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Abstract

For a positive integer k > 1, a graph G with vertex set V is said to
be k-packing colorable if there exists a mapping f : V 7→ {1, 2, . . . , k} such
that any two distinct vertices x and y with the same color f(x) = f(y) are
at distance at least f(x) + 1. The packing chromatic number of a graph
G, denoted by χρ(G), is the smallest integer k such that G is k-packing
colorable.

In this work, we study both independence and packing colorings in the
m-generalized Mycielskian of a graph G, denoted µm(G). We first give an
explicit formula for α(µm(G)) when m is odd and bounds when m is even.
We then use these results to give exact values of α(µm(Kn)) for any m and
n. Next, we give bounds on the packing chromatic number, χρ, of µm(G).
We also prove the existence of large planar graphs whose packing chromatic
number is 4. The rest of the paper is focused on packing chromatic numbers
of the Mycielskian of paths and cycles.
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1. Introduction

All considered graphs in this paper are finite, simple, and undirected. For a graph
G, we denote by V (G) its set of vertices and by E(G) its set of edges.

If G is a graph and i a positive integer, then A ⊆ V (G) is an i-packing if
vertices of A are pairwise at distance more than i. The i-packing number ηi(G)
is the maximum size of an i-packing of G. In particular, a 1-packing is simply an
independent set and η1(G) is the independence number α(G).

A k-packing coloring of a graph G is a mapping c : V (G) → {1, 2, . . . , k} such
that for any i ∈ {1, 2, . . . , k} the subset c−1(i) is an i-packing, in this case the
graph G is said to be k-packing colorable. The packing chromatic number χρ(G)
of a graph G is the smallest integer k such that G is k-packing colorable, if there
is no such integer k, then we set χρ(G) = ∞.

The concept of packing coloring was introduced under the name broadcast

coloring [20]. The current name was given in [6] and studied by a number of
authors [1–11,13,14,16,17,19,23–25,32–36]. Its related decision problem is NP-
complete even when restricted to trees [15].

The boundedness of the packing chromatic number of graphs was the main
subject of most papers investigating this parameter for several classes of graphs.
In the seminal paper [20], a natural upper bound of χρ was presented as follows.

Proposition 1.1 [20]. If G is a graph with order n, then χρ(G) 6 n−α(G)+ 1,
with equality if diam(G) = 2.

The generalized Mycielski graphs are a transformation that generalize the
famous Mycielski construction developed by Mycielski [30] in search of triangle
free graphs with large chromatic number. Given a graph G and an integer m > 1,
one can transform G into a new graph µm(G), the generalized Mycielskian of G.
The Mycielskians and the generalized Mycielskians were investigated from many
points of view [12,18, 21, 22, 26–29,31].

In this paper, we present a formula for α(µm(G)), the independence number
of the m-generalized Mycielskian of any connected graph G with order n > 2
when m is odd and we present sharp bounds when m is even. We present also
tight bounds of α(µm(G)) for an arbitrary m > 1 in terms of n, m and α(G).
The particular case of m = 1 was investigated in [10].

We prove using the generalized Mycielski transformation the existence of a
family of large planar graphs with small finite packing chromatic number, namely
4. We establish first bounds for the packing chromatic number of generalized
Mycielskians. We present also bounds for the packing chromatic number of the
Mycielskian of paths and cycles.
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2. Preliminaries and Notations

Let G be a graph with vertex set V 0 =
{

v01, v
0
2, . . . , v

0
n

}

and edge set E0. Given
an integer m > 1, the m-generalized Mycielskian (or the m-Mycielskian for short)
of G, denoted by µm(G), is the graph with vertex set

V (µm(G)) = V 0 ∪ V 1 ∪ · · · ∪ V m ∪ {z} ,

where V i =
{

vij : v
0
j ∈ V 0

}

is the ith distinct copy of V 0 for all i ∈ {1, 2, . . . ,m},

and edge set

E(µm(G)) = E0 ∪

(

m−1
⋃

i=0

{

vijv
i+1
j′ : v0j v

0
j′ ∈ E0

}

)

∪
{

vmj z : vmj ∈ V m
}

.

A vertex vij from V i is called the ith copy of the vertex v0j . The vertices vij and

v0j are called twins. The Mycielskian of G is simply µ1(G).
Let G be a graph and let X be a subset of V (G). A vertex u is adjacent to X

if there exists a vertex v from X such that uv ∈ E(G). Two subsets X and Y of
V (G) are adjacent if some vertex in X is adjacent to some vertex in Y . The open
neighborhood of a subset X, denoted by N(X), is the set of all adjacent vertices
to X, and the closed neighborhood of X, denoted by N [X], is the set X ∪N(X).
We denote by N(X) the set V (G) \ N [X]. We denote by I(G) the family of all
independent sets of G.

3. Independence Number of Generalized Mycielskians

In this section we present first a formula for the independence number of m-
Mycielskians when m is odd, and bounds when m is even. We give then bounds
for this parameter in terms of the order of G, α(G) and m. We show that all
obtained bounds are sharp.

Theorem 3.1. If G is a connected graph of order n > 2, then for all odd m > 1

α(µm(G)) = max

{

φm(G),
(m+ 1)n

2

}

where φm(G) = maxS∈I(G)

{

(m+ 1)|S|+ m+1
2

∣

∣N(S)
∣

∣

}

.

Proof. Let S be a maximum independent set of µm(G) and let V i be the ith

copy of V 0 in µm(G). For each i ∈ {0, 1, . . . ,m} we set Si = S ∩ V i. We denote
by Si(j) the set of jth twin vertices of all vertices in Si with Si(i) = Si. Note
that Si(j) is a subset of V j and that |Si(j)| = |Si|. We first make the following
observations.
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Observation 1. The subset S0 (which can be empty) is an independent set of

G, so 0 6 |S0| 6 α(G) 6 n− 1.

Observation 2. For all i ∈ {0, 1, . . . ,m− 1}, Si(0) ∩ Si+1(0) ∈ {∅} ∪ I(G).

