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Abstract

For a graph G, a Roman {3}-dominating function is a function f : V −→
{0, 1, 2, 3} having the property that for every vertex u ∈ V , if f(u) ∈ {0, 1},
then f(N [u]) ≥ 3. The weight of a Roman {3}-dominating function is the
sum w(f) = f(V ) =

∑

v∈V
f(v), and the minimum weight of a Roman

{3}-dominating function is the Roman {3}-domination number, denoted by
γ{R3}(G). In this paper, we present a sharp lower bound for the double
Italian domination number of a graph, and improve previous bounds given
in [D.A. Mojdeh and L. Volkmann, Roman {3}-domination (double Italian
domination), Discrete Appl. Math. 283 (2022) 555–564]. We also present a
probabilistic upper bound for a generalized version of double Italian domi-
nation number of a graph, and show that the given bound is asymptotically
best possible.

Keywords: Italian domination, double Italian domination, probabilistic
methods.
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1. Introduction

For a (simple) graph G = (V,E) with vertex set V = V (G) and edge set E =
E(G), we denote by |V (G)| = n(G) = n the order of G. The open neighborhood
of a vertex v is N(v) = {u ∈ V : uv ∈ E} and the closed neighborhood of
v is N [v] = N(v) ∪ {v}. For a set S ⊆ V , the open neighborhood of S is
N(S) =

⋃

v∈S N(v) and the closed neighborhood of S is N [S] = N(S) ∪ S. The
degree of a vertex v is deg(v) = |N(v)|. The maximum and minimum degree
among the vertices of G are denoted by ∆(G) and δ(G), respectively. For a set
S ⊆ V in a graph G and a vertex v ∈ V , we say that S dominates v if v ∈ S or
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v is adjacent to some vertex of S. A set S is called a dominating set in G if S
dominates every vertex of G. The domination number γ(G) of G is the minimum
cardinality of a dominating set in G. For other definitions and notations not
given here we refer to [6].

Cockayne et al. [5] introduced the concept of Roman domination in graphs,
although this notion was inspired by the work of ReVelle et al. in [11], and
Stewart in [12]. Let f : V (G) −→ {0, 1, 2} be a function having the property
that for every vertex v ∈ V with f(v) = 0, there exists a neighbor u ∈ N(v)
with f(u) = 2. Such a function is called a Roman dominating function or just
an RDF. The weight of an RDF f is the sum f(V ) =

∑

v∈V f(v). The minimum
weight of an RDF on G is called the Roman domination number of G, and is
denoted by γR(G). Several varieties of Roman domination are already studied,
and the reader can consult [3, 4].

A generalization of Roman domination called Italian domination (or Ro-
man {2}-domination) was introduced by Chellali et al. in [2], Klostermeyer and
MacGillivray [8], and Henning and Klostermeyer [7]. An Italian dominating func-
tion (IDF) on a graph G = (V,E) is a function f : V −→ {0, 1, 2} satisfying the
property that for every vertex v ∈ V , with f(v) = 0,

∑

u∈N(v) f(u) ≥ 2. The
weight of an IDF f is the value w(f) = f(V ) =

∑

u∈V f(u). The minimum
weight of an IDF on a graph G is called the Italian domination number of G,
denoted by γI(G). This same concept was called Roman {2}-domination and
what we called γI(G) is called γ{R2}(G). A γ{R2}(G)-function f can be repre-

sented by a triple f = (V0, V1, V2) (or f = (V f
0 , V f

1 , V f
2 ) to refer to f), where

Vi = {v ∈ V (G) : f(v) = i} for i = 0, 1, 2.

Beeler et al. [1] introduced the concept of double Roman domination in
graphs. A function f : V −→ {0, 1, 2, 3} is a double Roman dominating function
(or just DRDF) on a graph G if the following conditions hold, where Vi denote
the set of vertices assigned i under f , for i = 0, 1, 2, 3: (1) If f(v) = 0, then v
must have at least two neighbors in V2 or one neighbor in V3; (2) If f(v) = 1,
then v must have at least one neighbor in V2 ∪ V3. The weight of a DRDF f is
the value w(f) = f(V ) =

∑

v∈V f(v). The double Roman domination number,
γdR(G), is the minimum weight of a DRDF on G, and a DRDF of G with weight
γdR(G) is called a γdR-function of G.

