ON M_{f}-EDGE COLORINGS OF GRAPHS

Jaroslav Ivančo ${ }^{1}$ and Alfréd Onderko
Institute of Mathematics, P.J. Šafárik University
Jesenná 5, 04001 Košice, Slovakia
e-mail: jaroslav.ivanco@upjs.sk
alfred.onderko@student.upjs.sk

Abstract

An edge coloring φ of a graph G is called an M_{f}-edge coloring if $|\varphi(v)| \leq$ $f(v)$ for every vertex v of G, where $\varphi(v)$ is the set of colors of edges incident with v and f is a function which assigns a positive integer $f(v)$ to each vertex v. Let $\mathcal{K}_{f}(G)$ denote the maximum number of colors used in an M_{f}-edge coloring of G. In this paper we establish some bounds on $\mathcal{K}_{f}(G)$, present some graphs achieving the bounds and determine exact values of $\mathcal{K}_{f}(G)$ for some special classes of graphs.

Keywords: edge coloring, anti-Ramsey number, dominating set.
2010 Mathematics Subject Classification: 05C15.

1. Introduction

We consider finite undirected graphs without loops and multiple edges. If G is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and edge set of G, respectively. The subgraph of a graph G induced by $U \subseteq V(G)$ is denoted by $G[U]$. Similarly, if $A \subseteq E(G)$, then $G[A]$ denotes the subgraph of G induced by A (i.e., the subgraph with the edge set A and the vertex set consisting of all vertices incident with an edge in A). The set of vertices of G adjacent to a vertex $v \in V(G)$ is denoted by $N_{G}(v)$. The cardinality of this set, denoted $\operatorname{deg}_{G}(v)$, is called the degree of v. As usual $\Delta(G)$ and $\delta(G)$ stand for the maximum and minimum degree among vertices of G. The set of vertices of degree d in G is denoted by $V_{d}(G)$.

[^0]An edge coloring of a graph G is an assignment of colors to the edges of G, one color to each edge. So any mapping φ from $E(G)$ onto a non-empty set is an edge coloring of G. The set of colors used in an edge coloring φ of G is denoted by $\varphi(G)$, i.e., $\varphi(G)=\{\varphi(e): e \in E(G)\}$. For any vertex $v \in V(G)$, let $\varphi(v)$ denote the set of colors of edges incident with v, i.e., $\varphi(v)=\left\{\varphi(v u): u \in N_{G}(v)\right\}$. Let f be a function which assigns a positive integer $f(v)$ to each vertex $v \in V(G)$. An edge coloring φ of G is an M_{f}-edge coloring if at most $f(v)$ colors appear at any vertex v of G, i.e., $|\varphi(v)| \leq f(v)$ for every vertex $v \in V(G)$. The maximum number of colors used in an M_{f}-edge coloring of G is denoted by $\mathcal{K}_{f}(G)$. If $f(v)=i$ for all $v \in V(G)$, then an M_{f}-edge coloring is called an M_{i}-edge coloring and the maximum number of colors used in an M_{i}-edge coloring is denoted by $\mathcal{K}_{i}(G)$.

The M_{f}-edge coloring is a natural generalization of the M_{i}-edge coloring. The concept of M_{i}-edge colorings was introduced by Czap [4]. In [3] authors establish a tight bound on $\mathcal{K}_{2}(G)$ depending on the size of a maximum matching in G. In [4] and [5], the exact values of $\mathcal{K}_{2}(G)$ for subcubic graphs and complete graphs are determined. In [7] it is determined $\mathcal{K}_{2}(G)$ for cacti, trees, graph joins and complete multipartite graphs. In [10] there are established some bounds on $\mathcal{K}_{2}(G)$ and presented graphs achieving the bounds. Exact values of $\mathcal{K}_{2}(G)$ for dense graphs are also determined. $\mathcal{K}_{3}(G)$ and $\mathcal{K}_{4}(G)$ for complete graphs are determined in [6]. A vertex variant of the M_{2}-edge coloring was studied in [2].

However before, Feng et al. [8] introduced a maximum edge q-coloring problem which arises from wireless mesh networks. It is really the problem of finding an M_{q}-edge coloring of a given graph G which uses $\mathcal{K}_{q}(G)$ colors (for an integer $q, q \geq 2$). There are studied mainly algorithmic aspects of the maximum edge q-coloring problem. In [8] there is provided a 2 -approximation algorithm for $q=2$ and a $\left(1+\frac{4 q-2}{3 q^{2}-5 q+2}\right)$-approximation for $q>2$. In [1] there is proved that the maximum edge q-coloring problem is NP-Hard. Also, for graphs with perfect matching there is presented a $\frac{5}{3}$-approximation algorithm in case $q=2$. A related problem is studied in [12].

