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Abstract

The Turán number of a graph H, denoted by ex(n,H), is the maximum
number of edges of an n-vertex simple graph having no H as a subgraph.
Let Sℓ denote the star on ℓ+1 vertices, and let k ·Sℓ denote k disjoint copies
of Sℓ. Erdős and Gallai determined the value ex(n, k · S1) for all positive
integers k and n. Yuan and Zhang determined the value ex(n, k · S2) and
characterized all extremal graphs for all positive integers k and n. Recently,
Lan et al. determined the value ex(n, 2 · S3) for all positive integers n, and
Li and Yin determined the values ex(n, k · Sℓ) for k = 2, 3 and all positive
integers ℓ and n. In this paper, we further determine the value ex(n, 4 · Sℓ)
for all positive integers ℓ and almost all n, improving one of the results of
Lidický et al.
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1. Introduction

Graphs in this paper are finite and simple. Terms and notation not defined here
are from [1]. Let Sℓ denote the star on ℓ+ 1 vertices and let Pℓ denote the path

on ℓ vertices. For a graph G and a vertex v ∈ V (G), the degree of v in G is the
number of edges incident to v, is denoted by dG(v), and the set of neighbors of v
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in G is denoted by NG(v). Moreover, we define NG[v] = NG(v)∪{v}. The vertex
with degree ℓ in Sℓ is called the center of Sℓ. For a set S by |S| we denote the
cardinality of S. Clearly, dG(v) = |NG(v)|. For graphs G and H, G ∪H denotes
the disjoint union of G and H, p ·G denotes the disjoint union of p copies of G,
and G∨H denotes the join of G and H, that is, the graph obtained from G∪H

by joining each vertex of G to each vertex of H. For S ⊆ V (G), the subgraph of
G induced by S is denoted by G[S].

The Turán number ex(n,H) of the graph H is the maximum number of edges
of an n-vertex simple graph having no H as a subgraph. Let Hex(n,H) denote
a graph on n vertices with ex(n,H) edges not containing H. We call this graph
an extremal graph for H. Let Tr(n) denote the complete r-partite graph on n

vertices in which all parts are as equal in size as possible. Turán [9] determined
the value ex(n,Kr+1) and showed that Tr(n) is the unique extremal graph for
Kr+1, where Kr+1 is the complete graph on r + 1 vertices. Turán’s theorem is
regarded as the basis of a significant branch of graph theory known as extremal

graph theory. It was shown by Simonovits [8] that if n is sufficiently large, then
Kp−1∨Tr(n− p+1) is the unique extremal graph for p ·Kr+1. Gorgol [3] further
considered the Turán number for p disjoint copies of any connected graph T on t

vertices and gave a lower bound for ex(n, p · T ) by simply counting the number
of edges of the graphs Hex(n− pt+ 1, T ) ∪Kpt−1 and Hex(n− p+ 1, T ) ∨Kp−1

which do not contain p · T .

Theorem 1 [3]. Let T be an arbitrary connected graph on t vertices, p be an

arbitrary positive integer and n be an integer such that n ≥ pt. Then ex(n, p·T ) ≥
max

{

ex(n− pt+ 1, T ) +
(

pt−1
2

)

, ex(n− p+ 1, T ) + (p− 1)n−
(

p
2

)}

.

Lidický et al. [7] investigated the Turán number of a star forest (a forest
whose connected components are stars), and determined the value ex(n, F ) for
sufficiently large n, where F = Sd1 ∪ Sd2 ∪ · · · ∪ Sdk and d1 ≥ d2 ≥ · · · ≥ dk.
Lidický et al. [7] also pointed out that they make no attempt to minimize the
bound on n in their proof. Yin and Rao [10] improved the result of Lidický et al.

by determining the value ex(n, k ·Sℓ) for n ≥ 1
2ℓ

2k(k−1)+k−2+max{ℓk, ℓ2+2ℓ}.
Lan et al. [4] further improved these results by determining the value ex(n, k ·Sℓ)
for n ≥ k(ℓ2 + ℓ + 1) − ℓ

