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Abstract

Let G be a 10-regular graph which does not contain any 4-cycles. In this
paper, we prove that G can be decomposed into paths of length 5, such that
every vertex is a terminal of exactly two paths.
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1. Introduction

Graphs in this paper are simple. Let G and H be graphs. We say that G has
an H-decomposition D = {H1, H2, . . . ,Hn}, if any two elements of D are edge-
disjoint subgraphs of G, Hi (1 ≤ i ≤ n) is isomorphic to H and E(G) =

⋃n
i=1Hi.

For convenience, we use Pm and Cm to denote the path and cycle with m edges,
respectively. For a positive integer r, an r-factor of G is a spanning subgraph F
of G such that dF (v) = r for each vertex v of G. A decomposition F of G is an
r-factorization if every element of F is an r-factor, any two elements of F are
edge-disjoint subgraphs of G, and E(G) can be covered by F .

Graham and Häggkvist [6] posed the following conjecture.

Conjecture 1 (Graham-Häggkvist [6]). Let T be a tree with l edges. If G is a
2l-regular graph, then G admits a T -decomposition.
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In the same paper, Häggkvist proved that Conjecture 1 is true when the girth
of G is at least the diameter of T . In the past several decades, this conjecture
interested many researchers and many related results were presented. Fink [5]
stated that if T is any tree having n edges (n ≥ 1), then the n-cube Qn can be
decomposed into 2n−1 edge-disjoint induced subgraphs, each of which is isomor-
phic to T . Erde [4] confirmed that if n is odd and k ≤ n such that k|n2n−1, then
Qn can be decomposed into paths of length k. In [7], Jacobson, Truszczyński and
Tuza proved that: (1) there is a wide class of r-regular bipartite graphs that can
be decomposed into any tree of size r; (2) every r-regular bipartite graph can be
decomposed into any double star of size r; (3) every 4-regular bipartite graph can
be decomposed into paths of length 4. As one corollary of main result in [8], Jao,
Kostochka and West confirmed Conjecture 1 for a 2l-regular graph which has a
2-factorization such that every cycle consisting of edges from distinct 2-factors
has length greater than the diameter of T . El-Zanati et al. [3] verified Conjecture
1 when T is a double-star, and further they proved that the double-star Sk,k−1
can decompose every 2k-regular graph which contains a perfect matching.

It is natural to ask whether Conjecture 1 holds if T is a path. Unfortunately,
there is no definitive answer for general graphs. Kouider and Lonc [9] proposed a
strengthening of Conjecture 1 in the case where T is a path, and it is still open.
We say a path decomposition D is balanced if each vertex is a terminal of exactly
two paths of D.

Conjecture 2 (Kouider and Lonc [9]). Let l be a positive integer. If G is a
2l-regular graph, then G admits a balanced Pl-decomposition.

By Petersen’s Factorization Theorem (see Theorem 3.1), Botler et al. [1]
proposed an equivalent form of Conjecture 2.

Conjecture 3 (Botler et al. [1]). Let m and l be positive integers. Then every
2ml-regular graph admits a balanced Pl-decomposition.

In the same paper, they proved that if m ≥ b(l − 2)/(g − 2)c, then every
2ml-regular graph with girth at least g admits a Pl-decomposition. Furthermore,
every 2ml-regular graph with girth at least l − 1 admits a Pl-decomposition for
m ≥ 1. By controlling the girth, Kouider and Lonc [9] confirmed Conjecture 2
for a 2l-regular graph G with girth at least (l + 3)/2.

Theorem 4 (Kouider and Lonc [9]). If l ≤ 2g − 3, then every 2l-regular graph
G of girth g has a balanced Pl-decomposition.

By Theorem 4, Conjecture 2 is true for l = 1, 2 and 3. When l = 4 or 5,
every 2l-regular graph G without triangles has a balanced Pl-decomposition. For
later use, we will present a short proof when l = 3 in Conjecture 2 in Section
3. Based on analysis of the structure of the graph, Botler and Talon [2] used a
different method from that in [9] to confirm the conjecture for l = 4.
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Theorem 5 (Botler and Talon [2]). If G is an 8-regular graph, then G admits a
balanced P4-decomposition.

Motivated by Theorem 5, we want to solve the case l = 5. However, the
structure of a P5-decomposition in a 10-regular graph is more complex than the
structure of a P4-decomposition in an 8-regular graph. Thus we consider P5-
decompositions of 10-regular graphs which contain no 4-cycles, and get the main
result of this paper.