The anti-Ramsey number has been extensively studied in the area of extremal graph theory (see [9] for a survey). For given graphs G and H the anti-Ramsey number $\operatorname{ar}(G, H)$ is defined to be the maximum number k such that there exists an assignment of k colors to the edges of G in which every copy of H in G has at least two edges with the same color. A coloring of G is an M_{q}-edge coloring if and only if each subgraph $K_{1, q+1}$ (a star with $q+1$ edges) of G has two edges with the same color. Therefore $\mathcal{K}_{q}(G)$ is equal to $\operatorname{ar}\left(G, K_{1, q+1}\right)$. Thereby, in [11] there is determined $\mathcal{K}_{q}\left(K_{n, n}\right)$ exactly and $\mathcal{K}_{q}\left(K_{n}\right)$ within 1 , for all positive integers n and q. Similarly, an upper bound on the value of $\mathcal{K}_{q}(G)$ if $\delta(G) \geq q+5$, or if G is K_{3}-free and $\delta(G) \geq q+2$, is presented in [13]. Some applications of this bound (e.g., exact values of $\mathcal{K}_{q}(G)$ for hypercubes) are also produced.

In this paper we establish some bounds of $\mathcal{K}_{f}(G)$ depending on dominating sets of G. We also determine exact values of $\mathcal{K}_{f}(G)$ for some particular classes of graphs, especially for trees, forests, some cactuses, and dense graphs with a dominating vertex. Accordingly, we extend some known results, proved in [11] and [13], on $\mathcal{K}_{q}(G)$ (as anti-Ramsey number) for complete graphs and complete multipartite graphs.

2. Auxiliary Results

It is easy to see that $|\varphi(v)| \leq \operatorname{deg}_{G}(v)$ for any edge coloring φ of a graph G and each vertex $v \in V(G)$. Therefore, throughout the paper we suppose that the function f satisfies

$$
\begin{equation*}
1 \leq f(v) \leq \operatorname{deg}_{G}(v) \quad \text { for every } v \in V(G) . \tag{1}
\end{equation*}
$$

The following two claims are evident.
Observation 1. Let f be a function from the vertex set of a graph G to positive integers. Assume that G has k connected components. Let $G_{j}, j \in\{1, \ldots, k\}$, be a component of the graph G and let f_{j} be a restriction of f to $V\left(G_{j}\right)$. Then

$$
\mathcal{K}_{f}(G)=\sum_{j=1}^{k} \mathcal{K}_{f_{j}}\left(G_{j}\right) .
$$

Given a graph G, let $e=u v$ be an edge of G such that $\operatorname{deg}_{G}(v) \geq 2$. By $S(G ; e, v)$ we denote the graph with the vertex set $V(G) \cup\left\{v^{\prime}\right\}$ and the edge set $(E(G) \backslash\{e\}) \cup\left\{u v^{\prime}\right\}$.

Observation 2. Let f be a function from the vertex set of a graph G to integers satisfying (1). Let v be a vertex of G such that $f(v)=\operatorname{deg}_{G}(v) \geq 2$. For an edge e incident with v let h be a function from the vertex set of $S(G ; e, v)$ to integers given by

$$
h(u)= \begin{cases}f(u) & \text { if } u \notin\left\{v, v^{\prime}\right\}, \\ \operatorname{deg}_{S(G ; e, v)}(u) & \text { if } u \in\left\{v, v^{\prime}\right\} .\end{cases}
$$

Then

$$
\mathcal{K}_{f}(G)=\mathcal{K}_{h}(S(G ; e, v)) .
$$

Let φ be an M_{f}-edge coloring of G. For a set $U \subseteq V(G)$, let $\varphi(U)$ denote the set of colors of edges incident with vertices of U in G. Thus, $\varphi(U)=\bigcup_{v \in U} \varphi(v)$.
Lemma 1. Let φ be an M_{f}-edge coloring of a graph G and let U be a non-empty subset of $V(G)$. Then the following statements hold.
(i) $|\varphi(U)| \leq c+\sum_{u \in U}(f(u)-1)$, where c denotes the number of connected components of $G[U]$.
(ii) If $G[U]$ is a 2-connected graph and $|\varphi(U)|=1+\sum_{u \in U}(f(u)-1)$, then $|\{\varphi(e): e \in E(G[U])\}|=1$.

Proof. (i) First suppose that $G[U]$ is a connected graph. Denote the vertices of U by $u_{1}, u_{2}, \ldots, u_{k}$ in such a way that the set $X_{i}=\left\{u_{1}, u_{2}, \ldots, u_{i}\right\}$ induces a connected subgraph of G for every $i \in\{1,2, \ldots, k\}$. As $G\left[X_{i}\right]$ is connected for $i \geq 2$, there is $j(1 \leq j<i)$ such that $u_{i} u_{j}$ is an edge of G. Therefore, $\varphi\left(u_{i} u_{j}\right) \in \varphi\left(X_{i-1}\right) \cap \varphi\left(u_{i}\right)$ and

$$
\begin{aligned}
\left|\varphi\left(X_{i}\right)\right| & =\left|\varphi\left(X_{i-1}\right) \cup \varphi\left(u_{i}\right)\right|=\left|\varphi\left(X_{i-1}\right)\right|+\left|\varphi\left(u_{i}\right)\right|-\left|\varphi\left(X_{i-1}\right) \cap \varphi\left(u_{i}\right)\right| \\
& \leq\left|\varphi\left(X_{i-1}\right)\right|+f\left(u_{i}\right)-1 .
\end{aligned}
$$