Note that Si(0)∩Si+1(0) can be empty. If not, let x0 and y0 be two adjacent
vertices from Si(0) ∩ Si+1(0), so x0 ∈ Si(0) and y0 ∈ Si+1(0). Since x0 and y0

are adjacent, their twins xi from Si and yi+1 from Si+1 are adjacent, which is a
contradiction since Si and Si+1 are subsets of the independent set S of µm(G).

Observation 3. If Si(0) ∩ Si+1(0) 6= ∅ for some i ∈ {1, 2, . . . ,m− 1}, then

|Si(0)∆Si+1(0)| 6 |N (Si(0) ∩ Si+1(0)) |,

where ∆ is the symmetric difference of two sets.

Indeed, an arbitrary vertex x0 from Si(0) ∩ Si+1(0) cannot be adjacent to
any vertex from Si(0) or Si+1(0), so in particular x0 cannot be adjacent to
Si(0) \ Si+1(0) or Si+1(0) \ Si(0). This means that x0 cannot be adjacent to
Si(0)∆Si+1(0). Consequently, the subsets Si(0)∆Si+1(0) and Si(0)∩ Si+1(0) are
not adjacent. It follows that Si(0)∆Si+1(0) ⊂ N (Si(0) ∩ Si+1(0)).

Claim 3.2. For all i ∈ {0, 1, . . . ,m− 1},

|Si|+ |Si+1| 6 max

{

n, max
S∈I(G)

{

2|S|+ |N(S)|
}

}

.

Let i ∈ {0, 1, . . . ,m− 1}, so

• if Si(0) ∩ Si+1(0) = ∅, then |Si| + |Si+1| = |Si(0)| + |Si+1(0)| = |Si(0) ∪
Si+1(0)| 6 |V 0| = n,

• if Si(0) ∩ Si+1(0) 6= ∅, it is well known that |Si(0)| + |Si+1(0)| = 2|Si(0) ∩
Si+1(0)|+ |Si(0)∆Si+1(0)|, then by Observation 3

(1) |Si|+ |Si+1| 6 2|Si(0) ∩ Si+1(0)|+ |N (Si(0) ∩ Si+1(0)) |.

Since Si(0) ∩ Si+1(0) ∈ I(G) (Observation 2), the inequality (1) gives

|Si|+ |Si+1| 6 max
S∈I(G)

{

2|S|+ |N(S)|
}

.

Consequently

|Si|+ |Si+1| 6 max

{

n, max
S∈I(G)

{

2|S|+ |N(S)|
}

}

.

We next discuss the following cases on z.
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Case 1. If z /∈ S, then |S| =
∑m

i=0 |Si| =
∑

m−1

2

i=0 (|S2i| + |S2i+1|), Claim 3.2
gives

|S| 6
m+ 1

2
max

{

n, max
S∈I(G)

{

2|S|+ |N(S)|
}

}

= max

{

m+ 1

2
n,

m+ 1

2
max
S∈I(G)

{

2|S|+ |N(S)|
}

}

= max

{

m+ 1

2
n, max

S∈I(G)

{

(m+ 1)|S|+
m+ 1

2
|N(S)|

}}

= max

{

(m+ 1)n

2
, φm(G)

}

.

Case 2. If z ∈ S, then Sm = ∅ by the fact that z is adjacent to all vertices of
V m. It follows that |S| = 1 +

∑m−1
i=0 |Si|. Thus

|S| = 1 +
m−1
∑

i=0

|Si| = 1 + |S0|+

m−3

2
∑

i=0

(|S2i+1|+ |S2i+2|)

6 1 + (n− 1) +
m− 1

2
max

{

n, max
S∈I(G)

{

2|S|+ |N(S)|
}

}

= n+
m− 1

2
max

{

n, max
S∈I(G)

{

2|S|+ |N(S)|
}

}

6 max

{

n, max
S∈I(G)

{

2|S|+ |N(S)|
}

}

+
m− 1

2
max

{

n, max
S∈I(G)

{

2|S|+ |N(S)|
}

}

= max

{

(m+ 1)n

2
, φm(G)

}

.

On the other hand, for any arbitrary independent set S of G we set S = S0,
X0 = N(S), and for each i ∈ {1, 2, . . . ,m} we denote by Si and Xi the ith copies
of S0 and X0 in µm(G), respectively. Note first the following observations.

(O1): I =
⋃m

i=0 S
i is an independent set of µm(G).

(O2): The subsets S0 and X0 are not adjacent. Hence, for 0 6 i 6 m and
1 6 j 6 m, Si ∪Xj is an independent set of µm(G).

(O3): Since X0 can contain adjacent vertices, X0 can be adjacent to X1, and
generally, any two consecutive copies Xi and Xi+1 can be adjacent. But
no non-consecutive copies Xi and Xi+2 can be adjacent. In other words,
Xi ∪ Xi+2 is an independent set of µm(G). Consequently, the subset

Io =
⋃

m−1

2

i=0 X2i+1 is an independent set of µm(G).
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(O4): By the construction of µm(G), every non-consecutive copies V i and V i+2

are not adjacent. Therefore, the subset Vo =
⋃

m−1

2

i=0 V 2i+1 is an indepen-
dent set of µm(G).

(O5): By Observations (O1), (O2) and (O3) the subset I ∪ Io is an independent
set of µm(G).

From Observation (O4), we have Vo ∈ I(µm(G)). Thus

α(µm(G)) > |Vo| =
(m+ 1)n

2
.

Furthermore, from Observation (O5), it follows that I ∪ Io ∈ I(µm(G)). As
all copies of S0 and X0 have the same cardinality respectively, we obtain

α(µm(G)) > |I ∪ Io| = (m+ 1)|S0|+
m+ 1

2
|X0|.

Thus, α(µm(G)) > φm(G). It follows that

α(µm(G)) > max

{

φm(G),
(m+ 1)n

2

}

.

