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Institut für Informatik, Universität Rostock

A.-Einstein-Str. 22, D-18051 Rostock, Germany

e-mail: andreas.brandstaedt@uni-rostock.de

and

Raffaele Mosca

Dipartimento di Economia
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Abstract

Let G = (V,E) be a finite undirected graph. An edge subset E′ ⊆ E is a
dominating induced matching (d.i.m.) inG if every edge in E is intersected by
exactly one edge of E′. The Dominating Induced Matching (DIM ) problem
asks for the existence of a d.i.m. in G. The DIM problem is NP-complete
even for very restricted graph classes such as planar bipartite graphs with
maximum degree 3 but was solved in linear time for P7-free graphs and in
polynomial time for P8-free graphs. In this paper, we solve it in polynomial
time for P9-free graphs.
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1. Introduction

Let G = (V,E) be a finite simple undirected graph, i.e., an undirected graph
without loops and multiple edges. Given an edge e ∈ E, we say that e dominates

itself and every edge sharing a vertex with e. An edge subset M ⊆ E is an
induced matching if the pairwise distance between its members is at least 2 (i.e.,
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the distance property), that is, M is isomorphic to kP2 for k = |M |. A subset
M ⊆ E is a dominating induced matching (d.i.m., for short) of G if M is an
induced matching in G such that every edge in E is dominated by exactly one
edge in M . Clearly, not every graph G has a d.i.m.; the Dominating Induced

Matching (DIM) problem asks for the existence of a d.i.m. in G.

The DIM problem is also called Efficient Edge Domination (EED) in
various papers. Recall that a vertex v ∈ V dominates itself and its neighbors.
A vertex subset D ⊆ V is an efficient dominating set (e.d.s., for short) of G
if every vertex of G is dominated by exactly one vertex in D. The notion of
efficient domination was introduced by Biggs [2] under the name perfect code.
The Efficient Domination (ED) problem asks for the existence of an e.d.s. in
a given graph G (note that not every graph has an e.d.s.). A set M of edges in a
graph G is an efficient edge dominating set (e.e.d.s., for short) of G if and only if
it is an e.d.s. in its line graph L(G). The Efficient Edge Domination (EED)
problem asks for the existence of an e.e.d.s. in a given graph G. Thus, the EED
problem for a graph G corresponds to the ED problem for its line graph L(G).
Note that not every graph has an e.e.d.s.

In [10], it was shown that the DIM problem is NP-complete; see also [3,9,13,
14]. However, for various graph classes, DIM is solvable in polynomial time. For
mentioning some examples, we need the following notions.

Let Pk denote the chordless path P with k vertices, say a1, . . . , ak, and k− 1
edges aiai+1, 1 ≤ i ≤ k − 1; we also denote it as P = (a1, . . . , ak).

For indices i, j, k ≥ 0, let Si,j,k denote the graph H with vertices u, x1, . . . , xi,
y1, . . . , yj , z1, . . . , zk such that the subgraph induced by u, x1, . . . , xi forms a Pi+1

(u, x1, . . . , xi), the subgraph induced by u, y1, . . . , yj forms a Pj+1 (u, y1, . . . , yj),
and the subgraph induced by u, z1, . . . , zk forms a Pk+1 (u, z1, . . . , zk), and there
are no other edges in Si,j,k; u is called the center of H. Thus, claw is S1,1,1, and
Pk is isomorphic to Sk−1,0,0.

For a set F of graphs, a graph G is called F-free if no induced subgraph of
G is contained in F . If |F| = 1, say F = {H}, then instead of {H}-free, G is
called H-free.

The following results are known.

Theorem 1. DIM is solvable in polynomial time for

(i) S1,1,1-free graphs [9],

(ii) S1,2,3-free graphs [12],

(iii) S2,2,2-free graphs [11],

(iv) S1,2,4-free graphs [6],

(v) S2,2,3-free graphs [7],

(vi) S1,1,5-free graphs [8],
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(vii) P7-free graphs [4] (in this case even in linear time),

(viii) P8-free graphs [5].

In [11], it is conjectured that for every fixed i, j, k, DIM is solvable in polyno-
mial time for Si,j,k-free graphs (actually, an even stronger conjecture is mentioned
in [11]); this includes Pk-free graphs for k ≥ 9. In this paper we show that DIM
can be solved in polynomial time for P9-free graphs (generalizing the correspond-
ing results for P7-free and for P8-free graphs).

2. Definitions and Basic Properties

2.1. Basic notions

Let G be a finite undirected graph without loops and multiple edges. Let V (G)
or V denote its vertex set and E(G) or E its edge set (say G = (V,E)); let
n = |V | and m = |E|. For v ∈ V , let N(v) = {u ∈ V : uv ∈ E} denote the open

neighborhood of v, and let N [v] = N(v) ∪ {v} denote the closed neighborhood of

v. If xy ∈ E, we also say that x and y see each other, and if xy 6∈ E, we say
that x and y miss each other. A vertex set S is independent in G if for every pair
of vertices x, y ∈ S, xy 6∈ E. A vertex set Q is a clique in G if for every pair of
vertices x, y ∈ Q, x 6= y, xy ∈ E. For uv ∈ E let N(uv) = N(u) ∪N(v) \ {u, v}
and N [uv] = N [u] ∪N [v].

For U ⊆ V , let G[U ] denote the subgraph of G induced by vertex set U .
Clearly xy ∈ E is an edge in G[U ] exactly when x ∈ U and y ∈ U ; thus, G[U ]
can simply be denoted by U (if understandable).

For A ⊆ V and B ⊆ V , A ∩ B = ∅, we say that A 0©B (A and B miss each

other) if there is no edge between A and B, and A and B see each other if there is
at least one edge between A and B. If a vertex u /∈ B has a neighbor v ∈ B then
u contacts B. If every vertex in A sees every vertex in B, we denote it by A 1©B.
For A = {a}, we simply denote A 1©B by a 1©B, and correspondingly A 0©B by
a 0©B. If for A′ ⊆ A, A′

0©(A \A′), we say that A′ is isolated in G[A]. For graphs
H1, H2 with disjoint vertex sets, H1 +H2 denotes the disjoint union of H1, H2,
and for k ≥ 2, kH denotes the disjoint union of k copies of H. For example, 2P2

is the disjoint union of two edges.

As already mentioned, a chordless path Pk, k ≥ 2, has k vertices, say
v1, . . . , vk, and k − 1 edges vivi+1, 1 ≤ i ≤ k − 1; the length of Pk is k − 1.
We also denote it as P = (v1, . . . , vk).

A chordless cycle Ck, k ≥ 3, has k vertices, say v1, . . . , vk, and k edges vivi+1,
1 ≤ i ≤ k − 1, and vkv1; the length of Ck is k.

Let Ki, i ≥ 1, denote the clique with i vertices. Let K4 − e or diamond be
the graph with four vertices, say v1, v2, v3, u, such that (v1, v2, v3) forms a P3 and
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u 1©{v1, v2, v3}; its mid-edge is the edge uv2.
A butterfly has five vertices, say, v1, v2, v3, v4, u, such that v1, v2, v3, v4 in-

duce a 2P2 with edges v1v2 and v3v4 (the peripheral edges of the butterfly), and
u 1©{v1, v2, v3, v4}.

We often consider an edge e = uv to be a set of two vertices; then it makes
sense to say, for example, u ∈ e and e ∩ e′ 6= ∅, for an edge e′. For two vertices
x, y ∈ V , let distG(x, y) denote the distance between x and y in G, i.e., the length
of a shortest path between x and y in G. The distance between a vertex z and an

edge xy is the length of a shortest path between z and x, y, i.e., distG(z, xy) =
min{distG(z, v) : v ∈ {x, y}}. The distance between two edges e, e′ ∈ E is the
length of a shortest path between e and e′, i.e., distG(e, e

′) = min{distG(u, v) :
u ∈ e, v ∈ e′}. In particular, this means that distG(e, e

′) = 0 if and only if
e ∩ e′ 6= ∅.

Clearly, G has a d.i.m. if and only if every connected component of G has a
d.i.m.; from now on, we consider that G is connected, and connected components
of induced subgraphs of G are mentioned as components.

Note that if G = (V,E) has a d.i.m. M , and V (M) denotes the vertex set of
M then V \ V (M) is an independent set, say I, i.e.,

(1) V has the partition V = V (M) ∪ I.