Clearly, $\left|\varphi\left(X_{1}\right)\right|=\left|\varphi\left(u_{1}\right)\right| \leq f\left(u_{1}\right)=1+\sum_{u \in X_{1}}(f(u)-1)$. Thus, by induction we get

$$
\left|\varphi\left(X_{i}\right)\right| \leq\left|\varphi\left(X_{i-1}\right)\right|+\left(f\left(u_{i}\right)-1\right) \leq 1+\sum_{u \in X_{i}}(f(u)-1)
$$

and consequently $|\varphi(U)|=\left|\varphi\left(X_{k}\right)\right| \leq 1+\sum_{u \in U}(f(u)-1)$.
If $G[U]$ is a disconnected graph, then the set U can be partitioned into disjoint subsets $U_{1}, U_{2}, \ldots, U_{c}$ in such a way that $G\left[U_{i}\right]$ is a connected component of $G[U]$ for every $i \in\{1,2, \ldots, c\}$. Therefore,

$$
\begin{aligned}
|\varphi(U)|=\left|\varphi\left(\bigcup_{i=1}^{c} U_{i}\right)\right| \leq \sum_{i=1}^{c}\left|\varphi\left(U_{i}\right)\right| & \leq \sum_{i=1}^{c}\left(1+\sum_{u \in U_{i}}(f(u)-1)\right) \\
& =c+\sum_{u \in U}(f(u)-1) .
\end{aligned}
$$

(ii) Now suppose that $G[U]$ is 2-connected and $|\{\varphi(e): e \in E(G[U])\}|>1$. Then there are edges $u w$ and $v w$ in $E(G[U])$ such that $\varphi(u w) \neq \varphi(v w)$. Therefore, $|\varphi(w) \cap(\varphi(u) \cup \varphi(v))| \geq 2$ and consequently $|\varphi(w) \cap \varphi(U \backslash\{w\})| \geq 2$. As $G[U]$ is 2-connected, $G[U \backslash\{w\}]$ is connected and by (i)

$$
|\varphi(U \backslash\{w\})| \leq 1+\sum_{u \in U \backslash\{w\}}(f(u)-1) .
$$

Hence $|\varphi(U)| \leq|\varphi(U \backslash\{w\})|+f(w)-2 \leq \sum_{u \in U}(f(u)-1)$, which completes the proof.

A subgraph H of a graph G is called an f-subgraph of G if $\operatorname{deg}_{H}(v)<f(v)$ for every $v \in V(H)$. The maximum number of edges in an f-subgraph of G is
denoted by $\alpha_{f}(G)$ and the maximum number of edges in an f-subgraph of $G[U]$ $(U \subset V(G))$ is denoted by $\alpha_{f}(U)$ (i.e., $\alpha_{f}(G)=\alpha_{f}(V(G))$). If $f(v)=i$ for all $v \in V(G)$, then $\alpha_{f}(G)$ and $\alpha_{f}(U)$ is denoted by $\alpha_{i}(G)$ and $\alpha_{i}(U)$, respectively.

Lemma 2. Let H be an f-subgraph of a graph G. Then there is an M_{f}-edge coloring of G such that $|\varphi(G)|=c+|E(H)|$, where c denotes the number of connected components of $G[E(G) \backslash E(H)]$,
Proof. Denote by $e_{1}, e_{2}, \ldots, e_{h}$ edges of H and by $C_{1}, C_{2}, \ldots, C_{c}$ components of $G[E(G) \backslash E(H)](c=0$ when $E(H)=E(G))$. Consider a mapping φ from $E(G)$ onto $\{1,2, \ldots, h+c\}$ given by

$$
\varphi(e)= \begin{cases}j & \text { if } e \in E(H) \text { and } e=e_{j} \\ h+j & \text { if } e \notin E(H) \text { and } e \in C_{j}\end{cases}
$$

Clearly, $|\varphi(v)| \leq \operatorname{deg}_{H}(v)+1 \leq f(v)$, for any vertex $v \in V(G)$. Therefore, φ is a desired M_{f}-edge coloring of G.

Lemma 3. Let G be a connected graph of order at least 2. Let $c(v)$ denote the number of components of $G-v$ and $d(v)=\min \{c(v), f(v)\}$ for every $v \in V(G)$. Then there is an M_{f}-edge coloring φ of G such that

$$
|\varphi(G)|=1+\sum_{v \in V(G)}(d(v)-1) \text { and }|\varphi(v)|=d(v) \text { for every } v \in V(G)
$$

Proof. Denote vertices of $U=\{u \in V(G): d(u)>1\}$ by $u_{1}, u_{2}, \ldots, u_{k}$. Put $U_{0}=\emptyset, s_{0}=0$ and $U_{i}=U_{i-1} \cup\left\{u_{i}\right\}, s_{i}=s_{i-1}+d\left(u_{i}\right)-1$, for $i \in\{1,2, \ldots, k\}$. Evidently, $s_{i}=\sum_{v \in U_{i}}(d(v)-1)$. For all $i \in\{0,1, \ldots, k\}$, define the M_{f}-edge coloring φ_{i} of G recursively in the following way.

