ON M_f -EDGE COLORINGS OF GRAPHS

Jaroslav Ivančo¹ and Alfréd Onderko

Institute of Mathematics, P.J. Šafárik University Jesenná 5, 040 01 Košice, Slovakia

e-mail: jaroslav.ivanco@upjs.sk alfred.onderko@student.upjs.sk

Abstract

An edge coloring φ of a graph G is called an M_f -edge coloring if $|\varphi(v)| \leq f(v)$ for every vertex v of G, where $\varphi(v)$ is the set of colors of edges incident with v and f is a function which assigns a positive integer f(v) to each vertex v. Let $\mathcal{K}_f(G)$ denote the maximum number of colors used in an M_f -edge coloring of G. In this paper we establish some bounds on $\mathcal{K}_f(G)$, present some graphs achieving the bounds and determine exact values of $\mathcal{K}_f(G)$ for some special classes of graphs.

Keywords: edge coloring, anti-Ramsey number, dominating set.

2010 Mathematics Subject Classification: 05C15.

1. Introduction

We consider finite undirected graphs without loops and multiple edges. If G is a graph, then V(G) and E(G) stand for the vertex set and edge set of G, respectively. The subgraph of a graph G induced by $U \subseteq V(G)$ is denoted by G[U]. Similarly, if $A \subseteq E(G)$, then G[A] denotes the subgraph of G induced by G[U] is denoted by G[U]. The subgraph with the edge set G[U] and the vertex set consisting of all vertices incident with an edge in G[U]. The set of vertices of G[U] and G[U] is denoted by G[U]. The cardinality of this set, denoted G[U] is called the degree of G[U]. As usual G[U] and G[U] stand for the maximum and minimum degree among vertices of G[U]. The set of vertices of degree G[U] is denoted by G[U].

¹This work was supported by the Slovak VEGA Grant 1/0368/16 and by the Slovak Research and Development Agency under the contract No. APVV-15-0116.

An edge coloring of a graph G is an assignment of colors to the edges of G, one color to each edge. So any mapping φ from E(G) onto a non-empty set is an edge coloring of G. The set of colors used in an edge coloring φ of G is denoted by $\varphi(G)$, i.e., $\varphi(G) = \{\varphi(e) : e \in E(G)\}$. For any vertex $v \in V(G)$, let $\varphi(v)$ denote the set of colors of edges incident with v, i.e., $\varphi(v) = \{\varphi(vu) : u \in N_G(v)\}$. Let f be a function which assigns a positive integer f(v) to each vertex $v \in V(G)$. An edge coloring φ of G is an M_f -edge coloring if at most f(v) colors appear at any vertex v of G, i.e., $|\varphi(v)| \leq f(v)$ for every vertex $v \in V(G)$. The maximum number of colors used in an M_f -edge coloring is denoted by $\mathcal{K}_f(G)$. If f(v) = i for all $v \in V(G)$, then an M_f -edge coloring is called an M_i -edge coloring and the maximum number of colors used in an M_f -edge coloring is denoted by $\mathcal{K}_i(G)$.

The M_f -edge coloring is a natural generalization of the M_i -edge coloring. The concept of M_i -edge colorings was introduced by Czap [4]. In [3] authors establish a tight bound on $\mathcal{K}_2(G)$ depending on the size of a maximum matching in G. In [4] and [5], the exact values of $\mathcal{K}_2(G)$ for subcubic graphs and complete graphs are determined. In [7] it is determined $\mathcal{K}_2(G)$ for cacti, trees, graph joins and complete multipartite graphs. In [10] there are established some bounds on $\mathcal{K}_2(G)$ and presented graphs achieving the bounds. Exact values of $\mathcal{K}_2(G)$ for dense graphs are also determined. $\mathcal{K}_3(G)$ and $\mathcal{K}_4(G)$ for complete graphs are determined in [6]. A vertex variant of the M_2 -edge coloring was studied in [2].

However before, Feng et al. [8] introduced a maximum edge q-coloring problem which arises from wireless mesh networks. It is really the problem of finding an M_q -edge coloring of a given graph G which uses $\mathcal{K}_q(G)$ colors (for an integer $q, q \geq 2$). There are studied mainly algorithmic aspects of the maximum edge q-coloring problem. In [8] there is provided a 2-approximation algorithm for q=2 and a $\left(1+\frac{4q-2}{3q^2-5q+2}\right)$ -approximation for q>2. In [1] there is proved that the maximum edge q-coloring problem is NP-Hard. Also, for graphs with perfect matching there is presented a $\frac{5}{3}$ -approximation algorithm in case q=2. A related problem is studied in [12].

The anti-Ramsey number has been extensively studied in the area of extremal graph theory (see [9] for a survey). For given graphs G and H the anti-Ramsey number $\operatorname{ar}(G,H)$ is defined to be the maximum number k such that there exists an assignment of k colors to the edges of G in which every copy of H in G has at least two edges with the same color. A coloring of G is an M_q -edge coloring if and only if each subgraph $K_{1,q+1}$ (a star with q+1 edges) of G has two edges with the same color. Therefore $\mathcal{K}_q(G)$ is equal to $\operatorname{ar}(G,K_{1,q+1})$. Thereby, in [11] there is determined $\mathcal{K}_q(K_{n,n})$ exactly and $\mathcal{K}_q(K_n)$ within 1, for all positive integers n and n0. Similarly, an upper bound on the value of $\mathcal{K}_q(G)$ if $\mathcal{K}_q(G) \geq q+1$ 2, is presented in [13]. Some applications of this bound (e.g., exact values of $\mathcal{K}_q(G)$ for hypercubes) are also produced.