From now on, all vertices in I are colored white and all vertices in V (M)
are colored black. According to [11], we also use the following notions: A partial
black-white coloring of V is feasible if the set of white vertices is an independent
set in G and every black vertex has at most one black neighbor. A complete
black-white coloring of V is feasible if the set of white vertices is an independent
set in G and every black vertex has exactly one black neighbor. Clearly, M is a
d.i.m. of G if and only if the black vertices V (M) and the white vertices V \V (M)
form a complete feasible coloring of V .

2.2. Reduction steps, forbidden subgraphs, forced edges, and ex-
cluded edges

Various papers on this topic introduced and applied some forcing rules for re-
ducing the graph G to a subgraph G′ such that G has a d.i.m. if and only if G′

has a d.i.m., based on the condition that for a d.i.m. M , V has the partition
V = V (M) ∪ I such that all vertices in V (M) are black and all vertices in I are
white (recall (1)).

A vertex v ∈ V is forced to be black if for every d.i.m. M of G, v ∈ V (M).
Analogously, a vertex v ∈ V is forced to be white if for every d.i.m. M of G,
v /∈ V (M).

Clearly, if uv ∈ E and if u, v are forced to be black, then uv is contained in
every (possible) d.i.m. of G.
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An edge e ∈ E is a forced edge of G if for every d.i.m. M of G, e ∈ M .
Analogously, an edge e ∈ E is an excluded edge of G if for every d.i.m. M of G,
e 6∈ M .

For the correctness of the reduction steps, we have to argue that G has a
d.i.m. if and only if the reduced graph G′ has one (provided that no contradiction
arises in the vertex coloring, i.e., it is feasible).

Then let us introduce two reduction steps which will be applied later.

Vertex Reduction. Let u ∈ V (G). If u is forced to be white, then

(i) color black all neighbors of u, and

(ii) remove u from G.

Let G′ be the reduced subgraph. Clearly, Vertex Reduction is correct, i.e.,
G has a d.i.m. if and only if G′ has a d.i.m.

Edge Reduction. Let uv ∈ E(G). If u and v are forced to be black, then

(i) color white all neighbors of u and of v (other than u and v), and

(ii) remove u and v (and the edges containing u or v) from G.

Again, clearly, Edge Reduction is correct, i.e., G has a d.i.m. if and only if
the reduced subgraph G′ has a d.i.m.

The subsequent notions and observations lead to some possible reductions
(some of them are mentioned e.g. in [3–5]).

Observation 1 [3–5]. Let M be a d.i.m. of G.

(i) M contains at least one edge of every odd cycle C2k+1 in G, k ≥ 1, and

exactly one edge of every odd cycle C3, C5, C7 in G.

(ii) No edge of any C4 can be in M .

(iii) For each C6 either exactly two or none of its edges are in M .

Proof. See e.g. Observation 2 in [4].

In what follows, we will also refer to Observation 1(i) (with respect to C3)
as to the triangle-property, and to Observation 1(ii) as to the C4-property.

Since by Observation 1(i), every triangle contains exactly one M -edge, and
the pairwise distance of M -edges is at least 2, we have:

Corollary 1. If G has a d.i.m. then G is K4-free.

Assumption 1. From now on, by Corollary 1, we assume that the input graph
is K4-free (else it has no d.i.m.).

Clearly, it can be checked (directly) in polynomial time whether the input
graph is K4-free.

By Observation 1(i) with respect to C3 and the distance property, we have
the following.
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Observation 2. The mid-edge of any diamond in G and the two peripheral edges

of any induced butterfly are forced edges of G.

Assumption 2. From now on, by Observation 2, we assume that the input
graph is (diamond,butterfly)-free.

In particular, we can apply the Edge Reduction to each mid-edge of any
induced diamond and to each peripheral edge of any induced butterfly; that can
be done in polynomial time.

Here is an example for excluded edges. By Observation 1(i), there is exactly
one M -edge in the C3 (v1, v2, v3). Since G is K4- and diamond-free, every vertex
v /∈ {v1, v2, v3} which contacts the C3 (v1, v2, v3) has exactly one neighbor in
(v1, v2, v3).

A paw has four vertices, say v1, v2, v3, v4 such that v1, v2, v3 induce a C3 and
v4 contacts exactly one vertex in v1, v2, v3, say v3v4 ∈ E. Thus, the edge v3v4 ∈ E
is excluded.

2.3. The distance levels of an M-edge xy in a P3

Based on [5], we first describe some general structure properties for the distance
levels of an edge in a d.i.m. M of G. Since G is (K4,diamond,butterfly)-free, we
have:

Observation 3. For every vertex v of G, N(v) is the disjoint union of isolated

vertices and at most one edge. Moreover, for every edge uv ∈ E, there is at most

one common neighbor of u and v.

Since it is trivial to check whether G has a d.i.m. M with exactly one edge,
from now on we can assume that |M | ≥ 2.

Recall that the distance distG(a, b) between two vertices a, b in graph G is
the number of edges in a shortest path in G between a and b.

Theorem 2 [1]. Every connected Pt-free graph G = (V,E) admits a vertex v ∈ V
such that distG(v, w) ≤

⌊

t/2
⌋

for every w ∈ V .

We call such a vertex v a central vertex; more exactly, a central vertex in G
has shortest distance to every other vertex in G. Theorem 2 implies that every
connected P9-free graph G admits a central vertex v ∈ V such that distG(v, w) ≤
4 for every w ∈ V . For a central vertex v and a neighbor u of v, i.e., uv ∈ E, let

Ni(uv) = {z ∈ V : distG(z, uv) = i}

denote the distance levels of uv, i ≥ 1. Then by Theorem 2, for every edge
uv ∈ E, we have

(2) Nk(uv) = ∅ for every k ≥ 5.
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Observation 4. For every central vertex v in G, every edge uv ∈ E is part of a

P3 of G.

Proof. Let v be a central vertex in G, and suppose to the contrary that not
every edge uv ∈ E is part of a P3 of G, say (u, v, w) induce a C3 in G such that
uv is not part of a P3, i.e., N [u] = N [v] = {u, v, w}. Clearly, in this case, w has
more neighbors than v in G since G itself is no C3, i.e., w has a neighbor x with
xu /∈ E and xv /∈ E (else there is a diamond or K4). Moreover, w is not part
of a triangle with x and y (else there is a butterfly in G). Then for every vertex
y /∈ {u, v, w}, distG(w, y) < distG(v, y), which is a contradiction.

Thus, Observation 4 is shown.

Now assume that v is a central vertex in G such that every edge uv ∈ E
is part of a P3 of G. Then one could check for any edge uv ∈ E (with central
vertex v), whether there is a d.i.m. M of G with uv ∈ M , and one could conclude:
Either G has a d.i.m. M with v ∈ V (M), or G has no d.i.m. M with v ∈ V (M);
in particular, in the latter case, if none of the edges uv is in a d.i.m. then v is
white and one can apply the Vertex Reduction to v and in particular remove v.

Now assume that x is a central vertex (as in Observation 4), and let xy ∈ M
be an M -edge for which there is a vertex r such that {r, x, y} induce a P3 with
edge rx ∈ E. By the assumption that xy ∈ M , we have that x and y are black,
and it could lead to a feasible xy-coloring (if no contradiction arises).

Let N0(xy) = {x, y} and for i ≥ 1, let

Ni(xy) = {z ∈ V : distG(z, xy) = i}

denote the distance levels of xy. Recall (2) which also shows that N5(xy) = ∅.
We consider a partition of V into Ni = Ni(xy), 0 ≤ i ≤ 4, with respect to the
edge xy (under the assumption that xy ∈ M).

Observation 5. If v ∈ Ni for i ≥ 4 then v is an endpoint of an induced P6, say

with vertices v, v1, v2, v3, v4, v5 such that v1, v2, v3, v4, v5 ∈ {x, y}∪N1∪· · ·∪Ni−1

and with edges vv1 ∈ E, v1v2 ∈ E, v2v3 ∈ E, v3v4 ∈ E, v4v5 ∈ E. Analogously,

if v ∈ N3 then v is an endpoint of a corresponding induced P5.