Let φ_{0} be a mapping from $E(G)$ to $\{0\}$. As $\varphi_{0}(e)=0$, for every edge $e \in E(G),\left|\varphi_{0}(G)\right|=1=1+s_{0}$ and $\left|\varphi_{0}(v)\right|=1$ for each $v \in V(G)$.

Now suppose that a mapping φ_{i} from $E(G)$ onto $\left\{0,1, \ldots, s_{i}\right\}$ is an $\mathrm{M}_{f^{-}}$ edge coloring of G such that $\left|\varphi_{i}(v)\right|=d(v)$ for $v \in U_{i}$ and $\left|\varphi_{i}(v)\right|=1$ for $v \in V(G) \backslash U_{i}$. As $u_{i+1} \notin U_{i},\left|\varphi_{i}\left(u_{i+1}\right)\right|=1$. Since $d\left(u_{i+1}\right)>1$, the graph $G-u_{i+1}$ is disconnected with $c\left(u_{i+1}\right)$ components. As $c\left(u_{i+1}\right) \geq d\left(u_{i+1}\right)$, we can choose components $C_{1}, C_{2}, \ldots, C_{t}$ (where $t=d\left(u_{i+1}\right)-1$) of $G-u_{i+1}$. For each $j \in\{1,2, \ldots, t\}$, let H_{j} be a subgraph of G induced by $V\left(C_{j}\right) \cup\left\{u_{i+1}\right\}$. Consider a mapping φ_{i+1} from $E(G)$ onto $\left\{0,1, \ldots, s_{i+1}\right\}$ given by

$$
\varphi_{i+1}(e)= \begin{cases}s_{i}+j & \text { if } \varphi_{i}(e) \in \varphi_{i}\left(u_{i+1}\right) \text { and } e \in E\left(H_{j}\right) \\ \varphi_{i}(e) & \text { otherwise }\end{cases}
$$

Evidently, $\left|\varphi_{i+1}(v)\right|=\left|\varphi_{i}(v)\right|$ for $v \in V(G) \backslash\left\{u_{i+1}\right\}$, and $\left|\varphi_{i+1}\left(u_{i+1}\right)\right|=1+t=$ $d\left(u_{i+1}\right)$. Therefore, φ_{i+1} is an M_{f}-edge coloring of G such that $\left|\varphi_{i+1}(G)\right|=$
$1+s_{i}+t=1+s_{i+1}$. Moreover, $\left|\varphi_{i+1}(v)\right|=d(v)$ for $v \in U_{i+1}$ and $\left|\varphi_{i+1}(v)\right|=1$ for $v \in V(G) \backslash U_{i+1}$.

Thus, there is an M_{f}-edge coloring $\varphi\left(\varphi=\varphi_{k}\right)$ of G such that $|\varphi(G)|=1+s_{k}$, $|\varphi(v)|=d(v)$ for $v \in U_{k}=U$, and $|\varphi(v)|=1$ for $v \in V(G) \backslash U$. As $d(v)=1$ for each $v \in V(G) \backslash U, \varphi$ is a desired coloring.

3. Main Results

A set $D \subseteq V(G)$ is called dominating in G, if for each $v \in V(G) \backslash D$ there exists a vertex $u \in D$ adjacent to v.

Theorem 1. Let D be a dominating set of a graph G. If c denotes the number of connected components of $G[D]$, then

$$
\mathcal{K}_{f}(G) \leq c+\sum_{u \in D}(f(u)-1)+\alpha_{f}(V(G) \backslash D)
$$

Proof. Let φ be an M_{f}-edge coloring of G which uses $\mathcal{K}_{f}(G)$ colors, i.e., $|\varphi(G)|=$ $\mathcal{K}_{f}(G)$. Suppose that A is a subset of $E(G)$ containing exactly one edge of each color belonging to $\varphi(G) \backslash \varphi(D)$. Let H be a subgraph of G induced by A. Evidently, the graph H is an f-subgraph of G and $V(H) \subseteq V(G) \backslash D$. Therefore, $|A|=|E(H)| \leq \alpha_{f}(V(G) \backslash D)$. Thus,

$$
\mathcal{K}_{f}(G)=|\varphi(D)|+|A| \leq|\varphi(D)|+\alpha_{f}(V(G) \backslash D)
$$

According to Lemma $1,|\varphi(D)| \leq c+\sum_{u \in D}(f(u)-1)$ and the desired inequality follows.

The following result present some graphs achieving the bound established in Theorem 1.