In this paper we establish some bounds of $\mathcal{K}_f(G)$ depending on dominating sets of G. We also determine exact values of $\mathcal{K}_f(G)$ for some particular classes of graphs, especially for trees, forests, some cactuses, and dense graphs with a dominating vertex. Accordingly, we extend some known results, proved in [11] and [13], on $\mathcal{K}_q(G)$ (as anti-Ramsey number) for complete graphs and complete multipartite graphs.

2. Auxiliary Results

It is easy to see that $|\varphi(v)| \leq \deg_G(v)$ for any edge coloring φ of a graph G and each vertex $v \in V(G)$. Therefore, throughout the paper we suppose that the function f satisfies

(1)
$$1 < f(v) < \deg_G(v) \quad \text{for every } v \in V(G).$$

The following two claims are evident.

Observation 1. Let f be a function from the vertex set of a graph G to positive integers. Assume that G has k connected components. Let G_j , $j \in \{1, \ldots, k\}$, be a component of the graph G and let f_j be a restriction of f to $V(G_j)$. Then

$$\mathcal{K}_f(G) = \sum_{j=1}^k \mathcal{K}_{f_j}(G_j).$$

Given a graph G, let e = uv be an edge of G such that $\deg_G(v) \geq 2$. By S(G; e, v) we denote the graph with the vertex set $V(G) \cup \{v'\}$ and the edge set $(E(G) \setminus \{e\}) \cup \{uv'\}$.

Observation 2. Let f be a function from the vertex set of a graph G to integers satisfying (1). Let v be a vertex of G such that $f(v) = \deg_G(v) \geq 2$. For an edge e incident with v let h be a function from the vertex set of S(G; e, v) to integers given by

$$h(u) = \begin{cases} f(u) & \text{if } u \notin \{v, v'\}, \\ \deg_{S(G; e, v)}(u) & \text{if } u \in \{v, v'\}. \end{cases}$$

Then

$$\mathcal{K}_f(G) = \mathcal{K}_h(S(G; e, v)).$$

Let φ be an M_f -edge coloring of G. For a set $U \subseteq V(G)$, let $\varphi(U)$ denote the set of colors of edges incident with vertices of U in G. Thus, $\varphi(U) = \bigcup_{v \in U} \varphi(v)$.

Lemma 1. Let φ be an M_f -edge coloring of a graph G and let U be a non-empty subset of V(G). Then the following statements hold.

- (i) $|\varphi(U)| \leq c + \sum_{u \in U} (f(u) 1)$, where c denotes the number of connected components of G[U].
- (ii) If G[U] is a 2-connected graph and $|\varphi(U)| = 1 + \sum_{u \in U} (f(u) 1)$, then $|\{\varphi(e) : e \in E(G[U])\}| = 1$.

Proof. (i) First suppose that G[U] is a connected graph. Denote the vertices of U by u_1, u_2, \ldots, u_k in such a way that the set $X_i = \{u_1, u_2, \ldots, u_i\}$ induces a connected subgraph of G for every $i \in \{1, 2, \ldots, k\}$. As $G[X_i]$ is connected for $i \geq 2$, there is j $(1 \leq j < i)$ such that $u_i u_j$ is an edge of G. Therefore, $\varphi(u_i u_j) \in \varphi(X_{i-1}) \cap \varphi(u_i)$ and

$$|\varphi(X_i)| = |\varphi(X_{i-1}) \cup \varphi(u_i)| = |\varphi(X_{i-1})| + |\varphi(u_i)| - |\varphi(X_{i-1}) \cap \varphi(u_i)|$$

$$\leq |\varphi(X_{i-1})| + f(u_i) - 1.$$

Clearly, $|\varphi(X_1)| = |\varphi(u_1)| \le f(u_1) = 1 + \sum_{u \in X_1} (f(u) - 1)$. Thus, by induction we get

$$|\varphi(X_i)| \le |\varphi(X_{i-1})| + (f(u_i) - 1) \le 1 + \sum_{u \in X_i} (f(u) - 1)$$

and consequently $|\varphi(U)| = |\varphi(X_k)| \le 1 + \sum_{u \in U} (f(u) - 1)$.