2(ℓ − 3). However, there are very few cases when the
Turán number ex(n, k · Sℓ) is known exactly for all positive integers k, ℓ and
n. Erdős and Gallai [2] determined ex(n, k · S1) for all positive integers k and n.
Yuan and Zhang [11] determined ex(n, k ·S2) (i.e., ex(n, k ·P3)) and characterized
all extremal graphs for all positive integers k and n. Lan et al. [4] determined
ex(n, 2 · S3) for all positive integers n. Li and Yin [6] determined ex(n, k ·Sℓ) for
k = 2, 3 and all positive integers ℓ and n. Recently, Lan et al. [5] studied the
degree powers for forbidding star forests, which is a classical generalization of the
Turán number for star forests.
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Theorem 2 [2].

ex(n, k · S1) =











(

n
2

)

, if n < 2k,
(

2k−1
2

)

, if 2k ≤ n < 5k
2 − 1,

(

k−1
2

)

+ (n− k + 1)(k − 1), if n ≥ 5k
2 − 1.

Theorem 3 [11].

ex(n, k · S2) =











(

n
2

)

, if n < 3k,
(

3k−1
2

)

+
⌊

n−3k+1
2

⌋

, if 3k ≤ n < 5k − 1,
(

k−1
2

)

+ (n− k + 1)(k − 1) +
⌊

n−k+1
2

⌋

, if n ≥ 5k − 1.

Furthermore, all extremal graphs for k · S2 are characterized.

Theorem 4 [4].

ex(n, 2 · S3) =











(

n
2

)

, if n < 8,

n+ 14, if 8 ≤ n < 16,

2(n− 1), if n ≥ 16.

Theorem 5 [6].

ex(n, 2 · Sℓ) =



















(

n
2

)

, if n < 2(ℓ+ 1),
⌊

(ℓ−1)n+(2ℓ+1)(ℓ+1)
2

⌋

, if 2(ℓ+ 1) ≤ n < (ℓ+ 1)2,
⌊

(ℓ+1)n−(ℓ+1)
2

⌋

, if n ≥ (ℓ+ 1)2.

Theorem 6 [6].

ex(n, 3 · Sℓ) =



















(

n
2

)

, if n < 3(ℓ+ 1),
⌊

(ℓ−1)n+(3ℓ+2)(2ℓ+2)
2

⌋

, if 3(ℓ+ 1) ≤ n < 3ℓ2+6ℓ+4
2 ,

⌊

(ℓ+3)n−2(ℓ+2)
2

⌋

, if n ≥ 3ℓ2+6ℓ+4
2 .

In this paper, we further determine the Turán number ex(n, 4 · Sℓ) for all
positive integers ℓ and almost all n.

Theorem 7.

ex(n, 4 · Sℓ) =



















(

n
2

)

, if n < 4(ℓ+ 1),
⌊

(ℓ−1)n+(4ℓ+3)(3ℓ+3)
2

⌋

, if 5(ℓ+ 1) ≤ n < 2ℓ2 + 4ℓ+ 3,
⌊

(ℓ+5)n−3(ℓ+3)
2

⌋

, if n ≥ 2ℓ2 + 4ℓ+ 3.
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2. Proof of Theorem 7

For ℓ = 1 and 2, Theorem 7 follows from Theorems 2–3 (the case k = 4). Assume
ℓ ≥ 3. Note that the extremal graph Kn gives the lower and upper bounds for
ex(n, 4 ·Sℓ) in the case n ≤ 4ℓ+3. Thus, we consider only the case n ≥ 5(ℓ+ 1).

Denote f(ℓ, n) = max
{⌊

(ℓ−1)n+(4ℓ+3)(3ℓ+3)
2

⌋

,
⌊

(ℓ+5)n−3(ℓ+3)
2

⌋}

. Clearly,

f(ℓ, n) =







⌊

(ℓ−1)n+(4ℓ+3)(3ℓ+3)
2

⌋

, if 5(ℓ+ 1) ≤ n < 2ℓ2 + 4ℓ+ 3,
⌊

(ℓ+5)n−3(ℓ+3)
2

⌋

, if n ≥ 2ℓ2 + 4ℓ+ 3.

