BOUNDS ON THE DOUBLE ITALIAN DOMINATION NUMBER OF A GRAPH

Farzaneh Azvin and Nader Jafari Rad
Department of Mathematics, Shahed University, Tehran, Iran
e-mail: n.jafarirad@gmail.com

Abstract

For a graph G, a Roman $\{3\}$-dominating function is a function $f: V \longrightarrow$ $\{0,1,2,3\}$ having the property that for every vertex $u \in V$, if $f(u) \in\{0,1\}$, then $f(N[u]) \geq 3$. The weight of a Roman $\{3\}$-dominating function is the sum $w(f)=f(V)=\sum_{v \in V} f(v)$, and the minimum weight of a Roman $\{3\}$-dominating function is the Roman $\{3\}$-domination number, denoted by $\gamma_{\{R 3\}}(G)$. In this paper, we present a sharp lower bound for the double Italian domination number of a graph, and improve previous bounds given in [D.A. Mojdeh and L. Volkmann, Roman $\{3\}$-domination (double Italian domination), Discrete Appl. Math. 283 (2022) 555-564]. We also present a probabilistic upper bound for a generalized version of double Italian domination number of a graph, and show that the given bound is asymptotically best possible.

Keywords: Italian domination, double Italian domination, probabilistic methods.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

For a (simple) graph $G=(V, E)$ with vertex set $V=V(G)$ and edge set $E=$ $E(G)$, we denote by $|V(G)|=n(G)=n$ the order of G. The open neighborhood of a vertex v is $N(v)=\{u \in V: u v \in E\}$ and the closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. For a set $S \subseteq V$, the open neighborhood of S is $N(S)=\bigcup_{v \in S} N(v)$ and the closed neighborhood of S is $N[S]=N(S) \cup S$. The degree of a vertex v is $\operatorname{deg}(v)=|N(v)|$. The maximum and minimum degree among the vertices of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. For a set $S \subseteq V$ in a graph G and a vertex $v \in V$, we say that S dominates v if $v \in S$ or
v is adjacent to some vertex of S. A set S is called a dominating set in G if S dominates every vertex of G. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set in G. For other definitions and notations not given here we refer to [6].

Cockayne et al. [5] introduced the concept of Roman domination in graphs, although this notion was inspired by the work of ReVelle et al. in [11], and Stewart in [12]. Let $f: V(G) \longrightarrow\{0,1,2\}$ be a function having the property that for every vertex $v \in V$ with $f(v)=0$, there exists a neighbor $u \in N(v)$ with $f(u)=2$. Such a function is called a Roman dominating function or just an RDF. The weight of an RDF f is the sum $f(V)=\sum_{v \in V} f(v)$. The minimum weight of an RDF on G is called the Roman domination number of G, and is denoted by $\gamma_{R}(G)$. Several varieties of Roman domination are already studied, and the reader can consult $[3,4]$.

A generalization of Roman domination called Italian domination (or Roman $\{2\}$-domination) was introduced by Chellali et al. in [2], Klostermeyer and MacGillivray [8], and Henning and Klostermeyer [7]. An Italian dominating function (IDF) on a graph $G=(V, E)$ is a function $f: V \longrightarrow\{0,1,2\}$ satisfying the property that for every vertex $v \in V$, with $f(v)=0, \sum_{u \in N(v)} f(u) \geq 2$. The weight of an IDF f is the value $w(f)=f(V)=\sum_{u \in V} f(u)$. The minimum weight of an IDF on a graph G is called the Italian domination number of G, denoted by $\gamma_{I}(G)$. This same concept was called Roman $\{2\}$-domination and what we called $\gamma_{I}(G)$ is called $\gamma_{\{R 2\}}(G)$. A $\gamma_{\{R 2\}}(G)$-function f can be represented by a triple $f=\left(V_{0}, V_{1}, V_{2}\right)$ (or $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ to refer to f), where $V_{i}=\{v \in V(G): f(v)=i\}$ for $i=0,1,2$.

Beeler et al. [1] introduced the concept of double Roman domination in graphs. A function $f: V \longrightarrow\{0,1,2,3\}$ is a double Roman dominating function (or just DRDF) on a graph G if the following conditions hold, where V_{i} denote the set of vertices assigned i under f, for $i=0,1,2,3$: (1) If $f(v)=0$, then v must have at least two neighbors in V_{2} or one neighbor in $V_{3} ;(2)$ If $f(v)=1$, then v must have at least one neighbor in $V_{2} \cup V_{3}$. The weight of a DRDF f is the value $w(f)=f(V)=\sum_{v \in V} f(v)$. The double Roman domination number, $\gamma_{d R}(G)$, is the minimum weight of a DRDF on G, and a DRDF of G with weight $\gamma_{d R}(G)$ is called a $\gamma_{d R}$-function of G.