Recently, Mojdeh and Volkmann [9] considered an extension of Roman {2}-
domination as follows. For a graph G, a Roman {3}-dominating function is a
function f : V −→ {0, 1, 2, 3} having the property that for every vertex u ∈ V , if
f(u) ∈ {0, 1}, then f(N [u]) ≥ 3. The weight of a Roman {3}-dominating function
is the sum w(f) = f(V ) =

∑

v∈V f(v), and the minimum weight of a Roman {3}-
dominating function is the Roman {3}-domination number, denoted by γ{R3}(G).
For a Roman {3}-dominating function f , one can denote f = (V0, V1, V2, V3),
where Vi = {v ∈ V : f(v) = i}, for i = 0, 1, 2, 3. This concept was further studied
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in [10]. Among other results, Mojdeh et al. presented the following lower bound
in [9].

Theorem 1 (Mojdeh and Volkmann [9]). If G is a connected graph of order n

and maximum degree ∆, then γ{R3}(G) ≥ min
{

3n
∆+2 ,

2n+∆
∆+1

}

.

In this paper we present upper and lower bounds for the Roman {3}-domi-
nation number of a graph. In Section 2, we present a sharp lower bound for
the Roman {3}-domination number of a graph and improve the bound given in
Theorem 1. In Section 3, we present a probabilistic upper bound for a gener-
alized version of the Roman {3}-domination number, namely, the Roman {k}-
domination number for every k ≥ 3, of a graph and show that the given bound
is asymptotically best possible.

In this paper, for an event F we denote by Pr(F ) the probability that F
occurs. We also denote by E(X) the expectation of X if X is a random variable.

2. Lower Bound

In this section we present a new sharp lower bound for the Roman {3}-domination
number of a graph. We begin with the following observation.

Observation 2. For every connected graph G of order n and maximum degree
∆, γ{R3}(G) ≤ 2(n−∆) + 1.

Proof. Let v be a vertex of maximum degree. Let f be a function defined on
V (G) by f(v) = 3, f(x) = 0 if x ∈ N(v) and f(x) = 2 otherwise. Then f is a
R3DF for G, and so γ{R3}(G) ≤ 2(n−∆− 1) + 3 = 2(n−∆) + 1, as desired.

Lemma 3. If G is a connected graph of maximum degree ∆(G) = ∆ ≥ 1 and f =
(V0, V1, V2, V3) is a γ{R3}(G)-function, then 3|V0| ≤ (∆−2)|V1|+2∆|V2|+3∆|V3|.

Proof. Let G be a connected graph of maximum degree ∆(G) = ∆ ≥ 1 and
f = (V0, V1, V2, V3) be a γ{R3}(G)-function. If ∆ = 1, then G = K2, and since
γ{R3}(K2) = 3, we obtain that either |V0| = |V3| = 1 and |V1| = |V2| = 0 or
|V0| = |V3| = 0 and |V1| = |V2| = 1. Thus the inequality holds.

Hence we assume that ∆ ≥ 2. We partition V0 into four sets V 3
0 , V

12
0 , V 1

0 and
V 2
0 , and V1 into three sets V 1

1 , V
2
1 and V 3

1 as follows. Let

V 3
0 = {v ∈ V0 : N(v) ∩ V3 6= ∅},

V 12
0 =

{

v ∈ V0 \V
3
0 : N(v) ∩ V1 6= ∅, N(v) ∩ V2 6= ∅

}

,

V 1
0 =

{

v ∈ V0 \
(

V 3
0 ∪ V 12

0

)

: N(v) ⊆ V0 ∪ V1

}

,

V 2
0 =

{

v ∈ V0 \
(

V 3
0 ∪ V 12

0

)

: N(v) ⊆ V0 ∪ V2

}

.
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V 1
1 = {x ∈ V1 : N(x) ∩ (V2 ∪ V3) = ∅},

V 2
1 = {x ∈ V1 : N(x) ∩ V2 6= ∅},

V 3
1 = V1 \

(

V 1
1 ∪ V 2

1

)

.