The lower bound ex(n, 4 · Sℓ) ≥ f(ℓ, n) follows from ex(n, Sℓ) =
⌊

n(ℓ−1)
2

⌋

and

Theorem 1. To show the upper bound, we assume that G is a graph on n ≥
5(ℓ + 1) vertices with e(G) ≥ f(ℓ, n) + 1 and G contains no 4 · Sℓ as a sub-
graph. The degree sequence of G is denoted by (d1, d2, . . . , dn), where d1 ≥ d2 ≥

· · · ≥ dn. By
⌊

(ℓ+5)n−3(ℓ+3)
2

⌋

=
⌊

(ℓ+3)n+2n−3(ℓ+3)
2

⌋

≥
⌊

(ℓ+3)n+2×4(ℓ+1)−3(ℓ+3)
2

⌋

≥
⌊

(ℓ+3)n−2(ℓ+2)
2

⌋

, we can see that

e(G) > max

{⌊

(ℓ− 1)n+ (3ℓ+ 2)(2ℓ+ 2)

2

⌋

,

⌊

(ℓ+ 3)n− 2(ℓ+ 2)

2

⌋}

.

It follows from Theorem 6 that G contains three disjoint copies of Sℓ, denoted
F1, F2 and F3. For convenience, we let V (Fi) = {vi0, vi1, . . . , viℓ} and E(Fi) =
{vi0vi1, vi0vi2, . . . , vi0viℓ}, for i = 1, 2, 3. Denote H = G\(V (F1)∪V (F2)∪V (F3)),
and H ′ = G[V (F1) ∪ V (F2) ∪ V (F3)]. We first have the following Claims 1–4.

Claim 1. d3 ≥ 2ℓ+ 3.

Proof. Note that G − Sℓ contains no 3 · Sℓ. Let m0 be the number of edges
incident to Sℓ in G. Thus, we have

m0 = e(G)− e(G− Sℓ) ≥ e(G)− ex(n− ℓ− 1, 3 · Sℓ).

If n ≥ 2ℓ2 + 4ℓ+ 3, then n− ℓ− 1 ≥ 2ℓ2 + 3ℓ+ 2 ≥ 3ℓ2+6ℓ+4
2 . By Theorem 6, we

have

m0 ≥
⌊

(ℓ+5)n−3(ℓ+3)
2

⌋

+ 1−
⌊

(ℓ+3)(n−ℓ−1)−2(ℓ+2)
2

⌋

≥ (ℓ+5)n−3(ℓ+3)−1
2 + 1− (ℓ+3)(n−ℓ−1)−2(ℓ+2)

2

= 2n+ℓ2+3ℓ−1
2 ≥ 2(2ℓ2+4ℓ+3)+ℓ2+3ℓ−1

2 = 5(ℓ+1)2+ℓ
2 .

Assume 5(ℓ+ 1) ≤ n < 2ℓ2 + 4ℓ+ 3, that is, 4(ℓ+ 1) ≤ n− ℓ− 1 < 2ℓ2 + 3ℓ+ 2.
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If 4(ℓ+ 1) ≤ n− ℓ− 1 < 3ℓ2+6ℓ+4
2 , by Theorem 6, then we have

m0 ≥
⌊

(ℓ−1)n+(4ℓ+3)(3ℓ+3)
2

⌋

+ 1−
⌊

(ℓ−1)(n−ℓ−1)+(3ℓ+2)(2ℓ+2)
2

⌋

≥ (ℓ−1)n+(4ℓ+3)(3ℓ+3)−1
2 + 1− (ℓ−1)(n−ℓ−1)+(3ℓ+2)(2ℓ+2)

2

= 7ℓ2+11ℓ+5
2 ≥ 5(ℓ+1)2+ℓ

2 .

If 3ℓ2+6ℓ+4
2 ≤ n− ℓ− 1 < 2ℓ2 + 3ℓ+ 2, by Theorem 6, then we have

m0 ≥
⌊

(ℓ−1)n+(4ℓ+3)(3ℓ+3)
2

⌋

+ 1−
⌊

(ℓ+3)(n−ℓ−1)−2(ℓ+2)
2

⌋

≥ (ℓ−1)n+(4ℓ+3)(3ℓ+3)−1
2 + 1− (ℓ+3)(n−ℓ−1)−2(ℓ+2)

2

= 13ℓ2+27ℓ+17−4n
2 ≥ 13ℓ2+27ℓ+17−4(2ℓ2+4ℓ+3)

2 = 5(ℓ+1)2+ℓ
2 .