Theorem 2. Let D be a dominating set of a connected graph G satisfying
(i) $|D| \geq 2$;
(ii) $G[D]$ is a connected subgraph of G;
(iii) if $u \in D$ and $c(u)$ is the number of connected components of $G[D]-u$, then there is at least $f(u)-c(u)$ vertices in $V(G) \backslash D$ adjacent to u;
(iv) $f(v)=\operatorname{deg}_{G}(v)$ for all $v \in V(G) \backslash D$.

Then

$$
\mathcal{K}_{f}(G)=1+|E(G[V(G) \backslash D])|+\sum_{u \in D}(f(u)-1)
$$

Proof. For each vertex $v \in V(G) \backslash D$ there is a vertex in D adjacent to v. Thus, $\operatorname{deg}_{G[V(G) \backslash D]}(v)<\operatorname{deg}_{G}(v)=f(v)$. Therefore, $G[V(G) \backslash D]$ is an f-subgraph of G and $\alpha_{f}(V(G) \backslash D)=|E(G[V(G) \backslash D])|$. According to (ii), $G[D]$ is a connected subgraph of G, and by Theorem 1 we have

$$
\begin{aligned}
\mathcal{K}_{f}(G) & \leq 1+\sum_{u \in D}(f(u)-1)+\alpha_{f}(V(G) \backslash D) \\
& =1+\sum_{u \in D}(f(u)-1)+|E(G[V(G) \backslash D])|
\end{aligned}
$$

On the other hand, according to (i) and (ii), $G[D]$ is a connected graph of order at least 2. For every vertex $u \in D$, set $A(u)=\{u v \in E(G): v \in V(G) \backslash D\}$, $d(u)=\min \{c(u), f(u)\}$, and $t(u)=f(u)-d(u)$. By (iii), $|A(u)| \geq t(u)$. Thus, there is a set $A^{*}(u)$ such that $A^{*}(u) \subseteq A(u)$ and $\left|A^{*}(u)\right|=t(u)$. Clearly,

$$
\left|E(G[V(G) \backslash D]) \cup \bigcup_{u \in D} A^{*}(u)\right|=|E(G[V(G) \backslash D])|+\sum_{u \in D} t(u)
$$

Therefore, there is a bijection ζ from $E(G[V(G) \backslash D]) \cup \bigcup_{u \in D} A^{*}(u)$ onto a set B, where $|B|=|E(G[V(G) \backslash D])|+\sum_{u \in D} t(u)$.

According to Lemma 3, there is an M_{f}-edge coloring φ of $G[D]$ such that $|\varphi(G[D])|=1+\sum_{u \in D}(d(u)-1)$ and $|\varphi(u)|=d(u)$ for each $u \in D$. Moreover, we can assume that $\varphi(G[D])$ and B are disjoint sets. Now suppose that ξ is any mapping from D to $\varphi(G[D])$ satisfying $\xi(u) \in \varphi(u)$ for each $u \in D$. Consider the edge coloring ψ of G defined in the following way

$$
\psi(e)= \begin{cases}\varphi(e) & \text { if } e \in E(G[D]) \\ \zeta(e) & \text { if } e \in A^{*}(u) \\ \xi(u) & \text { if } e \in A(u) \backslash A^{*}(u) \\ \zeta(e) & \text { if } e \in E(G[V(G) \backslash D])\end{cases}
$$

We have $|\psi(u)|=|\varphi(u)|+\left|A^{*}(u)\right|=d(u)+t(u)=f(u)$, for any vertex $u \in D$, and $|\psi(v)| \leq \operatorname{deg}_{G}(v)=f(v)$, for any vertex $v \in V(G) \backslash D$. So, ψ is an M_{f}-edge coloring of G which uses $|\varphi(G[D])|+|B|$ colors. Hence

$$
\begin{aligned}
|\psi(G)| & =1+\sum_{u \in D}(d(u)-1)+|E(G[V(G) \backslash D])|+\sum_{u \in D} t(u) \\
& =1+\sum_{u \in D}(d(u)-1+t(u))+|E(G[V(G) \backslash D])| \\
& =1+\sum_{u \in D}(f(u)-1)+|E(G[V(G) \backslash D])|
\end{aligned}
$$

i.e., $\mathcal{K}_{f}(G) \geq 1+\sum_{u \in D}(f(u)-1)+|E(G[V(G) \backslash D])|$.

Recall that a connected graph in which every edge belongs to at most one cycle is called a cactus.

Corollary 3. Let G be a cactus of order at least 2. For every vertex $u \in V(G)$, let $\nu(u)$ denote the number of cycles of G containing u. If $f(u)+\nu(u) \leq \operatorname{deg}_{G}(u)$, for all $u \in V(G)$, then

$$
\mathcal{K}_{f}(G)=1+\sum_{u \in V(G)}(f(u)-1)
$$

Proof. Evidently, $D=V(G)$ is a dominating set of G. As G is a cactus, $c(u)$, the number of connected components of $G-u$, is equal to $\operatorname{deg}_{G}(u)-\nu(u)$ for every vertex $u \in V(G)$. Then, $f(u)-c(u)=f(u)+\nu(u)-\operatorname{deg}_{G}(u) \leq 0$. Therefore, the conditions of Theorem 2 are satisfied. Moreover, $|E(G[V(G) \backslash D])|=0$. According to Theorem 2, the result follows.

