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Abstract

For a graph G, a Roman {3}-dominating function is a function f : V" —
{0,1,2,3} having the property that for every vertex u € V, if f(u) € {0,1},
then f(N[u]) > 3. The weight of a Roman {3}-dominating function is the
sum w(f) = f(V) = >, ¢y f(v), and the minimum weight of a Roman
{3}-dominating function is the Roman {3}-domination number, denoted by
Y¢r3}(G). In this paper, we present a sharp lower bound for the double
Italian domination number of a graph, and improve previous bounds given
in [D.A. Mojdeh and L. Volkmann, Roman {3}-domination (double Italian
domination), Discrete Appl. Math. 283 (2022) 555-564]. We also present a
probabilistic upper bound for a generalized version of double Italian domi-
nation number of a graph, and show that the given bound is asymptotically
best possible.
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1. INTRODUCTION

For a (simple) graph G = (V, E) with vertex set V = V(G) and edge set F =
E(G), we denote by |V(G)| = n(G) = n the order of G. The open neighborhood
of a vertex v is N(v) = {u € V : wv € E} and the closed neighborhood of
v is N[v] = N(v) U{v}. For a set S C V, the open neighborhood of S is
N(S) = Uyeg N(v) and the closed neighborhood of S is N[S] = N(S)U S. The
degree of a vertex v is deg(v) = |N(v)|. The maximum and minimum degree
among the vertices of G are denoted by A(G) and §(G), respectively. For a set
S CV in a graph G and a vertex v € V, we say that S dominates v if v € S or
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v is adjacent to some vertex of S. A set S is called a dominating set in G if S
dominates every vertex of G. The domination number v(G) of G is the minimum
cardinality of a dominating set in G. For other definitions and notations not
given here we refer to [6].

Cockayne et al. [5] introduced the concept of Roman domination in graphs,
although this notion was inspired by the work of ReVelle et al. in [11], and
Stewart in [12]. Let f : V(G) — {0,1,2} be a function having the property
that for every vertex v € V with f(v) = 0, there exists a neighbor u € N(v)
with f(u) = 2. Such a function is called a Roman dominating function or just
an RDF. The weight of an RDF f is the sum f(V) =" .y f(v). The minimum
weight of an RDF on G is called the Roman domination number of G, and is
denoted by vg(G). Several varieties of Roman domination are already studied,
and the reader can consult [3, 4].

A generalization of Roman domination called [talian domination (or Ro-
man {2}-domination) was introduced by Chellali et al. in [2], Klostermeyer and
MacGillivray [8], and Henning and Klostermeyer [7]. An Italian dominating func-
tion (IDF) on a graph G = (V, E) is a function f : V' — {0, 1,2} satisfying the
property that for every vertex v € V, with f(v) = 0, >, ey f(u) = 2. The
weight of an IDF f is the value w(f) = f(V) = > ,cy f(u). The minimum
weight of an IDF on a graph G is called the [talian domination number of G,
denoted by ~v7(G). This same concept was called Roman {2}-domination and
what we called v7(G) is called v{po}(G). A 7{ra}(G)-function f can be repre-
sented by a triple f = (Vp, V1, V2) (or f = (VOf,Vlf,Y@f) to refer to f), where
Vi={veV(G): f(v)=i} fori=0,1,2.

Beeler et al. [1] introduced the concept of double Roman domination in
graphs. A function f:V — {0,1,2,3} is a double Roman dominating function
(or just DRDF) on a graph G if the following conditions hold, where V; denote
the set of vertices assigned i under f, for i = 0,1,2,3: (1) If f(v) = 0, then v
must have at least two neighbors in V5 or one neighbor in V3; (2) If f(v) = 1,
then v must have at least one neighbor in V5 U V3. The weight of a DRDF f is
the value w(f) = f(V) = >_,cy f(v). The double Roman domination number,
var(G), is the minimum weight of a DRDF on G, and a DRDF of G with weight
~var(G) is called a y4r-function of G.

Recently, Mojdeh and Volkmann [9] considered an extension of Roman {2}-
domination as follows. For a graph G, a Roman {3}-dominating function is a
function f: V' — {0, 1,2, 3} having the property that for every vertex u € V, if
f(u) € {0,1}, then f(N[u]) > 3. The weight of a Roman {3}-dominating function
is the sum w(f) = f(V) = >_,cy f(v), and the minimum weight of a Roman {3}-
dominating function is the Roman {3}-domination number, denoted by v(gs)(G).
For a Roman {3}-dominating function f, one can denote f = (Vp, V1, Va, V3),
where V; = {v € V : f(v) =i}, for i = 0,1,2,3. This concept was further studied
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in [10]. Among other results, Mojdeh et al. presented the following lower bound
in [9].