Proof. If i ≥ 5 then clearly there is such a P6. Thus, assume that v ∈ N4.
Then v1 ∈ N3 and v2 ∈ N2. Recall that y, x, r induce a P3. If v2r ∈ E then
v, v1, v2, r, x, y induce a P6. Thus assume that v2r /∈ E. Let v3 ∈ N1 be a
neighbor of v2. Now, if v3x ∈ E then v, v1, v2, v3, x, r induce a P6, and if v3x /∈ E
but v3y ∈ E then v, v1, v2, v3, y, x induce a P6. Analogously, if v ∈ N3 then v
is an endpoint of an induced P5 (which could be part of the P6 above). Thus,
Observation 5 is shown.
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Recall that by (1), V = V (M) ∪ I is a partition of V where V (M) is the set
of black vertices and I is the set of white vertices which is independent.

Since we assume that xy ∈ M (and is an edge in a P3), clearly, N1 ⊆ I and
thus:

(3) N1 is an independent set of white vertices.

Moreover, no edge between N1 and N2 is in M . Since N1 ⊆ I and all
neighbors of vertices in I are in V (M), we have

(4) G[N2] is the disjoint union of edges and isolated vertices.

Let M2 denote the set of edges uv ∈ E with u, v ∈ N2 and let S2 =
{u1, . . . , uk} denote the set of isolated vertices in N2; N2 = V (M2) ∪ S2 is a
partition of N2. Obviously

(5) M2 ⊆ M and S2 ⊆ V (M).

If for xy ∈ E, an edge e ∈ E is contained in every d.i.m. M of G with
xy ∈ M , we say that e is an xy-forced M -edge, and analogously, if an edge e ∈ E
is contained in no d.i.m. M of G with xy ∈ M , we say that e is xy-excluded. The
Edge Reduction for forced edges can also be applied for xy-forced edges (then,
in the unsuccessful case, G has no d.i.m. containing xy), and correspondingly for
xy-forced white vertices (resulting from the black color of x and y), the Vertex
Reduction can be applied.

Obviously, by (5), we have

(6) Every edge in M2 is an xy-forced M -edge.

Thus, from now on, after applying the Edge Reduction for M2-edges, we can
assume that V (M2) = ∅, i.e., N2 = S2 = {u1, . . . , uk}. For every i ∈ {1, . . . , k},
let u′i ∈ N3 denote theM -mate of ui (i.e., uiu

′

i ∈ M). LetM3 = {uiu
′

i : 1 ≤ i ≤ k}
denote the set of M -edges with one endpoint in S2 (and the other endpoint in
N3). Obviously, by (5) and the distance condition for a d.i.m. M , the following
holds:

(7) No edge with both ends in N3 and no edge between N3 and N4 is in M.

As a consequence of (7) and the fact that every triangle contains exactly one
M -edge (recall Observation 1(i)), we have

(8)
For every C3 abc with a ∈ N3, and b, c ∈ N4, bc ∈ M
is an xy-forced M -edge.
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This means that for the edge bc, the Edge Reduction can be applied, and
from now on, we can assume that there is no such triangle abc with a ∈ N3 and
b, c ∈ N4, i.e., for every edge uv ∈ E in N4:

(9) N(u) ∩N(v) ∩N3 = ∅.

According to (5) and the assumption that V (M2) = ∅ (recall N2 = {u1, . . . ,
uk}), let:

Tone = {t ∈ N3 : |N(t) ∩N2| = 1},

Ti = Tone ∩N(ui), 1 ≤ i ≤ k, and

S3 = N3 \ Tone.

By definition, Ti is the set of private neighbors of ui ∈ N2 in N3 (note that
u′i ∈ Ti), T1 ∪ · · · ∪ Tk is a partition of Tone, and Tone ∪ S3 is a partition of N3.

Lemma 1 [5]. The following statements hold.

(i) For all i ∈ {1, . . . , k}, Ti ∩ V (M) = {u′i}.

(ii) For all i ∈ {1, . . . , k}, Ti is the disjoint union of vertices and at most one

edge.

(iii) G[N3] is bipartite.

(iv) S3 ⊆ I, i.e., S3 is an independent subset of white vertices.

(v) If a vertex ti ∈ Ti sees two vertices in Tj, i 6= j, i, j ∈ {1, . . . , k}, then

uiti ∈ M is an xy-forced M -edge.

Proof. (i) Holds by definition of Ti and by the distance condition of a d.i.m. M .
(ii) Holds by Observation 3.

(iii) Follows by Observation 1(i) since every odd cycle in G must contain at
least one M -edge, and by (7).

(iv) If v ∈ S3 = N3 \ Tone, i.e., v sees at least two M -vertices then clearly,
v ∈ I, and thus, S3 ⊆ I is an independent subset (recall that I is an independent
set).

(v) Suppose that t1 ∈ T1 sees a and b in T2. If ab ∈ E then u2, a, b, t1 would
induce a diamond in G. Thus, ab /∈ E and now, u2, a, b, t1 induce a C4 in G;
by Observation 1(ii), no edge in the C4 is in M , and by (7), the only possible
M -edge for dominating t1a, t1b is u1t1, i.e., t1 = u′1.

By Lemma 1(iv) and the Vertex Reduction for the white vertices of S3, we
can assume:

(A1) S3 = ∅, i.e., N3 = T1 ∪ · · · ∪ Tk.

By Lemma 1(v), we can assume:
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(A2) For i, j ∈ {1, . . . , k}, i 6= j, every vertex ti ∈ Ti has at most one neighbor
in Tj .

In particular, if for some i ∈ {1, . . . , k}, Ti = ∅, then there is no d.i.m. M of
G with xy ∈ M , and if |Ti| = 1, say Ti = {ti}, then uiti is an xy-forced M -edge.
Thus, we can assume:

(A3) For every i ∈ {1, . . . , k}, |Ti| ≥ 2.

Let us say that a vertex t ∈ Ti, 1 ≤ i ≤ k, is an out-vertex of Ti if it is
adjacent to some vertex of Tj with j 6= i, or it is adjacent to some vertex of N4,
and t is an in-vertex of Ti otherwise.

For finding a d.i.m. M with xy ∈ M , one can remove all but one in-vertices;
that can be done in polynomial time. In particular, if there is an edge between
two in-vertices t1t2 ∈ E, t1, t2 ∈ Ti, then either t1 or t2 is black, and thus, Ti is
completely colored. Thus, let us assume:

(A4) For every i ∈ {1, . . . , k}, Ti has at most one in-vertex.

Lemma 2. Assume that G has a d.i.m. M with xy ∈ M . Then:

(i) For every i 6= j, there are at most two edges between Ti and Tj.

(ii) If there are two edges between Ti and Tj, say titj ∈ E and t′it
′

j ∈ E for ti, t
′

i ∈

Ti and tj , t
′

j ∈ Tj, ti 6= t′i, tj 6= t′j, then every vertex in (Ti∪Tj)\
{

ti, tj , t
′

i, t
′

j

}

is white.

Proof. (i) Suppose to the contrary that there are three edges between T1 and T2,
say t1t2 ∈ E, t′1t

′

2 ∈ E, and t′′1t
′′

2 ∈ E for ti, t
′

i, t
′′

i ∈ Ti, i = 1, 2. By (A2), ti, t
′

i, t
′′

i

are distinct. Then t1 is black if and only if t2 is white, t′1 is black if and only if
t′2 is white, and t′′1 is black if and only if t′′2 is white. Without loss of generality,
assume that t1 is black, and t2 is white. Then t′1 is white, and t′2 is black, but
now, t′′1 and t′′2 are white, which is a contradiction.

(ii) Let t1t2 ∈ E, t′1t
′

2 ∈ E, be two such edges between T1 and T2. By (A2),
t1 6= t′1, and t2 6= t′2. Then again, t1 or t′1 is black as well as t2 or t′2 is black, and
thus, every other vertex in T1 or T2 is white.

Thus Lemma 2 is shown.

By Lemma 2(i), we can assume:

(A5) For i, j ∈ {1, . . . , k}, i 6= j, there are at most two edges between Ti and Tj .

Recall that |Ti| ≥ 2. If there is an edge in Ti, say ab ∈ E with a, b ∈ Ti and
there is a third vertex c ∈ Ti then either a or b is black, and thus, by Lemma
1(i), c is forced to be white, and by the Vertex Reduction and by Lemma 2 (ii),
we can assume:

(A6) If there is an edge in Ti then |Ti| = 2. Analogously, if there are two edges
between Ti and Tj then |Ti| = 2 and |Tj | = 2.
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Then let us introduce the following forcing rules (which are correct). Since
no edge in N3 is in M (recall (7)), we have:

(R1) All N3-neighbors of a black vertex in N3 must be colored white, and all
N3-neighbors of a white vertex in N3 must be colored black.

