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Abstract

An edge coloring ϕ of a graph G is called an Mf -edge coloring if |ϕ(v)| ≤
f(v) for every vertex v of G, where ϕ(v) is the set of colors of edges incident
with v and f is a function which assigns a positive integer f(v) to each vertex
v. Let Kf (G) denote the maximum number of colors used in an Mf -edge
coloring of G. In this paper we establish some bounds on Kf (G), present
some graphs achieving the bounds and determine exact values of Kf (G) for
some special classes of graphs.
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1. Introduction

We consider finite undirected graphs without loops and multiple edges. If G
is a graph, then V (G) and E(G) stand for the vertex set and edge set of G,
respectively. The subgraph of a graph G induced by U ⊆ V (G) is denoted by
G[U ]. Similarly, if A ⊆ E(G), then G[A] denotes the subgraph of G induced
by A (i.e., the subgraph with the edge set A and the vertex set consisting of all
vertices incident with an edge in A). The set of vertices of G adjacent to a vertex
v ∈ V (G) is denoted by NG(v). The cardinality of this set, denoted degG(v),
is called the degree of v. As usual ∆(G) and δ(G) stand for the maximum and
minimum degree among vertices of G. The set of vertices of degree d in G is
denoted by Vd(G).

1This work was supported by the Slovak VEGA Grant 1/0368/16 and by the Slovak Research
and Development Agency under the contract No. APVV-15-0116.
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An edge coloring of a graph G is an assignment of colors to the edges of G,
one color to each edge. So any mapping ϕ from E(G) onto a non-empty set is
an edge coloring of G. The set of colors used in an edge coloring ϕ of G is denoted
by ϕ(G), i.e., ϕ(G) = {ϕ(e) : e ∈ E(G)}. For any vertex v ∈ V (G), let ϕ(v)
denote the set of colors of edges incident with v, i.e., ϕ(v) = {ϕ(vu) : u ∈ NG(v)}.
Let f be a function which assigns a positive integer f(v) to each vertex v ∈ V (G).
An edge coloring ϕ of G is an Mf -edge coloring if at most f(v) colors appear at
any vertex v of G, i.e., |ϕ(v)| ≤ f(v) for every vertex v ∈ V (G). The maximum
number of colors used in an Mf -edge coloring of G is denoted by Kf (G). If
f(v) = i for all v ∈ V (G), then an Mf -edge coloring is called an Mi-edge coloring

and the maximum number of colors used in an Mi-edge coloring is denoted by
Ki(G).

The Mf -edge coloring is a natural generalization of the Mi-edge coloring.
The concept of Mi-edge colorings was introduced by Czap [4]. In [3] authors
establish a tight bound on K2(G) depending on the size of a maximum matching
in G. In [4] and [5], the exact values of K2(G) for subcubic graphs and complete
graphs are determined. In [7] it is determined K2(G) for cacti, trees, graph joins
and complete multipartite graphs. In [10] there are established some bounds on
K2(G) and presented graphs achieving the bounds. Exact values of K2(G) for
dense graphs are also determined. K3(G) and K4(G) for complete graphs are
determined in [6]. A vertex variant of the M2-edge coloring was studied in [2].

However before, Feng et al. [8] introduced a maximum edge q-coloring prob-

lem which arises from wireless mesh networks. It is really the problem of finding
an Mq-edge coloring of a given graph G which uses Kq(G) colors (for an inte-
ger q, q ≥ 2). There are studied mainly algorithmic aspects of the maximum
edge q-coloring problem. In [8] there is provided a 2-approximation algorithm

for q = 2 and a
(

1 + 4q−2
3q2−5q+2

)

-approximation for q > 2. In [1] there is proved

that the maximum edge q-coloring problem is NP-Hard. Also, for graphs with
perfect matching there is presented a 5

3 -approximation algorithm in case q = 2.
A related problem is studied in [12].