Theorem 1 (Mojdeh and Volkmann [9]). If G is a connected graph of order n
3n 2n+A}

and mazimum degree A, then v{grs1(G) > min {m, AT

In this paper we present upper and lower bounds for the Roman {3}-domi-
nation number of a graph. In Section 2, we present a sharp lower bound for
the Roman {3}-domination number of a graph and improve the bound given in
Theorem 1. In Section 3, we present a probabilistic upper bound for a gener-
alized version of the Roman {3}-domination number, namely, the Roman {k}-
domination number for every k > 3, of a graph and show that the given bound
is asymptotically best possible.

In this paper, for an event F' we denote by Pr(F') the probability that F
occurs. We also denote by E(X) the expectation of X if X is a random variable.

2. LowgRr BoOuUND

In this section we present a new sharp lower bound for the Roman {3}-domination
number of a graph. We begin with the following observation.

Observation 2. For every connected graph G of order n and mazrimum degree
A, 'y{Rg}(G) < 2(n - A) + 1.

Proof. Let v be a vertex of maximum degree. Let f be a function defined on
V(G) by f(v) =3, f(x) =01if z € N(v) and f(z) = 2 otherwise. Then f is a
R3DF for G, and so (3} (G) <2(n — A —1)+3=2(n—A) + 1, as desired. =

Lemma 3. If G is a connected graph of mazimum degree A(G) = A > 1 and f =
(Vo, V1, Va, V3) is a v{g3y (G)-function, then 3|Vo| < (A—2)|Vi|+2A[Va|+3A[ V3.

Proof. Let G be a connected graph of maximum degree A(G) = A > 1 and
[ = Vo, V1, V2, V3) be a y(gs)(G)-function. If A = 1, then G = K3, and since
Y¢r3}(K2) = 3, we obtain that either [Vgy| = [V3] = 1 and |[Vi| = V2| = 0 or
|[Vo| = |V3] = 0 and |V1| = V2| = 1. Thus the inequality holds.

Hence we assume that A > 2. We partition Vj into four sets V03, V2, V01 and
V2, and V; into three sets Vi', V2 and V33 as follows. Let

Ve = {veVy: Nw)nVs # 0},

Vg2 = {veVo\V§ : N()nVi £0,N(v)N Vs # 0},
Ve = {veW\ (VyUVy?) :Nw) CVouWi},

Vi = {veVo\ (V§uVy?) : N(v) CVouVal.
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Vi ={zeVi:Nx)n (VLUW) =0},
VE={zecVi:Nx)nV # 0},
Vi =w\ (Vuyp).

For i = 1,2,3, let |V{| = m;. We first present an upper bound for |V{| in
terms of |V3| and mg. Each vertex in V3 with no neighbor in Vi dominates at
most A vertices of VO3, and every vertex in V3 with at least one neighbor in V}
dominates at most A — 1 vertices of V;?. Thus,

(1) VS| < A(JV3] — m3) + (A — 1)mg = A[V5] — ms.

Let |Vi?| = 2. We next present an upper bound for |V in terms of |Va, x
and my. Clearly, every vertex of V2 U V{2 has a neighbor in V5. Since |VZ| = ma
and |V32| = z, there are at most A|Va| — z — my edges which have an end-point
in V5. Since any vertex of VO2 is adjacent to at least two vertices of V5, we obtain
that

@) {%2‘<A\V2|fxfm2‘

2

We next present an upper bound for |V01‘ in terms of |V1|, &, mi, mo and
ms. Note that every vertex of V! is adjacent to at least two vertices of V3, every
vertex of V2 is adjacent to at least one vertex of V5 and every vertex of V{3 is
adjacent to at least one vertex of V3. Also every vertex of V012 is adjacent to a
vertex in V4. Thus, there are at most A|V;|—2my —mg —ms— 2z edges which have
an end-point in V. Since any vertex of V| is adjacent to at least three vertices
of V1, we obtain that

AlVi| —2my —ma —mg —x
3 )

(3) Vo | <

Since |Vp| = ‘Voll + ‘V02| + ’V()m’ + ‘V03|, from (1), (2) and (3) we obtain that

3AIVG| 3z 3
| 2|—x—7;2+3x+3A]V3]—3m3.