Moreover, we have:

(R2) Every Ti, i ∈ {1, . . . , k}, should contain exactly one vertex which is black.
Thus, if t ∈ Ti is black then all the remaining vertices in Ti \ {t} must be
colored white.

(R3) If all but one vertices of Ti, 1 ≤ i ≤ k, are white and the final vertex t ∈ Ti

is not yet colored, then t must be colored black.

Since no edge between N3 and N4 is in M (recall (7)), we have:

(R4) For every edge st ∈ E with t ∈ N3 and s ∈ N4, s is white if and only if t is
black and vice versa.

Subsequently, for checking if G has a d.i.m. M with xy ∈ M , we consider the
cases N4 = ∅ and N4 6= ∅.

Then let us introduce the following recursive algorithm which formalizes the
approach we will adopt to check if G has a d.i.m.

Algorithm DIM(G)

Input. A connected P9- and (K4,diamond,butterfly)-free graph G = (V,E).

Output. A d.i.m. of G or the proof that G has no d.i.m.

(A) Compute a central vertex, say x, of G such that distG(x, u) ≤ 4 for every
u ∈ V and every edge xy ∈ E is part of a P3 of G.

(B) For each edge xy ∈ E of G [contained in a P3 of G] do:

(B.1) compute the distance levelsNi with respect to xy and apply the reduc-
tion steps as shown above: if no contradiction arose and if assumptions
(A1)–(A6) hold, then go to Step (B.2), else take another edge with x;

(B.2) check if G has a d.i.m. M with xy ∈ M ; if yes, then return it, and
STOP.

(C) Apply the Vertex Reduction to x [and in particular remove x]; let G′ denote
the resulting graph, where the neighbors of x in G are colored by black;
if G′ is disconnected, then execute Algorithm DIM(H) for each connected
component H of G′; otherwise, go to Step (B), with G = G′.

(D) Return “G has no d.i.m.” and STOP.

Then, by the above, Algorithm DIM(G) is correct and can be executed in
polynomial time as soon as Step (B.2) can be so.
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Then in what follows let us try to show that Step (B.2) can be solved in
polynomial time, with the agreement that G is (K4,diamond,butterfly)-free and
enjoys assumptions (A1)–(A6): in particular recall (2) that Nk = ∅ for k ≥ 5.

Thus we consider the cases N4 = ∅ and N4 6= ∅. Let Axy = {x, y} ∪ N1 ∪
N2 ∪N3, and recall N4 = V \Axy.

3. The Case N4 = ∅

In this section, we show that for the case N4 = ∅, one can check in polynomial
time whether G has a d.i.m. M with xy ∈ M ; we consider the feasible xy-
colorings for G[Axy]. Recall that for every edge uv ∈ M , u and v are black, for
I = V (G) \ V (M), every vertex in I is white, N2 = S2 = {u1, . . . , uk} and all ui,
1 ≤ i ≤ k, are black, Ti = N(ui) ∩ N3, and recall assumptions (A1)–(A6) and
rules (R1)–(R4). In particular, by (A1), S3 = ∅, i.e., N3 = T1 ∪ · · · ∪ Tk.

Clearly, in the case N4 = ∅, all the components of G[S2∪N3] can be indepen-
dently colored. Every component with at most three S2-vertices has a polynomial
number of feasible xy-colorings. Thus, we can focus on components K with at
least four S2-vertices.

A P2 (u, v) in G[N3] is isolated in G[N3] if it is not part of a P3 in G[N3].

Claim 1. If every P2 in component K in G[S2 ∪ N3] is isolated then K has at

most three S2-vertices.

Proof. Suppose to the contrary that K has at least four S2-vertices, say u1, u2,
u3, u4, and without loss of generality, assume that T2 contacts T1 and T3, say
t′1t2 ∈ E and t′2t3 ∈ E for t′1 ∈ T1, t2, t

′

2 ∈ T2, and t3 ∈ T3. By the isolated edges,
(u1, t

′

1, t2, u2, t
′

2, t3, u3) induce a P7.

Case 1. T4 contacts T1 or T3. Without loss of generality, assume that T4

contacts T3, i.e., there is a t4 ∈ T4 which contacts a vertex in T3. Clearly,
t3t4 /∈ E since t′2t3 ∈ E is isolated. Then t′3t4 /∈ E for a second vertex t′3 ∈
T3, and clearly, t′3 and t4 do not contact the edges t′1t2 and t′2t3 but then
(

u1, t
′

1, t2, u2, t
′

2, t3, u3, t
′

3, t4
)

induce a P9, which is a contradiction.

Case 2. T4 contacts T2 but does not contact T1 and T3. Let t4 ∈ T4 contact T2.
Clearly, by the isolated edges, t4 does not contact t2, t

′

2 ∈ T2. Thus assume that
t′′2t4 ∈ E for a third vertex t′′2 ∈ T2. By (A3), there is a second vertex t′4 ∈ T4 and
a second vertex t′3 ∈ T3, and clearly, t3t

′

3 /∈ E, t4t
′

4 /∈ E and t′4 does not contact T3

and t′4 does not contact t′2, t
′′

2 ∈ T2. But then
(

t′4, u4, t4, t
′′

2, u2, t
′

2, t3, u3, t
′

3

)

induce
a P9, which is a contradiction.

Thus, Claim 1 is shown. 2

From now on, we can assume that there is at least one P3 with contact
between Ti and Ti+1 in K.
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Claim 2. For any P3’s (a, b, c) and (d, e, f) in G[N3] such that d, e, f are not in

the Ti’s of a, b, c, there is an edge between {a, b, c} and {d, e, f}.

Proof. Suppose to the contrary that there is no such edge between the P3’s
(a, b, c) and (d, e, f) in G[N3]. From Lemma 1(ii), a, b, c are in at least two Ti’s;
assume that a ∈ T1. Then, by Lemma 1(v) and since ab ∈ E, bc ∈ E, we have
c /∈ T1; let c ∈ T2, i.e., u1c /∈ E. Then either b /∈ T1 or b /∈ T2; without loss of
generality, let b /∈ T1. Analogously, since d, e, f are not in T1 ∪ T2, assume that
d ∈ T3 and e, f /∈ T3.

Let P be any induced path in G between u1 and u3 through N1 ∪ {x, y}.
Then the subgraph of G induced by (c, b, a, u1), P , and (u3, d, e, f) contains an
induced P9, which is a contradiction. Thus, Claim 2 is shown. 2

For a P5 P = (a, b, c, d, e) in G[N3] with a ∈ Ti and b, c, d, e /∈ Ti, vertex a is
a special P5-endpoint of P in G[N3].

Claim 3. There is no P5 (a, b, c, d, e) in G[N3] with special P5-endpoint a.

Proof. Suppose to the contrary that (a, b, c, d, e) is a P5 in G[N3] with special
P5-endpoint a ∈ Ti and b, c, d, e /∈ Ti. But then by Observation 5, vertex a is the
midpoint of a P9, which is a contradiction. Thus, Claim 3 is shown. 2

Claim 4. If C =
(

ti, ui, t
′

i, tj , th, tℓ
)

is a C6 in G[S2∪N3] with exactly one vertex

ui ∈ S2 and ti, t
′

i ∈ Ti, tj ∈ Tj, th ∈ Th, tℓ ∈ Tℓ (possibly j = h or h = ℓ) then

tj and tℓ are xy-forced to be black, i.e., ujtj and uℓtℓ are xy-forced M -edges, and

thus, Tj and Tℓ are completely colored.

Proof. By (7), no edge in N3 is in M . By Observation 1(iii), either exactly two
or none of the edges in C are in M . Since C has exactly one vertex ui ∈ S2, uiti
and uit

′

i are the only edges of C which are not in N3, and clearly, either uiti /∈ M
or uit

′

i /∈ M . Thus, by Observation 1(iii), no edge in C is in M , i.e., ti and t′i are
white, and tj as well as tℓ are xy-forced to be black. Thus, Claim 4 is shown. 2

After the Edge Reduction step, we can assume that there is no such C6 in
G[S2∪N3], i.e., every C6 in G[S2∪N3] has either two vertices of S2 or none of it.

Claim 5. If C is a C7 in G[S2 ∪N3] then C has exactly two vertices in S2, say

C =
(

ti, ui, t
′

i, tj , uj , t
′

j , th
)

, and then th is xy-forced to be black, i.e., uhth is an

xy-forced M -edge.