The anti-Ramsey number has been extensively studied in the area of extremal
graph theory (see [9] for a survey). For given graphs G and H the anti-Ramsey
number ar(G,H) is defined to be the maximum number k such that there exists
an assignment of k colors to the edges of G in which every copy of H in G has at
least two edges with the same color. A coloring of G is an Mq-edge coloring if and
only if each subgraph K1,q+1 (a star with q + 1 edges) of G has two edges with
the same color. Therefore Kq(G) is equal to ar(G,K1,q+1). Thereby, in [11] there
is determined Kq(Kn,n) exactly and Kq(Kn) within 1, for all positive integers n
and q. Similarly, an upper bound on the value of Kq(G) if δ(G) ≥ q + 5, or if G
is K3-free and δ(G) ≥ q+2, is presented in [13]. Some applications of this bound
(e.g., exact values of Kq(G) for hypercubes) are also produced.
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In this paper we establish some bounds of Kf (G) depending on dominating
sets of G. We also determine exact values of Kf (G) for some particular classes
of graphs, especially for trees, forests, some cactuses, and dense graphs with
a dominating vertex. Accordingly, we extend some known results, proved in [11]
and [13], on Kq(G) (as anti-Ramsey number) for complete graphs and complete
multipartite graphs.

2. Auxiliary Results

It is easy to see that |ϕ(v)| ≤ degG(v) for any edge coloring ϕ of a graph G and
each vertex v ∈ V (G). Therefore, throughout the paper we suppose that the
function f satisfies

(1) 1 ≤ f(v) ≤ degG(v) for every v ∈ V (G).

The following two claims are evident.

Observation 1. Let f be a function from the vertex set of a graph G to positive

integers. Assume that G has k connected components. Let Gj, j ∈ {1, . . . , k}, be
a component of the graph G and let fj be a restriction of f to V (Gj). Then

Kf (G) =
k
∑

j=1

Kfj (Gj).

Given a graph G, let e = uv be an edge of G such that degG(v) ≥ 2. By
S(G; e, v) we denote the graph with the vertex set V (G) ∪ {v′} and the edge set
(E(G) \ {e}) ∪ {uv′}.

Observation 2. Let f be a function from the vertex set of a graph G to integers

satisfying (1). Let v be a vertex of G such that f(v) = degG(v) ≥ 2. For an edge

e incident with v let h be a function from the vertex set of S(G; e, v) to integers

given by

h(u) =

{

f(u) if u /∈ {v, v′},

degS(G;e,v)(u) if u ∈ {v, v′}.

Then

Kf (G) = Kh

(

S(G; e, v)
)

.

Let ϕ be an Mf -edge coloring of G. For a set U ⊆ V (G), let ϕ(U) denote the
set of colors of edges incident with vertices of U in G. Thus, ϕ(U) =

⋃

v∈U ϕ(v).

Lemma 1. Let ϕ be an Mf -edge coloring of a graph G and let U be a non-empty

subset of V (G). Then the following statements hold.
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(i) |ϕ(U)| ≤ c +
∑

u∈U

(

f(u) − 1
)

, where c denotes the number of connected

components of G[U ].

(ii) If G[U ] is a 2-connected graph and |ϕ(U)| = 1 +
∑

u∈U

(

f(u) − 1
)

, then

|{ϕ(e) : e ∈ E(G[U ])}| = 1.

Proof. (i) First suppose that G[U ] is a connected graph. Denote the vertices
of U by u1, u2, . . . , uk in such a way that the set Xi = {u1, u2, . . . , ui} induces
a connected subgraph of G for every i ∈ {1, 2, . . . , k}. As G[Xi] is connected
for i ≥ 2, there is j (1 ≤ j < i) such that uiuj is an edge of G. Therefore,
ϕ(uiuj) ∈ ϕ(Xi−1) ∩ ϕ(ui) and

|ϕ(Xi)| = |ϕ(Xi−1) ∪ ϕ(ui)| = |ϕ(Xi−1)|+ |ϕ(ui)| − |ϕ(Xi−1) ∩ ϕ(ui)|

≤ |ϕ(Xi−1)|+ f(ui)− 1.

Clearly, |ϕ(X1)| = |ϕ(u1)| ≤ f(u1) = 1 +
∑

u∈X1

(

f(u)− 1
)

. Thus, by induction
we get

|ϕ(Xi)| ≤ |ϕ(Xi−1)|+
(

f(ui)− 1
)

≤ 1 +
∑

u∈Xi

(

f(u)− 1
)

and consequently |ϕ(U)| = |ϕ(Xk)| ≤ 1 +
∑

u∈U

(

f(u)− 1
)

.

IfG[U ] is a disconnected graph, then the set U can be partitioned into disjoint
subsets U1, U2, . . . , Uc in such a way that G[Ui] is a connected component of G[U ]
for every i ∈ {1, 2, . . . , c}. Therefore,

|ϕ(U)| =

∣

∣

∣

∣

∣

ϕ

(

c
⋃

i=1

Ui

)∣

∣

∣

∣

∣

≤
c
∑

i=1

|ϕ(Ui)| ≤
c
∑

i=1



1 +
∑

u∈Ui

(

f(u)− 1
)





= c+
∑

u∈U

(

f(u)− 1
)

.