For i = 1, 2, 3, let |V i
1 | = mi. We first present an upper bound for |V 3

0 | in
terms of |V3| and m3. Each vertex in V3 with no neighbor in V1 dominates at
most ∆ vertices of V 3

0 , and every vertex in V3 with at least one neighbor in V1

dominates at most ∆− 1 vertices of V 3
0 . Thus,

∣

∣V 3
0

∣

∣ ≤ ∆(|V3| −m3) + (∆− 1)m3 = ∆|V3| −m3.(1)

Let |V 12
0 | = x. We next present an upper bound for |V 2

0 | in terms of |V2|, x
and m2. Clearly, every vertex of V 2

1 ∪V 12
0 has a neighbor in V2. Since |V 2

1 | = m2

and |V 12
0 | = x, there are at most ∆|V2| − x−m2 edges which have an end-point

in V2. Since any vertex of V 2
0 is adjacent to at least two vertices of V2, we obtain

that
∣

∣V 2
0

∣

∣ ≤
∆|V2| − x−m2

2
.(2)

We next present an upper bound for
∣

∣V 1
0

∣

∣ in terms of |V1|, x, m1, m2 and
m3. Note that every vertex of V 1

1 is adjacent to at least two vertices of V1, every
vertex of V 2

1 is adjacent to at least one vertex of V2 and every vertex of V 3
1 is

adjacent to at least one vertex of V3. Also every vertex of V 12
0 is adjacent to a

vertex in V1. Thus, there are at most ∆|V1|−2m1−m2−m3−x edges which have
an end-point in V1. Since any vertex of V 1

0 is adjacent to at least three vertices
of V1, we obtain that

∣

∣V 1
0

∣

∣ ≤
∆|V1| − 2m1 −m2 −m3 − x

3
.(3)

Since |V0| =
∣

∣V 1
0

∣

∣+
∣

∣V 2
0

∣

∣+
∣

∣V 12
0

∣

∣+
∣

∣V 3
0

∣

∣, from (1), (2) and (3) we obtain that

3|V0| ≤ ∆|V1| − 2m1 −m2 −m3 − x+
3∆|V2|

2
−

3x

2
−

3m2

2
+ 3x+ 3∆|V3| − 3m3.

Since |V1| = m1 +m2 +m3, we obtain that

3|V0| ≤ (∆− 2)|V1|+ 2∆|V2|+ 3∆|V3| −
m2

2
− 2m3 +

x

2
−

∆|V2|

2
.

It is evident that x ≤ ∆|V2|. Thus 3|V0| ≤ (∆− 2)|V1|+ 2∆|V2|+ 3∆|V3|, as
desired.

Corollary 4. If G is a connected graph of order n with maximum degree ∆(G) =

∆ ≥ 1 and f = (V0, V1, V2, V3) is a γ{R3}(G)-function, then γ{R3}(G) ≥ 3n−|V2|
∆+1 .
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Proof. Let f = (V0, V1, V2, V3) be a γ{R3}(G)-function for G. Then

(∆ + 1)γ{R3}(G) = (∆ + 1)|V1|+ 2(∆ + 1)|V2|+ 3(∆ + 1)|V3|

= (∆− 2)|V1|+ 2∆|V2|+ 3∆|V3|+ 3|V1|+ 2|V2|+ 3|V3|

≥ 3|V0|+ 3|V1|+ 2|V2|+ 3|V3| (by Lemma 3)

= 3n− |V2|.

Thus the result follows.

Now we present the main result of this section.

Theorem 5. If G is a connected graph of order n > 1 and maximum degree
∆ ≥ 1, then

γ{R3}(G) ≥

⌊

max

{

3n

∆+ 2
,
2n+∆

∆+ 1

}⌋

+ 1.

This bound is sharp.

Proof. Let G be a connected graph of order n and maximum degree ∆ and
f = (V0, V1, V2, V3) be a γ{R3}(G)-function for G. If |V2| = 0, then from Corollary

4, we obtain that γ{R3}(G) ≥ 3n
∆+1 > max

{

3n
∆+2 ,

2n+∆
∆+1

}

, and so γ{R3}(G) ≥
⌊

max
{

3n
∆+2 ,

2n+∆
∆+1

}⌋

+ 1.