Remark 3.3. Let S be a subset of V (G). If we suppose that S = ∅, then we get
N(S) = G. Hence

(m+ 1)|S|+
m+ 1

2

∣

∣N(S)
∣

∣ =
m+ 1

2
n,

where V (G) = n. Thus, Theorem 3.1 becomes

α(µm(G)) = max
S∈I(G)∪{∅}

{

(m+ 1)|S|+
m+ 1

2

∣

∣N(S)
∣

∣

}

which we will use from now on.

The result of Theorem 3.1 is a generalization of the formula proved by Brešar
et al. in [10] for Mycielskians.

Corollary 3.4 [10]. If G is a connected graph, then

α(µ1(G)) = max
S∈I(G)∪{∅}

{

2|S|+
∣

∣N(S)
∣

∣

}

.

Contrarily to the odd case, determining a formula for the independence num-
ber of m-Mycielskians for some even m was not feasible, but we present upper
and lower bounds of it.
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Theorem 3.5. If G is a connected graph of order n > 2, then for all even m > 1

max
{

φ′
m(G),

mn

2
+ α(G)

}

6 α(µm(G)) ≤ max
{

φ′′
m(G),

mn

2
+ α(G)

}

,

where for any S ∈ I(G), |IS | = max
{

|I| : I ∈ I(G), I ⊂ N(S)
}

and

φ′
m(G) = max

S∈I(G)

{

(m+ 1)|S|+
m

2

∣

∣N(S)
∣

∣+ |IS |
}

and

φ′′
m(G) = max

S∈I(G)

{

m|S|+
m

2
|N(S)|+ α(G)

}

.

Proof. Let m > 2 be an even integer. For the lower bound, let S be an ar-
bitrary independent set of G and let IS ∈ I(G) such that IS ⊂ N(S) and
|IS | = max

{

|I| : I ∈ I(G), I ⊂ N(S)
}

. We shall keep in this proof the same
notations and Observations (O1) and (O2) as in the proof of Theorem 3.1 with
these additional similar observations.

(O3’): Ie =
⋃

m

2

i=1X
2i is an independent set of µm(G).

(O4’): Ve =
⋃

m

2

i=1 V
2i is an independent set of µm(G).

(O5’): V 0 and V 2 are not adjacent. Thus, any maximum independent set SG of
G is not adjacent to Ve. It follows by Observation (O4’) that Ve ∪ SG ∈
I(µm(G)).

Let I =
⋃m

i=0 S
i be the set defined in the proof of Theorem 3.1. IS is not

adjacent to I since IS is not adjacent to S. It is obvious that IS is not adjacent
to Ie. Consequently, by Observations (O1), (O2) and (O3’), we get I ∪ Ie ∪
IS ∈ I(µm(G)), thus α(µm(G)) > |I ∪ Ie ∪ IS | = (m + 1)|S| + m

2 |N(S)| + |IS |.
Observation (O5’) implies that α(µm(G)) > |Ve| + α(G) = mn

2 + α(G). Hence
α(µm(G)) > max

{

φ′
m(G), mn

2 + α(G)
}

.
In the other hand, let S be a maximum independent set of µm(G).

Case 1. If z /∈ S, then |S| =
∑m

i=0 |Si| = |S0| +
∑

m

2
−1

i=0 (|S2i+1| + |S2i+2|).
Claim 3.2 gives

m

2
−1
∑

i=0

(|S2i+1|+ |S2i+2|) 6
m

2
max

{

n, max
S∈I(G)

{

2|S|+ |N(S)|
}

}

= max

{

m

2
n,

m

2
max
S∈I(G)

{

2|S|+ |N(S)|
}

}

= max

{

mn

2
, max
S∈I(G)

{

m|S|+
m

2
|N(S)|

}

}

.
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As |S0| 6 α(G), we get

α(µm(G)) = |S| 6 α(G) + max

{

mn

2
, max
S∈I(G)

{

m|S|+
m

2
|N(S)|

}

}

= max

{

mn

2
+ α(G), max

S∈I(G)

{

m|S|+
m

2
|N(S)|+ α(G)

}

}

= max
{mn

2
+ α(G), φ′′

m(G)
}

.

Case 2. If z ∈ S, then |S| = 1 +
∑m−1

i=0 |Si| = 1 +
∑

m

2
−1

i=0 (|S2i| + |S2i+1|).
Since

m

2
−1
∑

i=0

(|S2i|+ |S2i+1|) 6
m

2
max

{

n, max
S∈I(G)

{

2|S|+ |N(S)|
}

}

= max

{

mn

2
, max
S∈I(G)

{

m|S|+
m

2
|N(S)|

}

}

and 1 6 α(G), we obtain

α(µm(G)) = |S| 6 α(G) + max

{

mn

2
, max
S∈I(G)

{

m|S|+
m

2
|N(S)|

}

}

= max
{mn

2
+ α(G), φ′′

m(G)
}

.

Remark 3.6. Remark that |N(∅)| = n and |I∅| = α(G), hence

(m+ 1)|∅|+
m

2
|N(∅)|+ |I∅| =

mn

2
+ α(G)

and

m|∅|+
m

2
|N(∅)|+ α(G) =

mn

2
+ α(G).

Thus, according to Theorem 3.5, we obtain

φ′
m(G) 6 α(µm(G)) 6 φ′′

m(G)

where φ′
m(G) and φ′′

m(G) are redefined by

φ′
m(G) = max

S∈I(G)∪{∅}

{

(m+ 1)|S|+
m

2

∣

∣N(S)
∣

∣+ |IS |
}

and

φ′′
m(G) = max

S∈I(G)∪{∅}

{

m|S|+
m

2
|N(S)|+ α(G)

}

.
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The following corollary presents bounds for the independence number of the
m-Mycielskian of any connected graph G in terms of the order of G, m and α(G).

Corollary 3.7. If G is a connected graph of order n, then for all m > 1

(m+ 1)α(G) 6 α (µm(G)) 6











m

2
(α(G) + n− 1) + α(G) if m is even,

m+ 1

2
(α(G) + n− 1) if m is odd.

Proof. Let G be a connected graph of order n and let m > 1. As α(µm(G)) >

φ′
m(G), we have α(µm(G)) > (m+1)|S|+

m

2

∣

∣N(S)
∣

∣+ |IS | for all S ∈ I(G)∪{∅}.