Hence each Sℓ must contain a vertex of degree at least

m0

ℓ+ 1
≥

5(ℓ+1)2+ℓ
2

(ℓ+ 1)
≥ 2ℓ+ 3.

This implies that G contains three vertices of degree at least 2ℓ+3, which proves
Claim 1. �

Claim 2. d4 ≥ ℓ+ 3.

Proof. If d4 ≤ ℓ + 2, then e(G) ≤
⌊

3(n−1)+(ℓ+2)(n−3)
2

⌋

=
⌊

(ℓ+5)n−3(ℓ+3)
2

⌋

<

f(ℓ, n) + 1, a contradiction, which proves Claim 2. �

Claim 3. If 1 ≤ |NH(vi0)| ≤ ℓ for some i ∈ {1, 2, 3}, then |NH(vij)| ≤ ℓ for all

j ∈ {1, . . . , ℓ}.

Proof. Assume |NH(vij)| ≥ ℓ+1 for some j ∈ {1, . . . , ℓ}. Let v ∈ NH(vi0); we can
find an Sℓ in G[(V (Fi) \ {vij}) ∪ {v}] whose center is vi0. By |NH(vij) \ {v}| ≥
ℓ + 1 − 1 = ℓ, we can find another Sℓ in G[NH [vij ] \ {v}] whose center is vij .
Therefore, G contains 4 · Sℓ, a contradiction. This proves Claim 3. �

Claim 4. If |NH(vi0)| ≥ ℓ+ 1 for some i ∈ {1, 2, 3}, then |NH(vij)| ≤ ℓ− 1 for

all j ∈ {1, . . . , ℓ}.

Proof. If |NH(vij)| ≥ ℓ for some j ∈ {1, . . . , ℓ}, then we can find an Sℓ in
G[NH [vij ]] whose center is vij . This Sℓ is denoted by F . Let v ∈ NH(vi0)\V (F );
we can find another Sℓ in G[(V (Fi) \ {vij})∪ {v}] whose center is vi0. Therefore,
G contains 4 · Sℓ, a contradiction. This proves Claim 4. �

We consider the following two cases in terms of the value of d1.



1124 S.-S. Li, J.-H. Yin and J.-Y. Li

Case 1. d1 ≥ 4ℓ + 3. If d2 ≥ 3ℓ + 3, by Claims 1–2, then G contains 4 · Sℓ.
Hence d2 ≤ 3ℓ+2. By Claim 1, we may take vi0 to be the vertex with degree di,
for i = 1, 2, 3. Denote H1 = G \ V (F3).

Claim 5. |NH1
(v3j)| ≤ 2ℓ+ 2 for all j ∈ {1, . . . , ℓ}.

Proof. Assume NH1
(v3j) ≥ 2ℓ+3 for some j ∈ {1, . . . , ℓ}. By Claim 1, |NG(v30)\

({v31, . . . , v3ℓ}∪V (F2)∪{v10})| ≥ d3− ℓ− (ℓ+1)−1 ≥ 2ℓ+3− (2ℓ+2) = 1. Let
v ∈ NG(v30) \ ({v31, . . . , v3ℓ} ∪ V (F2) ∪ {v10}), we can find the first Sℓ (denoted
F ) in G[(V (F3) \ {v3j}) ∪ {v}] whose center is v30. By |NH1

(v3j) \ (V (F2) ∪
{v10, v})| ≥ 2ℓ+ 3− (ℓ+ 1 + 1 + 1) = ℓ; we can find the second Sℓ (denoted F ′)
in G[NH1