Thus assume that |V2| 6= 0. By Corollary 4, γ{R3}(G) ≥ 3n−|V2|
∆+1 . Using

Observation 2, we obtain |V2| ≤
γ{R3}(G)

2 ≤ n−∆+ 1
2 which implies that |V2| ≤

n−∆.
We first show that γ{R3}(G) > 2n+∆

∆+1 . If |V2| < n − ∆, then we obtain that

γ{R3}(G) ≥ 3n−|V2|
∆+1 > 2n+∆

∆+1 , as desired. Thus assume that |V2| = n−∆. Suppose

that γ{R3}(G) = 3n−|V2|
∆+1 . Let |Vi| = vi for i = 0, 1, 2, 3. Then from γ{R3}(G) =

3n−|V2|
∆+1 we find that (∆ + 1)(v1 + 2v2 + 3v3) = 3v0 + 3v1 + 2v2 + 3v3, since

n = v0 + v1 + v2 + v3. Since ∆ = n − v2 = v0 + v1 + v3, we obtain by a
simple calculation that v1+2v2+3v3 =

3v0+2v1
n−v2

= 3v0+2v1
v0+v1+v3

and this implies that

2v2 = 3−(v1+3v3)−
v1+3v3

v0+v1+v3
. If v3 = 0 and v1 = 0, then 2v2 = 3, a contradiction.

If v3 = 0 and v1 6= 0, then 2v2 = 3−v1−
v1

v0+v1
< 2, a contradiction. Thus v3 6= 0.

If v1 = 0, then 2v2 = 3 − 3v3 − 3v3
v0+v3

< 0, a contradiction. Thus v1 6= 0.

Then 2v2 = 3 − (v1 + 3v3) −
v1+3v3

v0+v1+v3
< 0, a contradiction. We conclude that

γ{R3}(G) 6= 3n−|V2|
∆+1 , and so γ{R3}(G) > 3n−|V2|

∆+1 ≥ 2n+∆
∆+1 , as desired.

We next show that γ{R3}(G) > 3n
∆+2 . If |V2| ≥

3n
∆+2 , then γ{R3}(G) ≥ 2|V2| >

3n
∆+2 . Thus assume that |V2| < 3n

∆+2 . Then a simple calculation shows that
3n−|V2|
∆+1 > 3n

∆+2 , as desired.
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Hence, γ{R3}(G) > max
{

2n+∆
∆+1 , 3n

∆+2

}

. This completes the proof of lower

bound.

To see the sharpness, consider a complete graph of order at least two.

We end this section by remarking that Lemma 3 holds for each R3DF. More-
over, it holds if ∆ = 0.

3. Upper Bound

In this section we present an upper bound for a generalization of the Roman {3}-
domination number namely Roman {k}-domination number for every integer
k ≥ 3 that is defined as follows. For a graph G and an integer k ≥ 3, a Roman
{k}-dominating function is a function f : V −→ {0, 1, . . . , k} having the property
that for every vertex u ∈ V , if f(u) <

⌈

k
2

⌉

, then f(N [u]) ≥ k. The weight
of a Roman {k}-dominating function is the sum w(f) = f(V ) =

∑

v∈V f(v),
and the minimum weight of a Roman {k}-dominating function is the Roman
{k}-domination number, denoted by γ{Rk}(G). For a Roman {k}-dominating
function f , we denote f = (V0, V1, . . . , Vk), where Vi = {v ∈ V : f(v) = i}, for
i = 0, 1, . . . , k.

Theorem 6. If G is a graph of order n with minimum degree δ(G) = δ ≥ 1, then

γ{Rk}(G) ≤
k
(

ln
⌈

k
2

⌉

+ ln(1 + δ)− ln k + 1
)

1 + δ
n.

Proof. Let G be a graph of order n with minimum degree δ(G) = δ ≥ 1. Let
S ⊆ V (G) be a set obtained by choosing each vertex v ∈ V (G), independently,
with probability p ∈ [0, 1], and let T = V (G) \N [S]. We form sets Vi, i =
0, 1, . . . , k as follows. Let V0 = V (G) \ (S ∪ T ), V⌈ k

2⌉
= T, Vk = S and Vi = ∅ for

i = 1, 2, . . . , k − 1, i 6=
⌈

k
2

⌉

. Then the function f = (V0, V1, . . . , Vk) is a Roman
{k}-dominating function for G. We compute the expected value of w(f). Note
that

E(w(f)) = E(k|S|+

⌈

k

2

⌉

|T |) = kE(|S|) +

⌈

k

2

⌉

E(|T |).

