Discussiones Mathematicae Graph Theory 42 (2022) 1119–1128 https://doi.org/10.7151/dmgt.2338

THE TURÁN NUMBER FOR $4 \cdot S_{\ell}^{1}$

Sha-Sha Li, Jian-Hua Yin²

AND

JIA-YUN LI

School of Science, Hainan University Haikou 570228, P.R. China

e-mail: yinjh@hainanu.edu.cn

Abstract

The $Tur\'an\ number$ of a graph H, denoted by ex(n,H), is the maximum number of edges of an n-vertex simple graph having no H as a subgraph. Let S_ℓ denote the star on $\ell+1$ vertices, and let $k\cdot S_\ell$ denote k disjoint copies of S_ℓ . Erdős and Gallai determined the value $ex(n,k\cdot S_1)$ for all positive integers k and n. Yuan and Zhang determined the value $ex(n,k\cdot S_2)$ and characterized all extremal graphs for all positive integers k and n. Recently, Lan $et\ al.$ determined the value $ex(n,2\cdot S_3)$ for all positive integers n, and Li and Yin determined the values $ex(n,k\cdot S_\ell)$ for k=2,3 and all positive integers ℓ and n. In this paper, we further determine the value $ex(n,4\cdot S_\ell)$ for all positive integers ℓ and almost all n, improving one of the results of Lidický $et\ al.$

Keywords: Turán number, disjoint copies, $k \cdot S_{\ell}$.

2010 Mathematics Subject Classification: 05C35.

1. Introduction

Graphs in this paper are finite and simple. Terms and notation not defined here are from [1]. Let S_{ℓ} denote the *star* on $\ell + 1$ vertices and let P_{ℓ} denote the *path* on ℓ vertices. For a graph G and a vertex $v \in V(G)$, the degree of v in G is the number of edges incident to v, is denoted by $d_{G}(v)$, and the set of neighbors of v

¹Supported by Hainan Provincial Natural Science Foundation of China (No. 2019RC085) and Natural Science Foundation of China (No. 11961019).

²Corresponding author.

in G is denoted by $N_G(v)$. Moreover, we define $N_G[v] = N_G(v) \cup \{v\}$. The vertex with degree ℓ in S_ℓ is called the *center* of S_ℓ . For a set S by |S| we denote the cardinality of S. Clearly, $d_G(v) = |N_G(v)|$. For graphs G and H, $G \cup H$ denotes the disjoint union of G and $G \cup H$ denotes the join of G and $G \cup H$ denotes the join of G and $G \cup H$ denotes the join of G and $G \cup H$ denotes the join of G to each vertex of G. For $G \subseteq V(G)$, the subgraph of G induced by G is denoted by G[S].

The $Tur\'{a}n$ number ex(n, H) of the graph H is the maximum number of edges of an n-vertex simple graph having no H as a subgraph. Let $H_{ex}(n, H)$ denote a graph on n vertices with ex(n, H) edges not containing H. We call this graph an extremal graph for H. Let $T_r(n)$ denote the complete r-partite graph on n vertices in which all parts are as equal in size as possible. Turán [9] determined the value $ex(n, K_{r+1})$ and showed that $T_r(n)$ is the unique extremal graph for K_{r+1} , where K_{r+1} is the complete graph on r+1 vertices. Turán's theorem is regarded as the basis of a significant branch of graph theory known as extremal graph theory. It was shown by Simonovits [8] that if n is sufficiently large, then $K_{p-1} \vee T_r(n-p+1)$ is the unique extremal graph for $p \cdot K_{r+1}$. Gorgol [3] further considered the Turán number for p disjoint copies of any connected graph T on t vertices and gave a lower bound for $ex(n, p \cdot T)$ by simply counting the number of edges of the graphs $H_{ex}(n-pt+1,T) \cup K_{pt-1}$ and $H_{ex}(n-p+1,T) \vee K_{p-1}$ which do not contain $p \cdot T$.

Theorem 1 [3]. Let T be an arbitrary connected graph on t vertices, p be an arbitrary positive integer and n be an integer such that $n \ge pt$. Then $ex(n, p \cdot T) \ge \max\left\{ex(n-pt+1,T) + \binom{pt-1}{2}, ex(n-p+1,T) + (p-1)n - \binom{p}{2}\right\}$.

Lidický et al. [7] investigated the Turán number of a star forest (a forest whose connected components are stars), and determined the value ex(n, F) for sufficiently large n, where $F = S_{d_1} \cup S_{d_2} \cup \cdots \cup S_{d_k}$ and $d_1 \geq d_2 \geq \cdots \geq d_k$. Lidický et al. [7] also pointed out that they make no attempt to minimize the bound on n in their proof. Yin and Rao [10] improved the result of Lidický et al. by determining the value $ex(n, k \cdot S_{\ell})$ for $n \geq \frac{1}{2}\ell^2 k(k-1) + k - 2 + \max\{\ell k, \ell^2 + 2\ell\}$. Lan et al. [4] further improved these results by determining the value $ex(n, k \cdot S_{\ell})$ for $n \geq k(\ell^2 + \ell + 1) - \frac{\ell}{2}(\ell - 3)$. However, there are very few cases when the Turán number $ex(n, k \cdot \bar{S}_{\ell})$ is known exactly for all positive integers k, ℓ and n. Erdős and Gallai [2] determined $ex(n, k \cdot S_1)$ for all positive integers k and n. Yuan and Zhang [11] determined $ex(n, k \cdot S_2)$ (i.e., $ex(n, k \cdot P_3)$) and characterized all extremal graphs for all positive integers k and n. Lan et al. [4] determined $ex(n, 2 \cdot S_3)$ for all positive integers n. Li and Yin [6] determined $ex(n, k \cdot S_\ell)$ for k=2,3 and all positive integers ℓ and n. Recently, Lan et al. [5] studied the degree powers for forbidding star forests, which is a classical generalization of the Turán number for star forests.