Recently, Mojdeh and Volkmann [9] considered an extension of Roman \{2\}domination as follows. For a graph G, a Roman $\{3\}$-dominating function is a function $f: V \longrightarrow\{0,1,2,3\}$ having the property that for every vertex $u \in V$, if $f(u) \in\{0,1\}$, then $f(N[u]) \geq 3$. The weight of a Roman $\{3\}$-dominating function is the sum $w(f)=f(V)=\sum_{v \in V} f(v)$, and the minimum weight of a Roman $\{3\}$ dominating function is the Roman $\{3\}$-domination number, denoted by $\gamma_{\{R 3\}}(G)$. For a Roman $\{3\}$-dominating function f, one can denote $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$, where $V_{i}=\{v \in V: f(v)=i\}$, for $i=0,1,2,3$. This concept was further studied
in [10]. Among other results, Mojdeh et al. presented the following lower bound in [9].

Theorem 1 (Mojdeh and Volkmann [9]). If G is a connected graph of order n and maximum degree Δ, then $\gamma_{\{R 3\}}(G) \geq \min \left\{\frac{3 n}{\Delta+2}, \frac{2 n+\Delta}{\Delta+1}\right\}$.

In this paper we present upper and lower bounds for the Roman $\{3\}$-domination number of a graph. In Section 2, we present a sharp lower bound for the Roman $\{3\}$-domination number of a graph and improve the bound given in Theorem 1. In Section 3, we present a probabilistic upper bound for a generalized version of the Roman $\{3\}$-domination number, namely, the Roman $\{k\}$ domination number for every $k \geq 3$, of a graph and show that the given bound is asymptotically best possible.

In this paper, for an event F we denote by $\operatorname{Pr}(F)$ the probability that F occurs. We also denote by $\mathbb{E}(X)$ the expectation of X if X is a random variable.

2. Lower Bound

In this section we present a new sharp lower bound for the Roman $\{3\}$-domination number of a graph. We begin with the following observation.

Observation 2. For every connected graph G of order n and maximum degree $\Delta, \gamma_{\{R 3\}}(G) \leq 2(n-\Delta)+1$.

Proof. Let v be a vertex of maximum degree. Let f be a function defined on $V(G)$ by $f(v)=3, f(x)=0$ if $x \in N(v)$ and $f(x)=2$ otherwise. Then f is a R3DF for G, and so $\gamma_{\{R 3\}}(G) \leq 2(n-\Delta-1)+3=2(n-\Delta)+1$, as desired.

Lemma 3. If G is a connected graph of maximum degree $\Delta(G)=\Delta \geq 1$ and $f=$ $\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ is a $\gamma_{\{R 3\}}(G)$-function, then $3\left|V_{0}\right| \leq(\Delta-2)\left|V_{1}\right|+2 \Delta\left|V_{2}\right|+3 \Delta\left|V_{3}\right|$.

Proof. Let G be a connected graph of maximum degree $\Delta(G)=\Delta \geq 1$ and $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ be a $\gamma_{\{R 3\}}(G)$-function. If $\Delta=1$, then $G=K_{2}$, and since $\gamma_{\{R 3\}}\left(K_{2}\right)=3$, we obtain that either $\left|V_{0}\right|=\left|V_{3}\right|=1$ and $\left|V_{1}\right|=\left|V_{2}\right|=0$ or $\left|V_{0}\right|=\left|V_{3}\right|=0$ and $\left|V_{1}\right|=\left|V_{2}\right|=1$. Thus the inequality holds.