3|V0]§A]V1]—2m1—m2—m3—x+ 9 9

Since |Vi| = m1 + mg + mg, we obtain that

A|Vs
V0] < (A — 2)|VAl + 281V5] + BAV| — "2 — oy T 202

It is evident that x < A|Va|. Thus 3|Vh| < (A — 2)|Vi| + 2A|Va| 4+ 3A| V3], as
desired. |

Corollary 4. If G is a connected graph of order n with mazimum degree A(G) =
A >1 and f = (Vo,V1,Va,V3) is a virsy (G)-function, then vigr3 (G) > S”A_J‘r‘fl.
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Proof. Let f = (Vo,V1,V2,V3) be a v{gs)(G)-function for G. Then

(A+Dvrap(G) = (A+1DVai| +2(A 4+ 1)[Va| + 3(A + 1) V3]
= (A =2)|Vi[ + 2A[Va| + 3A[V5[ + 3|Vi[ 4 2|Va| 4 3| V3]
> 3|Vol + 3[Vi| + 2[Va| + 3[V3| (by Lemma 3)
= 3n — [V3].

Thus the result follows. [}

Now we present the main result of this section.

Theorem 5. If G is a connected graph of order n > 1 and mazimum degree

A > 1, then
3n 2n+ A
> o =
Nrsy(G) 2 {maX{AJrZ’ A1 }J ks

This bound is sharp.

Proof. Let G be a connected graph of order n and maximum degree A and
f = (Vo, V1, V2, V3) be a v(gsy (G)-function for G. If |Va| = 0, then from Corollary

4, we obtain that vyip3(G) > AB—j:l > max{A?’—ﬁQ, ZZLA}, and so V(g3 (G) >

Lmax {A?’—_ﬁz, ZZLA }J + 1.
Thus assume that [V2| # 0. By Corollary 4, v{gs1(G) > 37;':1/2'. Using

Observation 2, we obtain |V3| < V{R%}(G) <n-—-A+ % which implies that |Va| <
n— A.
We first show that y{rs) (G) > 2n+8 1 |V,| < n — A, then we obtain that

A41
Y(r3(G) > 37&'_‘1/2' > QXilA, as desired. Thus assume that |Va| = n—A. Suppose

that yip3y(G) = 3”&%'. Let |V;| = v; for i = 0,1,2,3. Then from 3 (G) =

3721“1/2' we find that (A + 1)(v; + 2ve 4+ 3v3) = 3vg + 3v; + 2v2 + 3vs, since

n = vg+ vy + v+ v3. Since A = n — vy = vy + vy + v3, we obtain by a
_ 3ve+2v1 . 3vg+2v;

simple calculation that v + 2vy + 3v3 = e = st e and this implies that

2ug = 3—(v1 +3U3)—%. If v3 = 0 and v1 = 0, then 2v, = 3, a contradiction.
If v3 = 0 and vy # 0, then 2v9 = 3—v; — —2— < 2, a contradiction. Thus vz # 0.

vo+v1

If v1 = 0, then 2v9y = 3 — 3vg — Ufﬁg < 0, a contradiction. Thus vy # 0.

Then 2vy = 3 — (v1 + 3v3) — % < 0, a contradiction. We conclude that

3n—|V; 3n—|Vz .
Yirsy(G) # P2 and so y(ps) (G) > 22l > 2R as desired.

We next show that yr3(G) > A3—_f2. If |Va| > 5’—12, then vyp3y(G) > 2|Va| >
A3—ﬁ2. Thus assume that |V] < A3—JTFL2. Then a simple calculation shows that

37’L—|V2| 3n .
ATT > Aqos @S desired.
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Hence, v(p3}(G) > max{QgilA, i—_’b} This completes the proof of lower

bound.
To see the sharpness, consider a complete graph of order at least two. [

We end this section by remarking that Lemma 3 holds for each R3DF. More-
over, it holds if A = 0.

3. UprPER BOuUND

In this section we present an upper bound for a generalization of the Roman {3}-
domination number namely Roman {k}-domination number for every integer
k > 3 that is defined as follows. For a graph G and an integer k > 3, a Roman
{k}-dominating function is a function f : V' — {0, 1, ..., k} having the property
that for every vertex u € V, if f(u) < [%], then f(N[u]) > k. The weight
of a Roman {k}-dominating function is the sum w(f) = f(V) = > oy f(v),
and the minimum weight of a Roman {k}-dominating function is the Roman
{k}-domination number, denoted by gy (G). For a Roman {k}-dominating
function f, we denote f = (Vp,V1,...,Vk), where V; = {v € V : f(v) = i}, for
1=0,1,... k.