If S is a maximum independent set, then α(µm(G)) > (m+ 1)α(G).
For the upper bounds, let S be an independent set of G. Note that |N(S)| 6

n− |S| − 1 and n 6 α(G) + n− 1.

• If m is even, then m|S|+ m
2 |N(S)|+α(G) 6 m

2 (α(G)+n− 1)+α(G). S = ∅
implies mn

2 + α(G) 6
m
2 (α(G) + n − 1) + α(G). Consequently, φ′′

m(G) 6
m
2 (α(G) + n− 1) + α(G).

• If m is odd, then (m+1)|S|+m+1
2 |N(S)| 6 m+1

2 (α(G)+n−1). S = ∅ implies
(m+1)n

2 6
m+1
2 (α(G) + n− 1). Thus, Theorem 3.1 implies that α (µm(G)) 6

m+1
2 (α(G) + n− 1).

Finally,

(m+ 1)α(G) 6 α (µm(G)) 6











m

2
(α(G) + n− 1) + α(G) if m is even,

m+ 1

2
(α(G) + n− 1) if m is odd.

Corollary 3.7 is again a generalization of bounds found by Brešar et al. in [10]
for Mycielskians.

Corollary 3.8 [10]. If G is a connected graph, then

2α(G) 6 α(µ1(G)) 6 |V (G)|+ α(G)− 1.

Both bounds in Corollary 3.7 coincide for a star graph K1,n. Indeed, since
α(K1,n) = n and |V (K1,n)| = n+ 1, then for any m > 1

(m+ 1)n 6 α (µm(K1,n)) 6











m

2
(n+ n+ 1− 1) + n if m is even,

m+ 1

2
(n+ n+ 1− 1) if m is odd.

This means that (m + 1)n 6 α (µm(K1,n)) 6 (m + 1)n. Thus, α (µm(K1,n)) =
(m+ 1)n.
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Remark 3.9. The bounds of α(µm(G)) in Corollary 3.7 are another representa-
tion of bounds established independently in [28] for the cover number τ(µm(G))
in terms of m and the cover number τ(G).

In the next corollary, we present other sharp bounds for the independence
number of m-Mycielskians.

Corollary 3.10. If G is a connected graph with order n > 2, then for all m > 1
⌈m

2

⌉

n+ εm(G) 6 α(µm(G)) 6 (n− 1)(m+ 1)

where εm(G) =

{

α(G) if m is even,

0 if m is odd.

Proof. Let G be a connected graph and let n > 2 and m > 1.
By combining Theorem 3.1 and Theorem 3.5, we get

α(µm(G)) >











mn

2
+ α(G) if m is even,

(m+ 1)n

2
if m is odd.

On the other hand, let S be an arbitrary independent set of graph G. Note that
|N(S)| = n−|S|− |N(S)|, 1 6 |N(S)| 6 n−1, 1 6 |S| 6 n−1 and α(G) 6 n−1.

Case 1. If m is even, then

m|S|+
m

2
|N(S)|+ α(G) =

m

2
|S|+

mn

2
−

m

2
|N(S)|+ α(G)

6
m

2
(n− 1) +

mn

2
−

m

2
+ n− 1 = (m+ 1)(n− 1).

Thus, α(µm(G)) 6 φ′′
m(G) 6 (m+ 1)(n− 1).

Case 2. If m is odd, then

(m+ 1)|S|+
m+ 1

2
|N(S)| =

m+ 1

2
|S|+

(m+ 1)n

2
−

m+ 1

2
|N(S)|

6
m+ 1

2
(n− 1) +

(m+ 1)n

2
−

m+ 1

2
= (m+ 1)(n− 1).

By Theorem 3.1, we get α(µm(G)) 6 (m+ 1)(n− 1).

Note that the upper bound of Corollary 3.10 is tight for star graphs since
((n+ 1)− 1)(m+ 1) = n(m+ 1) = α (µm(K1,n)).

For a complete graph Kn, the upper bound of Corollary 3.7 coincide with
the lower bound of Corollary 3.10.
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Corollary 3.11. For all m > 1 and n > 2,

α (µm(Kn)) =











mn

2
+ 1 if m is even,

(m+ 1)n

2
if m is odd.

4. Packing Coloring of Generalized Mycielskians

The following lemmas help to establish bounds of χρ(µm(G)), the packing chro-
matic number of the m-Mycielskian of a graph G.

Lemma 4.1 [20]. For n > 3, if n is 3 or a multiple of four, then χρ(Cn) = 3,
otherwise χρ(Cn) = 4.

Lemma 4.2 [20]. If H is a subgraph of a graph G, then χρ(H) 6 χρ(G).

Theorem 4.3. If G is a connected graph of order n > 2, then for all m > 1

4 6 χρ(µm(G))6















min
{

mn
2 + n+ 2− α(G), (m+ 1)(n− α(G)) + 2

}

if m is even,

min
{

n(m+1)
2 + 2, (m+ 1)(n− α(G)) + 2

}

if m is odd.

Moreover, if the diameter of G is 2, then

χρ(µm(G)) 6











min
{

mn
2 + χρ(G) + 1, (m+ 1)χρ(G) + 1−m

}

if m is even,

min
{

n(m+1)
2 + 2, (m+ 1)χρ(G) + 1−m

}

if m is odd.