If G[U] is a disconnected graph, then the set U can be partitioned into disjoint subsets U_1, U_2, \ldots, U_c in such a way that $G[U_i]$ is a connected component of G[U] for every $i \in \{1, 2, \ldots, c\}$. Therefore,

$$|\varphi(U)| = \left| \varphi\left(\bigcup_{i=1}^{c} U_i\right) \right| \le \sum_{i=1}^{c} |\varphi(U_i)| \le \sum_{i=1}^{c} \left(1 + \sum_{u \in U_i} (f(u) - 1)\right)$$
$$= c + \sum_{u \in U} (f(u) - 1).$$

(ii) Now suppose that G[U] is 2-connected and $|\{\varphi(e) : e \in E(G[U])\}| > 1$. Then there are edges uw and vw in E(G[U]) such that $\varphi(uw) \neq \varphi(vw)$. Therefore, $|\varphi(w) \cap (\varphi(u) \cup \varphi(v))| \geq 2$ and consequently $|\varphi(w) \cap \varphi(U \setminus \{w\})| \geq 2$. As G[U] is 2-connected, $G[U \setminus \{w\}]$ is connected and by (i)

$$|\varphi(U\setminus\{w\})| \le 1 + \sum_{u\in U\setminus\{w\}} (f(u)-1).$$

Hence $|\varphi(U)| \le |\varphi(U \setminus \{w\})| + f(w) - 2 \le \sum_{u \in U} (f(u) - 1)$, which completes the proof.

A subgraph H of a graph G is called an f-subgraph of G if $\deg_H(v) < f(v)$ for every $v \in V(H)$. The maximum number of edges in an f-subgraph of G is

denoted by $\alpha_f(G)$ and the maximum number of edges in an f-subgraph of G[U] $(U \subset V(G))$ is denoted by $\alpha_f(U)$ (i.e., $\alpha_f(G) = \alpha_f(V(G))$). If f(v) = i for all $v \in V(G)$, then $\alpha_f(G)$ and $\alpha_f(U)$ is denoted by $\alpha_i(G)$ and $\alpha_i(U)$, respectively.

Lemma 2. Let H be an f-subgraph of a graph G. Then there is an M_f -edge coloring of G such that $|\varphi(G)| = c + |E(H)|$, where c denotes the number of connected components of $G[E(G) \setminus E(H)]$,

Proof. Denote by e_1, e_2, \ldots, e_h edges of H and by C_1, C_2, \ldots, C_c components of $G[E(G) \setminus E(H)]$ (c = 0 when E(H) = E(G)). Consider a mapping φ from E(G) onto $\{1, 2, \ldots, h + c\}$ given by

$$\varphi(e) = \begin{cases} j & \text{if } e \in E(H) \text{ and } e = e_j, \\ h + j & \text{if } e \notin E(H) \text{ and } e \in C_j. \end{cases}$$

Clearly, $|\varphi(v)| \leq \deg_H(v) + 1 \leq f(v)$, for any vertex $v \in V(G)$. Therefore, φ is a desired \mathcal{M}_f -edge coloring of G.

Lemma 3. Let G be a connected graph of order at least 2. Let c(v) denote the number of components of G-v and $d(v)=\min\{c(v),f(v)\}$ for every $v\in V(G)$. Then there is an M_f -edge coloring φ of G such that

$$|\varphi(G)| = 1 + \sum_{v \in V(G)} (d(v) - 1) \ \ and \ |\varphi(v)| = d(v) \ \ for \ \ every \ \ v \in V(G).$$

Proof. Denote vertices of $U = \{u \in V(G) : d(u) > 1\}$ by u_1, u_2, \ldots, u_k . Put $U_0 = \emptyset$, $s_0 = 0$ and $U_i = U_{i-1} \cup \{u_i\}$, $s_i = s_{i-1} + d(u_i) - 1$, for $i \in \{1, 2, \ldots, k\}$. Evidently, $s_i = \sum_{v \in U_i} (d(v) - 1)$. For all $i \in \{0, 1, \ldots, k\}$, define the M_f -edge coloring φ_i of G recursively in the following way.

Let φ_0 be a mapping from E(G) to $\{0\}$. As $\varphi_0(e) = 0$, for every edge $e \in E(G)$, $|\varphi_0(G)| = 1 = 1 + s_0$ and $|\varphi_0(v)| = 1$ for each $v \in V(G)$.

Now suppose that a mapping φ_i from E(G) onto $\{0,1,\ldots,s_i\}$ is an M_f -edge coloring of G such that $|\varphi_i(v)| = d(v)$ for $v \in U_i$ and $|\varphi_i(v)| = 1$ for $v \in V(G) \setminus U_i$. As $u_{i+1} \notin U_i$, $|\varphi_i(u_{i+1})| = 1$. Since $d(u_{i+1}) > 1$, the graph $G - u_{i+1}$ is disconnected with $c(u_{i+1})$ components. As $c(u_{i+1}) \geq d(u_{i+1})$, we can choose components C_1, C_2, \ldots, C_t (where $t = d(u_{i+1}) - 1$) of $G - u_{i+1}$. For each $j \in \{1, 2, \ldots, t\}$, let H_j be a subgraph of G induced by $V(C_j) \cup \{u_{i+1}\}$. Consider a mapping φ_{i+1} from E(G) onto $\{0, 1, \ldots, s_{i+1}\}$ given by

$$\varphi_{i+1}(e) = \begin{cases} s_i + j & \text{if } \varphi_i(e) \in \varphi_i(u_{i+1}) \text{ and } e \in E(H_j), \\ \varphi_i(e) & \text{otherwise.} \end{cases}$$

Evidently, $|\varphi_{i+1}(v)| = |\varphi_i(v)|$ for $v \in V(G) \setminus \{u_{i+1}\}$, and $|\varphi_{i+1}(u_{i+1})| = 1 + t = d(u_{i+1})$. Therefore, φ_{i+1} is an M_f -edge coloring of G such that $|\varphi_{i+1}(G)| = d(u_{i+1})$.