Theorem 6. Let G be a 10-regular graph. If G does not contain any 4-cycles,
then G admits a balanced P5-decomposition.

2. Notations and Terminologies

A trail T = x0x1 · · ·xl is a graph for whose V (T ) = {xi | 0 ≤ i ≤ l}, E(T ) ={
xixi+1 | 0 ≤ i ≤ l−1

}
and xixi+1 6= xjxj+1, for every i 6= j. Denote the vertices

x0 and xl as the terminal vertices of T , x1 and xl−1 as the preterminal vertices
of T . If a trail has l edges, then we call it an l-trail. If a set of edge-disjoint trails
B of a graph G is such that

⋃
B∈B E(B) = E(G), then B is a decomposition of G

into trails. If every trail of B has length l, then B is a decomposition into l-trails
(or an l-trail decomposition). For a trail decomposition B of G, if every vertex of
G is a terminal of exactly two trails of B, then B is called balanced. If every trail
of B is a path, then B is a decomposition into paths (or a path decomposition).
We use τ(B) to denote the number of elements of B that are cycles.

A tour of a connected graph G is a closed walk that traverses each edge of G
at least once, and an Eulerian tour one that traverses each edge exactly once. A
graph is Eulerian if it admits an Eulerian tour. Since an Eulerian tour traverses
each edge exactly once, d(v) is even for every vertex v ∈ V (G). On the other
hand, if G is a connected graph and every vertex has even degree, then G has
an Eulerian tour by Fleury’s Algorithm. A graph in which each vertex has even
degree is called an even graph. Therefore, a graph is Eulerian if and only if is
even and connected. An orientation O of a subset E′ of E(G) is an attribution
of a direction to each edge of E′. If an edge xy is directed from x to y in O, we
say that xy leaves x and enters y. For a vertex v of G, let d+O(v) (respectively,
d−O(v)) be the number of edges leaving (respectively, entering) v with respect to
O. If O is an orientation of G and every vertex v has d+O(v) = d−O(v), then O is
an Eulerian orientation of G. It is easy to see that G is even if it has an Eulerian
orientation. If G is even, then each of its components has an Eulerian tour. We
can get an Eulerian orientation of G by assigning each edge of G an orientation in
such a way that the Eulerian tour of each component of G is a directed Eulerian
tour. Thus a graph has an Eulerian orientation if and only if it is even.
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3. Proof of Main Theorem

First of all, we will present Petersen’s Factorization Theorem [10].

Theorem 7 (Petersen’s 2-Factorization Theorem [10]). Every 2k-regular graph
admits a 2-factorization.

Nextly, we will introduce a approach used in [2] to get a trial decomposition.
By adjusting this decomposition, we finally get the desired result.

Let G be an r-regular graph (r ≥ 6 and is even), F be a 2-factorization of
G given by Theorem 7. By combining the elements of F , we obtain a decom-
position of G into an (r − 4)-factor and a 4-factor, say F1 and F2, respectively.
Let O be an Eulerian orientation of F2. Suppose F1 has a balanced P(r−4)/2-
decomposition D. So every vertex v of G is a terminal of exactly two paths in
D. Note that d+O(v) = 2 for every vertex v of F2. Thus, we can extend every
path P = x1x2 · · ·x(r−4)/2+1 in D to a (D, O)-extension QP = x0x1 · · ·x(r−4)/2+2

such that x0x1 and x(r−4)/2+1x(r−4)/2+2 are two edges in F2 leaving x1 and
x(r−4)/2+1, respectively, and further every edge of F2 is used exactly once. There-
fore, {QP |P ∈ D} is a decomposition into (D, O)-extensions of G, which may not
be a decomposition into paths, just into trails. Obviously, each decomposition
into (D, O)-extensions is balanced.

In this paper, we focus on the path decompositions of a 10-regular graph
which does not contain any 4-cycles. Let F1 be a 6-factor of G, F2 be a 4-factor
such that F1 ∪ F2 = G, O be an Eulerian orientation of F2. By Theorem 4, F1

has a balanced P3-decomposition D. Following the method above, we first obtain
a decomposition into (D, O)-extensions of G from D, and then adjust this trail
decomposition to a path decomposition of G.

Let G be a 6-regular graph. We present a brief proof that G has a balanced
P3-decomposition.

Lemma 8. If G is a 6-regular graph, then G admits a balanced P3-decomposition
D and every vertex of G is a preterminal of exactly two paths in D.