Theorem 2 [2].

$$ex(n, k \cdot S_1) = \begin{cases} \binom{n}{2}, & \text{if } n < 2k, \\ \binom{2k-1}{2}, & \text{if } 2k \le n < \frac{5k}{2} - 1, \\ \binom{k-1}{2} + (n-k+1)(k-1), & \text{if } n \ge \frac{5k}{2} - 1. \end{cases}$$

Theorem 3 [11].

$$ex(n, k \cdot S_2) = \begin{cases} \binom{n}{2}, & \text{if } n < 3k, \\ \binom{3k-1}{2} + \lfloor \frac{n-3k+1}{2} \rfloor, & \text{if } 3k \le n < 5k-1, \\ \binom{k-1}{2} + (n-k+1)(k-1) + \lfloor \frac{n-k+1}{2} \rfloor, & \text{if } n \ge 5k-1. \end{cases}$$

Furthermore, all extremal graphs for $k \cdot S_2$ are characterized.

Theorem 4 [4].

$$ex(n, 2 \cdot S_3) = \begin{cases} \binom{n}{2}, & \text{if } n < 8, \\ n + 14, & \text{if } 8 \le n < 16, \\ 2(n - 1), & \text{if } n \ge 16. \end{cases}$$

Theorem 5 [6].

$$ex(n, 2 \cdot S_{\ell}) = \begin{cases} \binom{n}{2}, & \text{if } n < 2(\ell+1), \\ \left\lfloor \frac{(\ell-1)n + (2\ell+1)(\ell+1)}{2} \right\rfloor, & \text{if } 2(\ell+1) \le n < (\ell+1)^2, \\ \left\lfloor \frac{(\ell+1)n - (\ell+1)}{2} \right\rfloor, & \text{if } n \ge (\ell+1)^2. \end{cases}$$

Theorem 6 [6].

$$ex(n, 3 \cdot S_{\ell}) = \begin{cases} \binom{n}{2}, & \text{if } n < 3(\ell+1), \\ \left\lfloor \frac{(\ell-1)n + (3\ell+2)(2\ell+2)}{2} \right\rfloor, & \text{if } 3(\ell+1) \le n < \frac{3\ell^2 + 6\ell + 4}{2}, \\ \left\lfloor \frac{(\ell+3)n - 2(\ell+2)}{2} \right\rfloor, & \text{if } n \ge \frac{3\ell^2 + 6\ell + 4}{2}. \end{cases}$$

In this paper, we further determine the Turán number $ex(n, 4 \cdot S_{\ell})$ for all positive integers ℓ and almost all n.

Theorem 7.

$$ex(n, 4 \cdot S_{\ell}) = \begin{cases} \binom{n}{2}, & \text{if } n < 4(\ell+1), \\ \left\lfloor \frac{(\ell-1)n + (4\ell+3)(3\ell+3)}{2} \right\rfloor, & \text{if } 5(\ell+1) \le n < 2\ell^2 + 4\ell + 3, \\ \left\lfloor \frac{(\ell+5)n - 3(\ell+3)}{2} \right\rfloor, & \text{if } n \ge 2\ell^2 + 4\ell + 3. \end{cases}$$

2. Proof of Theorem 7

For $\ell = 1$ and 2, Theorem 7 follows from Theorems 2–3 (the case k = 4). Assume $\ell \geq 3$. Note that the extremal graph K_n gives the lower and upper bounds for $ex(n, 4 \cdot S_{\ell})$ in the case $n \leq 4\ell + 3$. Thus, we consider only the case $n \geq 5(\ell + 1)$. Denote $f(\ell, n) = \max\left\{\left\lfloor \frac{(\ell-1)n + (4\ell+3)(3\ell+3)}{2}\right\rfloor, \left\lfloor \frac{(\ell+5)n - 3(\ell+3)}{2}\right\rfloor\right\}$. Clearly,

$$f(\ell,n) = \begin{cases} \left\lfloor \frac{(\ell-1)n + (4\ell+3)(3\ell+3)}{2} \right\rfloor, & \text{if } 5(\ell+1) \le n < 2\ell^2 + 4\ell + 3, \\ \left\lfloor \frac{(\ell+5)n - 3(\ell+3)}{2} \right\rfloor, & \text{if } n \ge 2\ell^2 + 4\ell + 3. \end{cases}$$