Proof. Let SG be a maximum independent set of G and let S1, S2, . . . , Sm

be its copies in µm(G). We set A = SG ∪ S1 ∪ S2 ∪ · · · ∪ Sm, B = SG ∪
V 2 ∪ V 4 ∪ · · · ∪ V m when m is even and C = V 1 ∪ V 3 ∪ · · · ∪ V m when m is
odd. It is straightforward to see that the A, B and C are independent sets
of µm(G). Thus, α(µm(G)) > max(|A|, |B|) if m is even and α(µm(G)) >

max(|A|, |C|) if m is odd. Hence, by Proposition 1.1, we have χρ(µm(G)) 6

min {|V (µm(G))| − |A|+ 1, |V (µm(G))| − |B|+ 1} if m is even and χρ(µm(G)) 6
min {|V (µm(G))| − |A|+ 1, |V (µm(G))| − |C|+ 1} if m is odd. As |V (µm(G))| =

n(m+ 1) + 1, |A| = (m+ 1)α(G), |B| =
mn

2
+ α(G) and |C| =

m+ 1

2
n+ α(G),

we get

χρ(µm(G)) 6











min
{

mn
2 + n+ 2− α(G), (m+ 1)(n− α(G))+2

}

if m is even,

min
{

n(m+1)
2 + 2, (m+ 1)(n− α(G))+2

}

if m is odd.
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On the other hand, µm(K2) is an induced subgraph of µm(G) which is isomorphic
to the cycle C2m+3. According to Lemma 4.1, χρ(µm(K2)) = 4. It follows by
Lemma 4.2 that χρ(µm(G)) > 4.

If the diameter of G is 2, then by Proposition 1.1, χρ(G) = n − α(G) + 1.
Thus,

(m+ 1)(χρ(G)− 1) + 2 = (m+ 1)χρ(G) + 1−m

and
mn

2
+ n+ 2− α(G) =

mn

2
+ χρ(G) + 1.

For m > 1, we do not know if the upper bound of Theorem 4.3 is sharp
for some classes of graphs. For instance, when G is the complete graph Kn and
m = 2, one can easily prove that χρ(µ2(Kn)) 6 2n < min {2n+ 1, 3(n− 1) + 2}.
The exact value of χρ(µm(Kn)) seems to be a challenging question.

Brešar et al. [10] established an upper bound for the packing chromatic num-
ber of the Mycielskian of a connected graph. The authors showed that this bound
is sharp for the star and the complete graph.

Corollary 4.4 [10]. If G is a connected graph of order n > 2, then

χρ(µ1(G)) 6 min {n+ 2, 2 (n− α(G) + 1)} .

It is known that the packing chromatic number of a graph can become quite
large, even unbounded, for simple classes of graphs. However, in the following
theorem we show that there exists a family of large planar graphs whose packing
chromatic number is 4.

Theorem 4.5. For every n > 2 and m > 1, there exists a planar graph Gm,n

such that χρ(Gm,n) = 4.

Proof. Let n > 2, m > 1 and let Gm,n be the m-Mycielskian of the star K1,n.
Figure 1 shows how can the graph Gm,n be drawn as a planar graph. Moreover,
according to Theorem 4.3, we have

χρ (Gm,n) > 4.

Set V (K1,n) =
{

x00, x
0
1, . . . , x

0
n

}

, where x00 is the central vertex of K1,n. Let
V i =

{

xi0, x
i
1, . . . , x

i
n

}

be the ith copy of V (K1,n).

Let F be the subgraph of K1,n induced by the set of vertices
{

x00, x
0
1

}

and let
H be the subgraph of Gm,n induced by µm(F ) which is isomorphic to the cycle
C2m+3. It is straightforward to check that H is the cycle

xm1 xm−1
0 xm−2

1 xm−3
0 · · ·x10x

0
1x

0
0x

1
1x

2
0x

3
1 · · ·x

m−1
1 xm0 zxm1
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such that |V (H)| = 2m + 3. As W 0 =
{

x02, x
0
3, . . . , x

0
n

}

is an independent set of
K1,n, then W = W 0∪W 1∪· · ·∪Wm is also an independent set of µm(K1,n) where
W i is the ith copy of W 0. Moreover, V (H) ∪W = V (Gm,n) and V (H) ∩W = ∅.
Let c be a 4-packing coloring of Gm,n such that all vertices of the subsetW receive
the color 1. Since |V (H)| = 2m+ 3, we distinguish two cases.

• If |V (H)| ≡ 1[4], then c provides a coloring for H by the pattern

1, 2, 1, 3, 1, 2, 1, 3, . . . , 1, 2, 1, 3, 4

where the coloring starts by the vertex xm1 and ends by xm0 and z, i.e., c(xm1 ) =
1, c(xm0 ) = 3 and c(z) = 4.

• If |V (H)| ≡ 3[4], then c provides a coloring for H by the pattern

1, 2, 1, 3, 1, 2, 1, 3, . . . , 1, 2, 1, 3, 1, 2, 4

where the coloring starts by the vertex xm1 and ends by xm0 and z, i.e., c(xm1 ) =
1, c(xm0 ) = 2 and c(z) = 4.

Note that the used patterns assigns the color 1 to all vertices xi1 in H for all
i ∈ {0, 1, . . . ,m} which are not adjacent to any vertex from W , also colored 1.

5. Packing Chromatic Number of µ1(Pn) and µ1(Cn)

It was shown in [18] (Theorem 9), that η2(µ1(G)) = η2(G) for every graph G
without isolated vertices. We present an analogous result for the maximum 3-
packing of connected graphs.

Lemma 5.1. For every connected graph G, η3(µ1(G)) = η3(G).

Proof. If S is a maximum 3-packing of G, then S is a 3-packing of µ1(G). Thus,
η3(µ1(G)) > η3(G).

Let V 1 be the set of copies of V (G). Let S be a maximum 3-packing of µ1(G).
If z ∈ S, then S = {z} by the fact ecc(z) = 2 (ecc(z) is the distance between z and
the farthest vertex from z in µ1(G)). Thus, η3(µ1(G)) = 1 6 η3(G). Otherwise,
since dµ1(G)(x

1, y1) = 2 for all vertices x1 and y1 from V 1, S contains at most
one vertex from V 1. If S contain no vertex from V 1, then S is a 3-packing subset
of V (G), hence η3(µ1(G)) 6 η3(G). If S contains one vertex x1 from V 1, let S′

be the set (S ∩ V (G)) ∪ {x}. In other words, S′ is the same as S with replacing
the vertex x1 by its twin vertex x from V (G).