Hence we assume that $\Delta \geq 2$. We partition V_{0} into four sets $V_{0}^{3}, V_{0}^{12}, V_{0}^{1}$ and V_{0}^{2}, and V_{1} into three sets V_{1}^{1}, V_{1}^{2} and V_{1}^{3} as follows. Let

$$
\begin{aligned}
V_{0}^{3} & =\left\{v \in V_{0}: N(v) \cap V_{3} \neq \emptyset\right\} \\
V_{0}^{12} & =\left\{v \in V_{0} \backslash V_{0}^{3}: N(v) \cap V_{1} \neq \emptyset, N(v) \cap V_{2} \neq \emptyset\right\} \\
V_{0}^{1} & =\left\{v \in V_{0} \backslash\left(V_{0}^{3} \cup V_{0}^{12}\right): N(v) \subseteq V_{0} \cup V_{1}\right\} \\
V_{0}^{2} & =\left\{v \in V_{0} \backslash\left(V_{0}^{3} \cup V_{0}^{12}\right): N(v) \subseteq V_{0} \cup V_{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}^{1}=\left\{x \in V_{1}: N(x) \cap\left(V_{2} \cup V_{3}\right)=\emptyset\right\}, \\
& V_{1}^{2}=\left\{x \in V_{1}: N(x) \cap V_{2} \neq \emptyset\right\}, \\
& V_{1}^{3}=V_{1} \backslash\left(V_{1}^{1} \cup V_{1}^{2}\right) .
\end{aligned}
$$

For $i=1,2,3$, let $\left|V_{1}^{i}\right|=m_{i}$. We first present an upper bound for $\left|V_{0}^{3}\right|$ in terms of $\left|V_{3}\right|$ and m_{3}. Each vertex in V_{3} with no neighbor in V_{1} dominates at most Δ vertices of V_{0}^{3}, and every vertex in V_{3} with at least one neighbor in V_{1} dominates at most $\Delta-1$ vertices of V_{0}^{3}. Thus,

$$
\begin{equation*}
\left|V_{0}^{3}\right| \leq \Delta\left(\left|V_{3}\right|-m_{3}\right)+(\Delta-1) m_{3}=\Delta\left|V_{3}\right|-m_{3} . \tag{1}
\end{equation*}
$$

Let $\left|V_{0}^{12}\right|=x$. We next present an upper bound for $\left|V_{0}^{2}\right|$ in terms of $\left|V_{2}\right|, x$ and m_{2}. Clearly, every vertex of $V_{1}^{2} \cup V_{0}^{12}$ has a neighbor in V_{2}. Since $\left|V_{1}^{2}\right|=m_{2}$ and $\left|V_{0}^{12}\right|=x$, there are at most $\Delta\left|V_{2}\right|-x-m_{2}$ edges which have an end-point in V_{2}. Since any vertex of V_{0}^{2} is adjacent to at least two vertices of V_{2}, we obtain that

$$
\begin{equation*}
\left|V_{0}^{2}\right| \leq \frac{\Delta\left|V_{2}\right|-x-m_{2}}{2} \tag{2}
\end{equation*}
$$

We next present an upper bound for $\left|V_{0}^{1}\right|$ in terms of $\left|V_{1}\right|, x, m_{1}, m_{2}$ and m_{3}. Note that every vertex of V_{1}^{1} is adjacent to at least two vertices of V_{1}, every vertex of V_{1}^{2} is adjacent to at least one vertex of V_{2} and every vertex of V_{1}^{3} is adjacent to at least one vertex of V_{3}. Also every vertex of V_{0}^{12} is adjacent to a vertex in V_{1}. Thus, there are at most $\Delta\left|V_{1}\right|-2 m_{1}-m_{2}-m_{3}-x$ edges which have an end-point in V_{1}. Since any vertex of V_{0}^{1} is adjacent to at least three vertices of V_{1}, we obtain that

$$
\begin{equation*}
\left|V_{0}^{1}\right| \leq \frac{\Delta\left|V_{1}\right|-2 m_{1}-m_{2}-m_{3}-x}{3} \tag{3}
\end{equation*}
$$

Since $\left|V_{0}\right|=\left|V_{0}^{1}\right|+\left|V_{0}^{2}\right|+\left|V_{0}^{12}\right|+\left|V_{0}^{3}\right|$, from (1), (2) and (3) we obtain that $3\left|V_{0}\right| \leq \Delta\left|V_{1}\right|-2 m_{1}-m_{2}-m_{3}-x+\frac{3 \Delta\left|V_{2}\right|}{2}-\frac{3 x}{2}-\frac{3 m_{2}}{2}+3 x+3 \Delta\left|V_{3}\right|-3 m_{3}$. Since $\left|V_{1}\right|=m_{1}+m_{2}+m_{3}$, we obtain that

$$
3\left|V_{0}\right| \leq(\Delta-2)\left|V_{1}\right|+2 \Delta\left|V_{2}\right|+3 \Delta\left|V_{3}\right|-\frac{m_{2}}{2}-2 m_{3}+\frac{x}{2}-\frac{\Delta\left|V_{2}\right|}{2} .
$$

It is evident that $x \leq \Delta\left|V_{2}\right|$. Thus $3\left|V_{0}\right| \leq(\Delta-2)\left|V_{1}\right|+2 \Delta\left|V_{2}\right|+3 \Delta\left|V_{3}\right|$, as desired.