The lower bound $ex(n, 4 \cdot S_{\ell}) \geq f(\ell, n)$ follows from $ex(n, S_{\ell}) = \left\lfloor \frac{n(\ell-1)}{2} \right\rfloor$ and Theorem 1. To show the upper bound, we assume that G is a graph on $n \geq 5(\ell+1)$ vertices with $e(G) \geq f(\ell, n) + 1$ and G contains no $4 \cdot S_{\ell}$ as a subgraph. The degree sequence of G is denoted by (d_1, d_2, \ldots, d_n) , where $d_1 \geq d_2 \geq \cdots \geq d_n$. By $\left\lfloor \frac{(\ell+5)n-3(\ell+3)}{2} \right\rfloor = \left\lfloor \frac{(\ell+3)n+2n-3(\ell+3)}{2} \right\rfloor \geq \left\lfloor \frac{(\ell+3)n+2\times4(\ell+1)-3(\ell+3)}{2} \right\rfloor \geq \left\lfloor \frac{(\ell+3)n-2(\ell+2)}{2} \right\rfloor$, we can see that

$$e(G) > \max\left\{ \left\lfloor \frac{(\ell-1)n + (3\ell+2)(2\ell+2)}{2} \right\rfloor, \left\lfloor \frac{(\ell+3)n - 2(\ell+2)}{2} \right\rfloor \right\}.$$

It follows from Theorem 6 that G contains three disjoint copies of S_{ℓ} , denoted F_1 , F_2 and F_3 . For convenience, we let $V(F_i) = \{v_{i0}, v_{i1}, \dots, v_{i\ell}\}$ and $E(F_i) = \{v_{i0}v_{i1}, v_{i0}v_{i2}, \dots, v_{i0}v_{i\ell}\}$, for i = 1, 2, 3. Denote $H = G \setminus (V(F_1) \cup V(F_2) \cup V(F_3))$, and $H' = G[V(F_1) \cup V(F_2) \cup V(F_3)]$. We first have the following Claims 1–4.

Claim 1. $d_3 \ge 2\ell + 3$.

Proof. Note that $G - S_{\ell}$ contains no $3 \cdot S_{\ell}$. Let m_0 be the number of edges incident to S_{ℓ} in G. Thus, we have

$$m_0 = e(G) - e(G - S_\ell) \ge e(G) - ex(n - \ell - 1, 3 \cdot S_\ell).$$

If $n \ge 2\ell^2 + 4\ell + 3$, then $n - \ell - 1 \ge 2\ell^2 + 3\ell + 2 \ge \frac{3\ell^2 + 6\ell + 4}{2}$. By Theorem 6, we have

$$m_0 \ge \left\lfloor \frac{(\ell+5)n-3(\ell+3)}{2} \right\rfloor + 1 - \left\lfloor \frac{(\ell+3)(n-\ell-1)-2(\ell+2)}{2} \right\rfloor$$
$$\ge \frac{(\ell+5)n-3(\ell+3)-1}{2} + 1 - \frac{(\ell+3)(n-\ell-1)-2(\ell+2)}{2}$$
$$= \frac{2n+\ell^2+3\ell-1}{2} \ge \frac{2(2\ell^2+4\ell+3)+\ell^2+3\ell-1}{2} = \frac{5(\ell+1)^2+\ell}{2}.$$

Assume $5(\ell+1) \le n < 2\ell^2 + 4\ell + 3$, that is, $4(\ell+1) \le n - \ell - 1 < 2\ell^2 + 3\ell + 2$.

If $4(\ell+1) \le n-\ell-1 < \frac{3\ell^2+6\ell+4}{2}$, by Theorem 6, then we have

$$m_0 \ge \left\lfloor \frac{(\ell-1)n + (4\ell+3)(3\ell+3)}{2} \right\rfloor + 1 - \left\lfloor \frac{(\ell-1)(n-\ell-1) + (3\ell+2)(2\ell+2)}{2} \right\rfloor$$

$$\ge \frac{(\ell-1)n + (4\ell+3)(3\ell+3) - 1}{2} + 1 - \frac{(\ell-1)(n-\ell-1) + (3\ell+2)(2\ell+2)}{2}$$

$$= \frac{7\ell^2 + 11\ell + 5}{2} \ge \frac{5(\ell+1)^2 + \ell}{2}.$$

If $\frac{3\ell^2+6\ell+4}{2} \leq n-\ell-1 < 2\ell^2+3\ell+2$, by Theorem 6, then we have

$$m_0 \ge \left\lfloor \frac{(\ell-1)n + (4\ell+3)(3\ell+3)}{2} \right\rfloor + 1 - \left\lfloor \frac{(\ell+3)(n-\ell-1) - 2(\ell+2)}{2} \right\rfloor$$

$$\ge \frac{(\ell-1)n + (4\ell+3)(3\ell+3) - 1}{2} + 1 - \frac{(\ell+3)(n-\ell-1) - 2(\ell+2)}{2}$$

$$= \frac{13\ell^2 + 27\ell + 17 - 4n}{2} \ge \frac{13\ell^2 + 27\ell + 17 - 4(2\ell^2 + 4\ell + 3)}{2} = \frac{5(\ell+1)^2 + \ell}{2}.$$

Hence each S_{ℓ} must contain a vertex of degree at least

$$\frac{m_0}{\ell+1} \ge \frac{\frac{5(\ell+1)^2+\ell}{2}}{(\ell+1)} \ge 2\ell+3.$$

This implies that G contains three vertices of degree at least $2\ell + 3$, which proves Claim 1.