 $1 + s_i + t = 1 + s_{i+1}$. Moreover, $|\varphi_{i+1}(v)| = d(v)$ for $v \in U_{i+1}$ and $|\varphi_{i+1}(v)| = 1$ for $v \in V(G) \setminus U_{i+1}$.

Thus, there is an M_f -edge coloring φ ($\varphi = \varphi_k$) of G such that $|\varphi(G)| = 1 + s_k$, $|\varphi(v)| = d(v)$ for $v \in U_k = U$, and $|\varphi(v)| = 1$ for $v \in V(G) \setminus U$. As d(v) = 1 for each $v \in V(G) \setminus U$, φ is a desired coloring.

3. Main Results

A set $D \subseteq V(G)$ is called *dominating* in G, if for each $v \in V(G) \setminus D$ there exists a vertex $u \in D$ adjacent to v.

Theorem 1. Let D be a dominating set of a graph G. If c denotes the number of connected components of G[D], then

$$\mathcal{K}_f(G) \le c + \sum_{u \in D} (f(u) - 1) + \alpha_f(V(G) \setminus D).$$

Proof. Let φ be an M_f -edge coloring of G which uses $\mathcal{K}_f(G)$ colors, i.e., $|\varphi(G)| = \mathcal{K}_f(G)$. Suppose that A is a subset of E(G) containing exactly one edge of each color belonging to $\varphi(G) \setminus \varphi(D)$. Let H be a subgraph of G induced by A. Evidently, the graph H is an f-subgraph of G and $V(H) \subseteq V(G) \setminus D$. Therefore, $|A| = |E(H)| \leq \alpha_f(V(G) \setminus D)$. Thus,

$$\mathcal{K}_f(G) = |\varphi(D)| + |A| \le |\varphi(D)| + \alpha_f(V(G) \setminus D).$$

According to Lemma 1, $|\varphi(D)| \le c + \sum_{u \in D} (f(u) - 1)$ and the desired inequality follows.

The following result present some graphs achieving the bound established in Theorem 1.

Theorem 2. Let D be a dominating set of a connected graph G satisfying

- (i) $|D| \ge 2$;
- (ii) G[D] is a connected subgraph of G;
- (iii) if $u \in D$ and c(u) is the number of connected components of G[D] u, then there is at least f(u) c(u) vertices in $V(G) \setminus D$ adjacent to u;
- (iv) $f(v) = \deg_G(v)$ for all $v \in V(G) \setminus D$.

Then $K_{\bullet}(G) = 1 + |E(G[V(G) \setminus D])|$

$$\mathcal{K}_f(G) = 1 + \left| E(G[V(G) \setminus D]) \right| + \sum_{u \in D} (f(u) - 1).$$

Proof. For each vertex $v \in V(G) \setminus D$ there is a vertex in D adjacent to v. Thus, $\deg_{G[V(G) \setminus D]}(v) < \deg_{G}(v) = f(v)$. Therefore, $G[V(G) \setminus D]$ is an f-subgraph of G and $\alpha_f(V(G) \setminus D) = |E(G[V(G) \setminus D])|$. According to (ii), G[D] is a connected subgraph of G, and by Theorem 1 we have

$$\mathcal{K}_f(G) \le 1 + \sum_{u \in D} (f(u) - 1) + \alpha_f(V(G) \setminus D)$$
$$= 1 + \sum_{u \in D} (f(u) - 1) + |E(G[V(G) \setminus D])|.$$

On the other hand, according to (i) and (ii), G[D] is a connected graph of order at least 2. For every vertex $u \in D$, set $A(u) = \{uv \in E(G) : v \in V(G) \setminus D\}$, $d(u) = \min\{c(u), f(u)\}$, and t(u) = f(u) - d(u). By (iii), $|A(u)| \ge t(u)$. Thus, there is a set $A^*(u)$ such that $A^*(u) \subseteq A(u)$ and $|A^*(u)| = t(u)$. Clearly,

$$\left| E\big(G[V(G) \setminus D]\big) \cup \bigcup_{u \in D} A^*(u) \right| = \left| E\big(G[V(G) \setminus D]\big) \right| + \sum_{u \in D} t(u).$$

Therefore, there is a bijection ζ from $E(G[V(G) \setminus D]) \cup \bigcup_{u \in D} A^*(u)$ onto a set B, where $|B| = |E(G[V(G) \setminus D])| + \sum_{u \in D} t(u)$.