Corollary 4. If G is a connected graph of order n with maximum degree $\Delta(G)=$ $\Delta \geq 1$ and $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ is a $\gamma_{\{R 3\}}(G)$-function, then $\gamma_{\{R 3\}}(G) \geq \frac{3 n-\left|V_{2}\right|}{\Delta+1}$.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ be a $\gamma_{\{R 3\}}(G)$-function for G. Then

$$
\begin{array}{rlr}
(\Delta+1) \gamma_{\{R 3\}}(G) & =(\Delta+1)\left|V_{1}\right|+2(\Delta+1)\left|V_{2}\right|+3(\Delta+1)\left|V_{3}\right| \\
& =(\Delta-2)\left|V_{1}\right|+2 \Delta\left|V_{2}\right|+3 \Delta\left|V_{3}\right|+3\left|V_{1}\right|+2\left|V_{2}\right|+3\left|V_{3}\right| \\
& \geq 3\left|V_{0}\right|+3\left|V_{1}\right|+2\left|V_{2}\right|+3\left|V_{3}\right| \quad \text { (by Lemma 3) } \\
& =3 n-\left|V_{2}\right| .
\end{array}
$$

Thus the result follows.
Now we present the main result of this section.
Theorem 5. If G is a connected graph of order $n>1$ and maximum degree $\Delta \geq 1$, then

$$
\gamma_{\{R 3\}}(G) \geq\left\lfloor\max \left\{\frac{3 n}{\Delta+2}, \frac{2 n+\Delta}{\Delta+1}\right\}\right\rfloor+1 .
$$

This bound is sharp.
Proof. Let G be a connected graph of order n and maximum degree Δ and $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ be a $\gamma_{\{R 3\}}(G)$-function for G. If $\left|V_{2}\right|=0$, then from Corollary 4, we obtain that $\gamma_{\{R 3\}}(G) \geq \frac{3 n}{\Delta+1}>\max \left\{\frac{3 n}{\Delta+2}, \frac{2 n+\Delta}{\Delta+1}\right\}$, and so $\gamma_{\{R 3\}}(G) \geq$ $\left\lfloor\max \left\{\frac{3 n}{\Delta+2}, \frac{2 n+\Delta}{\Delta+1}\right\}\right\rfloor+1$.

Thus assume that $\left|V_{2}\right| \neq 0$. By Corollary $4, \gamma_{\{R 3\}}(G) \geq \frac{3 n-\left|V_{2}\right|}{\Delta+1}$. Using Observation 2, we obtain $\left|V_{2}\right| \leq \frac{\gamma_{\{R 3\}}(G)}{2} \leq n-\Delta+\frac{1}{2}$ which implies that $\left|V_{2}\right| \leq$ $n-\Delta$.