Claim 2. $d_4 \ge \ell + 3$.

Proof. If $d_4 \leq \ell + 2$, then $e(G) \leq \left\lfloor \frac{3(n-1) + (\ell+2)(n-3)}{2} \right\rfloor = \left\lfloor \frac{(\ell+5)n - 3(\ell+3)}{2} \right\rfloor < f(\ell,n) + 1$, a contradiction, which proves Claim 2.

Claim 3. If $1 \le |N_H(v_{i0})| \le \ell$ for some $i \in \{1, 2, 3\}$, then $|N_H(v_{ij})| \le \ell$ for all $j \in \{1, ..., \ell\}$.

Proof. Assume $|N_H(v_{ij})| \ge \ell+1$ for some $j \in \{1, \ldots, \ell\}$. Let $v \in N_H(v_{i0})$; we can find an S_ℓ in $G[(V(F_i) \setminus \{v_{ij}\}) \cup \{v\}]$ whose center is v_{i0} . By $|N_H(v_{ij}) \setminus \{v\}| \ge \ell+1-1=\ell$, we can find another S_ℓ in $G[N_H[v_{ij}] \setminus \{v\}]$ whose center is v_{ij} . Therefore, G contains $4 \cdot S_\ell$, a contradiction. This proves Claim 3.

Claim 4. If $|N_H(v_{i0})| \ge \ell + 1$ for some $i \in \{1, 2, 3\}$, then $|N_H(v_{ij})| \le \ell - 1$ for all $j \in \{1, ..., \ell\}$.

Proof. If $|N_H(v_{ij})| \geq \ell$ for some $j \in \{1, \ldots, \ell\}$, then we can find an S_ℓ in $G[N_H[v_{ij}]]$ whose center is v_{ij} . This S_ℓ is denoted by F. Let $v \in N_H(v_{i0}) \setminus V(F)$; we can find another S_ℓ in $G[(V(F_i) \setminus \{v_{ij}\}) \cup \{v\}]$ whose center is v_{i0} . Therefore, G contains $4 \cdot S_\ell$, a contradiction. This proves Claim 4.

We consider the following two cases in terms of the value of d_1 .

Case 1. $d_1 \geq 4\ell + 3$. If $d_2 \geq 3\ell + 3$, by Claims 1–2, then G contains $4 \cdot S_\ell$. Hence $d_2 \leq 3\ell + 2$. By Claim 1, we may take v_{i0} to be the vertex with degree d_i , for i = 1, 2, 3. Denote $H_1 = G \setminus V(F_3)$.

Claim 5. $|N_{H_1}(v_{3j})| \le 2\ell + 2 \text{ for all } j \in \{1, \dots, \ell\}.$

Proof. Assume $N_{H_1}(v_{3j}) \geq 2\ell + 3$ for some $j \in \{1, \ldots, \ell\}$. By Claim $1, |N_G(v_{30}) \setminus (\{v_{31}, \ldots, v_{3\ell}\} \cup V(F_2) \cup \{v_{10}\})| \geq d_3 - \ell - (\ell + 1) - 1 \geq 2\ell + 3 - (2\ell + 2) = 1$. Let $v \in N_G(v_{30}) \setminus (\{v_{31}, \ldots, v_{3\ell}\} \cup V(F_2) \cup \{v_{10}\})$, we can find the first S_ℓ (denoted F) in $G[(V(F_3) \setminus \{v_{3j}\}) \cup \{v\}]$ whose center is v_{30} . By $|N_{H_1}(v_{3j}) \setminus (V(F_2) \cup \{v_{10}, v\})| \geq 2\ell + 3 - (\ell + 1 + 1 + 1) = \ell$; we can find the second S_ℓ (denoted F') in $G[N_{H_1}[v_{3j}] \setminus (V(F_2) \cup \{v_{10}, v\})]$ whose center is v_{3j} . By $|N_G(v_{10}) \setminus (V(F_2) \cup V(F) \cup V(F'))| \geq d_1 - 3(\ell + 1) \geq 4\ell + 3 - 3\ell - 3 = \ell$, we can find the third S_ℓ in $G[N_G[v_{10}] \setminus (V(F_2) \cup V(F) \cup V(F'))]$ whose center is v_{10} . Thus G contains $4 \cdot S_\ell$ if we view F_2 as the fourth S_ℓ , a contradiction which proves Claim 5.