According to Lemma 3, there is an M_f -edge coloring φ of G[D] such that $|\varphi(G[D])| = 1 + \sum_{u \in D} (d(u) - 1)$ and $|\varphi(u)| = d(u)$ for each $u \in D$. Moreover, we can assume that $\varphi(G[D])$ and B are disjoint sets. Now suppose that ξ is any mapping from D to $\varphi(G[D])$ satisfying $\xi(u) \in \varphi(u)$ for each $u \in D$. Consider the edge coloring ψ of G defined in the following way

$$\psi(e) = \begin{cases} \varphi(e) & \text{if } e \in E(G[D]), \\ \zeta(e) & \text{if } e \in A^*(u), \\ \xi(u) & \text{if } e \in A(u) \setminus A^*(u), \\ \zeta(e) & \text{if } e \in E(G[V(G) \setminus D]). \end{cases}$$

We have $|\psi(u)| = |\varphi(u)| + |A^*(u)| = d(u) + t(u) = f(u)$, for any vertex $u \in D$, and $|\psi(v)| \le \deg_G(v) = f(v)$, for any vertex $v \in V(G) \setminus D$. So, ψ is an M_f -edge coloring of G which uses $|\varphi(G[D])| + |B|$ colors. Hence

$$\begin{split} \left| \psi(G) \right| &= 1 + \sum_{u \in D} \left(d(u) - 1 \right) + \left| E \left(G[V(G) \setminus D] \right) \right| + \sum_{u \in D} t(u) \\ &= 1 + \sum_{u \in D} \left(d(u) - 1 + t(u) \right) + \left| E \left(G[V(G) \setminus D] \right) \right| \\ &= 1 + \sum_{u \in D} \left(f(u) - 1 \right) + \left| E \left(G[V(G) \setminus D] \right) \right|, \end{split}$$

i.e.,
$$\mathcal{K}_f(G) \ge 1 + \sum_{u \in D} (f(u) - 1) + |E(G[V(G) \setminus D])|$$
.

Recall that a connected graph in which every edge belongs to at most one cycle is called a cactus.

Corollary 3. Let G be a cactus of order at least 2. For every vertex $u \in V(G)$, let $\nu(u)$ denote the number of cycles of G containing u. If $f(u) + \nu(u) \leq \deg_G(u)$, for all $u \in V(G)$, then

$$\mathcal{K}_f(G) = 1 + \sum_{u \in V(G)} (f(u) - 1).$$

Proof. Evidently, D = V(G) is a dominating set of G. As G is a cactus, c(u), the number of connected components of G-u, is equal to $\deg_G(u)-\nu(u)$ for every vertex $u \in V(G)$. Then, $f(u)-c(u)=f(u)+\nu(u)-\deg_G(u)\leq 0$. Therefore, the conditions of Theorem 2 are satisfied. Moreover, $\left|E\left(G[V(G)\setminus D]\right)\right|=0$. According to Theorem 2, the result follows.

Corollary 4. Let T be a tree of order at least 2. Let f be a function from V(T) to positive integers satisfying (1). Then

$$\mathcal{K}_f(T) = 1 + \sum_{u \in V(T)} (f(u) - 1) = |E(T)| - \sum_{u \in V(T)} (\deg_T(u) - f(u)).$$

Especially, if q is a positive integer, then

$$\mathcal{K}_q(T) = 1 + (q-1)|V(T)| - \sum_{j=1}^{q-1} (q-j)|V_j(T)|.$$

Proof. Each tree is a cactus without cycles. Therefore, by Corollary 3,

$$\mathcal{K}_{f}(T) = 1 + \sum_{u \in V(T)} (f(u) - 1) = 1 + \sum_{u \in V(T)} f(u) - |V(T)|
= \sum_{u \in V(T)} f(u) - |E(T)| = |E(T)| + \sum_{u \in V(T)} f(u) - 2|E(T)|
= |E(T)| + \sum_{u \in V(T)} f(u) - \sum_{u \in V(T)} \deg_{T}(u)
= |E(T)| - \sum_{u \in V(T)} (\deg_{T}(u) - f(u)).$$

Now consider a function t from V(T) to positive integers given by

$$t(u) = \min\{\deg_T(u), q\}.$$

Then

$$\sum_{u \in V(T)} t(u) = \sum_{j=1}^{\Delta(T)} \left(\sum_{\substack{u \in V(T) \\ \deg_T(u) = j}} t(u) \right) = \sum_{j=1}^{q-1} j |V_j(T)| + \sum_{j=q}^{\Delta(T)} q |V_j(T)|$$

$$= \sum_{j=1}^{\Delta(T)} q |V_j(T)| - \sum_{j=1}^{q-1} (q-j) |V_j(T)| = q |V(T)| - \sum_{j=1}^{q-1} (q-j) |V_j(T)|.$$

Evidently, $\mathcal{K}_q(T) = \mathcal{K}_t(T)$. Thus

$$\mathcal{K}_{q}(T) = 1 + \sum_{u \in V(T)} (t(u) - 1) = 1 + \sum_{u \in V(T)} t(u) - |V(T)|$$

$$= 1 + q|V(T)| - \sum_{j=1}^{q-1} (q - j)|V_{j}(T)| - |V(T)|$$

$$= 1 + (q - 1)|V(T)| - \sum_{j=1}^{q-1} (q - j)|V_{j}(T)|,$$

which completes the proof.

Corollary 5. Let F be a forest whose every component is of order at least 2. Let f be a function from V(F) to positive integers satisfying (1). Then

$$\mathcal{K}_f(F) = |E(F)| - \sum_{u \in V(F)} \left(\deg_F(u) - f(u) \right).$$

Proof. Let T_j , $j \in \{1, ..., k\}$, be a component of F and let f_j be a restriction of f to $V(T_j)$. Every component of F is a tree, thus, by Observation 1 and Corollary 4, we have

$$\mathcal{K}_{f}(F) = \sum_{j=1}^{k} \mathcal{K}_{f_{j}}(T_{j}) = \sum_{j=1}^{k} \left(|E(T_{j})| - \sum_{u \in V(T_{j})} \left(\deg_{T_{j}}(u) - f(u) \right) \right) \\
= |E(F)| - \sum_{u \in V(F)} \left(\deg_{F}(u) - f(u) \right),$$

which completes the proof.