(ii) Now suppose that G[U ] is 2-connected and |{ϕ(e) : e ∈ E(G[U ])}| > 1.
Then there are edges uw and vw in E(G[U ]) such that ϕ(uw) 6= ϕ(vw). Therefore,
|ϕ(w) ∩

(

ϕ(u) ∪ ϕ(v)
)

| ≥ 2 and consequently |ϕ(w) ∩ ϕ(U \ {w})| ≥ 2. As G[U ]
is 2-connected, G[U \ {w}] is connected and by (i)

|ϕ(U \ {w})| ≤ 1 +
∑

u∈U \ {w}

(

f(u)− 1
)

.

Hence |ϕ(U)| ≤ |ϕ(U \ {w})|+f(w)−2 ≤
∑

u∈U

(

f(u)−1
)

, which completes the
proof.

A subgraph H of a graph G is called an f -subgraph of G if degH(v) < f(v)
for every v ∈ V (H). The maximum number of edges in an f -subgraph of G is
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denoted by αf (G) and the maximum number of edges in an f -subgraph of G[U ]
(U ⊂ V (G)) is denoted by αf (U) (i.e., αf (G) = αf (V (G))). If f(v) = i for all
v ∈ V (G), then αf (G) and αf (U) is denoted by αi(G) and αi(U), respectively.

Lemma 2. Let H be an f -subgraph of a graph G. Then there is an Mf -edge

coloring of G such that |ϕ(G)| = c + |E(H)|, where c denotes the number of

connected components of G[E(G) \E(H)],

Proof. Denote by e1, e2, . . . , eh edges of H and by C1, C2, . . . , Cc components of
G[E(G) \E(H)] (c = 0 when E(H) = E(G)). Consider a mapping ϕ from E(G)
onto {1, 2, . . . , h+ c} given by

ϕ(e) =

{

j if e ∈ E(H) and e = ej ,

h+ j if e /∈ E(H) and e ∈ Cj .

Clearly, |ϕ(v)| ≤ degH(v) + 1 ≤ f(v), for any vertex v ∈ V (G). Therefore, ϕ is
a desired Mf -edge coloring of G.

Lemma 3. Let G be a connected graph of order at least 2. Let c(v) denote the

number of components of G− v and d(v) = min{c(v), f(v)} for every v ∈ V (G).
Then there is an Mf -edge coloring ϕ of G such that

|ϕ(G)| = 1 +
∑

v∈V (G)

(d(v)− 1) and |ϕ(v)| = d(v) for every v ∈ V (G).

Proof. Denote vertices of U = {u ∈ V (G) : d(u) > 1} by u1, u2, . . . , uk. Put
U0 = ∅, s0 = 0 and Ui = Ui−1 ∪ {ui}, si = si−1 + d(ui)− 1, for i ∈ {1, 2, . . . , k}.
Evidently, si =

∑

v∈Ui
(d(v) − 1). For all i ∈ {0, 1, . . . , k}, define the Mf -edge

coloring ϕi of G recursively in the following way.
Let ϕ0 be a mapping from E(G) to {0}. As ϕ0(e) = 0, for every edge

e ∈ E(G), |ϕ0(G)| = 1 = 1 + s0 and |ϕ0(v)| = 1 for each v ∈ V (G).
Now suppose that a mapping ϕi from E(G) onto {0, 1, . . . , si} is an Mf -

edge coloring of G such that |ϕi(v)| = d(v) for v ∈ Ui and |ϕi(v)| = 1 for
v ∈ V (G) \Ui. As ui+1 /∈ Ui, |ϕi(ui+1)| = 1. Since d(ui+1) > 1, the graph
G− ui+1 is disconnected with c(ui+1) components. As c(ui+1) ≥ d(ui+1), we can
choose components C1, C2, . . . , Ct (where t = d(ui+1)− 1) of G− ui+1. For each
j ∈ {1, 2, . . . , t}, let Hj be a subgraph of G induced by V (Cj)∪{ui+1}. Consider
a mapping ϕi+1 from E(G) onto {0, 1, . . . , si+1} given by

ϕi+1(e) =

{

si + j if ϕi(e) ∈ ϕi(ui+1) and e ∈ E(Hj),

ϕi(e) otherwise.