Assume that x ∈ S, since G is connected, there is a vertex y ∈ V (G) that
is adjacent with x. By Mycielski construction, vertices x1 and y are adjacent.
Thus, x1yx is a path in µ1(G), which is a contradiction since dG(x, x

1) > 3.
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x0

0
x0

1
x0

2
x0

n

x1

0
x1

1
x1

2
x1

n

x2

0
x2

1
x2

2
x2

n

x3

0
x3

1
x3

2

x3

n

xm−2

0

xm−1

0
xm−1

1
xm−1

2
xm−1

n

xm
0

xm
1

xm
2

xm
n

z

Figure 1. An m-generalized Mycielskian of the star K1,n.

Since x /∈ S, we have |S| = |S′|. For S′ to be a 3-packing of G, it is sufficient
to show that dG(x, y) > 3 for all y from S ∩ V (G). Assume that dG(x, y) = 3
(and similarly for dG(x, y) ∈ {1, 2}) for some y from S ∩ V (G). Let xuvy be the
path joining x and y in G. So x1uvy is a path joining x1 and y in µ1(G), thus
dµ1(G)(x

1, y) = 3, which is a contradiction since S is a 3-packing of µ1(G).

Proposition 5.2. For every connected graph G,

χρ(µ1(G)) > 4 + 2n− α(µ1(G))− η2(G)− η3(G).

Proof. The diameter of a Mycielskian is at most four [18], then only colors 1, 2
and 3 can be repeated in any packing coloring of µ1(G).

A packing coloring c of µ1(G) assigns the colors 1, 2 and 3 to at most
α(µ1(G)), η2(µ1(G)) and η3(µ1(G)) vertices respectively, and distinct colors to
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the remaining vertices. As η2(µ1(G)) = η2(G) and η3(µ1(G)) = η3(G), Lemma
5.1 gives

χρ(µ1(G)) > 3 + 2n+ 1− α(µ1(G))− η2(G)− η3(G)

= 4 + 2n− α(µ1(G))− η2(G)− η3(G).

Note that the lower bound of Proposition 5.2 is not always a good lower
bound and can take negative values for some graphs by the diameter fact and
that the maximum 2-packing and 3-packing can have some vertices in common.
But it can be useful to determine some exact values of χρ(µ1(Pn)) and χρ(µ1(Cn))
as we will see.

We establish now bounds for the packing chromatic number of the Myciel-
skian of paths and cycles.

Lemma 5.3. For all n > 2,

1. α(µ1(Pn)) = 2
⌈

n
2

⌉

,

2. η2(Pn) =
⌈

n
3

⌉

and η3(Pn) =
⌈

n
4

⌉

.

Proof. Let n > 2.

1. Let S ∈ I(Pn) ∪ {∅} be such that |S| = k and set βS = 2|S| +
∣

∣N(S)
∣

∣. Note
that

• if k = α(Pn), then βS = 2α(Pn);

• for a fixed value of k in {0, 1, . . . , α(Pn)− 1}, the number
∣

∣N(S)
∣

∣ varies in
{n− 2k, n− 2k − 1, . . . , n− 3k}.

So by Corollary 3.4

α(µ1(Pn)) = max
S∈I(G)∪{∅}

{

2|S|+
∣

∣N(S)
∣

∣

}

= max
06k6α(Pn)−1

{

2α(Pn), max
2k6i63k

{2k + (n− i)}

}

= max
06k6α(Pn)−1

{

2
⌈n

2

⌉

, 2k + n− 2k
}

= max
{

2
⌈n

2

⌉

, n
}

= 2
⌈n

2

⌉

.

2. Let V (Pn) = {x1, x2, . . . , xn}. The sets of vertices A =
{

xi : i ≡ 1 (mod 3),
1 6 i 6

⌈

n
3

⌉}

and B =
{

xi : i ≡ 1 (mod 4), 1 6 i 6
⌈

n
4

⌉}

are the best 2-packing
and 3-packing of Pn, respectively. So η2(Pn) > |A| =

⌈

n
3

⌉

and η3(Pn) > |B| =
⌈

n
4

⌉

. No better sets can be obtained. To show that η2(Pn) 6
⌈

n
3

⌉

, we assume that
there exists a 2-packing A′ = {xi1 , xi2 , . . . , xir} of Pn with cardinality r =

⌈

n
3

⌉

+1.
Without loss of generality, assume that vertices of A′ are consecutive, which
means that |ij − ij+1| = 3 for all j ∈ {1, . . . , r − 1}. Note that |i1 − ir| =
∑r−1

j=1 |ij− ij+1| = 3(r−1) 6 diam(Pn) = n−1. We have the following two cases.
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• If n = 3k, then r = k + 1. So |i1 − ir| = 3k = n, which is a contradiction to
|i1 − ir| 6 n− 1.

• If n ∈ {3k + 1, 3k + 2}, then r = k+2. So |i1−ir| = 3(k+1) ∈ {n+ 1, n+ 2},
which is also a contradiction to |i1 − ir| 6 n− 1.

A similar reasoning can be done to prove η3(Pn) 6
⌈

n
4

⌉

by discussing cases on
n ∈ {4k, 4k + 1, 4k + 2, 4k + 3}.

Theorem 5.4. For every positive integer n > 2 with n ≡ r (mod 9),

4+2n−2
⌈n

2

⌉

−
⌈n

3

⌉

−
⌈n

4

⌉

6 χρ(µ1(Pn)) 6















4+n−
⌈

n
3

⌉

−2
⌊

n
9

⌋

if r ∈ {0, 1},

3+n−
⌈

n
3

⌉

−2
⌊

n
9

⌋

if r ∈ {2, 3, 4, 5},

2+n−
⌈

n
3

⌉

−2
⌊

n
9

⌋

if r ∈ {6, 7, 8}.

Proof. Set V = V (Pn) = {x1, . . . , xn}, E(Pn) = {xixi+1 : 1 6 i 6 n− 1} and
V 1 =

{

x11, . . . , x
1
n

}

the copy of V in µ1(Pn). Let z be the root vertex of µ1(Pn).

The lower bound is a consequence of Proposition 5.2 and the Lemma 5.3.