Corollary 6. Let f be a function from the vertex set of a graph G to positive integers satisfying (1). If every cycle of G contains a vertex v such that $f(v) = \deg_G(v)$, then

$$\mathcal{K}_f(G) = |E(G)| - \sum_{u \in V(G)} (\deg_G(u) - f(u)).$$

Proof. Suppose that G is a counterexample with the minimum number of cycles. According to Corollary 5, G contains a cycle C. Then there is a vertex v of C such that $f(v) = \deg_G(v)$. Let e be an edge of the cycle C incident with v. Consider a graph H = S(G; e, v) and a function h from V(H) to positive integers defined by

$$h(u) = \begin{cases} f(u) & \text{if } u \in V(H) \setminus \{v, v'\}, \\ \deg_H(u) & \text{if } u \in \{v, v'\}. \end{cases}$$

Clearly, every cycle of H is also a cycle in G and it contains a vertex w such that $h(w) = \deg_H(w)$. Moreover, H has less cycles than G and so it is not a counterexample. Then, $\mathcal{K}_h(H) = |E(H)| - \sum_{u \in V(H)} (\deg_H(u) - h(u))$. By Observation 2, $\mathcal{K}_f(G) = \mathcal{K}_h(H)$. Therefore,

$$\mathcal{K}_f(G) = \mathcal{K}_h(H) = |E(H)| - \sum_{u \in V(H)} \left(\deg_H(u) - h(u) \right)$$
$$= |E(G)| - \sum_{u \in V(G)} \left(\deg_G(u) - f(u) \right),$$

a contradiction to the choice of G.

The following result present other graphs achieving the bound established in Theorem 1.

Theorem 3. Let D be a dominating set of a graph G such that $|D| \geq 2$ and G[D] is a connected subgraph of G. Let I be a set of isolated vertices in $G[V(G) \setminus D]$. If there is a spanning subgraph B of G satisfying

- (i) every edge of B is incident with a vertex in I,
- (ii) $\deg_{B}(u) = f(u) 1 \text{ if } u \in D$,
- (iii) $\deg_B(u) < f(u)$ if $u \in I$ and $\deg_G(u) > f(u)$, then

$$\mathcal{K}_f(G) = 1 + \sum_{u \in D} (f(u) - 1) + \alpha_f(V(G) \setminus D).$$

Proof. Set $k = \sum_{u \in D} (f(u) - 1)$ and $\alpha = \alpha_f(V(G) \setminus D)$. According to (i), every edge of B connects a vertex from I with one from D. Moreover, by (ii), |E(B)| = k. Let H be an f-subgraph of $G[V(G) \setminus D]$ having α edges. Clearly, no edge of H is incident with a vertex in I.

Denote by e_1, e_2, \ldots, e_k edges of B and by $a_1, a_2, \ldots, a_{\alpha}$ edges of H. Consider the mapping ψ from E(G) onto $\{1, 2, \ldots, 1 + k + \alpha\}$ given by

$$\psi(e) = \begin{cases} j & \text{if } e \in E(B) \text{ and } e = e_j, \\ k+j & \text{if } e \in E(H) \text{ and } e = a_j, \\ 1+k+\alpha & \text{if } e \notin E(B) \cup E(H). \end{cases}$$

According to (ii), $|\psi(u)| = f(u)$, for any vertex $u \in D$. By (iii), $|\psi(u)| \leq f(u)$, for any vertex $u \in I$. Similarly, $|\psi(u)| \leq f(u)$, for any vertex $u \in V(G) \setminus (D \cup I)$, because H is an f-subgraph. Therefore, ψ is an M_f -edge coloring of G. Consequently, $\mathcal{K}_f(G) \geq |\psi(G)| = 1 + k + \alpha$. The opposite inequality follows from Theorem 1.

Recall that the *join* of two graphs G and H is obtained from vertex-disjoint copies of G and H by adding all edges between V(G) and V(H).

Corollary 7. Let q, n and m be integers such that $q \geq 2$, $n \geq 2$, $m \geq q-1$ when $n \leq q$, and $m \geq n$ when n > q. Let G_1 and G_2 be disjoint graphs such that $|V(G_1)| = n$, G_2 contains m isolated vertices, and let G be the join of G_1 and G_2 . Then

$$\mathcal{K}_q(G) = 1 + n(q-1) + \alpha_q(V(G_2)).$$

Proof. Clearly, $V(G_1)$ is a dominating set of G. Let I be the set of isolated vertices in G_2 . Then G contains the complete bipartite subgraph with parts $V(G_1)$ and I (i.e., the subgraph isomorphic to $K_{n,m}$). The graph $K_{n,m}$ contains either a subgraph isomorphic to $K_{n,q-1}$ (if $n \leq q$), or a (q-1)-regular subgraph of order 2n (if n > q). Thus, there is a spanning subgraph B of G satisfying conditions (i)–(iii) from Theorem 3, and the assertion follows.