Now by $|N_{H_1}(v_{30})| = |N_G(v_{30}) \setminus \{v_{31}, \dots, v_{3\ell}\}| = d_3 - \ell \le 3\ell + 2 - \ell = 2\ell + 2$ and Claim 5, we have

$$e(H_1) = e(G) - e(G[V(F_3)]) - |N_{H_1}(v_{30})| - \sum_{j=1}^{\ell} |N_{H_1}(v_{3j})|$$

$$\geq e(G) - \frac{(\ell+1)\ell}{2} - (2\ell+2) - (2\ell+2)\ell = e(G) - \frac{5\ell^2 + 9\ell + 4}{2}.$$

If
$$5(\ell+1) \le n < 2\ell^2 + 4\ell + 3$$
, i.e., $4(\ell+1) \le n - \ell - 1 < 2\ell^2 + 3\ell + 2$, then

$$e(H_1) \ge \left\lfloor \frac{(\ell-1)n + (4\ell+3)(3\ell+3)}{2} \right\rfloor + 1 - \frac{5\ell^2 + 9\ell + 4}{2}$$

$$\ge \frac{(\ell-1)n + (4\ell+3)(3\ell+3) - 1}{2} + 1 - \frac{5\ell^2 + 9\ell + 4}{2} = \frac{(\ell-1)n + 7\ell^2 + 12\ell + 6}{2}.$$

However, since H_1 contains no $3 \cdot S_{\ell}$, we have that if $4(\ell+1) \leq n - \ell - 1 < \frac{3\ell^2 + 6\ell + 4}{2}$, by Theorem 6, then $e(H_1) \leq ex(n - \ell - 1, 3 \cdot S_{\ell}) = \left\lfloor \frac{(\ell - 1)(n - \ell - 1) + (3\ell + 2)(2\ell + 2)}{2} \right\rfloor = \left\lfloor \frac{(\ell - 1)n + 5\ell^2 + 10\ell + 5}{2} \right\rfloor$, a contradiction; and if $\frac{3\ell^2 + 6\ell + 4}{2} \leq n - \ell - 1 < 2\ell^2 + 3\ell + 2$, by Theorem 6, then

$$e(H_1) \le ex(n - \ell - 1, 3 \cdot S_{\ell}) = \left\lfloor \frac{(\ell + 3)(n - \ell - 1) - 2(\ell + 2)}{2} \right\rfloor = \left\lfloor \frac{(\ell - 1)n + 4n - \ell^2 - 6\ell - 7}{2} \right\rfloor$$

$$\le \left\lfloor \frac{(\ell - 1)n + 4(2\ell^2 + 4\ell + 3) - \ell^2 - 6\ell - 7}{2} \right\rfloor = \left\lfloor \frac{(\ell - 1)n + 7\ell^2 + 10\ell + 5}{2} \right\rfloor,$$

 ${\it a\ contradiction}.$

If
$$n \ge 2\ell^2 + 4\ell + 3$$
, i.e., $n - \ell - 1 \ge 2\ell^2 + 3\ell + 2 \ (\ge \frac{3\ell^2 + 6\ell + 4}{2})$, then

$$e(H_1) \ge \left\lfloor \frac{(\ell+5)n - 3(\ell+3)}{2} \right\rfloor + 1 - \frac{5\ell^2 + 9\ell + 4}{2} \ge \frac{(\ell+5)n - 3(\ell+3) - 1}{2} + 1 - \frac{5\ell^2 + 9\ell + 4}{2}$$
$$= \frac{(\ell+3)n + 2n - 5\ell^2 - 12\ell - 12}{2} \ge \frac{(\ell+3)n + 2(2\ell^2 + 4\ell + 3) - 5\ell^2 - 12\ell - 12}{2} = \frac{(\ell+3)n - \ell^2 - 4\ell - 6}{2}.$$

However, $e(H_1) \le ex(n-\ell-1, 3 \cdot S_\ell) = \left\lfloor \frac{(\ell+3)(n-\ell-1)-2(\ell+2)}{2} \right\rfloor = \left\lfloor \frac{(\ell+3)n-\ell^2-6\ell-7}{2} \right\rfloor$, a contradiction.

Case 2. $d_1 < 4\ell + 2$.

Case 2.1. $d_3 \geq 3\ell + 3$. Let v_{i0} be the vertex with degree d_i for i = 1, 2, 3, and let $\{v_{31}, \ldots, v_{3\ell}\} \subseteq N_G(v_{30}), \{v_{21}, \ldots, v_{2\ell}\} \subseteq N_G(v_{20}) \setminus \{v_{30}, v_{31}, \ldots, v_{3\ell}\}$ and

$$\{v_{11},\ldots,v_{1\ell}\}\subseteq N_G(v_{10})\setminus\{v_{20},v_{21},\ldots,v_{2\ell},v_{30},v_{31},\ldots,v_{3\ell}\}.$$

We take F_i to be the graph with $V(F_i) = \{v_{i0}, v_{i1}, \dots, v_{i\ell}\}$ and $E(F_i) = \{v_{i0}v_{i1}, v_{i0}v_{i2}, \dots, v_{i0}v_{i\ell}\}$ for i = 1, 2, 3. Then F_i is the S_ℓ whose center is v_{i0} for i = 1, 2, 3. Moreover, $|N_H(v_{i0})| \ge d_3 - (3\ell + 2) \ge 1$ for all $i \in \{1, 2, 3\}$. Let $I = \{i \mid i \in \{1, 2, 3\} \text{ and } 1 \le |N_H(v_{i0})| \le \ell\}$, $J = \{1, 2, 3\} \setminus I$, $A = \bigcup_{i \in I} V(F_i)$, $B = \bigcup_{i \in J} V(F_i)$, $B_1 = \{v \mid v \in B \setminus \{v_{10}, v_{20}, v_{30}\} \text{ and } 1 \le |N_H(v)| \le \ell - 1\}$ and $B_2 = B \setminus (B_1 \cup \{v_{10}, v_{20}, v_{30}\})$. Clearly, $|A| = (\ell + 1)|I|$, |I| + |J| = 3 and $|B_1| + |B_2| = \ell |J|$. By Claim 4, $|N_H(v)| = 0$ for $v \in B_2$.