We first show that $\gamma_{\{R 3\}}(G)>\frac{2 n+\Delta}{\Delta+1}$. If $\left|V_{2}\right|<n-\Delta$, then we obtain that $\gamma_{\{R 3\}}(G) \geq \frac{3 n-\left|V_{2}\right|}{\Delta+1}>\frac{2 n+\Delta}{\Delta+1}$, as desired. Thus assume that $\left|V_{2}\right|=n-\Delta$. Suppose that $\gamma_{\{R 3\}}(G)=\frac{3 n-\left|V_{2}\right|}{\Delta+1}$. Let $\left|V_{i}\right|=v_{i}$ for $i=0,1,2,3$. Then from $\gamma_{\{R 3\}}(G)=$ $\frac{3 n-\left|V_{2}\right|}{\Delta+1}$ we find that $(\Delta+1)\left(v_{1}+2 v_{2}+3 v_{3}\right)=3 v_{0}+3 v_{1}+2 v_{2}+3 v_{3}$, since $n=v_{0}+v_{1}+v_{2}+v_{3}$. Since $\Delta=n-v_{2}=v_{0}+v_{1}+v_{3}$, we obtain by a simple calculation that $v_{1}+2 v_{2}+3 v_{3}=\frac{3 v_{0}+2 v_{1}}{n-v_{2}}=\frac{3 v_{0}+2 v_{1}}{v_{0}+v_{1}+v_{3}}$ and this implies that $2 v_{2}=3-\left(v_{1}+3 v_{3}\right)-\frac{v_{1}+3 v_{3}}{v_{0}+v_{1}+v_{3}}$. If $v_{3}=0$ and $v_{1}=0$, then $2 v_{2}=3$, a contradiction. If $v_{3}=0$ and $v_{1} \neq 0$, then $2 v_{2}=3-v_{1}-\frac{v_{1}}{v_{0}+v_{1}}<2$, a contradiction. Thus $v_{3} \neq 0$. If $v_{1}=0$, then $2 v_{2}=3-3 v_{3}-\frac{3 v_{3}}{v_{0}+v_{3}}<0$, a contradiction. Thus $v_{1} \neq 0$. Then $2 v_{2}=3-\left(v_{1}+3 v_{3}\right)-\frac{v_{1}+3 v_{3}}{v_{0}+v_{1}+v_{3}}<0$, a contradiction. We conclude that $\gamma_{\{R 3\}}(G) \neq \frac{3 n-\left|V_{2}\right|}{\Delta+1}$, and so $\gamma_{\{R 3\}}(G)>\frac{3 n-\left|V_{2}\right|}{\Delta+1} \geq \frac{2 n+\Delta}{\Delta+1}$, as desired.

We next show that $\gamma_{\{R 3\}}(G)>\frac{3 n}{\Delta+2}$. If $\left|V_{2}\right| \geq \frac{3 n}{\Delta+2}$, then $\gamma_{\{R 3\}}(G) \geq 2\left|V_{2}\right|>$ $\frac{3 n}{\Delta+2}$. Thus assume that $\left|V_{2}\right|<\frac{3 n}{\Delta+2}$. Then a simple calculation shows that $\frac{3 n-\left|V_{2}\right|}{\Delta+1}>\frac{3 n}{\Delta+2}$, as desired.

Hence, $\gamma_{\{R 3\}}(G)>\max \left\{\frac{2 n+\Delta}{\Delta+1}, \frac{3 n}{\Delta+2}\right\}$. This completes the proof of lower bound.

To see the sharpness, consider a complete graph of order at least two.
We end this section by remarking that Lemma 3 holds for each R3DF. Moreover, it holds if $\Delta=0$.

3. Upper Bound

In this section we present an upper bound for a generalization of the Roman $\{3\}$ domination number namely Roman $\{k\}$-domination number for every integer $k \geq 3$ that is defined as follows. For a graph G and an integer $k \geq 3$, a Roman $\{k\}$-dominating function is a function $f: V \longrightarrow\{0,1, \ldots, k\}$ having the property that for every vertex $u \in V$, if $f(u)<\left\lceil\frac{k}{2}\right\rceil$, then $f(N[u]) \geq k$. The weight of a Roman $\{k\}$-dominating function is the sum $w(f)=f(V)=\sum_{v \in V} f(v)$, and the minimum weight of a Roman $\{k\}$-dominating function is the Roman $\{k\}$-domination number, denoted by $\gamma_{\{R k\}}(G)$. For a Roman $\{k\}$-dominating function f, we denote $f=\left(V_{0}, V_{1}, \ldots, V_{k}\right)$, where $V_{i}=\{v \in V: f(v)=i\}$, for $i=0,1, \ldots, k$.

Theorem 6. If G is a graph of order n with minimum degree $\delta(G)=\delta \geq 1$, then

$$
\gamma_{\{R k\}}(G) \leq \frac{k\left(\ln \left\lceil\frac{k}{2}\right\rceil+\ln (1+\delta)-\ln k+1\right)}{1+\delta} n
$$