Evidently, |ϕi+1(v)| = |ϕi(v)| for v ∈ V (G) \ {ui+1}, and |ϕi+1(ui+1)| = 1 + t =
d(ui+1). Therefore, ϕi+1 is an Mf -edge coloring of G such that |ϕi+1(G)| =
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1 + si + t = 1 + si+1. Moreover, |ϕi+1(v)| = d(v) for v ∈ Ui+1 and |ϕi+1(v)| = 1
for v ∈ V (G) \Ui+1.

Thus, there is an Mf -edge coloring ϕ (ϕ = ϕk) of G such that |ϕ(G)| = 1+sk,
|ϕ(v)| = d(v) for v ∈ Uk = U , and |ϕ(v)| = 1 for v ∈ V (G) \U . As d(v) = 1 for
each v ∈ V (G) \U , ϕ is a desired coloring.

3. Main Results

A set D ⊆ V (G) is called dominating in G, if for each v ∈ V (G) \D there exists
a vertex u ∈ D adjacent to v.

Theorem 1. Let D be a dominating set of a graph G. If c denotes the number

of connected components of G[D], then

Kf (G) ≤ c+
∑

u∈D

(

f(u)− 1
)

+ αf

(

V (G) \D
)

.

Proof. Let ϕ be an Mf -edge coloring of G which uses Kf (G) colors, i.e., |ϕ(G)| =
Kf (G). Suppose that A is a subset of E(G) containing exactly one edge of
each color belonging to ϕ(G) \ ϕ(D). Let H be a subgraph of G induced by A.
Evidently, the graph H is an f -subgraph of G and V (H) ⊆ V (G) \D. Therefore,
|A| = |E(H)| ≤ αf

(

V (G) \D
)

. Thus,

Kf (G) = |ϕ(D)|+ |A| ≤ |ϕ(D)|+ αf (V (G) \D).

According to Lemma 1, |ϕ(D)| ≤ c+
∑

u∈D

(

f(u)−1
)

and the desired inequality
follows.

The following result present some graphs achieving the bound established in
Theorem 1.

Theorem 2. Let D be a dominating set of a connected graph G satisfying

(i) |D| ≥ 2;

(ii) G[D] is a connected subgraph of G;

(iii) if u ∈ D and c(u) is the number of connected components of G[D]− u, then
there is at least f(u)− c(u) vertices in V (G) \D adjacent to u;

(iv) f(v) = degG(v) for all v ∈ V (G) \D.

Then

Kf (G) = 1 +
∣

∣E
(

G[V (G) \D]
)∣

∣+
∑

u∈D

(

f(u)− 1
)

.
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Proof. For each vertex v ∈ V (G) \D there is a vertex in D adjacent to v. Thus,
degG[V (G) \D](v) < degG(v) = f(v). Therefore, G[V (G) \D] is an f -subgraph of

G and αf

(

V (G) \D
)

=
∣

∣E
(

G[V (G) \D]
)∣

∣. According to (ii), G[D] is a connected
subgraph of G, and by Theorem 1 we have

Kf (G) ≤ 1 +
∑

u∈D

(

f(u)− 1
)

+ αf

(

V (G) \D
)

= 1 +
∑

u∈D

(

f(u)− 1
)

+
∣

∣E
(

G[V (G) \D]
)∣

∣.

On the other hand, according to (i) and (ii), G[D] is a connected graph of
order at least 2. For every vertex u ∈ D, set A(u) = {uv ∈ E(G) : v ∈ V (G) \D},
d(u) = min{c(u), f(u)}, and t(u) = f(u) − d(u). By (iii), |A(u)| ≥ t(u). Thus,
there is a set A∗(u) such that A∗(u) ⊆ A(u) and |A∗(u)| = t(u). Clearly,

∣

∣

∣

∣

∣

E
(

G[V (G) \D]
)

∪
⋃

u∈D

A∗(u)

∣

∣

∣

∣

∣

=
∣

∣E
(

G[V (G) \D]
)∣

∣+
∑

u∈D

t(u).