Proof. Let F be a 2-factorization of G given by Theorem 7. By combining the
elements of F , we obtain a decomposition of G into a 2-factor and a 4-factor,
say F3 and F4, respectively. Obviously, F3 has a balanced P1-decomposition,
denoted by D1. Because every vertex of F4 has even degree, there is an Eulerian
orientation O on F4. Let D be a decomposition of G into (D1, O)-extensions
which minimizes τ(D). If every element in D is a P3, then we are done. Suppose
there is a triangle C = x0x1x2x3 in D, x0 = x3, x1x2 ∈ D1. There is an element
T = y0y1y2y3 of D such that y1 = x1, y1y2 ∈ D1, y1y2 6= x1x2 and T 6= C. Let
C ′ = y0x1x2x3 and T ′ = x0y1y2y3. Obviously, C ′ is a path of length 3. Because,
G is simple, y1, y2 and y3 are distinct vertices, x0 6= y1 and x0 6= y2. If T ′
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is a triangle, then y3 = x0 = x3 and d−O(x0) = 3, which is a contradiction to
the assumption before that O is an Eulerian orientation on F4. Hence, T ′ is a
path of length 3. Let D′ = (D − {T,C}) ∪ {T ′, C ′}. D′ is a decomposition of
G into (D1, O)-extensions and τ(D′) ≤ τ(D)− 1, which is a contradiction to the
minimality of τ(D). Therefore, D is a balanced P3-decomposition of G. By the
construction of D, we can find that every vertex of G is a preterminal of exactly
two paths in D.

(b) (c)(a)

Figure 1. Extensions.

Now, let G be a 10-regular graph without a C4, F1 be a 6-factor of G, F2

be a 4-factor such that F1 ∪ F2 = G. Let O be an Eulerian orientation of F2

and D1 be a balanced P3-decomposition of F1, and further, T = {QP |P ∈ D1}
be a decomposition into (D1, O)-extensions of G. Let T = x0x1x2x3x4x5 ∈ T .
Because D1 is a balanced P3-decomposition of F1 and G does not contain any
C4, we have x1, x2, x3 and x4 are distinct vertices, x0 6= x4, x5 6= x1 and it is
impossible that both x0 = x3 and x5 = x2 hold. Hence, if T is a trail of T , then
exactly one of the following holds: (a) T is a path of length 5; (b) T is a trail
of length 5 which contains a triangle; (c) T is a cycle of length 5 (see Figure 1).
In the figures throughout this section, we illustrate the edges of F1 as straight
edges, and the edges of F2 as dashed edges. The next result shows that every
10-regular graph admits a decomposition into (D1, O)-extensions which are not
cycles.

Lemma 9. Let G be a 2l-regular graph, F1 be a 2(l − 2)-factor of G, F2 =
G \ E(F1) and O be an Eulerian orientation of F2. If there is a balanced P(l−2)-
decomposition D1 of F1, then G admits a decomposition into (D1, O)-extensions
which are not cycles.

Proof. Let G, F1, F2, D1, and O be as in the statement above. Now, let D be
a decomposition of G into (D1, O)-extensions which minimizes τ(D).

Suppose, for contradiction, that τ(D) > 0. Let T = x0x1x2 · · ·xl−1xl be a
cycle of length l in D, where L1 = x1x2 · · ·xl−1 ∈ D1 and x0 = xl. Note that
D1 is balanced. Let L2 = y1y2 · · · yl−1 be the element of D1 such that L2 6= L1

and y1 = x1. Suppose Q = y0y1y2 · · · yl−1yl is the (D1, O)-extension of L2 in
D. Let T ′ = y0x1x2 · · ·xl−1xl and Q′ = x0y1y2 · · · yl−1yl. Clearly, T ′ and Q′

are (D1, O)-extensions. Because G is simple, y0 6= xl. Hence, T ′ is not a cycle.
Moreover, if Q′ is a cycle, then the edges x0x1, xl−1xl, and yl−1yl are directed
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towards x0, which implies d−O(x0) ≥ 3, contrary to the fact that O is an Eulerian
orientation of F2. Therefore, D′ = (D − {T,Q}) ∪ {T ′, Q′} is a decomposition
into (D1, O)-extensions of G such that τ(D′) ≤ τ(D)−1, which is a contradiction
to the minimality of τ(D). This completes the proof of Lemma 9.

In the following, we will define a special Eulerian orientation, which is im-
portant for the proof of Theorem 6.