Proof. Let C be a C7 in G[S2∪N3]. Recall that by Lemma 1(iii), there is no C7

in G[N3]. Thus, |V (C) ∩ S2| ≥ 1, and clearly, by (A1), no vertex in V (C) ∩ N3

contacts two vertices in V (C) ∩ S2, i.e., |V (C) ∩ S2| ≤ 2.
If there is exactly one S2-vertex in a C7 in G[N3], say C =

(

t1, u1, t
′

1, t2, t
′,

t′′, t′′′
)

with t1, t
′

1 ∈ T1 then t2, t
′, t′′, t′′′ /∈ T1, but now,

(

t′1, t2, t
′, t′′, t′′′

)

induce
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a P5 with special P5-endpoint t′1 ∈ T1 such that t2, t
′, t′′, t′′′ /∈ T1, which is a

contradiction to Claim 3.

Now assume that C =
(

t1, u1, t
′

1, t2, u2, t
′

2, t3
)

is a C7 in G[S2 ∪N3]. Suppose
to the contrary that t3 is white. Then t1 and t′2 are black which implies that t′1
and t2 are white, which is a contradiction since t′1t2 ∈ E. Thus, t3 is xy-forced
to be black, i.e., u3t3 is an xy-forced M -edge, and Claim 5 is shown. 2

After the Edge Reduction step, we can assume that there is no C7 in G[S2 ∪
N3].

Claim 6. If there is a C9 C in G[S2∪N3] then |V (C)∩S2| = 3, say V (C)∩S2 =
{u1, u2, u3}, and for the component K in G[S2 ∪N3] containing C, we have K =
G[{u1, u2, u3} ∪ T1 ∪ T2 ∪ T3].

Proof. Let C be a C9 in G[S2 ∪ N3]. Recall that by Lemma 1(iii), there is no
C9 in G[N3], i.e., |V (C) ∩ S2| ≥ 1, and clearly, |V (C) ∩ S2| ≤ 3.

If C contains only one S2-vertex then, as in the proof of Claim 5, it leads to
a P5 in N3 with corresponding special P5-endpoint, which is a contradiction to
Claim 3. Thus, |V (C) ∩ S2| ≥ 2.

First assume that |V (C)∩ S2| = 2. If C =
(

t1, u1, t
′

1, t2, u2, t
′

2, t3, t4, t5
)

(pos-
sibly t3, t4 ∈ T3 or t4, t5 ∈ T4) then this leads to a P5

(

t′2, t3, t4, t5, t1
)

with special
P5-endpoint t1, which is a contradiction to Claim 3. If C =

(

t1, u1, t
′

1, t2, t3, u3, t
′

3,
t4, t5

)

then t2 is xy-forced to be black: Suppose to the contrary that t2 is white.
Then t′1 and t3 are black, which implies that t1 and t′3 are white, but now, t4
and t5 are black, which is a contradiction since there is no M -edge in N3. Thus,
u2t2 is an xy-forced M -edge, and after the Edge Reduction, |V (C) ∩ S2| = 2 is
impossible.

Thus, |V (C) ∩ N2| = 3; let C =
(

t1, u1, t
′

1, t2, u2, t
′

2, t3, u3, t
′

3

)

be a C9 with
three such S2-vertices u1, u2, u3. Suppose to the contrary that there is a vertex
t4 ∈ T4 which contacts C, say t′3t4 ∈ E. Clearly, by Lemma 1(v), t4t3 /∈ E. Since
(

u1, t
′

1, t2, u2, t
′

2, t3, u3, t
′

3, t4
)

do not induce a P9, we have t4t
′

1 ∈ E or t4t2 ∈ E or
t4t

′

2 ∈ E.

If t4t
′

1 ∈ E then
(

t2, t
′

1, t4, t
′

3, t1
)

would induce a P5 in N3 with special
P5-endpoint t2, which is impossible by Claim 3. Similarly, if t4t

′

2 ∈ E then
(

t3, t
′

2, t4, t
′

3, t1
)

would induce a P5 in N3 with special P5-endpoint t1, which is a
contradiction to Claim 3.

Thus, t4t2 ∈ E which leads to a C7

(

t2, u2, t
′

2, t3, u3, t
′

3, t4
)

. But then, by
Claim 5, t4 is xy-forced to be black, i.e., u4t4 is an xy-forced M -edge, and after
the Edge Reduction, there is no such C7. Thus, Claim 6 is shown. 2

Corollary 2. Every component in G[S2 ∪ N3] with at least four S2-vertices is

C9-free.
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Lemma 3. In the case N4 = ∅, for every component K in G[S2∪N3], a complete

coloring of K (if there is no contradiction) can be done in polynomial time.

Proof. For finding a complete feasible xy-coloring of component K (or a con-
tradiction), we first use Vertex Reduction and Edge Reduction as in the previous
results.

Let V (K)∩N3 = T1 ∪ · · · ∪ Th (recall that h ≥ 4 since otherwise, a complete
feasible xy-coloring of K can be done in polynomial time). Clearly, for every i,
1 ≤ i ≤ h, we have |Ti| ≥ 2.

If every Ti in K would have only one out-vertex ti ∈ Ti, then the procedure
starts by fixing a coloring of T1; for every i, 1 ≤ i ≤ h, there are only two possible
colorings of Ti since by (A4), every Ti has at most one in-vertex. If the already
colored out-vertex ti ∈ Ti with contact to ti+1 ∈ Ti+1 is white then ti+1 is black,
the in-vertex of Ti+1 is white, and Ti+1 is completely colored. Analogously, if ti
is black then ti+1 is white, the in-vertex of Ti+1 is black, and Ti+1 is completely
colored.

Thus, we can assume that there is a Ti with at least two out-vertices (such
that at least one of them is white). In this case, the procedure starts by fixing
a coloring of T1 with at least two out-vertices (this can be repeated for all |T1|
colorings of T1) and applies the forcing rules, and then the next step of the
procedure is using a white out-vertex t1 ∈ T1, say with contact to T2, such that
the neighbor t2 ∈ T2 of t1 is black. If t2 contacts only T1 then t2 does not play
any role for the procedure. If t2 contacts some Tj , j 6= 1, 2, the problem is how
Tj can be completely colored.

Now we can assume that every black out-vertex (which was already colored
by a white neighbor in the previous step) contacts at least two Ti’s, say, t2 ∈ T2

was colored black by a white vertex t′1 ∈ T1 with t′1t2 ∈ E (i.e., T1 was already
colored), and t2t3 ∈ E for t3 ∈ T3 but T3 is not yet completely colored. Then t3
is white, and if t3t

′

3 ∈ E for another t′3 ∈ T3 then t′3 is black and T3 is completely
colored. Thus assume that t3t

′

3 /∈ E for any t′3 ∈ T3. If t3 is the only out-vertex
in T3 then the in-vertex is black (recall that by (A4), every Ti has at most one
in-vertex) and T3 is completely colored. Thus assume that t′3 is an out-vertex,
say t′3t4 ∈ E for t4 ∈ T4. We first show:

Claim 7. If there is any contact between the P3

(

t′1, t2, t3
)

and the P2

(

t′3, t4
)

then T3 is completely colored.

Proof. Clearly, t3t
′

3 /∈ E, t3t4 /∈ E, and t2t
′

3 /∈ E. If t′1t
′

3 ∈ E then t′3 is black and
T3 is completely colored. Thus assume that t′1t

′

3 /∈ E. If t2t4 ∈ E then t4 is white
and thus, t′3 is black and T3 is completely colored. Thus assume that t2t4 /∈ E.

Finally, if t′1t4 ∈ E then
(

t′1, t2, t3, u3, t
′

3, t4
)

induce a C6, which is impossible
by Claim 4 and the Edge Reduction.

Thus, T3 is completely colored. 2
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Now we assume
(

t′1, t2, t3
)

0©
(

t′3, t4
)

.

Moreover,
(

u1, t
′

1, t2, t3, u3, t
′

3, t4, u4
)

induce a P8 in G. Clearly, |T1| ≥ 2 and
|T4| ≥ 2; let t1 ∈ T1 be a second vertex in T1 and t′4 ∈ T4 be a second vertex
in T4.

Claim 8. If t4t
′

4 /∈ E, then T3 is completely colored.