[v3j ] \ (V (F2) ∪ {v10, v})] whose center is v3j . By |NG(v10) \ (V (F2) ∪
V (F )∪ V (F ′))| ≥ d1 − 3(ℓ+ 1) ≥ 4ℓ+ 3− 3ℓ− 3 = ℓ, we can find the third Sℓ in
G[NG[v10] \ (V (F2) ∪ V (F ) ∪ V (F ′))] whose center is v10. Thus G contains 4 · Sℓ

if we view F2 as the fourth Sℓ, a contradiction which proves Claim 5. �

Now by |NH1
(v30)| = |NG(v30) \ {v31, . . . , v3ℓ}| = d3 − ℓ ≤ 3ℓ+2− ℓ = 2ℓ+2

and Claim 5, we have

e(H1) = e(G)− e(G[V (F3)])− |NH1
(v30)| −

ℓ
∑

j=1
|NH1

(v3j)|

≥ e(G)− (ℓ+1)ℓ
2 − (2ℓ+ 2)− (2ℓ+ 2)ℓ = e(G)− 5ℓ2+9ℓ+4

2 .

If 5(ℓ+ 1) ≤ n < 2ℓ2 + 4ℓ+ 3, i.e., 4(ℓ+ 1) ≤ n− ℓ− 1 < 2ℓ2 + 3ℓ+ 2, then

e(H1) ≥
⌊

(ℓ−1)n+(4ℓ+3)(3ℓ+3)
2

⌋

+ 1− 5ℓ2+9ℓ+4
2

≥ (ℓ−1)n+(4ℓ+3)(3ℓ+3)−1
2 + 1− 5ℓ2+9ℓ+4

2 = (ℓ−1)n+7ℓ2+12ℓ+6
2 .

However, sinceH1 contains no 3·Sℓ, we have that if 4(ℓ+1) ≤ n−ℓ−1 < 3ℓ2+6ℓ+4
2 ,

by Theorem 6, then e(H1) ≤ ex(n− ℓ− 1, 3 · Sℓ) =
⌊

(ℓ−1)(n−ℓ−1)+(3ℓ+2)(2ℓ+2)
2

⌋

=
⌊

(ℓ−1)n+5ℓ2+10ℓ+5
2

⌋

, a contradiction; and if 3ℓ2+6ℓ+4
2 ≤ n − ℓ − 1 < 2ℓ2 + 3ℓ + 2,

by Theorem 6, then

e(H1) ≤ ex(n− ℓ− 1, 3 · Sℓ) =
⌊

(ℓ+3)(n−ℓ−1)−2(ℓ+2)
2

⌋

=
⌊

(ℓ−1)n+4n−ℓ2−6ℓ−7
2

⌋

≤
⌊

(ℓ−1)n+4(2ℓ2+4ℓ+3)−ℓ2−6ℓ−7
2

⌋

=
⌊

(ℓ−1)n+7ℓ2+10ℓ+5
2

⌋

,

a contradiction.

If n ≥ 2ℓ2 + 4ℓ+ 3, i.e., n− ℓ− 1 ≥ 2ℓ2 + 3ℓ+ 2 (≥ 3ℓ2+6ℓ+4
2 ), then

e(H1) ≥
⌊

(ℓ+5)n−3(ℓ+3)
2

⌋

+ 1− 5ℓ2+9ℓ+4
2 ≥ (ℓ+5)n−3(ℓ+3)−1

2 + 1− 5ℓ2+9ℓ+4
2

= (ℓ+3)n+2n−5ℓ2−12ℓ−12
2 ≥ (ℓ+3)n+2(2ℓ2+4ℓ+3)−5ℓ2−12ℓ−12

2 = (ℓ+3)n−ℓ2−4ℓ−6
2 .
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However, e(H1) ≤ ex(n−ℓ−1, 3 ·Sℓ) =
⌊

(ℓ+3)(n−ℓ−1)−2(ℓ+2)
2

⌋

=
⌊

(ℓ+3)n−ℓ2−6ℓ−7
2

⌋

,

a contradiction.

Case 2. d1 ≤ 4ℓ+ 2.

Case 2.1. d3 ≥ 3ℓ+3. Let vi0 be the vertex with degree di for i = 1, 2, 3, and
let {v31, . . . , v3ℓ} ⊆ NG(v30), {v21, . . . , v2ℓ} ⊆ NG(v20) \ {v30, v31, . . . , v3ℓ} and

{v11, . . . , v1ℓ} ⊆ NG(v10) \ {v20, v21, . . . , v2ℓ, v30, v31, . . . , v3ℓ}.