Corollary 4. Let T be a tree of order at least 2 . Let f be a function from $V(T)$ to positive integers satisfying (1). Then

$$
\mathcal{K}_{f}(T)=1+\sum_{u \in V(T)}(f(u)-1)=|E(T)|-\sum_{u \in V(T)}\left(\operatorname{deg}_{T}(u)-f(u)\right) .
$$

Especially, if q is a positive integer, then

$$
\mathcal{K}_{q}(T)=1+(q-1)|V(T)|-\sum_{j=1}^{q-1}(q-j)\left|V_{j}(T)\right| .
$$

Proof. Each tree is a cactus without cycles. Therefore, by Corollary 3,

$$
\begin{aligned}
\mathcal{K}_{f}(T) & =1+\sum_{u \in V(T)}(f(u)-1)=1+\sum_{u \in V(T)} f(u)-|V(T)| \\
& =\sum_{u \in V(T)} f(u)-|E(T)|=|E(T)|+\sum_{u \in V(T)} f(u)-2|E(T)| \\
& =|E(T)|+\sum_{u \in V(T)} f(u)-\sum_{u \in V(T)} \operatorname{deg}_{T}(u) \\
& =|E(T)|-\sum_{u \in V(T)}\left(\operatorname{deg}_{T}(u)-f(u)\right) .
\end{aligned}
$$

Now consider a function t from $V(T)$ to positive integers given by

$$
t(u)=\min \left\{\operatorname{deg}_{T}(u), q\right\} .
$$

Then

$$
\begin{aligned}
\sum_{u \in V(T)} t(u) & =\sum_{j=1}^{\Delta(T)}\left(\sum_{\substack{u \in V(T) \\
\operatorname{deg}_{T^{(u)=j}}}} t(u)\right)=\sum_{j=1}^{q-1} j\left|V_{j}(T)\right|+\sum_{j=q}^{\Delta(T)} q\left|V_{j}(T)\right| \\
& =\sum_{j=1}^{\Delta(T)} q\left|V_{j}(T)\right|-\sum_{j=1}^{q-1}(q-j)\left|V_{j}(T)\right|=q|V(T)|-\sum_{j=1}^{q-1}(q-j)\left|V_{j}(T)\right|
\end{aligned}
$$

Evidently, $\mathcal{K}_{q}(T)=\mathcal{K}_{t}(T)$. Thus

$$
\begin{aligned}
\mathcal{K}_{q}(T) & =1+\sum_{u \in V(T)}(t(u)-1)=1+\sum_{u \in V(T)} t(u)-|V(T)| \\
& =1+q|V(T)|-\sum_{j=1}^{q-1}(q-j)\left|V_{j}(T)\right|-|V(T)| \\
& =1+(q-1)|V(T)|-\sum_{j=1}^{q-1}(q-j)\left|V_{j}(T)\right|
\end{aligned}
$$

which completes the proof.
Corollary 5. Let F be a forest whose every component is of order at least 2. Let f be a function from $V(F)$ to positive integers satisfying (1). Then

$$
\mathcal{K}_{f}(F)=|E(F)|-\sum_{u \in V(F)}\left(\operatorname{deg}_{F}(u)-f(u)\right)
$$

Proof. Let $T_{j}, j \in\{1, \ldots, k\}$, be a component of F and let f_{j} be a restriction of f to $V\left(T_{j}\right)$. Every component of F is a tree, thus, by Observation 1 and Corollary 4, we have

$$
\begin{aligned}
\mathcal{K}_{f}(F) & =\sum_{j=1}^{k} \mathcal{K}_{f_{j}}\left(T_{j}\right)=\sum_{j=1}^{k}\left(\left|E\left(T_{j}\right)\right|-\sum_{u \in V\left(T_{j}\right)}\left(\operatorname{deg}_{T_{j}}(u)-f(u)\right)\right) \\
& =|E(F)|-\sum_{u \in V(F)}\left(\operatorname{deg}_{F}(u)-f(u)\right)
\end{aligned}
$$

which completes the proof.
Corollary 6. Let f be a function from the vertex set of a graph G to positive integers satisfying (1). If every cycle of G contains a vertex v such that $f(v)=$ $\operatorname{deg}_{G}(v)$, then

$$
\mathcal{K}_{f}(G)=|E(G)|-\sum_{u \in V(G)}\left(\operatorname{deg}_{G}(u)-f(u)\right)
$$

Proof. Suppose that G is a counterexample with the minimum number of cycles. According to Corollary 5, G contains a cycle C. Then there is a vertex v of C such that $f(v)=\operatorname{deg}_{G}(v)$. Let e be an edge of the cycle C incident with v. Consider a graph $H=S(G ; e, v)$ and a function h from $V(H)$ to positive integers defined by

$$
h(u)= \begin{cases}f(u) & \text { if } u \in V(H) \backslash\left\{v, v^{\prime}\right\} \\ \operatorname{deg}_{H}(u) & \text { if } u \in\left\{v, v^{\prime}\right\}\end{cases}
$$