Definition 10. Let G be a 10-regular graph, F be a 6-factor of G, D be a
balanced P3-decomposition of F , H = G \ E(F ). We say that an Eulerian
orientation O on H is good if the following holds. For each path U = v1v2v3 of
H and distinct vertices x2, x3, y2, y4, z2, z4, v1, v2, v3, if there exists three elements
T1 = x1x2x3x4, T2 = y1y2y3y4, T3 = z1z2z3z4 ∈ D and x1 = v1 = y1, y3 = v2 = z3,
x4 = v3 = z1, then U is a directed path under orientation O, no mater which
direction it goes (see Figure 2).
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4y 4z

2x
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2v

3v
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4y 4z

2x

1v

2v

3v
1x

1z
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Figure 2. A good orientation on U = v1v2v3.

Lemma 11. Let G be a 10-regular graph without C4, F be a 6-factor of G, and
H = G \ E(F ). Then, there is a good Eulerian orientation on the edges of H.

Proof. By Lemma 8, we assume that D is a balanced P3-decomposition of F such
that every vertex of G is a preterminal of exactly two paths in D. Let U = v1v2v3
be a path of length 2 in H. Because G is simple and does not contain any 4-cycles,
if there exists three elements T1 = x1x2x3x4, T2 = y1y2y3y4, T3 = z1z2z3z4 ∈ D
and x1 = v1 = y1, y3 = v2 = z3, x4 = v3 = z1, then x2, x3, y2, y4, z2, z4, v1, v2
and v3 are distinct vertices. Hence, U and T1, T2, T3 form a structure defined in
Definition 10. In order to obtain a good Eulerian orientation on H, we need to
construct a new even graph H ′ from H.

Let U =
{
vi1v

i
2v

i
3 | 1 ≤ i ≤ k

}
be the set of all the paths of length 2 in H which

are contained in the structure defined in Definition 10. Note that these paths in
U are not necessarily edge-disjoint. We claim that vi2 6= vj2 for Ui = vi1v

i
2v

i
3, Uj =

vj1v
j
2v

j
3 ∈ U and i 6= j. If not, suppose that vi2 = vj2. Without loss of generality, let

Ui and three elements T1, T2, T3 of D be contained in the structure depicted in
Definition 10 such that vi1, v

i
2 ∈ V (T1), v

i
3, v

i
2 ∈ V (T2), v

i
1, v

i
3 ∈ V (T3). If |E(Ui)∩

E(Uj)| = 1, then without loss of generality let vi1 = vj1. This implies that there
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are two paths T4 and T5 of D (because G is simple, E(Ui), E(Uj) ⊆ E(H) and
E(Tm) ⊆ E(F ) (1 ≤ m ≤ 5), Tk 6= Tq, k ∈ {4, 5}, q ∈ {1, 2, 3}) together with Uj

and T1 form another structure defined in Definition 10, such that vj1, v
j
2 ∈ V (T1),

vj3, v
j
2 ∈ V (T4), v

j
1, v

j
3 ∈ V (T5). If |E(Ui)∩E(Uj)| = 0, then this implies that there

are three paths T4, T5 and T6 of D (because G is simple, E(Ui), E(Uj) ⊆ E(H)
and E(Tm) ⊆ E(F ) (1 ≤ m ≤ 6), Tk 6= Tq, k ∈ {4, 5, 6}, q ∈ {1, 2, 3}) together

with Uj form another structure defined in Definition 10, such that vj1, v
j
2 ∈ V (T4),

vj3, v
j
2 ∈ V (T5), v

j
1, v

j
3 ∈ V (T6). In the two cases, vi2 appears in at least three paths

in D as their preterminal vertex, contrary to that vi2 is the preterminal vertex of
exactly two paths in D. Thus, vi2 6= vj2 when i 6= j, as claimed. This means that
for every vertex v of G, there is at most one Ui ∈ U such that edges incident with
Ui is contained in the subgraph induced by EH(v) which is the set of v in H.

Now we can split edges of Ui in the following way: delete edges vi1v
i
2 and vi2v

i
3,

add a new vertex zi and two edges vi1zi and ziv
i
3. By operating on all elements in

U as described above, we can get a new graph H ′ from H. Let O′ be an Eulerian
orientation on H ′. By identifying zi and vi2 (1 ≤ i ≤ k) in H ′ and preserving the
orientation of O′ on all edges after identifying, we get an Eulerian orientation O
on H. It is obviously that O is good.

Now we are able to prove Theorem 6. For a 5-trail decomposition B of a
10-regular graph G, we use τ ′(B) to denote the number of elements of B that are
paths.