A complete k-partite graph is a graph whose vertices can be partitioned into $k \geq 2$ disjoint classes V_1, \ldots, V_k such that two vertices are adjacent whenever they belong to distinct classes. If $|V_i| = n_i$, $i = 1, \ldots, k$, then the complete k-partite graph is denoted by K_{n_1, \ldots, n_k} .

In [13] there are stated some results on $\mathcal{K}_q(G)$ for complete multipartite graphs with parts of size at least q-1. In the following assertion we consider complete multipartite graphs that can contain parts of size less than q-1, so we extend the result from [13]. The complete k-partite graph $K_{n_1,\ldots,n_{k-1},n_k}$ is the join of $K_{n_1,\ldots,n_{k-1}}$ and the totally disconnected graph of order n_k . Thus, according to Corollary 7, we immediately have the following statement.

Corollary 8. Let q, k, n_1, \ldots, n_k and p be integers such that $q \geq 2, k \geq 3, 1 \leq n_1 \leq \cdots \leq n_k, p = \sum_{j=1}^{k-1} n_j, n_k \geq q-1$ when $p \leq q$, and $n_k \geq p$ when p > q. Then

$$\mathcal{K}_q(K_{n_1,\dots,n_k}) = 1 + p(q-1).$$

The corona $G \odot H$ of graphs G and H is obtained by taking one copy of G and |V(G)| copies of H, and then joining by an edge the i'th vertex of G to every vertex in the i'th copy of H.

According to Theorem 3, we immediately have the following assertion.

Corollary 9. Let q be a positive integer. Let G be a connected graph of order at least two and let H be a graph containing at least q-1 isolated vertices. Then

$$\mathcal{K}_q(G \odot H) = 1 + |V(G)| (q - 1 + \alpha_q(H)).$$

A vertex of a graph G is called a *dominating vertex* if it is adjacent to every other vertex of G.

Theorem 4. Let w be a dominating vertex of a graph G. Let f be a function from V(G) to positive integers such that $\deg_G(u) \geq f(u) + \lfloor (|V(G)| + f(w) - 3)/2 \rfloor$, for every vertex u of G. Then

$$\mathcal{K}_f(G) = 1 + \alpha_f(G).$$

Proof. Suppose that φ is an M_f -edge coloring of G which uses $\mathcal{K}_f(G)$ colors (i.e., $|\varphi(G)| = \mathcal{K}_f(G)$). Denote colors of $\varphi(w)$ by c_1, \ldots, c_k $(k = |\varphi(w)|)$ and set $U_j = \{u \in V(G) \setminus \{w\} : \varphi(wu) = c_j\}$ for each $j \in \{1, \ldots, k\}$.

Let A be a subset of E(G) containing exactly one edge of each color belonging to $\varphi(G) \setminus \varphi(w)$. Let H be a subgraph of G such that $V(H) = V(G) \setminus \{w\}$ and E(H) = A. Evidently, the graph H is an f-subgraph of G. Set

$$X = \{v \in V(H) : \deg_H(v) = f(v) - 1\} \text{ and } Y = \{v \in V(H) : \deg_H(v) < f(v) - 1\}.$$

First suppose that $|Y| \leq k - 2$. As U_1, U_2, \ldots, U_k are pairwise disjoint, at most |Y| sets of them contain a vertex of Y. Then there are at least two sets, without loss of generality U_1 and U_2 , such that $U_1 \cap Y = \emptyset = U_2 \cap Y$. Moreover, we can assume that $|U_1| \leq |U_2|$. Thus, $|U_1| \leq \lfloor |X|/2 \rfloor = \lfloor (|V(G)| - 1 - |Y|)/2 \rfloor$. Let u^* be a vertex of U_1 . As

$$\begin{aligned} |\{w\}| + |U_1 \setminus \{u^*\}| + |Y| &\leq 1 + \left(\left\lfloor \frac{|V(G)| - 1 - |Y|}{2} \right\rfloor - 1 \right) + |Y| \\ &= \left\lfloor \frac{|V(G)| + |Y| - 1}{2} \right\rfloor \leq \left\lfloor \frac{|V(G)| + k - 3}{2} \right\rfloor \leq \left\lfloor \frac{|V(G)| + f(w) - 3}{2} \right\rfloor, \end{aligned}$$

there are at least $f(u^*)$ vertices of $X \setminus U_1$ that are adjacent to u^* in G. Since $\deg_H(u^*) = f(u^*) - 1$, there is a vertex $v^* \in X \setminus U_1$ such that $u^*v^* \in E(G)$ and $u^*v^* \notin E(H)$. As $v^* \in X \setminus U_1$, there is $i, 2 \le i \le k$, such that $v^* \in U_i$. Since $\deg_H(v^*) = f(v^*) - 1$, for each color $c \in \varphi(v^*) \setminus \{c_i\}$, there is a vertex $x \in N_H(v^*)$ such that $\varphi(v^*x) = c$. Similarly, for each color $c \in \varphi(u^*) \setminus \{c_1\}$, there is a vertex $x \in N_H(u^*)$ such that $\varphi(u^*x) = c$. Therefore, $(\varphi(u^*) \setminus \{c_1\}) \cap (\varphi(v^*) \setminus \{c_i\}) = \emptyset$, because the vertices u^* and v^* are not adjacent in H. As the colors c_1 and c_i are distinct, $\varphi(u^*) \cap \varphi(v^*) = \emptyset$. Consequently, $\varphi(u^*v^*) \in \varphi(u^*) \cap \varphi(v^*) = \emptyset$, a contradiction. So, this case is impossible.