Proof. If t4t
′

4 /∈ E then clearly, t′3t
′

4 /∈ E. Since
(

u1, t
′

1, t2, t3, u3, t
′

3, t4, u4, t
′

4

)

do
not induce a P9 in G, we have t′1t

′

4 ∈ E or t2t
′

4 ∈ E or t3t
′

4 ∈ E. If t3t
′

4 ∈ E then
|T3| = 2 (recall (A6)) and T3 is completely colored. Thus assume that t3t

′

4 /∈ E.
Now, if t2t

′

4 ∈ E then
(

t2, t3, u3, t
′

3, t4, u4, t
′

4

)

induce a C7, which is impossible by
Claim 5 and the Edge Reduction. Thus, t2t

′

4 /∈ E which implies that t′1t
′

4 ∈ E.
But now, since t′1 is white, t

′

4 is black, t4 is white, t
′

3 is black, and T3 is completely
colored.

From now on, we assume
t4t

′

4 ∈ E.

Case 1. t1t
′

1 ∈ E. Then t1 is black. By Claim 2,
(

t2, t
′

1, t1
)

and (t′3, t4, t
′

4) do
not induce a 2P3. Recall that

(

t2, t
′

1

)

and (t′3, t4) induce a 2P2. Thus, t1 should
contact

(

t′3, t4, t
′

4

)

or t′4 should contact
(

t2, t
′

1, t1
)

.
If t′1t

′

4 ∈ E then t′4 is black, t4 is white, t′3 is black, and T3 is completely
colored. Thus assume t′1t

′

4 /∈ E. Analogously, if t1t4 ∈ E then t4 is white, and t′3
is black, and T3 is completely colored. Thus assume t1t4 /∈ E.

If t1t3 ∈ E then clearly, t1t
′

3 /∈ E, and if t1t3 /∈ E but t1t
′

3 ∈ E then
(

t1, t
′

1, t2, t3, u3, t
′

3

)

induce a C6 which is impossible by Claim 4 and the Edge
Reduction. Thus, assume that t1t

′

3 /∈ E.
If t2t

′

4 ∈ E then
(

t2, t3, u3, t
′

3, t4, t
′

4

)

induce a C6 which is impossible by Claim
4 and the Edge Reduction. Thus, assume that t2t

′

4 /∈ E.
Now, t1t

′

4 ∈ E is the only possible edge between (t2, t
′

1, t1) and
(

t′3, t4, t
′

4

)

but
now,

(

t2, t
′

1, t1, t
′

4, t4
)

induce a P5 with special endpoint t2, which is impossible
by Claim 3.

Thus, in Case 1, T3 is completely colored.

Case 2. t1t
′

1 /∈ E. Recall that t′1 and t3 are white and
(

t′1, t2, t3
)

0©
(

t′3, t4
)

.
Clearly, t1t2 /∈ E, and since

(

t1, u1, t
′

1, t2, t3, u3, t
′

3, t4, u4
)

do not induce a P9 in
G, we have t1t3 ∈ E or t1t

′

3 ∈ E or t1t4 ∈ E.
If t1t

′

3 ∈ E then clearly, t1t3 /∈ E. But then
(

t1, u1, t
′

1, t2, t3, u3, t
′

3

)

induce
a C7, which is impossible by Claim 5 and the Edge Reduction. Thus, assume
t1t

′

3 /∈ E and either t1t3 ∈ E or t1t4 ∈ E.

Case 2.1. t1t3 /∈ E. Then t1t4 ∈ E. First assume that t1 is white,
which implies that t4 is black, and there is a black vertex t′′1 ∈ T1. Clearly,
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t′′1t1 /∈ E, t′′1t
′

1 /∈ E, t′′1t2 /∈ E, and since t4 is black, we have t′′1t4 /∈ E. Since
(

t′′1, u1, t
′

1, t2, t3, u3, t
′

3, t4, u4
)

do not induce a P9 in G, we have t′′1t3 ∈ E or
t′′1t

′

3 ∈ E.
If t′′1t

′

3 ∈ E then t′′1t3 /∈ E, but now
(

t′′1, u1, t
′

1, t2, t3, u3, t
′

3

)

induce a C7, which
is impossible by Claim 5 and the Edge Reduction. Thus, assume t′′1t

′

3 /∈ E which
implies t′′1t3 ∈ E. But now

(

t′′1, u1, t1, t4, t
′

3, u3, t3
)

induce a C7, which is impossible
by Claim 5 and the Edge Reduction.

Thus t1 is black which implies that t4 is white, t′3 is black, T3 is completely
colored, and Case 2.1 is done.

Case 2.2. t1t3 ∈ E. Since t3 is white, t1 is black. Clearly, since t1t3 ∈ E,
we have t1t

′

3 /∈ E. If t1t4 ∈ E then t4 is white and thus, t′3 is black and T3 is
completely colored. Thus, assume that t1t4 /∈ E.

If |T1| ≥ 3 then let t′′1 ∈ T1 be a second white vertex in T1. Then t′′1t3 /∈ E,
and Case 2.1 applies for t′′1 ∈ T1. Thus we have

|T1| = 2.

Next assume that the black out-vertex t1 has a second white neighbor, say
t0 ∈ T0 with t0t1 ∈ E. Since

(

t0, t1, t3, t2, t
′

1

)

do not induce a P5 with special
endpoint t0 (recall Claim 3), we have t0t2 ∈ E. Recall that t′1t

′

4 /∈ E (else T3 is
completely colored) and t2t

′

4 /∈ E (else
(

t2, t3, u3, t
′

3, t4, t
′

4

)

induce a C6 which is
impossible by Claim 4 and the Edge Reduction).

Since
(

t′1, t2, t0
)

and
(

t′3, t4, t
′

4

)

do not induce a 2P3 (recall Claim 2), we have
t0t

′

3 ∈ E or t0t4 ∈ E or t0t
′

4 ∈ E. If t0t
′

3 ∈ E or t0t
′

4 ∈ E then t′3 is black and T3

is completely colored. Thus assume that t0t4 ∈ E. But now,
(

t0, t1, t3, u3, t
′

3, t4
)

induce a C6 which is impossible by Claim 4 and the Edge Reduction. Thus, t1
has only one white neighbor, namely t3.

Next we show:

Claim 9. t′4 is no out-vertex.

Proof. Suppose to the contrary that t′4t5 ∈ E for some t5 ∈ T5. Recall that t4
does not contact t′1, t2, t3. Since t

′

4 is white (else T3 is completely colored), t′4 does
not contact t′1, t3, and recall that t′4t2 /∈ E (else

(

t2, t3, u3, t
′

3, t4, t
′

4

)

induce a C6,
which is impossible by Claim 4 and the Edge Reduction).

Recall that
(

t′1, t2, t3
)

and
(

t4, t
′

4, t5
)

do not induce a 2P3. Thus, since t4
and t′4 do not contact (t′1, t2, t3), only t5 could contact

(

t′1, t2, t3
)

. Since t2 and
t5 are black, we have t5t2 /∈ E. If t5t3 ∈ E then clearly, t5t

′

3 /∈ E but then
(

t3, u3, t
′

3, t4, t
′

4, t5
)

induce a C6, which is impossible by Claim 4 and the Edge
Reduction. Thus, t5t3 /∈ E. Now, if t5t

′

1 ∈ E then
(

t1, t3, t2, t
′

1, t5
)

induce a P5

with special endpoint t5, which is a contradiction by Claim 3.
Thus t5t

′

1 /∈ E, t5t2 /∈ E, and t5t3 /∈ E. But then
(

t′1, t2, t3
)

and
(

t4, t
′

4, t5
)

induce a 2P3, which is a contradiction by Claim 2. Thus, Claim 9 is shown.
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This implies that t4 is the only out-vertex in T4.

Next we show:

Claim 10. The black vertex t2 contacts only one Ti (namely T3) which is not yet

completely colored.