Claim 6. If $v \in B_1$, then $d_{H'}(v) \leq 3\ell + 1$, where $H' = G[V(F_1) \cup V(F_2) \cup V(F_3)]$.

Proof. We may assume $v = v_{ij}$ for some $i \in J$ and some $j \in \{1, \dots, \ell\}$. If $d_{H'}(v_{ij}) = 3\ell + 2$, let $u \in N_H(v_{ij})$, then we can find an S_ℓ in $G[\{u\} \cup (V(F_i) \setminus \{v_{i0}\})]$ whose center is v_{ij} . By $|N_H(v_{i0}) \setminus \{u\}| \ge \ell + 1 - 1 = \ell$, we can find another S_ℓ in $G[N_H[v_{i0}] \setminus \{u\}]$ whose center is v_{i0} . Therefore, G contains $4 \cdot S_\ell$, a contradiction. This proves Claim 6.

Now by $|N_H(v_{i0})| \le |N_G(v_{i0}) \setminus \{v_{i1}, \dots, v_{i\ell}\}| \le d_1 - \ell \le 4\ell + 2 - \ell = 3\ell + 2$ for $i \in J, \ell \ge 3$ and Claims 3, 4 and 6, we have

$$\begin{split} e(H) &= e(G) - e(H') - \sum_{i=1}^{3} \sum_{j=0}^{\ell} |N_{H}(v_{ij})| \\ &= e(G) - \frac{\sum_{v \in A} d_{H'}(v) + \sum_{i \in J} d_{H'}(v_{i0}) + \sum_{v \in B_{1}} d_{H'}(v) + \sum_{v \in B_{2}} d_{H'}(v)}{2} \\ &- \sum_{v \in A} |N_{H}(v)| - \sum_{i \in J} |N_{H}(v_{i0})| - \sum_{v \in B_{1}} |N_{H}(v)| - \sum_{v \in B_{2}} |N_{H}(v)| \\ &\geq e(G) - \frac{(3\ell+2)|A| + \sum_{i \in J} (d_{1} - |N_{H}(v_{i0})|) + (3\ell+1)|B_{1}| + (3\ell+2)|B_{2}|}{2} \\ &- -\ell|A| - \sum_{i \in J} |N_{H}(v_{i0})| - (\ell-1)|B_{1}| \\ &= e(G) - \frac{(5\ell+2)|A| + \sum_{i \in J} (d_{1} + |N_{H}(v_{i0})|) + (5\ell-1)|B_{1}| + (3\ell+2)|B_{2}|}{2} \\ &\geq e(G) - \frac{(5\ell+2)(\ell+1)|I| + (4\ell+2 + 3\ell+2)|J| + (5\ell-1)(|B_{1}| + |B_{2}|)}{2} \\ &= e(G) - \frac{(5\ell^{2} + 7\ell + 2)|I| + (5\ell^{2} + 6\ell + 4)|J|}{2} \\ &\geq e(G) - \frac{(5\ell^{2} + 7\ell + 2)|I| + (5\ell^{2} + 7\ell + 2)|J|}{2} = e(G) - \frac{15\ell^{2} + 21\ell + 6}{2}. \end{split}$$

If
$$5(\ell+1) \le n < 2\ell^2 + 4\ell + 3$$
, then

$$e(H) \ge \left\lfloor \frac{(\ell-1)n + (4\ell+3)(3\ell+3)}{2} \right\rfloor + 1 - \frac{1}{2}(15\ell^2 + 21\ell + 6)$$

$$\ge \frac{(\ell-1)n + (4\ell+3)(3\ell+3) - 1}{2} + 1 - \frac{1}{2}(15\ell^2 + 21\ell + 6) = \frac{(\ell-1)n - 3\ell^2 + 4}{2}.$$

However, since H contains no S_{ℓ} , by $ex(n, S_{\ell}) = \left\lfloor \frac{n(\ell-1)}{2} \right\rfloor$, then $e(H) \leq ex(n-3\ell-3, S_{\ell}) = \left\lfloor \frac{(n-3\ell-3)(\ell-1)}{2} \right\rfloor = \left\lfloor \frac{(\ell-1)n-3\ell^2+3}{2} \right\rfloor$, a contradiction. If $n \geq 2\ell^2 + 4\ell + 3$, then

$$e(H) \ge \left\lfloor \frac{(\ell+5)n-3(\ell+3)}{2} \right\rfloor + 1 - \frac{1}{2}(15\ell^2 + 21\ell + 6)$$

$$\ge \frac{(\ell+5)n-3(\ell+3)-1}{2} + 1 - \frac{1}{2}(15\ell^2 + 21\ell + 6)$$

$$= \frac{(\ell-1)n+6n-15\ell^2 - 24\ell - 14}{2}$$

$$\ge \frac{(\ell-1)n+6(2\ell^2 + 4\ell + 3) - 15\ell^2 - 24\ell - 14}{2} = \frac{(\ell-1)n-3\ell^2 + 4}{2}.$$

However, $e(H) \le ex(n-3\ell-3, S_{\ell}) = \left\lfloor \frac{(\ell-1)n-3\ell^2+3}{2} \right\rfloor$, a contradiction.