Proof. Let G be a graph of order n with minimum degree $\delta(G)=\delta \geq 1$. Let $S \subseteq V(G)$ be a set obtained by choosing each vertex $v \in V(G)$, independently, with probability $p \in[0,1]$, and let $T=V(G) \backslash N[S]$. We form sets $V_{i}, i=$ $0,1, \ldots, k$ as follows. Let $V_{0}=V(G) \backslash(S \cup T), V_{\left\lceil\frac{k}{2}\right\rceil}=T, V_{k}=S$ and $V_{i}=\emptyset$ for $i=1,2, \ldots, k-1, i \neq\left\lceil\frac{k}{2}\right\rceil$. Then the function $f=\left(V_{0}, V_{1}, \ldots, V_{k}\right)$ is a Roman $\{k\}$-dominating function for G. We compute the expected value of $w(f)$. Note that

$$
\mathbb{E}(w(f))=\mathbb{E}\left(k|S|+\left\lceil\frac{k}{2}\right\rceil|T|\right)=k \mathbb{E}(|S|)+\left\lceil\frac{k}{2}\right\rceil \mathbb{E}(|T|) .
$$

Clearly, $\mathbb{E}(|S|)=n p$. If $v \in T$, then $v \notin S$ and $v \notin N(S)$. Thus, $\operatorname{Pr}(v \notin N[S])=$ $(1-p)^{1+\operatorname{deg}(v)} \leq(1-p)^{1+\delta}$. Using the fact that $1-p \leq e^{-p}$ for $p \geq 0$, we find that $\operatorname{Pr}(v \in T) \leq e^{-p(1+\delta)}$, and so $\mathbb{E}(|T|) \leq n e^{-p(1+\delta)}$. Therefore,

$$
\begin{equation*}
\mathbb{E}(w(f))=\mathbb{E}\left(k|S|+\left\lceil\frac{k}{2}\right\rceil|T|\right) \leq k n p+\left\lceil\frac{k}{2}\right\rceil n e^{-p(1+\delta)} \tag{4}
\end{equation*}
$$

Taking derivative of the function $g(p)=k p+\left\lceil\frac{k}{2}\right\rceil e^{-p(1+\delta)}$ and solving the equation $g^{\prime}(p)=0$, we obtain that $g(p)$ is minimized at $p=\frac{\ln \frac{\left\lceil\frac{k}{2}\right\rceil(1+\delta)}{k}}{1+\delta}$. Then by putting these values in (4) we obtain

$$
\mathbb{E}(w(f)) \leq n k\left(\frac{\ln \frac{\left\lceil\frac{k}{2}\right\rceil(1+\delta)}{k}+1}{1+\delta}\right)=: \alpha
$$

Since the average of $w(f)$ is not more than α, there is a Roman $\{k\}$-dominating function with weight at most α, i.e., $\gamma_{\{R k\}}(G) \leq \alpha$, as desired.

We now prove that the upper bound of Theorem 6 is asymptotically best possible.

Theorem 7. When n is large, there exists a graph G of order n and minimum degree δ such that

$$
\gamma_{\{R k\}}(G) \geq \frac{k\left(\ln \left\lceil\frac{k}{2}\right\rceil+\ln (1+\delta)-\ln k+1\right)}{1+\delta} n(1+o(1))
$$

Proof. Let H a complete graph with $\lfloor\delta \ln \delta\rfloor$ vertices and let $V(H)=V$. We add a set of new vertices $V^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{\delta}\right\}$ and join each of them to δ vertices of $V(H)$ which are chosen randomly. Let G be the resulted graph. Therefore G has $n=\lfloor\delta \ln \delta\rfloor+\delta$ vertices. We show that
$\gamma_{\{R k\}}(G) \geq \frac{k \ln \delta}{\delta} n\left(1+o_{\delta}(1)\right)=\frac{k \ln \delta}{\delta}(\delta \ln \delta+\delta)\left(1+o_{\delta}(1)\right)=k \ln ^{2} \delta\left(1+o_{\delta}(1)\right)$.
Let $f=\left(V_{0}, V_{1}, \ldots, V_{k}\right)$ be a $\gamma_{\{R k\}}$-function for G. If $\left|V_{k}\right| \geq \ln ^{2} \delta-\ln \delta \ln \ln ^{4} \delta$, then

$$
\gamma_{\{R k\}}(G) \geq k\left|V_{k}\right| \geq k \ln ^{2} \delta-k \ln \delta \ln \ln ^{4} \delta=k \ln ^{2} \delta\left(1+o_{\delta}(1)\right)
$$

as desired. Thus assume for the next that $\left|V_{k}\right|<\ln ^{2} \delta-\ln \delta \ln \ln ^{4} \delta$.
We compute the probability that V_{k} dominates an element of V^{\prime}. Note that we can assume $V_{k} \subseteq V$. For a vertex $v_{i} \in V^{\prime}$, we have
$\operatorname{Pr}\left[V_{k}\right.$ does not dominate $\left.v_{i}\right]$

$$
=\frac{\binom{|V|-\left|V_{k}\right|}{\delta}}{\binom{|V|}{\delta}} \geq\left(\frac{|V|-\left|V_{k}\right|-\delta}{|V|-\delta}\right)^{\delta}=\left(1-\frac{\left|V_{k}\right|}{|V|-\delta}\right)^{\delta}
$$