Theorem 6. If G is a graph of order n with minimum degree 6(G) =6 > 1, then

k(n[%] +In(1+46) —Ink+1)

< .
Yriy(G) < o n

Proof. Let G be a graph of order n with minimum degree 6(G) = § > 1. Let
S C V(G) be a set obtained by choosing each vertex v € V(G), independently,
with probability p € [0,1], and let 7' = V(G)\ N[S]. We form sets V;, i =
0,1,...,k as follows. Let V) = V(G)\ (SUT), V[ﬂ =T, Vi, =58 and V; = for

1=1,2,...,k—1,1 # [g] Then the function f = (Vp,V4,..., Vi) is a Roman
{k}-dominating function for G. We compute the expected value of w(f). Note
that

B(w(/) = B(His| + [ ] 1) = k(s + | § | B0

Clearly, E(|S|) = np. If v € T, then v ¢ S and v ¢ N(S). Thus, Pr(v ¢ N[S]) =
(1 — p)ttdee®) < (1 — p)!*+9. Using the fact that 1 —p < P for p > 0, we find
that Pr(v € T) < e P19 and so E(|T|) < ne P19, Therefore,

(1) B(u(r) =5 (415]+ |5 |171) < knp-+ | ] nes09,
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Taking derivative of the function g(p) = kp+ %W e P(1+9) and solving the equation
[$laso
g'(p) = 0, we obtain that g(p) is minimized at p = lnli#g. Then by putting
these values in (4) we obtain
k
In [210+0) +1
E(w(f)) < nk # =: .

Since the average of w(f) is not more than «, there is a Roman {k}-dominating
function with weight at most a, i.e., Y g} (G) < @, as desired. ]

We now prove that the upper bound of Theorem 6 is asymptotically best
possible.

Theorem 7. When n is large, there exists a graph G of order n and minimum
degree § such that

k(n[%] +In(1+46) —Ink+1)
146

Yriy(G) > n(1+o(1)).

Proof. Let H a complete graph with [§Ind] vertices and let V(H) = V. We
add a set of new vertices V' = {v1,v9,...,vs} and join each of them to ¢ vertices
of V(H) which are chosen randomly. Let G be the resulted graph. Therefore G
has n = [01Ind] + § vertices. We show that

’“;“Sna + o5(1)) = ’“;“5(5 In 6+ 8)(1+ 05(1)) = k2 5(1 + 05(1)).

Vi (G) >

Let f = (Vo, Vi, .., Vi) be a yggy-function for G. If [V;] > In? 6—Iné Inln' 5,
then

Yirey(G) = k[Vi| = kIn?§ — kInd Inln* § = kIn® §(1 + 0s(1)),

as desired. Thus assume for the next that [V;| < In?§ —Inéd Inlnt 4.
We compute the probability that Vi, dominates an element of V'. Note that
we can assume Vj, C V. For a vertex v; € V’/, we have

Pr[Vji does not dominate v;]

(!V! — Vil

N\ 9 >> VI= Wil =6\ (- Wl Y’
- <|V|) —< Vi-6 ) ( |V\—6>

0
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Using the fact that 1 —x > e~ *(1 — 2?) for < 1, we find that

) AVl 5 ‘Vk’ 2\ °
Pr[Vj does not dominate v;] > e VI=5" [ 1 — V-0

_ln2 5—Iné Inln? 66
e 5nd -5 (1+05<1))
71n571nln45

e w5 (1+o0s(1))

nd
61n(1 : a>(1+05(1)) (1 + 05(1))

4 ¢ (1405(1)) 3
<ln 5) (14 05(1)) > ln(sd'

v

v

v

0

Thus Pr[Vj dominates v;] <1— @. Now the expected value of the random

variable |N(Vj) N'V’| is bounded above as follows

6 3
E(IN(Vk)nV']) = Z Pr[Vj, dominates v;] < § (1 - lné(S) =0 —1n?6.
=1

Consequently, [V/\ N(V})| > In®4. Since V}, € V, we conclude that there exists
a graph G for which

V{Rk}(G) > ’V’\N(Vk)‘ > In®6 > kIn? d(1405(1)),
as desired. m
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