connected 4 -regular graph G of order $n>n_{0}$, we have $\gamma(G) \leq \frac{n}{3}$.

Acknowledgment

The author acknowledges the financial support from the Slovenian Research Agency under the project N1-0108.

References

[1] N. Alon, Transversal numbers of uniform hypergraphs, Graphs Combin. 6 (1990) 1-4.
doi:10.1007/BF01787474
[2] V.I. Arnautov, Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices, Prikl. Mat. i Programmirovanie 11 (1974) 3-8, in Russian.
[3] Cs. Biró, É. Czabarka, P. Dankelmann and L. Székely, Remarks on the domination number of graphs, Bull. Inst. Combin. Appl. 64 (2012) 73-83.
[4] M.M. Blank, An estimate of the external stability number of a graph without suspended vertices, Prikl. Mat. i Programmirovanie 10 (1973) 3-11, in Russian.
[5] B. Brešar, T. Gologranc, M. Milanič, D.F. Rall and R. Rizzi, Dominating sequences in graphs, Discrete Math. 336 (2014) 22-36. doi:10.1016/j.disc.2014.07.016
[6] B. Brešar, S. Klavžar and D.F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math. 24 (2010) 979-991.
doi:10.1137/100786800
[7] Cs. Bujtás and S. Klavžar, Improved upper bounds on the domination number of graphs with minimum degree at least five, Graphs Combin. 32 (2016) 511-519. doi:10.1007/s00373-015-1585-7
[8] C.N. Campos, and Y. Wakabayashi, On dominating sets of maximal outerplanar graphs, Discrete Appl. Math. 161 (2013) 330-335. doi:10.1016/j.dam.2012.08.023
[9] W.E. Clark, B. Shekhtman, S. Suen and D.C. Fisher, Upper bounds for the domination number of a graph, Congr. Numer. 132 (1998) 99-123.
[10] S. Dantas, F. Joos, C. Löwenstein, D.S. Machado and D. Rautenbach, Domination and total domination in cubic graphs of large girth, Discrete Appl. Math. 174 (2014) 128-132.
doi:10.1016/j.dam.2014.04.011
[11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[12] M.A. Henning, I. Schiermeyer and A. Yeo, A new bound on the domination number of graphs with minimum degree two, Electron. J. Combin. 18 (2011) \#P12. doi:10.37236/499
[13] E.L.C. King and M.J. Pelsmajer, Dominating sets in plane triangulations, Discrete Math. 310 (2010) 2221-2230. doi:10.1016/j.disc.2010.03.022
[14] A.V. Kostochka and B.Y. Stodolsky, On domination in connected cubic graphs, Discrete Math. 304 (2005) 45-50. doi:10.1016/j.disc.2005.07.005
[15] A.V. Kostochka and B.Y. Stodolsky, An upper bound on the domination number of n-vertex connected cubic graphs, Discrete Math. 309 (2009) 1142-1162. doi:10.1016/j.disc.2007.12.009
[16] D. Král, P. Škoda and J. Volec, Domination number of cubic graphs with large girth, J. Graph Theory 69 (2012) 131-142.
doi:10.1002/jgt. 20568
[17] C. Löwenstein and D. Rautenbach, Domination in graphs of minimum degree at least two and large girth, Graphs Combin. 24 (2008) 37-46. doi:10.1007/s00373-007-0770-8
[18] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749-762.
doi:10.1002/jgt. 3190130610
[19] O. Ore, Theory of Graphs (A.M.S., Providence, R.I., 1962). doi:10.1090/coll/038
[20] C. Payan, Sur le nombre d'absorption d'un graphe simple, Cahiers Centre Études Recherche Opér. 17 (1975) 307-317.
[21] B. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996) 277-295.
doi:10.1017/S0963548300002042
[22] M.-Y. Sohn and Y. Xudong, Domination in graphs of minimum degree four, J. Korean Math. Soc. 46 (2009) 759-773.
doi:10.4134/JKMS.2009.46.4.759
[23] H.-M. Xing, L. Sun and X.-G. Chen, Domination in graphs of minimum degree five, Graphs Combin. 22 (2006) 127-143. doi:10.1007/s00373-006-0638-3

Received 31 December 2019
Revised 15 May 2020
Accepted 17 May 2020

[^0]: ${ }^{1}$ There are seven small graphs, the cycle C_{4} and six graphs with $n=7$ and $\delta=2$, which do not satisfy $\gamma(G) \leq 2 n / 5$.