For the upper bound, let f be a coloring of µ1(Pn) defined as follows.























f(x1i ) = 1, i ∈ {1, . . . , n} ,

f(xi) = 2, if i ≡ 1 (mod 3) and i ∈ {1, . . . , n} ,

f(xi) = 3, if (i ≡ 2 (mod 9) or i ≡ 6 (mod 9)) and i ∈ {1, . . . , n} ,

f assings distict colors greater than 3 for the remaining vertices.

We prove that f is a packing coloring of µ1(Pn). Let u and v be two distinct
vertices of V (µ1(Pn)).

Case 1. f(u) = f(v) = 1. Only vertices from V 1 are colored 1, so (u, v) ∈
V 1 × V 1. Since vertices of V 1 are not adjacent by Mycielski construction, then
dµ1(Pn)(u, v) > 1.

Case 2. f(u) = f(v) = 2. Vertices colored 2 are from V , so (u, v) ∈ V × V .
Let u = xi and v = xj (i 6= j), so i ≡ 1 (mod 3) and j ≡ 1 (mod 3). The distance
dPn

(u, v) equals |i − j| which is congruent to 0 modulo 3. Since i 6= j, then by
Mycielski construction dµ1(Pn)(u, v) = min {|i− j|, 4} > 2. Note that this case
covers the subset of vertices {xi : i ≡ d (mod 9), d ∈ {1, 4, 7}}.

Case 3. f(u) = f(v) = 3. In this case again (u, v) ∈ V × V . Let u = xi
and v = xj , (i 6= j). If (i ≡ 2 (mod 9) and j ≡ 2 (mod 9)) or (i ≡ 6[9]
and j ≡ 6 (mod 9)), then dPn

(u, v) ≡ 0 (mod 9), so by Mycielski construction
dµ1(Pn)(u, v) = 4 > 3. If i ≡ 2 (mod 9) and j ≡ 6 (mod 9), then dPn

(u, v) ≡ 4[9],
so again dµ1(Pn)(u, v) = 4 > 3.
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Case 4. f(u) = f(v) > 3. This case corresponds to the set A of remaining
vertices after assigning colors 1, 2 and 3 as defined in the coloring f . Since they
are colored distinctly, then the property of packing coloring is preserved.

Let k be the number of colors used by f and let Vi = f−1(i) be the set of vertices
colored i in µ1(Pn), i ∈ {1, . . . k}. We have k = 3+ |µ1(Pn)|− (|V1|+ |V2|+ |V3|),
which is 4 + 2n − (|V1|+ |V2|+ |V3|). Since V 1 contains all vertices colored 1,
|V1| = |V 1| = n. We have V2 = {xi : i ≡ 1 (mod 3)}, so in each three consecutive
vertices from V , there exists only one vertex colored 2. Then |V2| =

⌈

n
3

⌉

. The
number k equals now 4 + n −

⌈

n
3

⌉

− |V3|. Since V3 = {xi : i ≡ 2 (mod 9)} ∪
{xi : i ≡ 6 (mod 9)}, then each nine consecutive vertices from V contains exactly
two vertices colored 3. So the number |V3| depends on the value of the positive
integer r where n ≡ r (mod 9). We discuss the following cases.

• If r ∈ {0, 1}, then |V3| = 2
⌊

n
9

⌋

. So k = 4 + n−
⌈

n
3

⌉

− 2
⌊

n
9

⌋

.

• If r ∈ {2, 3, 4, 5}, then |V3| = 2
⌊

n
9

⌋

+ 1. So k = 3 + n−
⌈

n
3

⌉

− 2
⌊

n
9

⌋

.

• If r ∈ {6, 7, 8}, then |V3| = 2
⌊

n
9

⌋

+ 2. So k = 2 + n−
⌈

n
3

⌉

− 2
⌊

n
9

⌋

.

Since χρ(µ1(Pn) 6 k, this concludes the proof.

Bellow is the illustration of the coloring f of µ1(Pn) given in the last proof.
Vertices of V are colored periodically (each nine vertices are separated by ||) and
⋄ indicates distinct colors (greater than 3).

V : 2− 3− ⋄ − 2− ⋄ − 3− 2− ⋄ − ⋄ || 2− 3− ⋄ − 2− ⋄ − 3− 2− ⋄ − ⋄ || . . .

V 1 : 1− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1− . . .

⋄ z

Both bounds of Theorem 5.4 coincide for n ∈ {2, 3, 4, 8, 12, 16, 20, 24} where
χρ(Pn) ∈ {4, 5, 5, 7, 9, 10, 12, 14}, respectively.

Lemma 5.5. For all n > 3,

1. α(µ1(Cn)) = n,

2. η2(Cn) =
⌊

n
3

⌋

and η3(Cn) =

{

1 if n = 3,
⌊

n
4

⌋

if n > 3.

Proof. Let n > 3.

1. Let S ∈ I(Cn) ∪ {∅} such that |S| = k and set βS = 2|S|+
∣

∣N(S)
∣

∣. Note that

• if k = 0, then βS = n;

• if k = α(Cn), then βS = 2α(Cn);
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• for a fixed value of k in {1, . . . , α(Cn)− 1}, the number
∣

∣N(S)
∣

∣ varies in
{n− 2k − 1, . . . , n− 3k}.

So by Corollary 3.4

α(µ1(Cn)) = max
S∈I(G)∪{∅}

{

2|S|+
∣

∣N(S)
∣

∣

}

= max
16k6α(Cn)−1

{

n, 2α(Cn), max
2k+16i63k

{2k + (n− i)}

}

= max
16k6α(Cn)−1

{

n, 2
⌊n

2

⌋

, 2k + n− 2k − 1
}

= max
{

n, 2
⌊n

2

⌋

, n− 1
}

= n.