Therefore, there is a bijection ζ from E
(

G[V (G) \D]
)

∪
⋃

u∈D A
∗(u) onto a set

B, where |B| =
∣

∣E
(

G[V (G) \D]
)∣

∣+
∑

u∈D t(u).
According to Lemma 3, there is an Mf -edge coloring ϕ of G[D] such that

|ϕ(G[D])| = 1 +
∑

u∈D

(

d(u) − 1
)

and |ϕ(u)| = d(u) for each u ∈ D. Moreover,
we can assume that ϕ(G[D]) and B are disjoint sets. Now suppose that ξ is any
mapping from D to ϕ(G[D]) satisfying ξ(u) ∈ ϕ(u) for each u ∈ D. Consider the
edge coloring ψ of G defined in the following way

ψ(e) =























ϕ(e) if e ∈ E(G[D]),

ζ(e) if e ∈ A∗(u),

ξ(u) if e ∈ A(u) \A∗(u),

ζ(e) if e ∈ E
(

G[V (G) \D]
)

.

We have |ψ(u)| = |ϕ(u)| + |A∗(u)| = d(u) + t(u) = f(u), for any vertex u ∈ D,
and |ψ(v)| ≤ degG(v) = f(v), for any vertex v ∈ V (G) \D. So, ψ is an Mf -edge
coloring of G which uses

∣

∣ϕ
(

G[D]
)∣

∣+ |B| colors. Hence

∣

∣ψ(G)
∣

∣ = 1 +
∑

u∈D

(

d(u)− 1
)

+
∣

∣E
(

G[V (G) \D]
)∣

∣+
∑

u∈D

t(u)

= 1 +
∑

u∈D

(

d(u)− 1 + t(u)
)

+
∣

∣E
(

G[V (G) \D]
)∣

∣

= 1 +
∑

u∈D

(

f(u)− 1
)

+
∣

∣E
(

G[V (G) \D]
)∣

∣ ,

i.e., Kf (G) ≥ 1 +
∑

u∈D

(

f(u)− 1
)

+
∣

∣E
(

G[V (G) \D]
)∣

∣.
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Recall that a connected graph in which every edge belongs to at most one
cycle is called a cactus.

Corollary 3. Let G be a cactus of order at least 2. For every vertex u ∈ V (G),
let ν(u) denote the number of cycles of G containing u. If f(u)+ν(u) ≤ degG(u),
for all u ∈ V (G), then

Kf (G) = 1 +
∑

u∈V (G)

(

f(u)− 1
)

.

Proof. Evidently, D = V (G) is a dominating set of G. As G is a cactus, c(u),
the number of connected components of G−u, is equal to degG(u)−ν(u) for every
vertex u ∈ V (G). Then, f(u) − c(u) = f(u) + ν(u) − degG(u) ≤ 0. Therefore,
the conditions of Theorem 2 are satisfied. Moreover,

∣

∣E
(

G[V (G) \D]
)∣

∣ = 0.
According to Theorem 2, the result follows.

Corollary 4. Let T be a tree of order at least 2. Let f be a function from V (T )
to positive integers satisfying (1). Then

Kf (T ) = 1 +
∑

u∈V (T )

(

f(u)− 1
)

= |E(T )| −
∑

u∈V (T )

(

degT (u)− f(u)
)

.

Especially, if q is a positive integer, then

Kq(T ) = 1 +
(

q − 1
)∣

∣V (T )
∣

∣−

q−1
∑

j=1

(

q − j
)∣

∣Vj(T )
∣

∣.

Proof. Each tree is a cactus without cycles. Therefore, by Corollary 3,

Kf (T ) = 1 +
∑

u∈V (T )

(

f(u)− 1
)

= 1 +
∑

u∈V (T )

f(u)−
∣

∣V (T )
∣

∣

=
∑

u∈V (T )

f(u)−
∣

∣E(T )
∣

∣ =
∣

∣E(T )
∣

∣+
∑

u∈V (T )

f(u)− 2
∣

∣E(T )
∣

∣

=
∣

∣E(T )
∣

∣+
∑

u∈V (T )

f(u)−
∑

u∈V (T )

degT (u)

=
∣

∣E(T )
∣

∣−
∑

u∈V (T )

(

degT (u)− f(u)
)

.

Now consider a function t from V (T ) to positive integers given by

t(u) = min{degT (u), q}.
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Then

∑

u∈V (T )

t(u) =

∆(T )
∑

j=1







∑

u∈V (T )
degT (u)=j

t(u)






=

q−1
∑

j=1

j
∣

∣Vj(T )
∣

∣+

∆(T )
∑

j=q

q
∣

∣Vj(T )
∣

∣

=

∆(T )
∑

j=1

q
∣

∣Vj(T )
∣

∣−

q−1
∑

j=1

(q − j)
∣

∣Vj(T )
∣

∣ = q
∣

∣V (T )
∣

∣−

q−1
∑

j=1

(q − j)
∣

∣Vj(T )
∣

∣.