Clearly, E(|S|) = np. If v ∈ T, then v /∈ S and v /∈ N(S). Thus, Pr(v /∈ N [S]) =
(1 − p)1+deg(v) ≤ (1 − p)1+δ. Using the fact that 1 − p ≤ e−p for p ≥ 0, we find
that Pr(v ∈ T ) ≤ e−p(1+δ), and so E(|T |) ≤ ne−p(1+δ). Therefore,

E(w(f)) = E

(

k|S|+

⌈

k

2

⌉

|T |

)

≤ knp+

⌈

k

2

⌉

ne−p(1+δ).(4)
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Taking derivative of the function g(p) = kp+
⌈

k
2

⌉

e−p(1+δ) and solving the equation

g′(p) = 0, we obtain that g(p) is minimized at p =
ln
⌈ k

2⌉(1+δ)

k

1+δ
. Then by putting

these values in (4) we obtain

E(w(f)) ≤ nk





ln
⌈ k

2⌉(1+δ)

k
+ 1

1 + δ



 =: α.

Since the average of w(f) is not more than α, there is a Roman {k}-dominating
function with weight at most α, i.e., γ{Rk}(G) ≤ α, as desired.

We now prove that the upper bound of Theorem 6 is asymptotically best
possible.

Theorem 7. When n is large, there exists a graph G of order n and minimum
degree δ such that

γ{Rk}(G) ≥
k
(

ln
⌈

k
2

⌉

+ ln(1 + δ)− ln k + 1
)

1 + δ
n(1 + o(1)).

Proof. Let H a complete graph with ⌊δ ln δ⌋ vertices and let V (H) = V . We
add a set of new vertices V ′ = {v1, v2, . . . , vδ} and join each of them to δ vertices
of V (H) which are chosen randomly. Let G be the resulted graph. Therefore G
has n = ⌊δ ln δ⌋+ δ vertices. We show that

γ{Rk}(G) ≥
k ln δ

δ
n(1 + oδ(1)) =

k ln δ

δ
(δ ln δ + δ)(1 + oδ(1)) = k ln2 δ(1 + oδ(1)).

Let f = (V0, V1, . . . , Vk) be a γ{Rk}-function forG. If |Vk| ≥ ln2 δ−ln δ ln ln4 δ,
then

γ{Rk}(G) ≥ k|Vk| ≥ k ln2 δ − k ln δ ln ln4 δ = k ln2 δ(1 + oδ(1)),

as desired. Thus assume for the next that |Vk| < ln2 δ − ln δ ln ln4 δ.

We compute the probability that Vk dominates an element of V ′. Note that
we can assume Vk ⊆ V . For a vertex vi ∈ V ′, we have

Pr[Vk does not dominate vi]

=

(

|V | − |Vk|
δ

)

(

|V |
δ

) ≥

(

|V | − |Vk| − δ

|V | − δ

)δ

=

(

1−
|Vk|

|V | − δ

)δ

.
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Using the fact that 1− x ≥ e−x(1− x2) for x ≤ 1, we find that

Pr[Vk does not dominate vi] ≥ e
−

|Vk|

|V |−δ
δ

(

1−

(

|Vk|

|V | − δ

)2
)δ

≥ e−
ln2 δ−ln δ ln ln4 δ

δ ln δ−δ
δ (1 + oδ(1))

≥ e
− ln δ−ln ln4 δ

1− 1
ln δ (1 + oδ(1))

≥ e
ln
(

ln4 δ

δ

)

(1+oδ(1)) (1 + oδ(1))

≥

(

ln4 δ

δ

)(1+oδ(1))

(1 + oδ(1)) ≥
ln3 δ

δ
.

Thus Pr[Vk dominates vi] ≤ 1− ln3 δ
δ

. Now the expected value of the random
variable |N(Vk) ∩ V ′| is bounded above as follows

E
(

|N(Vk) ∩ V ′|
)

=
δ
∑

i=1

Pr[Vk dominates vi] ≤ δ

(

1−
ln3 δ

δ

)

= δ − ln3 δ.

Consequently, |V ′ \N(Vk)| ≥ ln3 δ. Since Vk ⊆ V , we conclude that there exists
a graph G for which

γ{Rk}(G) ≥ |V ′ \N(Vk)| ≥ ln3 δ > k ln2 δ(1 + oδ(1)),

as desired.
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