We take Fi to be the graph with V (Fi) = {vi0, vi1, . . . , viℓ} and E(Fi) = {vi0vi1,
vi0vi2, . . . , vi0viℓ} for i = 1, 2, 3. Then Fi is the Sℓ whose center is vi0 for i =
1, 2, 3. Moreover, |NH(vi0)| ≥ d3 − (3ℓ + 2) ≥ 1 for all i ∈ {1, 2, 3}. Let I =
{i | i ∈ {1, 2, 3} and 1 ≤ |NH(vi0)| ≤ ℓ}, J = {1, 2, 3} \ I, A =

⋃

i∈I V (Fi),
B =

⋃

i∈J V (Fi), B1 = {v|v ∈ B \ {v10, v20, v30} and 1 ≤ |NH(v)| ≤ ℓ − 1} and
B2 = B \ (B1 ∪ {v10, v20, v30}). Clearly, |A| = (ℓ + 1)|I|, |I| + |J | = 3 and
|B1|+ |B2| = ℓ|J |. By Claim 4, |NH(v)| = 0 for v ∈ B2.

Claim 6. If v ∈ B1, then dH′(v) ≤ 3ℓ+1, where H ′ = G[V (F1)∪V (F2)∪V (F3)].

Proof. We may assume v = vij for some i ∈ J and some j ∈ {1, . . . , ℓ}. If
dH′(vij) = 3ℓ+2, let u ∈ NH(vij), then we can find an Sℓ inG[{u}∪(V (Fi)\{vi0})]
whose center is vij . By |NH(vi0) \ {u}| ≥ ℓ+1− 1 = ℓ, we can find another Sℓ in
G[NH [vi0]\{u}] whose center is vi0. Therefore, G contains 4 ·Sℓ, a contradiction.
This proves Claim 6. �

Now by |NH(vi0)| ≤ |NG(vi0) \ {vi1, . . . , viℓ}| ≤ d1 − ℓ ≤ 4ℓ+ 2− ℓ = 3ℓ+ 2
for i ∈ J , ℓ ≥ 3 and Claims 3, 4 and 6, we have

e(H) = e(G)− e(H ′)−
3
∑

i=1

ℓ
∑

j=0
|NH(vij)|

= e(G)−

∑

v∈A

d
H′ (v)+

∑

i∈J

d
H′ (vi0)+

∑

v∈B1

d
H′ (v)+

∑

v∈B2

d
H′ (v)

2

−
∑

v∈A

|NH(v)| −
∑

i∈J

|NH(vi0)| −
∑

v∈B1

|NH(v)| −
∑

v∈B2

|NH(v)|

≥ e(G)−
(3ℓ+2)|A|+

∑

i∈J

(d1−|NH(vi0)|)+(3ℓ+1)|B1|+(3ℓ+2)|B2|

2

− −ℓ|A| −
∑

i∈J

|NH(vi0)| − (ℓ− 1)|B1|

= e(G)−
(5ℓ+2)|A|+

∑

i∈J

(d1+|NH(vi0)|)+(5ℓ−1)|B1|+(3ℓ+2)|B2|

2

≥ e(G)− (5ℓ+2)(ℓ+1)|I|+(4ℓ+2+3ℓ+2)|J |+(5ℓ−1)(|B1|+|B2|)
2

= e(G)− (5ℓ2+7ℓ+2)|I|+(5ℓ2+6ℓ+4)|J |
2

≥ e(G)− (5ℓ2+7ℓ+2)|I|+(5ℓ2+7ℓ+2)|J |
2 = e(G)− 15ℓ2+21ℓ+6

2 .
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If 5(ℓ+ 1) ≤ n < 2ℓ2 + 4ℓ+ 3, then

e(H) ≥
⌊

(ℓ−1)n+(4ℓ+3)(3ℓ+3)
2

⌋

+ 1− 1
2(15ℓ

2 + 21ℓ+ 6)

≥ (ℓ−1)n+(4ℓ+3)(3ℓ+3)−1
2 + 1− 1

2(15ℓ
2 + 21ℓ+ 6) = (ℓ−1)n−3ℓ2+4

2 .