Proof of Theorem 6. Let G be a 10-regular graph without C4, F be a 6-factor
of G, D be a balanced P3-decomposition of F , H = G \ E(F ), and O be a good
Eulerian orientation of H. By Lemma 9, G has a decomposition B into (D, O)-
extensions which are not cycles. Further, we may assume that τ ′(B) is maximum.
If τ ′(B) = |B|, then we are done. Suppose that τ ′(B) < |B|. Let T ∈ B be a trail
containing a triangle.

Let T = x0x1x2x3x4x5, where x1x2x3x4 ∈ D, x0 = x3. There is a trail
Q = y0y1y2y3y4y5 ∈ B with Q 6= T such that y1y2y3y4 ∈ D and y1 = x1. We
put T ′ = y0x1x2x3x4x5, Q

′ = x0y1y2y3y4y5. Because G is simple and does not
contain C4, y0 /∈ V (T ), which implies that T ′ is a path. Moreover, x0 6= y3
which follows from the fact that G does not contain C4. Hence, if Q′ contains
a triangle only if Q contains the triangle y2y3y4y5. If Q′ is not a cycle, then
B′ = (B−{T,Q})∪ {T ′, Q′} is a decomposition of G into (D, O)-extensions with
τ ′(B′) ≥ τ ′(B) + 1, which is a contradiction to the maximality of τ ′(B). In the
following, we assume Q′ is a cycle.

Now, y5 = x0 = x3. Note that G is simple and does not contain any 4-cycles.
We have that y1 6= y4, y2 and y3 are not equal to any one of {x1, x2, x3, x4, x5},
y4 is not equal to any one of {x1, x2, x3, x4}. In this case, y4 and x5 may be
the same one. Let R = z0z1z2z3z4z5 be an element in B different from T and
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Figure 3. Q′ is a cycle.

Q, where z1z2z3z4 ∈ D and z4 = y4 (see Figure 3). Let Q′′ = x0y1y2y3y4z5,
R′ = z0z1z2z3z4y5. Because G is simple and does not contain any 4-cycles. We
have that z5 /∈ V (Q′). Hence Q′′ is a path. If R′ is a cycle, we have x0 = x3 =
z0, d

−
O(x0) ≥ 3, contrary to the fact that O is an Eulerian orientation of H.

Hence, R′ is not a cycle. If R contains a triangle, then B′ = (B − {T,Q,R}) ∪
{T ′, Q′′, R′} is a decomposition of G into (D, O)-extensions with τ ′(B′) ≥ τ ′(B)+
1, which is a contradiction to the maximality of τ ′(B). In the following, we
assume R is a path. Because G is simple and does not contain C4, y5 6= z1, z3.
If y5 = z2, then let U = x1x0y4, T1 = y1y2y3y4, T2 = x1x2x3x4 and T3 =
z4z3z2z1. Now, we want to prove that U, T1, T2 and T3 form the structure defined
in the Definition 10. Note that x0 = x3 = y5 = z2, x1 = y1 and y4 = z4.
Therefore, we should check x0, x1, x2, x4, y2, y3, y4, z1 and z3 are distinct vertices
of G. Because G is simple, x0, x1, x2, x4, y4, z1 and z3 are distinct vertices, x0,
x1, y2, y3 and y4 are distinct vertices, x2 6= y2 and y3 6= z3. What remains is
the following cases. If z1 = y2 (respectively, y3), then z1x1x2x3z1 (respectively,
z1z4z3z2z1) is a cycle of length 4, a contradiction. If x4 = y2 (respectively, y3),
then y2x1x2x3y2 (respectively, y3y2y1x3y3) is a cycle of length 4, a contradiction.
If y2 = z3, then y2x0x2x1y2 is a cycle of length 4, a contradiction. If y3 = x2
(respectively, z1), then y3z4z3z2x2 (respectively, z1z4z3z2z1) is a cycle of length 4,
also a contradiction. Hence, x0, x1, x2, x4, y2, y3, y4, z1 and z3 are distinct vertices
of G, and U, T1, T2 and T3 form the structure defined in the Definition 10. But
the orientation of E(U) implies that O is not a good Eulerian orientation of H, a
contradiction to our assumption. Hence, R′ is a path and B′ = (B−{T,Q,R})∪
{T ′, Q′′, R′} is a decomposition of G into (D, O)-extensions with τ ′(B′) ≥ τ ′(B)+
1, which is a contradiction to the maximality of τ ′(B). This completes the proof of
Theorem 6.
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