Clearly, every cycle of H is also a cycle in G and it contains a vertex w such that $h(w)=\operatorname{deg}_{H}(w)$. Moreover, H has less cycles than G and so it is not a counterexample. Then, $\mathcal{K}_{h}(H)=|E(H)|-\sum_{u \in V(H)}\left(\operatorname{deg}_{H}(u)-h(u)\right)$. By Observation $2, \mathcal{K}_{f}(G)=\mathcal{K}_{h}(H)$. Therefore,

$$
\begin{aligned}
\mathcal{K}_{f}(G) & =\mathcal{K}_{h}(H)=|E(H)|-\sum_{u \in V(H)}\left(\operatorname{deg}_{H}(u)-h(u)\right) \\
& =|E(G)|-\sum_{u \in V(G)}\left(\operatorname{deg}_{G}(u)-f(u)\right)
\end{aligned}
$$

a contradiction to the choice of G.
The following result present other graphs achieving the bound established in Theorem 1.

Theorem 3. Let D be a dominating set of a graph G such that $|D| \geq 2$ and $G[D]$ is a connected subgraph of G. Let I be a set of isolated vertices in $G[V(G) \backslash D]$. If there is a spanning subgraph B of G satisfying
(i) every edge of B is incident with a vertex in I,
(ii) $\operatorname{deg}_{B}(u)=f(u)-1$ if $u \in D$,
(iii) $\operatorname{deg}_{B}(u)<f(u)$ if $u \in I$ and $\operatorname{deg}_{G}(u)>f(u)$,
then

$$
\mathcal{K}_{f}(G)=1+\sum_{u \in D}(f(u)-1)+\alpha_{f}(V(G) \backslash D)
$$

Proof. Set $k=\sum_{u \in D}(f(u)-1)$ and $\alpha=\alpha_{f}(V(G) \backslash D)$. According to (i), every edge of B connects a vertex from I with one from D. Moreover, by (ii), $|E(B)|=k$. Let H be an f-subgraph of $G[V(G) \backslash D]$ having α edges. Clearly, no edge of H is incident with a vertex in I.

Denote by $e_{1}, e_{2}, \ldots, e_{k}$ edges of B and by $a_{1}, a_{2}, \ldots, a_{\alpha}$ edges of H. Consider the mapping ψ from $E(G)$ onto $\{1,2, \ldots, 1+k+\alpha\}$ given by

$$
\psi(e)= \begin{cases}j & \text { if } e \in E(B) \text { and } e=e_{j} \\ k+j & \text { if } e \in E(H) \text { and } e=a_{j} \\ 1+k+\alpha & \text { if } e \notin E(B) \cup E(H)\end{cases}
$$

According to (ii), $|\psi(u)|=f(u)$, for any vertex $u \in D$. By (iii), $|\psi(u)| \leq f(u)$, for any vertex $u \in I$. Similarly, $|\psi(u)| \leq f(u)$, for any vertex $u \in V(G) \backslash(D \cup$ I), because H is an f-subgraph. Therefore, ψ is an M_{f}-edge coloring of G. Consequently, $\mathcal{K}_{f}(G) \geq|\psi(G)|=1+k+\alpha$. The opposite inequality follows from Theorem 1.

Recall that the join of two graphs G and H is obtained from vertex-disjoint copies of G and H by adding all edges between $V(G)$ and $V(H)$.

Corollary 7. Let q, n and m be integers such that $q \geq 2, n \geq 2, m \geq q-1$ when $n \leq q$, and $m \geq n$ when $n>q$. Let G_{1} and G_{2} be disjoint graphs such that $\left|V\left(G_{1}\right)\right|=n, G_{2}$ contains m isolated vertices, and let G be the join of G_{1} and G_{2}. Then

$$
\mathcal{K}_{q}(G)=1+n(q-1)+\alpha_{q}\left(V\left(G_{2}\right)\right) .
$$

Proof. Clearly, $V\left(G_{1}\right)$ is a dominating set of G. Let I be the set of isolated vertices in G_{2}. Then G contains the complete bipartite subgraph with parts $V\left(G_{1}\right)$ and I (i.e., the subgraph isomorphic to $K_{n, m}$). The graph $K_{n, m}$ contains either a subgraph isomorphic to $K_{n, q-1}$ (if $n \leq q$), or a ($q-1$)-regular subgraph of order $2 n$ (if $n>q$). Thus, there is a spanning subgraph B of G satisfying conditions (i)-(iii) from Theorem 3, and the assertion follows.

A complete k-partite graph is a graph whose vertices can be partitioned into $k \geq 2$ disjoint classes V_{1}, \ldots, V_{k} such that two vertices are adjacent whenever they belong to distinct classes. If $\left|V_{i}\right|=n_{i}, i=1, \ldots, k$, then the complete k-partite graph is denoted by $K_{n_{1}, \ldots, n_{k}}$.