Then $|Y| \geq k-1$ and there are vertices y_1, \ldots, y_{k-1} belonging to Y. Set $A^* = A \cup \{wy_j : 1 \leq j \leq k-1\}$ and consider a subgraph F of G induced by A^* . Clearly, F is an f-subgraph of G and so $|A^*| \leq \alpha_f(G)$. Hence

$$\mathcal{K}_f(G) = |\varphi(G)| = |\varphi(w)| + |A| = 1 + (k-1) + |A| = 1 + |A^*| \le 1 + \alpha_f(G).$$

The opposite inequality follows from Lemma 2.

Corollary 10. Let q be a positive integer. Let G be a graph such that

$$\Delta(G) = |V(G)| - 1$$
 and $\delta(G) \ge |(|V(G)| + 3q - 3)/2|$.

Then

$$\mathcal{K}_q(G) = 1 + \left| \frac{(q-1)|V(G)|}{2} \right|.$$

Proof. The case when q=1 is evident, so next we consider $q\geq 2$.

As $\delta(G) \geq \lfloor (|V(G)| + 3q - 3)/2 \rfloor \geq (3q - 4)/2 + |V(G)|/2$, there are pairwise edge-disjoint Hamilton cycles C_1, C_2, \ldots, C_k , where $k = \lceil (q-1)/2 \rceil$, in G (because of Dirac's theorem). Suppose that A is a subset of $E(C_1)$ such that it consists of either $\lfloor |V(G)|/2 \rfloor$ independent edges, when q is even, or all edges of C_1 , when q is odd. Set $A^* = A \cup \bigcup_{j=2}^k E(C_j)$. It is easy to see that the subgraph of G induced by A^* is a q-subgraph with the maximum number of edges, i.e., $\alpha_q(G) = |A^*| = \lfloor (q-1)|V(G)|/2 \rfloor$. Therefore, according to Theorem 4, we have the assertion.

In [11] there is determined $\mathcal{K}_q(K_n)$ within 1, for $n \geq q + 2$. Note that, by Corollary 10, $\mathcal{K}_q(K_n) = 1 + \lfloor (q-1)n/2 \rfloor$, for $n \geq 3q - 1$, which is an extension of the result from [11].

References

- [1] A. Adamaszek and A. Popa, Approximation and hardness results for the maximum edge q-coloring problem, J. Discrete Algorithms **38–41** (2016) 1–8. https://doi.org/10.1016/j.jda.2016.09.003
- [2] S. Akbari, N. Alipourfard, P. Jandaghi and M. Mirtaheri, On N_2 -vertex coloring of graphs, Discrete Math. Algorithms Appl. **10** (2018) 1850007. https://doi.org/10.1142/S1793830918500076
- K. Budajová and J. Czap, M₂-edge coloring and maximum matching of graphs, Int. J. Pure Appl. Math. 88 (2013) 161–167. https://doi.org/10.12732/ijpam.v88i2.1
- [4] J. Czap, M_i -edge colorings of graphs, Appl. Math. Sci. 5 (2011) 2437–2442.
- [5] J. Czap, A note on M₂-edge colorings of graphs, Opuscula Math. 35 (2015) 287–291. https://doi.org/10.7494/OpMath.2015.35.3.287

- [6] J. Czap and P. Šugerek, M_i-edge colorings of complete graphs, Appl. Math. Sci. 9 (2015) 3835–3842.
 https://doi.org/10.12988/ams.2015.53264
- [7] J. Czap, P. Šugerek and J. Ivančo, M₂-edge colorings of cacti and graph joins,
 Discuss. Math. Graph Theory 36 (2016) 59–69.
 https://doi.org/10.7151/dmgt.1842
- W. Feng, L. Zang and H. Wang, Approximation algorithm for maximum edge coloring, Theoret. Comput. Sci. 410 (2009) 1022–1029. https://doi.org/10.1016/j.tcs.2008.10.035
- [9] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, Graphs Combin. 26 (2010) 1–30. https://doi.org/10.1007/s00373-010-0891-3
- [10] J. Ivančo, M_2 -edge colorings of dense graphs, Opuscula Math. **36** (2016) 603–612. https://doi.org/10.7494/OpMath.2016.36.5.603
- [11] T. Jiang, Edge-colorings with no large polychromatic stars, Graphs Combin. 18 (2002) 303–308. https://doi.org/10.1007/s003730200022
- [12] T. Larjomma and A. Popa, The min-max edge q-coloring problem, J. Graph Algorithms Appl. 19 (2015) 505–528. https://doi.org/10.7155/jgaa.00373
- [13] J.J. Montellano-Ballesteros, On totally multicolored stars, J. Graph Theory 51 (2006) 225–243. https://doi.org/10.1002/jgt.20140

Received 3 December 2019 Revised 30 April 2020 Accepted 30 April 2020