Using the fact that $1-x \geq e^{-x}\left(1-x^{2}\right)$ for $x \leq 1$, we find that

$$
\begin{aligned}
\operatorname{Pr}\left[V_{k} \text { does not dominate } v_{i}\right] & \geq e^{-\frac{\left|V_{k}\right|}{|V|-\delta} \delta}\left(1-\left(\frac{\left|V_{k}\right|}{|V|-\delta}\right)^{2}\right)^{\delta} \\
& \geq e^{-\frac{\ln ^{2} \delta-\ln \delta \ln \ln ^{4} \delta}{\delta \ln \delta-\delta} \delta}\left(1+o_{\delta}(1)\right) \\
& \geq e^{-\frac{\ln \delta-\ln ^{4} \ln ^{4} \delta}{1-\frac{1}{\ln \delta}}}\left(1+o_{\delta}(1)\right) \\
& \geq e^{\ln \left(\frac{\ln ^{4} \delta}{\delta}\right)\left(1+o_{\delta}(1)\right)}\left(1+o_{\delta}(1)\right) \\
& \geq\left(\frac{\ln ^{4} \delta}{\delta}\right)^{\left(1+o_{\delta}(1)\right)}\left(1+o_{\delta}(1)\right) \geq \frac{\ln ^{3} \delta}{\delta}
\end{aligned}
$$

Thus $\operatorname{Pr}\left[V_{k}\right.$ dominates $\left.v_{i}\right] \leq 1-\frac{\ln ^{3} \delta}{\delta}$. Now the expected value of the random variable $\left|N\left(V_{k}\right) \cap V^{\prime}\right|$ is bounded above as follows

$$
\mathbb{E}\left(\left|N\left(V_{k}\right) \cap V^{\prime}\right|\right)=\sum_{i=1}^{\delta} \operatorname{Pr}\left[V_{k} \text { dominates } v_{i}\right] \leq \delta\left(1-\frac{\ln ^{3} \delta}{\delta}\right)=\delta-\ln ^{3} \delta
$$

Consequently, $\left|V^{\prime} \backslash N\left(V_{k}\right)\right| \geq \ln ^{3} \delta$. Since $V_{k} \subseteq V$, we conclude that there exists a graph G for which

$$
\gamma_{\{R k\}}(G) \geq\left|V^{\prime} \backslash N\left(V_{k}\right)\right| \geq \ln ^{3} \delta>k \ln ^{2} \delta\left(1+o_{\delta}(1)\right)
$$

as desired.

References

[1] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23-29.
https://doi.org/10.1016/j.dam.2016.03.017
[2] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. McRae, Roman \{2\}-domination, Discrete Appl. Math. 204 (2016) 22-28.
https://doi.org/10.1016/j.dam.2015.11.013
[3] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Combin. 17 (2020) 966-984.
[4] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, A survey on Roman domination parameters in directed graphs (J. Combin. Math. Combin. Comput.), to appear.
[5] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22.
https://doi.org/10.1016/j.disc.2003.06.004
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[7] M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557-564. https://doi.org/10.1016/j.dam.2016.09.035
[8] W. Klostermeyer and G. MacGillivray, Roman, Italian, and 2-domination (J. Combin. Math. Combin. Comput.), to appear.
[9] D.A. Mojdeh and L. Volkmann, Roman $\{3\}$-domination (double Italian domination), Discrete Appl. Math. 283 (2020) 555-564. https://doi.org/10.1016/j.dam.2020.02.001
[10] Z. Shao, D.A. Mojdeh and L. Volkmann, Total Roman $\{3\}$-domination in graphs, Symmetry 12 (2020) 1-15. https://doi.org/10.3390/sym12020268
[11] C.S. ReVelle and K.E. Rosing, Defendens Imperium Romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585-594. https://doi.org/10.1080/00029890.2000.12005243
[12] I. Stewart, Defend the Roman Empire!, Sci. Amer. 281 (1999) 136-139. https://doi.org/10.1038/scientificamerican1299-136