Proof. Suppose to the contrary that t2 contacts a second Ti (apart from T3)
which is not yet completely colored. Then Ti 6= T4 since by the above T4 = {t4, t

′

4}
and t2 is nonadjacent to t4, t

′

4. Then say Ti = T5, i.e., t2 contacts T5 with
t2t5 ∈ E. Note that t5 does not contact T3 (else T3 is completely colored) and
does not contact T4 (else, by Claim 9, t5t4 ∈ E and then vertices t2, t3, u3, t

′

3, t4, t5
would induce a C6 according to Claim 4). Since T5 is not yet completely colored,
T5 is not contacted by t′1 and t3, and furthermore (similarly to the above with
respect to T3) there is an out-vertex of T5 say t′5 ∈ T5 (nonadjacent to t5).
Note that t′5 does not contact T3 (else, say t′5t

′′

3 ∈ E with t′′3 ∈ T3, vertices
t2, t3, u3, t

′′

3, t
′

5, u5, t5 induce a C7 in G[S2 ∪ N3]) and does not contact T4 (else,
by Claim 9, t′5t4 ∈ E and then vertices u1, t

′

1, t2, t5, u5, t
′

5, t4, t
′

3, u3 induce a P9).
Then vertices t′5, u5, t5, t2, t3, u3, t

′

3, t4, t
′

4 induce a P9, which is a contradiction.
Thus, Claim 10 is shown.

Finally we show:

Claim 11. There is only one black vertex which contacts a Ti which is not yet

completely colored.

Proof. Suppose to the contrary that there are two such black vertices, say t2
which contacts T3 and t6 which contacts T7 such that T3, T7 are not yet completely
colored. By Claim 10, t2 does not contact T7 and t6 does not contact T3. If
t′1 6= t′5 then clearly, the P3’s

(

t′1, t2, t3
)

and (t′5, t6, t7) do not induce a 2P3 but
t2t7 /∈ E and t6t3 /∈ E. Thus, t′1t6 ∈ E or t′5t2 ∈ E, say without loss of generality,
t′1t6 ∈ E but now,

(

t3, t2, t
′

1, t6, t7
)

induce a P5 with special endpoint t3, which
is a contradiction to Claim 3. Analogously, if t′1 = t′5, it leads to the same
contradiction. Thus, Claim 11 is shown. 2

In general, if t2 does not completely color T3 then we can add a possible
coloring of T3 which leads to a complete coloring of every neighbor Ti of T3.
Since G is P9-free, Case 2.2 appears only once in component K.

Thus, Lemma 3 is shown.

4. The Case N4 6= ∅

Recall Axy = {x, y} ∪ N1 ∪ N2 ∪ N3 and N5 = ∅. In the case N4 6= ∅, we show
that one can check in polynomial time whether G has a d.i.m. M with xy ∈ M .
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Clearly, again in the case N4 6= ∅, all the components of G[S2 ∪N3 ∪N4] can be
independently colored.

Recall Observation 5; if t ∈ N3 then t is an endpoint of a corresponding
induced P5 in {x, y} ∪ N1 ∪ S2 ∪ N3. If there is a P5 (t, a, b, c, d) with endpoint
t and four vertices a, b, c, d ∈ N4 (such that only one of them, say a contacts t)
then t is the midpoint of a P9 in G, which is a contradiction. Analogously, if
there is a P5 (t, a, b, c, t′) with t, t′ ∈ N3 such that t and t′ are in distinct Ti’s then
t is the midpoint of a P9 in G, which is a contradiction. This argument is used
in some of the next proofs.

Proposition 1. If the colors of all vertices in G[Axy] are fixed then the colors of

all vertices in N4 are forced.

Proof. Let v ∈ N4 and let w ∈ N3 be a neighbor of v. Since by (7), every edge
between N3 and N4 is xy-excluded, we have: If w is white then v is black, and if
w is black then v is white.

Let K be a nontrivial component of G[S2 ∪ N3 ∪ N4]. Clearly, K can have
several components in G[S2 ∪ N3] which are connected by some N4-vertices. K
can be feasibly colored (if there is no contradiction) by starting with a component
in G[S2 ∪N3] or with a component in G[N4] which is part of K.

Recall (8) and (9) for the fact that after the Edge Reduction, there is no
triangle between N3 and N4 with exactly one vertex in N3, and for every edge
uv in G[N4], u and v have no common neighbor in N3. Moreover, for N4-vertices
which are isolated in N4, we have

(10) If v ∈ N4 with N(v) ∩N4 = ∅ then v is white.

Thus, after the Vertex Reduction, we can assume that every vertex in N4 has
a neighbor in N4, i.e., every component in G[N4] has at least one edge.

Similarly, we have:

Claim 12. If v, w ∈ N4 with vw ∈ E is an N4-isolated edge in G[N4] then vw is

an xy-forced M -edge, i.e., v and w are black.

Proof. Let v, w ∈ N4 with vw ∈ E such that v and w do not have any other
neighbors in N4. Clearly, since vw ∈ E, at least one of v and w is black, say v
is black. If w is white then v needs a black M -mate in N4 since by (7), there
is no M -edge between N3 and N4. But since vw is N4-isolated, there is no such
M -mate of v, i.e., w is black. Thus, Claim 12 is shown. 2

Thus, after the Edge Reduction, there is no such N4-isolated edge in N4.
By the way, there are possible contradictions: For instance, if for an N4-

isolated edge vw, v or w contacts a black vertex in N3 then there is no d.i.m.
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with xy ∈ M . Analogously, if vt ∈ E for t ∈ N3 and wt′ ∈ E for t′ ∈ N3 and
tt′ ∈ E (i.e., (t, v, w, t′) induce a C4) then there is no d.i.m. with xy ∈ M .

Claim 13. If t ∈ Ti, t′ ∈ Tj (possibly i = j), and a, b, c ∈ N4 induce a C5

C = (t, a, b, t′, c) in G[N3 ∪N4] then ab is an xy-forced M -edge.

Proof. Let C = (t, a, b, t′, c) be a C5 in G[N3 ∪N4]. Then the edges ta, tc, t′b, t′c
are edges between N3 and N4. By Observation 1(i), every C5 has exactly one
M -edge, and by (7), no edge between N3 and N4 is in M . Thus, ab is an xy-forced
M -edge, and Claim 13 is shown. 2

In general, for any C5 in G[N3 ∪ N4] with exactly one edge in G[N4], this
edge is xy-forced as an M -edge. After the Edge Reduction step, we can assume
that there is no such C5 in G[N3 ∪N4] with exactly one edge in G[N4].

Corollary 3. If ab ∈ E for a, b ∈ N4 and at ∈ E, bt′ ∈ E for t, t′ ∈ N3, t 6= t′,
such that (t, a, b, t′) induce a P4 in G then there is no common neighbor c ∈ N4

of t and t′.

Proof. Suppose to the contrary that there is such a common neighbor c ∈ N4

with tc ∈ E and t′c ∈ E. Then ac /∈ E and bc /∈ E since there are no triangles
(t, a, c), (t′, b, c). But then C = (t, a, b, t′, c) induce a C5, which is a contradiction
by Claim 13 and the Edge Reduction. Thus, Corollary 3 is shown.

Claim 14. If t ∈ Ti and a, b, c ∈ N4 induce a C4 C = (t, a, b, c) then t is black

and uit is an xy-forced M -edge.

Proof. Let C = (t, a, b, c) be a C4 with exactly one N3-vertex t. Suppose to
the contrary that t is white. Then by Observation 1(ii), a and c are black, b is
white, and by (7), there are M -mates a′ ∈ N4 of a and c′ ∈ N4 of c, i.e., aa′ ∈ M
and cc′ ∈ M . Since G is butterfly-free, b is nonadjacent to at least one vertex of
{a′, c′}, say b is nonadjacent to c′ without loss of generality by symmetry. By (8)
and the Edge Reduction, tc′ /∈ E; let t′ ∈ N3 be a neighbor of c′, i.e., t′c′ ∈ E.
Then t′ is white (since cc′ ∈ M), i.e., t′b /∈ E; furthermore, by (7), t′c /∈ E. Then,
since (t′, c′, c, b, a) do not induce a P5 (else by Observation 5, t′ is the midpoint
of a P9 in G), we have t′a ∈ E but now, C = (t, a, t′, c′, c) is a C5 with exactly
one edge in N4, namely cc′. By Claim 13 and the Edge Reduction, we have that
there is no such C5, i.e., t is black and uit is an xy-forced M -edge. Thus, Claim
14 is shown. 2

After the Edge Reduction step, we can assume that there is no such C4 in
G[N3 ∪N4].

Corollary 4. (i) If (a, b, c, d) induce a P4 in G[N4] with N3-neighbor t of a then

(t, a, b, c, d) induce a C5 in G[N3 ∪N4].



Finding Dominating Induced Matchings in P9-Free Graphs ... 1159

(ii) If (a, b, c) induce a P3 in G[N4] with N3-neighbor t of a and t′ of c (clearly,
t 6= t′) then either tt′ ∈ E, i.e., (t, a, b, c, t′) induce a C5 in G[N3 ∪ N4], or
t, t′ ∈ Ti.