Evidently, Kq(T ) = Kt(T ). Thus

Kq(T ) = 1 +
∑

u∈V (T )

(

t(u)− 1
)

= 1 +
∑

u∈V (T )

t(u)−
∣

∣V (T )
∣

∣

= 1 + q
∣

∣V (T )
∣

∣−

q−1
∑

j=1

(q − j)
∣

∣Vj(T )
∣

∣−
∣

∣V (T )
∣

∣

= 1 + (q − 1)
∣

∣V (T )
∣

∣−

q−1
∑

j=1

(q − j)
∣

∣Vj(T )
∣

∣,

which completes the proof.

Corollary 5. Let F be a forest whose every component is of order at least 2. Let

f be a function from V (F ) to positive integers satisfying (1). Then

Kf (F ) = |E(F )| −
∑

u∈V (F )

(

degF (u)− f(u)
)

.

Proof. Let Tj , j ∈ {1, . . . , k}, be a component of F and let fj be a restriction
of f to V (Tj). Every component of F is a tree, thus, by Observation 1 and
Corollary 4, we have

Kf (F ) =
k
∑

j=1

Kfj (Tj) =
k
∑

j=1



|E(Tj)| −
∑

u∈V (Tj)

(

degTj
(u)− f(u)

)





= |E(F )| −
∑

u∈V (F )

(

degF (u)− f(u)
)

,

which completes the proof.

Corollary 6. Let f be a function from the vertex set of a graph G to positive

integers satisfying (1). If every cycle of G contains a vertex v such that f(v) =
degG(v), then

Kf (G) = |E(G)| −
∑

u∈V (G)

(

degG(u)− f(u)
)

.
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Proof. Suppose that G is a counterexample with the minimum number of cycles.
According to Corollary 5, G contains a cycle C. Then there is a vertex v of C
such that f(v) = degG(v). Let e be an edge of the cycle C incident with v.
Consider a graph H = S(G; e, v) and a function h from V (H) to positive integers
defined by

h(u) =

{

f(u) if u ∈ V (H) \ {v, v′},

degH(u) if u ∈ {v, v′}.

Clearly, every cycle of H is also a cycle in G and it contains a vertex w such
that h(w) = degH(w). Moreover, H has less cycles than G and so it is not
a counterexample. Then, Kh(H) = |E(H)| −

∑

u∈V (H)

(

degH(u) − h(u)
)

. By
Observation 2, Kf (G) = Kh(H). Therefore,

Kf (G) = Kh(H) = |E(H)| −
∑

u∈V (H)

(

degH(u)− h(u)
)

= |E(G)| −
∑

u∈V (G)

(

degG(u)− f(u)
)

,

a contradiction to the choice of G.

The following result present other graphs achieving the bound established in
Theorem 1.

Theorem 3. Let D be a dominating set of a graph G such that |D| ≥ 2 and G[D]
is a connected subgraph of G. Let I be a set of isolated vertices in G[V (G) \D].
If there is a spanning subgraph B of G satisfying

(i) every edge of B is incident with a vertex in I,

(ii) degB(u) = f(u)− 1 if u ∈ D,

(iii) degB(u) < f(u) if u ∈ I and degG(u) > f(u),

then

Kf (G) = 1 +
∑

u∈D

(

f(u)− 1
)

+ αf

(

V (G) \D
)

.

Proof. Set k =
∑

u∈D

(

f(u) − 1
)

and α = αf

(

V (G) \D
)

. According to (i),
every edge of B connects a vertex from I with one from D. Moreover, by (ii),
|E(B)| = k. Let H be an f -subgraph of G[V (G) \D] having α edges. Clearly,
no edge of H is incident with a vertex in I.

Denote by e1, e2, . . . , ek edges of B and by a1, a2, . . . , aα edges of H. Consider
the mapping ψ from E(G) onto {1, 2, . . . , 1 + k + α} given by

ψ(e) =











j if e ∈ E(B) and e = ej ,

k + j if e ∈ E(H) and e = aj ,

1 + k + α if e /∈ E(B) ∪ E(H).
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According to (ii), |ψ(u)| = f(u), for any vertex u ∈ D. By (iii), |ψ(u)| ≤ f(u),
for any vertex u ∈ I. Similarly, |ψ(u)| ≤ f(u), for any vertex u ∈ V (G) \ (D ∪
I), because H is an f -subgraph. Therefore, ψ is an Mf -edge coloring of G.
Consequently, Kf (G) ≥ |ψ(G)| = 1+k+α. The opposite inequality follows from
Theorem 1.