However, since H contains no Sℓ, by ex(n, Sℓ) =
⌊

n(ℓ−1)
2

⌋

, then e(H) ≤ ex(n −

3ℓ− 3, Sℓ) =
⌊

(n−3ℓ−3)(ℓ−1)
2

⌋

=
⌊

(ℓ−1)n−3ℓ2+3
2

⌋

, a contradiction.

If n ≥ 2ℓ2 + 4ℓ+ 3, then

e(H) ≥
⌊

(ℓ+5)n−3(ℓ+3)
2

⌋

+ 1− 1
2(15ℓ

2 + 21ℓ+ 6)

≥ (ℓ+5)n−3(ℓ+3)−1
2 + 1− 1

2(15ℓ
2 + 21ℓ+ 6)

= (ℓ−1)n+6n−15ℓ2−24ℓ−14
2

≥ (ℓ−1)n+6(2ℓ2+4ℓ+3)−15ℓ2−24ℓ−14
2 = (ℓ−1)n−3ℓ2+4

2 .

However, e(H) ≤ ex(n− 3ℓ− 3, Sℓ) =
⌊

(ℓ−1)n−3ℓ2+3
2

⌋

, a contradiction.

Case 2.2. d3 ≤ 3ℓ + 2. If d1 ≥ 3ℓ + 3, by Claim 1, we take F1, F2 and F3

to be the same as Case 2.1. Clearly, dG(v) ≤ d3 ≤ 3ℓ + 2 for all v ∈ V (H ′) \
{v10, v20, v30}. This implies that dH(v) ≤ 3ℓ+1 for all v ∈ V (H ′)\{v10, v20, v30}.
Let I = {i | i ∈ {1, 2, 3} and |NH(vi0)| ≥ ℓ+1}, J = {1, 2, 3}\ I, A =

⋃

i∈I V (Fi),
A1 = A \ {v10, v20, v30}, B =

⋃

i∈J V (Fi), B1 = {v|v ∈ B \ {v10, v20, v30} and
|NH(v)| ≥ 2ℓ − 1} and B2 = B \ (B1 ∪ {v10, v20, v30}). Clearly, |A1| = ℓ|I|,
|B2| = ℓ|J | − |B1| and |I|+ |J | = 3.

Claim 7. If |NH(vi0)| = 0 for some i ∈ {1, 2, 3}, and |NH(vij)| ≥ 2ℓ − 1 for

some j ∈ {1, . . . , ℓ}, then |NH(vij′)| ≤ ℓ− 2 for all j′ ∈ {1, . . . , ℓ} \ {j}.

Proof. If |NH(vij′)| ≥ ℓ − 1 for some j′ ∈ {1, . . . , ℓ} \ {j}, let {u1, . . . , uℓ−1} ⊆
NH(vij′), then we can find an Sℓ in G[{u1, . . . , uℓ−1} ∪ {vi0, vij′}] whose center is
vij′ . By |NH(vij) \ {u1, . . . , uℓ−1}| ≥ 2ℓ− 1− (ℓ− 1) = ℓ, we can find another Sℓ

in G[NH [vij ] \ {u1, . . . , uℓ−1}] whose center is vij . Therefore, G contains 4 · Sℓ, a
contradiction. This proves Claim 7. �

Claim 8. |B1| ≤ |J |.

Proof. Let i ∈ J . If 1 ≤ |NH(vi0)| ≤ ℓ, by Claim 3, then |NH(vij)| ≤ ℓ for all
j ∈ {1, . . . , ℓ}, implying that |NH(v)| < 2ℓ−1 for all v ∈ V (Fi). If |NH(vi0)| = 0,
by Claim 7, then Fi contains at most one vertex, say v, with |NH(v)| ≥ 2ℓ − 1.
Thus |B1| ≤ |J |. This proves Claim 8. �
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Now by |NH(vi0)| ≤ |NG(vi0) \ {vi1, . . . , viℓ}| ≤ d1 − ℓ ≤ 3ℓ + 2 for i ∈ I,
ℓ ≥ 3 and Claims 4 and 8, we have

e(H) = e(G)− e(H ′)−
3
∑

i=1

ℓ
∑

j=0
|NH(vij)|

= e(G)−

∑

i∈I

d
H′ (vi0)+

∑

v∈A1

d
H′ (v)+

∑

i∈J

d
H′ (vi0)+

∑

v∈B1

d
H′ (v)+

∑

v∈B2

d
H′ (v)