Case 2.2. $d_3 \leq 3\ell + 2$. If $d_1 \geq 3\ell + 3$, by Claim 1, we take F_1 , F_2 and F_3 to be the same as Case 2.1. Clearly, $d_G(v) \leq d_3 \leq 3\ell + 2$ for all $v \in V(H') \setminus \{v_{10}, v_{20}, v_{30}\}$. This implies that $d_H(v) \leq 3\ell + 1$ for all $v \in V(H') \setminus \{v_{10}, v_{20}, v_{30}\}$. Let $I = \{i \mid i \in \{1, 2, 3\} \text{ and } |N_H(v_{i0})| \geq \ell + 1\}$, $J = \{1, 2, 3\} \setminus I$, $A = \bigcup_{i \in I} V(F_i)$, $A_1 = A \setminus \{v_{10}, v_{20}, v_{30}\}$, $B = \bigcup_{i \in J} V(F_i)$, $B_1 = \{v \mid v \in B \setminus \{v_{10}, v_{20}, v_{30}\}$ and $|N_H(v)| \geq 2\ell - 1\}$ and $B_2 = B \setminus (B_1 \cup \{v_{10}, v_{20}, v_{30}\})$. Clearly, $|A_1| = \ell |I|$, $|B_2| = \ell |J| - |B_1|$ and |I| + |J| = 3.

Claim 7. If $|N_H(v_{i0})| = 0$ for some $i \in \{1, 2, 3\}$, and $|N_H(v_{ij})| \ge 2\ell - 1$ for some $j \in \{1, ..., \ell\}$, then $|N_H(v_{ij'})| \le \ell - 2$ for all $j' \in \{1, ..., \ell\} \setminus \{j\}$.

Proof. If $|N_H(v_{ij'})| \geq \ell - 1$ for some $j' \in \{1, \ldots, \ell\} \setminus \{j\}$, let $\{u_1, \ldots, u_{\ell-1}\} \subseteq N_H(v_{ij'})$, then we can find an S_ℓ in $G[\{u_1, \ldots, u_{\ell-1}\} \cup \{v_{i0}, v_{ij'}\}]$ whose center is $v_{ij'}$. By $|N_H(v_{ij}) \setminus \{u_1, \ldots, u_{\ell-1}\}| \geq 2\ell - 1 - (\ell - 1) = \ell$, we can find another S_ℓ in $G[N_H[v_{ij}] \setminus \{u_1, \ldots, u_{\ell-1}\}]$ whose center is v_{ij} . Therefore, G contains $4 \cdot S_\ell$, a contradiction. This proves Claim 7.

Claim 8. $|B_1| \le |J|$.

Proof. Let $i \in J$. If $1 \le |N_H(v_{i0})| \le \ell$, by Claim 3, then $|N_H(v_{ij})| \le \ell$ for all $j \in \{1, \ldots, \ell\}$, implying that $|N_H(v)| < 2\ell - 1$ for all $v \in V(F_i)$. If $|N_H(v_{i0})| = 0$, by Claim 7, then F_i contains at most one vertex, say v, with $|N_H(v)| \ge 2\ell - 1$. Thus $|B_1| \le |J|$. This proves Claim 8.

Now by $|N_H(v_{i0})| \leq |N_G(v_{i0}) \setminus \{v_{i1}, \dots, v_{i\ell}\}| \leq d_1 - \ell \leq 3\ell + 2$ for $i \in I$, $\ell \geq 3$ and Claims 4 and 8, we have