Recall that the join of two graphs G and H is obtained from vertex-disjoint
copies of G and H by adding all edges between V (G) and V (H).

Corollary 7. Let q, n and m be integers such that q ≥ 2, n ≥ 2, m ≥ q − 1
when n ≤ q, and m ≥ n when n > q. Let G1 and G2 be disjoint graphs such that

|V (G1)| = n, G2 contains m isolated vertices, and let G be the join of G1 and

G2. Then

Kq(G) = 1 + n(q − 1) + αq

(

V (G2)
)

.

Proof. Clearly, V (G1) is a dominating set of G. Let I be the set of isolated
vertices in G2. Then G contains the complete bipartite subgraph with parts
V (G1) and I (i.e., the subgraph isomorphic to Kn,m). The graph Kn,m contains
either a subgraph isomorphic to Kn,q−1 (if n ≤ q), or a (q − 1)-regular subgraph
of order 2n (if n > q). Thus, there is a spanning subgraph B of G satisfying
conditions (i)–(iii) from Theorem 3, and the assertion follows.

A complete k-partite graph is a graph whose vertices can be partitioned into
k ≥ 2 disjoint classes V1, . . . , Vk such that two vertices are adjacent whenever they
belong to distinct classes. If |Vi| = ni, i = 1, . . . , k, then the complete k-partite
graph is denoted by Kn1,...,nk

.

In [13] there are stated some results on Kq(G) for complete multipartite
graphs with parts of size at least q − 1. In the following assertion we consider
complete multipartite graphs that can contain parts of size less than q− 1, so we
extend the result from [13]. The complete k-partite graphKn1,...,nk−1,nk

is the join
of Kn1,...,nk−1

and the totally disconnected graph of order nk. Thus, according to
Corollary 7, we immediately have the following statement.

Corollary 8. Let q, k, n1, . . . , nk and p be integers such that q ≥ 2, k ≥ 3,
1 ≤ n1 ≤ · · · ≤ nk, p =

∑k−1
j=1 nj, nk ≥ q−1 when p ≤ q, and nk ≥ p when p > q.

Then

Kq

(

Kn1,...,nk

)

= 1 + p(q − 1).

The corona G ⊙H of graphs G and H is obtained by taking one copy of G
and |V (G)| copies of H, and then joining by an edge the i’th vertex of G to every
vertex in the i’th copy of H.

According to Theorem 3, we immediately have the following assertion.
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Corollary 9. Let q be a positive integer. Let G be a connected graph of order at

least two and let H be a graph containing at least q − 1 isolated vertices. Then

Kq(G⊙H) = 1 + |V (G)|
(

q − 1 + αq(H)
)

.

A vertex of a graph G is called a dominating vertex if it is adjacent to every
other vertex of G.

Theorem 4. Let w be a dominating vertex of a graph G. Let f be a function from

V (G) to positive integers such that degG(u) ≥ f(u) +
⌊(

|V (G)| + f(w) − 3
)

/2
⌋

,

for every vertex u of G. Then

Kf (G) = 1 + αf (G).

Proof. Suppose that ϕ is an Mf -edge coloring of G which uses Kf (G) colors
(i.e., |ϕ(G)| = Kf (G)). Denote colors of ϕ(w) by c1, . . . , ck (k = |ϕ(w)|) and set
Uj =

{

u ∈ V (G) \ {w} : ϕ(wu) = cj
}

for each j ∈ {1, . . . , k}.
Let A be a subset of E(G) containing exactly one edge of each color belonging

to ϕ(G) \ϕ(w). Let H be a subgraph of G such that V (H) = V (G) \ {w} and
E(H) = A. Evidently, the graph H is an f -subgraph of G. Set

X =
{

v ∈ V (H) : degH(v) = f(v)− 1
}

and

Y =
{

v ∈ V (H) : degH(v) < f(v)− 1
}

.