2. If n = 3, a single vertex is a 2-packing. Assume now that n > 3 and let
V (Cn) = {x1, x2, . . . , xn}. The sets of vertices A =

{

xi : i ≡ 1 (mod 3), 1 6 i
6
⌊

n
3

⌋}

and B =
{

xi : i ≡ 1 (mod 4), 1 6 i 6
⌊

n
4

⌋}

are the best maximum 2-
packing and 3-packing of Cn, respectively, with |A| =

⌊

n
3

⌋

and |B| =
⌊

n
4

⌋

. No
better sets can be obtained.

Indeed, suppose that there exists a 2-packing A′ = {xi1 , xi2 , . . . , xir} of Cn

with cardinality r =
⌊

n
3

⌋

+1. Without loss of generality, assume that vertices of A′

are consecutive, which means that d(xj , xj+1) = 3 for all j ∈ {i1, i2, . . . , ir − 1}.
Let P and P ′ be the two simple directed paths xi1 · · ·xi2 · · ·xi3 · · ·xir (of length
3(r − 1)) and xir · · ·xi1 , respectively. Since A′ is a 2-packing, the length of P ′ is
greater than or equal to 3. Note that the sum of both lengths of P and P ′ equals
n. It follows that n > 3+ 3(r− 1) = 3r. In each case of n ∈ {3k, 3k + 1, 3k + 2},
we have 3r = 3(k+1) > n, which is a contradiction to 3r 6 n. A similar reasoning
can be done to prove that a 3-packing of cardinality

⌊

n
4

⌋

+ 1 cannot be obtained
for Cn.

It was proved in [18] that for any graph G without isolated vertices

diam(µ1(G)) = min {max {2, diam(G)} , 4} .

So since diam(C3) = 2, we have diam(µ1(C3)) = 2. Consequently, χρ(µ1(C3))
= |V (µ1(C3))|−α(µ1(C3))+1 by Proposition 1.1. Thus, χρ(µ1(C3))=7−3+1=5.

Theorem 5.6. For every positive integer n > 4,

4+n−
⌊n

3

⌋

−
⌊n

4

⌋

6 χρ(µ1(Cn)) 6















4 + n−
⌊

n
3

⌋

− 2
⌊

n
9

⌋

if r ∈ {0, 1, 2, 3},

3 + n−
⌊

n
3

⌋

− 2
⌊

n
9

⌋

if r ∈ {4, 5, 6, 7},

2 + n−
⌊

n
3

⌋

− 2
⌊

n
9

⌋

if r = 8,

where n ≡ r (mod 9).
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Proof. The lower bound is a consequence of Proposition 5.2 and Lemma 5.5.
Let n > 4. Set V = V (Cn) = {x1, . . . , xn} and V 1 its copy in µ1(Cn). Let

r be a positive integer such that n ≡ r (mod 9). Let f be a coloring of µ1(Cn)
such that






















f(x1i ) = 1, i ∈ {1, . . . , n} ,

f(xi) = 2, if i ≡ 1 (mod 3) and i ∈ {1, . . . , n− 2} ,

f(xi) = 3, if (i ≡ 2 (mod 9) or i ≡ 6 (mod 9)) and i ∈ {1, . . . , n− 2} ,

distict colors greater than 3 for the remaining vertices.

The coloring f is similar to the one of the Mycielskian of a path in the
previous theorem with an adjustment at the last r vertices where the vertices xn
and xn−1 cannot receive colors 2 and 3 since x1 and x2 are colored by 2 and 3
respectively. By the same reasoning of path case in the proof of Theorem 5.4,
one can see that f is also a packing coloring of µ1(Cn). It remains to determine
the number k of colors used by f . Again, k = 4 + 2n− (|V1|+ |V2|+ |V3|). Note
that f assigns the color 1 to all vertices of the independent set V ′. So |V1| = n.
Hence k = 4 + n− (|V2|+ |V3|).

For the set V , the coloring f is illustrated as follows.

• If r = 0, f uses periodically the following pattern

2− 3− ⋄ − 2− ⋄ − 3− 2− ⋄ − ⋄

where ⋄ represents distinct colors greater than 3.

• If 1 6 r 6 8, f uses periodically the pattern of the case r = 0 for each nine
consecutive vertices (starting by x1) while the coloring of the last r vertices
is illustrated by

case r = 1 : ⋄
case r = 2 : ⋄ − ⋄
case r = 3 : 2− ⋄ − ⋄
case r = 4 : 2− 3− ⋄ − ⋄
case r = 5 : 2− 3− ⋄ − ⋄ − ⋄
case r = 6 : 2− 3− ⋄ − 2− ⋄ − ⋄
case r = 7 : 2− 3− ⋄ − 2− ⋄ − ⋄ − ⋄
case r = 8 : 2− 3− ⋄ − 2− ⋄ − 3− ⋄ − ⋄ .

It is easy to see that the number of vertices from V colored 2 is
⌊

n
3

⌋

. So k =
4 + n−

⌊

n
3

⌋

− |V3|. Note also that each pattern of nice vertices from V contains
two vertices with color 3. So |V3| = 2

⌊

n
9

⌋

+ j, where j is the number of vertices
colored 3 in the last r vertices. We have the following cases.
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• If r ∈ {0, 1, 2, 3}, then j = 0, and k = 4 + n−
⌊

n
3

⌋

− 2
⌊

n
9

⌋

.

• If r ∈ {4, 5, 6, 7}, then j = 1, and k = 3 + n−
⌊

n
3

⌋

− 2
⌊

n
9

⌋

.

• If r = 8, then j = 2, and k = 2 + n−
⌊

n
3

⌋

− 2
⌊

n
9

⌋

.

This concludes the proof.

Both bounds of Theorem 5.6 coincide for

n ∈ {4, . . . , 11, 13, 14, 15, 17, 18, 19, 22, 23, 26, 27, 31, 35} .

Using the computer, we found a packing coloring to the Mycielskian of paths
and cycles with a number of colors equal to the upper bound of Theorem 5.4 and
Theorem 5.6, respectively. So we may ask the following two questions.

Question 5.7. Is the inequality of the upper bound in Theorem 5.4 an equality

for every positive interger n > 5?

Question 5.8. Is the inequality of the upper bound in Theorem 5.6 an equality

for every positive integer n > 5?
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