$$\begin{split} e(H) &= e(G) - e(H') - \sum_{i=1}^{3} \sum_{j=0}^{\ell} |N_{H}(v_{ij})| \\ &= e(G) - \frac{\sum_{i\in I} d_{H'}(v_{i0}) + \sum_{v\in A_{1}} d_{H'}(v) + \sum_{i\in J} d_{H'}(v_{i0}) + \sum_{v\in B_{1}} d_{H'}(v) + \sum_{v\in B_{2}} d_{H'}(v)}{2} \\ &- \sum_{i\in I} |N_{H}(v_{i0})| - \sum_{v\in A_{1}} |N_{H}(v)| - \sum_{i\in J} |N_{H}(v_{i0})| - \sum_{v\in B_{1}} |N_{H}(v)| - \sum_{v\in B_{2}} |N_{H}(v)| \\ &\geq e(G) - \frac{1}{2} \left(\sum_{i\in I} (d_{1} - |N_{H}(v_{i0})|) + \sum_{v\in A_{1}} (d_{G}(v) - |N_{H}(v)|) + (3\ell + 2) |J| \right. \\ &+ \sum_{v\in B_{1}} (d_{G}(v) - |N_{H}(v)|) + \sum_{v\in B_{2}} (d_{G}(v) - |N_{H}(v)|) \right. \\ &- \sum_{i\in I} |N_{H}(v_{i0})| - \sum_{v\in A_{1}} |N_{H}(v)| - \ell |J| - \sum_{v\in B_{1}} |N_{H}(v)| - \sum_{v\in B_{2}} |N_{H}(v)| \\ &= e(G) - \frac{1}{2} \left(\sum_{i\in I} (d_{1} + |N_{H}(v_{i0})|) + \sum_{v\in A_{1}} (d_{G}(v) + |N_{H}(v)|) + (5\ell + 2) |J| \right. \\ &+ \sum_{v\in B_{1}} (d_{G}(v) + |N_{H}(v)|) + \sum_{v\in B_{2}} (d_{G}(v) + |N_{H}(v)|) \right. \\ &\geq e(G) - \frac{1}{2} \left((4\ell + 2 + 3\ell + 2) |I| + (3\ell + 2 + \ell - 1) |A_{1}| + (5\ell + 2) |J| + (3\ell + 2 + 3\ell + 1) |B_{1}| + (3\ell + 2 + 2\ell - 2) |B_{2}| \right) \\ &= e(G) - \frac{(4\ell^{2} + 8\ell + 4) |I| + (5\ell^{2} + 5\ell + 2) |J| + (\ell + 3) |B_{1}|}{2} \\ &\geq e(G) - \frac{(5\ell^{2} + 7\ell + 2) |I| + (5\ell^{2} + 5\ell + 2) |J| + (\ell + 3) |J|}{2} \geq e(G) - \frac{15\ell^{2} + 21\ell + 6}{2}. \end{split}$$

If $5(\ell+1) \leq n < 2\ell^2 + 4\ell + 3$, then $e(H) \geq \left\lfloor \frac{(\ell-1)n + (4\ell+3)(3\ell+3)}{2} \right\rfloor + 1 - \frac{1}{2}(15\ell^2 + 21\ell + 6) \geq \frac{(\ell-1)n - 3\ell^2 + 4}{2}$. However, $e(H) \leq ex(n - 3\ell - 3, S_\ell) = \left\lfloor \frac{(\ell-1)n - 3\ell^2 + 3}{2} \right\rfloor$, a contradiction. If $n \geq 2\ell^2 + 4\ell + 3$, then $e(H) \geq \left\lfloor \frac{(\ell+5)n - 3(\ell+3)}{2} \right\rfloor + 1 - \frac{1}{2}(15\ell^2 + 21\ell + 6) \geq \frac{(\ell-1)n - 3\ell^2 + 4}{2}$. However, $e(H) \leq ex(n - 3\ell - 3, S_\ell) = \left\lfloor \frac{(\ell-1)n - 3\ell^2 + 3}{2} \right\rfloor$, a contradiction.

Thus, we have proved that every graph G on $n \geq 5(\ell+1)$ vertices with $e(G) \geq f(\ell,n) + 1$ contains $4 \cdot S_{\ell}$ as a subgraph. In other words, $ex(n, 4 \cdot S_{\ell}) \leq f(\ell,n)$. The proof of Theorem 7 is completed.

Remark. The general case $ex(n, k \cdot S_{\ell})$ seems to be much more challenging. The method presented here cannot be used to determine $ex(n, k \cdot S_{\ell})$ for all positive

integers k, ℓ and n. The proofs of Claims 2–4 can be adapted to the general k, but the proofs of the remaining parts cannot be extended to the general case k.

Acknowledgement

The authors would like to thank the referee for his/her helpful suggestions and comments.

References

- J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York, 1976).
- P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337–356.
 https://doi.org/10.1007/BF02024498
- [3] I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011) 661–667.
 https://doi.org/10.1007/s00373-010-0999-5
- [4] Y.X. Lan, T. Li, Y.T. Shi and J.H. Tu, The Turán number of star forests, Appl. Math. Comput. 348 (2019) 270–274. https://doi.org/10.1016/j.amc.2018.12.004
- Y.X. Lan, H. Liu, Z.M. Qin and Y.T. Shi, Degree powers in graphs with a forbidden forest, Discrete Math. 342 (2019) 821–835. https://doi.org/10.1016/j.disc.2018.11.013
- [6] S.-S. Li and J.-H. Yin, Two results about the Turán number of star forests, Discrete Math. 343 (2020) 111702. https://doi.org/10.1016/j.disc.2019.111702
- [7] B. Lidický, H. Liu and C. Palmer, On the Turán number of forests, Electron. J. Combin. 20 (2013) #P62. https://doi.org/10.37236/3142
- [8] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: Theory of Graphs, P. Erdős, G. Katona (Ed(s)), (Academic Press, New York, 1968) 279–319.
- [9] P. Turán, An extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452, in Hungarian.
- [10] J.H. Yin and Y. Rao, Turán number for $p \cdot Sr$, J. Combin. Math. Combin. Comput. 97 (2016) 241–245.
- [11] L.T. Yuan and X.-D. Zhang, The Turán number of disjoint copies of paths, Discrete Math. 340 (2017) 132–139. https://doi.org/10.1016/j.disc.2016.08.004

Received 25 October 2019 Revised 9 May 2020 Accepted 9 May 2020