First suppose that |Y | ≤ k − 2. As U1, U2, . . . , Uk are pairwise disjoint, at
most |Y | sets of them contain a vertex of Y . Then there are at least two sets,
without loss of generality U1 and U2, such that U1 ∩ Y = ∅ = U2 ∩ Y . Moreover,
we can assume that |U1| ≤ |U2|. Thus, |U1| ≤ ⌊|X|/2⌋ =

⌊

(|V (G)| − 1− |Y |)/2
⌋

.
Let u∗ be a vertex of U1. As

|{w}|+ |U1 \ {u
∗}|+ |Y | ≤ 1 +

(⌊

|V (G)| − 1− |Y |

2

⌋

− 1

)

+ |Y |

=

⌊

|V (G)|+ |Y | − 1

2

⌋

≤

⌊

|V (G)|+ k − 3

2

⌋

≤

⌊

|V (G)|+ f(w)− 3

2

⌋

,

there are at least f(u∗) vertices of X \U1 that are adjacent to u∗ in G. Since
degH(u∗) = f(u∗)− 1, there is a vertex v∗ ∈ X \ U1 such that u∗v∗ ∈ E(G) and
u∗v∗ /∈ E(H). As v∗ ∈ X \U1, there is i, 2 ≤ i ≤ k, such that v∗ ∈ Ui. Since
degH(v∗) = f(v∗)−1, for each color c ∈ ϕ(v∗) \ {ci}, there is a vertex x ∈ NH(v∗)
such that ϕ(v∗x) = c. Similarly, for each color c ∈ ϕ(u∗) \ {c1}, there is a vertex
x ∈ NH(u∗) such that ϕ(u∗x) = c. Therefore,

(

ϕ(u∗) \ {c1}
)

∩
(

ϕ(v∗) \ {ci}
)

= ∅,
because the vertices u∗ and v∗ are not adjacent in H. As the colors c1 and ci
are distinct, ϕ(u∗) ∩ ϕ(v∗) = ∅. Consequently, ϕ(u∗v∗) ∈ ϕ(u∗) ∩ ϕ(v∗) = ∅,
a contradiction. So, this case is impossible.
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Then |Y | ≥ k − 1 and there are vertices y1, . . . , yk−1 belonging to Y . Set
A∗ = A ∪ {wyj : 1 ≤ j ≤ k − 1} and consider a subgraph F of G induced by A∗.
Clearly, F is an f -subgraph of G and so |A∗| ≤ αf (G). Hence

Kf (G) = |ϕ(G)| = |ϕ(w)|+ |A| = 1 + (k − 1) + |A| = 1 + |A∗| ≤ 1 + αf (G).

The opposite inequality follows from Lemma 2.

Corollary 10. Let q be a positive integer. Let G be a graph such that

∆(G) = |V (G)| − 1 and δ(G) ≥
⌊

(|V (G)|+ 3q − 3)/2
⌋

.

Then

Kq(G) = 1 +

⌊

(q − 1)|V (G)|

2

⌋

.

Proof. The case when q = 1 is evident, so next we consider q ≥ 2.

As δ(G) ≥
⌊

(|V (G)|+3q− 3)/2
⌋

≥ (3q− 4)/2+ |V (G)|/2, there are pairwise
edge-disjoint Hamilton cycles C1, C2, . . . , Ck, where k = ⌈(q−1)/2⌉, in G (because
of Dirac’s theorem). Suppose that A is a subset of E(C1) such that it consists of
either ⌊|V (G)|/2⌋ independent edges, when q is even, or all edges of C1, when q is
odd. Set A∗ = A∪

⋃k
j=2E(Cj). It is easy to see that the subgraph of G induced

by A∗ is a q-subgraph with the maximum number of edges, i.e., αq(G) = |A∗| =
⌊

(q− 1)|V (G)|/2
⌋

. Therefore, according to Theorem 4, we have the assertion.

In [11] there is determined Kq(Kn) within 1, for n ≥ q + 2. Note that, by
Corollary 10, Kq(Kn) = 1 +

⌊

(q − 1)n/2
⌋

, for n ≥ 3q − 1, which is an extension
of the result from [11].
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[7] J. Czap, P. Šugerek and J. Ivančo, M2-edge colorings of cacti and graph joins ,
Discuss. Math. Graph Theory 36 (2016) 59–69.
https://doi.org/10.7151/dmgt.1842

[8] W. Feng, L. Zang and H. Wang, Approximation algorithm for maximum edge color-

ing , Theoret. Comput. Sci. 410 (2009) 1022–1029.
https://doi.org/10.1016/j.tcs.2008.10.035

[9] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: a

survey , Graphs Combin. 26 (2010) 1–30.
https://doi.org/10.1007/s00373-010-0891-3
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