2

−
∑

i∈I

|NH(vi0)| −
∑

v∈A1

|NH(v)| −
∑

i∈J

|NH(vi0)| −
∑

v∈B1

|NH(v)| −
∑

v∈B2

|NH(v)|

≥ e(G)− 1
2

(

∑

i∈I

(d1 − |NH(vi0)|) +
∑

v∈A1

(dG(v)− |NH(v)|) + (3ℓ+ 2)|J |

+
∑

v∈B1

(dG(v)− |NH(v)|) +
∑

v∈B2

(dG(v)− |NH(v)|)

)

−
∑

i∈I

|NH(vi0)| −
∑

v∈A1

|NH(v)| − ℓ|J | −
∑

v∈B1

|NH(v)| −
∑

v∈B2

|NH(v)|

= e(G)− 1
2

(

∑

i∈I

(d1 + |NH(vi0)|) +
∑

v∈A1

(dG(v) + |NH(v)|) + (5ℓ+ 2)|J |

+
∑

v∈B1

(dG(v) + |NH(v)|) +
∑

v∈B2

(dG(v) + |NH(v)|)

)

≥ e(G)− 1
2

(

(4ℓ+ 2 + 3ℓ+ 2)|I|+ (3ℓ+ 2 + ℓ− 1)|A1|+ (5ℓ+ 2)|J |

+ (3ℓ+ 2 + 3ℓ+ 1)|B1|+ (3ℓ+ 2 + 2ℓ− 2)|B2|
)

= e(G)− (4ℓ2+8ℓ+4)|I|+(5ℓ2+5ℓ+2)|J |+(ℓ+3)|B1|
2

≥ e(G)− (4ℓ2+8ℓ+4)|I|+(5ℓ2+5ℓ+2)|J |+(ℓ+3)|J |
2 =e(G)− (4ℓ2+8ℓ+4)|I|+(5ℓ2+6ℓ+5)|J |

2

≥ e(G)− (5ℓ2+7ℓ+2)|I|+(5ℓ2+7ℓ+2)|J |
2 ≥ e(G)− 15ℓ2+21ℓ+6

2 .

If 5(ℓ+1) ≤ n < 2ℓ2+4ℓ+3, then e(H) ≥
⌊

(ℓ−1)n+(4ℓ+3)(3ℓ+3)
2

⌋

+1− 1
2(15ℓ

2+

21ℓ+ 6) ≥ (ℓ−1)n−3ℓ2+4
2 . However, e(H) ≤ ex(n− 3ℓ− 3, Sℓ) =

⌊

(ℓ−1)n−3ℓ2+3
2

⌋

, a

contradiction. If n ≥ 2ℓ2 + 4ℓ + 3, then e(H) ≥
⌊

(ℓ+5)n−3(ℓ+3)
2

⌋

+ 1 − 1
2(15ℓ

2 +

21ℓ+ 6) ≥ (ℓ−1)n−3ℓ2+4
2 . However, e(H) ≤ ex(n− 3ℓ− 3, Sℓ) =

⌊

(ℓ−1)n−3ℓ2+3
2

⌋

, a

contradiction.
Thus, we have proved that every graph G on n ≥ 5(ℓ + 1) vertices with

e(G) ≥ f(ℓ, n) + 1 contains 4 · Sℓ as a subgraph. In other words, ex(n, 4 · Sℓ) ≤
f(ℓ, n). The proof of Theorem 7 is completed.

Remark. The general case ex(n, k ·Sℓ) seems to be much more challenging. The
method presented here cannot be used to determine ex(n, k · Sℓ) for all positive
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integers k, ℓ and n. The proofs of Claims 2–4 can be adapted to the general k,
but the proofs of the remaining parts cannot be extended to the general case k.
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