Claim 15. There is no P3 (a, b, c) in G[N4] with white end-vertices a and c.

Proof. Suppose to the contrary that there is such a P3 (a, b, c) in G[N4] with
white end-vertices a and c, and thus black vertex b. Let ta ∈ Ti be an N3-neighbor
of a, and let tc be an N3-neighbor of c. By Claim 14 and the Edge Reduction,
tac /∈ E and tca /∈ E, i.e., ta 6= tc. Clearly, ta and tc are black, and thus, tc /∈ Ti

(and there is no Tj with ta, tc ∈ Tj). Moreover, tatc /∈ E since both of them
are black (recall that by (7), there is no M -edge in N3). But then (ta, a, b, c, tc)
induce a P5, and it leads to a P9 in G with midpoint ta, which is a contradiction.
Thus, Claim 15 is shown. 2

Corollary 5. If vertex z in G[N4] has degree at least 3 in G[N4] then z is white.

Proof. Suppose to the contrary that there is a black vertex z in G[N4] with
degree at least 3, say zzi ∈ E, 1 ≤ i ≤ 3. Without loss of generality, assume that
z1 is black. But then z2 and z3 are white, and thus, (z2, z, z3) induce a P3 with
white end-vertices z2, z3, which is a contradiction to Claim 15. Thus, Corollary
5 is shown.

Thus, after the Vertex Reduction, every vertex in a component of G[N4] has
degree at most 2 in G[N4]. For every component D of G[N4], this leads to feasible
colorings of D.

Claim 16. Every component D in G[N4] is either a Pk, 3 ≤ k ≤ 8, or a Ck,

k ∈ {3, 6, 9}, and D has at most three feasible colorings.

Proof. Recall that after the Vertex Reduction, every vertex in a component D
of G[N4] has degree at most 2 in G[N4]. If D is cycle-free then, since D contains
a P3 (recall (10) and Claim 12) and G is P9-free, D is a Pk, 3 ≤ k ≤ 8. If D
contains a Ck C then, since G is P9-free, k ≤ 9, and since every vertex in C has
degree 2, C is no C4, C5, C7, C8, since every black vertex in C must have an
M -mate in C. Thus, C is either a C3, C6, or C9. Clearly, for a Ck, k ∈ {3, 6, 9},
say C = (z1, . . . , zk), there are three feasible colorings; for example, in a C9, if
z1 is white then z4 and z7 are white and the remaining vertices are black, and
similarly if z2 is white or z3 is white. For induced paths Pk, 3 ≤ k ≤ 8, say
P = (z1, . . . , zk), there are either one or two feasible colorings; if z1 is white then
z2 and z3 are black and thus z4 is white etc. Thus, it leads to exactly one feasible
coloring for P4, P5, P7, P8, and for exactly two feasible colorings for P3 and P6.
Thus, Claim 16 is shown. 2
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Claim 17. Let (a, b, c) be a P3 in G[N4] for a, b, c ∈ N4. If b is white then all

N3-neighbors of a, b, c are in the same Ti.

Proof. Let ta ∈ N3 be the neighbor of a, and analogously, let tb, tc be the
neighbors of b, c in N3. Without loss of generality, let ta ∈ T1. Clearly, tab /∈ E,
tac /∈ E, and tca /∈ E, tcb /∈ E. Since b is white, a and c are black, and there
are black M -mates a′ ∈ N4 of a and c′ ∈ N4 of c (recall that by (7), there is no
M -edge between N3 and N4). By Claim 16, a′b /∈ E and c′b /∈ E.

Now by Corollary 4(i), tac
′ ∈ E and tca

′ ∈ E. Clearly, ta and tc are white,
and thus, tatc /∈ E. Since (ta, a, b, c, tc) do not induce a P5 with tc /∈ T1 (else it
leads to a P9 in G), we have tc ∈ T1.

Suppose that tb /∈ T1. Then, since (tb, b, c, c
′, ta) do not induce a P5 (else

there is a P9 in G with midpoint ta), we have tbta ∈ E, and analogously, since
(tb, b, a, a

′, tc) do not induce a P5, we have tbtc ∈ E but now, tb /∈ T1 contacts two
vertices in T1, which is a contradiction (recall Lemma 1(v)). Thus, tb ∈ T1, and
Claim 17 is shown. 2

Corollary 6. For a component D in G[N4] with P3 (a, b, c) such that b is white,

there are three N3-neighbors of D in the same Ti such that every vertex of D
contacts one of them.

Proof. If D is a P5 (a′, a, b, c, c′) as in the proof of Claim 17 then clearly, there
are three N3-neighbors of D in the same Ti such that every vertex a′, a, b, c, c′

contacts one of them.

Clearly, D is P9-free. Now assume that there is a neighbor d ∈ N4 of c′

(recall that every vertex in D has degree at most 2). Clearly, d is white, dc /∈ E
and db /∈ E. Let tb ∈ N3 be a neighbor of vertex b. Since (tb, b, c, c

′, d) do not
induce a P5, by the discussion at the beginning of the section, we have tbd ∈ E.
Accordingly, if e ∈ N4 is a neighbor of d and tc ∈ N3 is a neighbor of vertex c
then, since (tc, c, c

′, d, e) do not induce a P5, we have tce ∈ E etc. Thus, Corollary
6 is shown.

Claim 18. Let D1, D2 be two components in G[N4] and let a, b ∈ V (D1) with

white vertex a and ab ∈ E as well as c, d ∈ V (D2) with cd ∈ E. Then c and d
are colored black by the white vertex a.

Proof. Let ta ∈ T1 be an N3-neighbor of a. Then ta is black, and all other
vertices in T1 are white. Let tc ∈ N3 be a neighbor of c. Clearly, tab /∈ E and
tcd /∈ E, and ab, cd induce a 2P2 in G[N4]. If tc /∈ T1, say tc ∈ T2, and tatc /∈ E
then (b, a, ta, u1), (d, c, tc, u2), and the shortest path in N1 ∪ {x, y} between u1
and u2 lead to a P9, which is a contradiction. Thus, either tc ∈ T1 or tcta ∈ E
which implies that tc is white, and thus, c is black. Analogously, d is colored
black by the white vertex a, and Claim 18 is shown. 2
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Corollary 7. There is only one component in G[N4].

Proof. Suppose to the contrary that there are two such components D1, D2 in
G[N4]. Clearly, by Claim 12 and the Edge Reduction, D1 contains a white vertex
a; let ab ∈ E for a, b ∈ V (D1). As in the proof of Claim 18, let ta ∈ T1 be an
N3-neighbor of a which is black, and all other vertices in T1 are white, and c and
d are black for an edge cd ∈ E, c, d ∈ V (D2). Clearly, D2 has at least three
vertices; let e be a neighbor of c or d, say de ∈ E. Then e is white, and thus,
an N3-neighbor te of e is black, and thus, te /∈ T1 and tate /∈ E; let te ∈ T2. But
now, (b, a, ta, u1), (d, e, te, u2), and the shortest path in N1 ∪ {x, y} between u1
and u2 lead to a P9, which is a contradiction. Thus, Corollary 7 is shown.

Let K be a nontrivial component of G[S2∪N3∪N4], and let Q1, . . . , Qℓ be the
components of K in G[S2 ∪N3] and let D be the component of K in G[N4]. For
each of the (at most three) feasible colorings of D, it leads to a partial coloring
in every Qi since there is no contact between Qi and Qj , i 6= j, and thus, there
are contacts between Qi and D. Then, as in Section 3, for every Qi, it can be
independently checked in polynomial time whether Qi has a feasible coloring or
a contradiction.

This finally shows:

Theorem 3. DIM is solvable in polynomial time for P9-free graphs.

5. Conclusion

In [9], it is shown that for every graph class of bounded clique-width, the DIM
problem can be solved in polynomial time. However, there are many examples
where the clique-width is unbounded but DIM is solvable in polynomial time;
for example, the clique-width of P9-free graphs is unbounded. The complexity of
DIM is still an open problem for many examples.
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[3] A. Brandstädt, C. Hundt and R. Nevries, Efficient edge domination on hole-free

graphs in polynomial time, Conference Proceedings LATIN 2010, Lecture Notes in
Comput. Sci. 6034 (2010) 650–661.
https://doi.org/10.1007/978-3-642-12200-2 56
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