In [13] there are stated some results on $\mathcal{K}_{q}(G)$ for complete multipartite graphs with parts of size at least $q-1$. In the following assertion we consider complete multipartite graphs that can contain parts of size less than $q-1$, so we extend the result from [13]. The complete k-partite graph $K_{n_{1}, \ldots, n_{k-1}, n_{k}}$ is the join of $K_{n_{1}, \ldots, n_{k-1}}$ and the totally disconnected graph of order n_{k}. Thus, according to Corollary 7 , we immediately have the following statement.

Corollary 8. Let $q, k, n_{1}, \ldots, n_{k}$ and p be integers such that $q \geq 2, k \geq 3$, $1 \leq n_{1} \leq \cdots \leq n_{k}, p=\sum_{j=1}^{k-1} n_{j}, n_{k} \geq q-1$ when $p \leq q$, and $n_{k} \geq p$ when $p>q$. Then

$$
\mathcal{K}_{q}\left(K_{n_{1}, \ldots, n_{k}}\right)=1+p(q-1) .
$$

The corona $G \odot H$ of graphs G and H is obtained by taking one copy of G and $|V(G)|$ copies of H, and then joining by an edge the i 'th vertex of G to every vertex in the i 'th copy of H.

According to Theorem 3, we immediately have the following assertion.

Corollary 9. Let q be a positive integer. Let G be a connected graph of order at least two and let H be a graph containing at least $q-1$ isolated vertices. Then

$$
\mathcal{K}_{q}(G \odot H)=1+|V(G)|\left(q-1+\alpha_{q}(H)\right) .
$$

A vertex of a graph G is called a dominating vertex if it is adjacent to every other vertex of G.

Theorem 4. Let w be a dominating vertex of a graph G. Let f be a function from $V(G)$ to positive integers such that $\operatorname{deg}_{G}(u) \geq f(u)+\lfloor(|V(G)|+f(w)-3) / 2\rfloor$, for every vertex u of G. Then

$$
\mathcal{K}_{f}(G)=1+\alpha_{f}(G)
$$

Proof. Suppose that φ is an M_{f}-edge coloring of G which uses $\mathcal{K}_{f}(G)$ colors (i.e., $\left.|\varphi(G)|=\mathcal{K}_{f}(G)\right)$. Denote colors of $\varphi(w)$ by $c_{1}, \ldots, c_{k}(k=|\varphi(w)|)$ and set $U_{j}=\left\{u \in V(G) \backslash\{w\}: \varphi(w u)=c_{j}\right\}$ for each $j \in\{1, \ldots, k\}$.

Let A be a subset of $E(G)$ containing exactly one edge of each color belonging to $\varphi(G) \backslash \varphi(w)$. Let H be a subgraph of G such that $V(H)=V(G) \backslash\{w\}$ and $E(H)=A$. Evidently, the graph H is an f-subgraph of G. Set

$$
\begin{aligned}
X & =\left\{v \in V(H): \operatorname{deg}_{H}(v)=f(v)-1\right\} \text { and } \\
Y & =\left\{v \in V(H): \operatorname{deg}_{H}(v)<f(v)-1\right\} .
\end{aligned}
$$

First suppose that $|Y| \leq k-2$. As $U_{1}, U_{2}, \ldots, U_{k}$ are pairwise disjoint, at most $|Y|$ sets of them contain a vertex of Y. Then there are at least two sets, without loss of generality U_{1} and U_{2}, such that $U_{1} \cap Y=\emptyset=U_{2} \cap Y$. Moreover, we can assume that $\left|U_{1}\right| \leq\left|U_{2}\right|$. Thus, $\left|U_{1}\right| \leq\lfloor|X| / 2\rfloor=\lfloor(|V(G)|-1-|Y|) / 2\rfloor$. Let u^{*} be a vertex of U_{1}. As

$$
\begin{aligned}
|\{w\}| & +\left|U_{1} \backslash\left\{u^{*}\right\}\right|+|Y| \leq 1+\left(\left\lfloor\frac{|V(G)|-1-|Y|}{2}\right\rfloor-1\right)+|Y| \\
& =\left\lfloor\frac{|V(G)|+|Y|-1}{2}\right\rfloor \leq\left\lfloor\frac{|V(G)|+k-3}{2}\right\rfloor \leq\left\lfloor\frac{|V(G)|+f(w)-3}{2}\right\rfloor,
\end{aligned}
$$

there are at least $f\left(u^{*}\right)$ vertices of $X \backslash U_{1}$ that are adjacent to u^{*} in G. Since $\operatorname{deg}_{H}\left(u^{*}\right)=f\left(u^{*}\right)-1$, there is a vertex $v^{*} \in X \backslash U_{1}$ such that $u^{*} v^{*} \in E(G)$ and $u^{*} v^{*} \notin E(H)$. As $v^{*} \in X \backslash U_{1}$, there is $i, 2 \leq i \leq k$, such that $v^{*} \in U_{i}$. Since $\operatorname{deg}_{H}\left(v^{*}\right)=f\left(v^{*}\right)-1$, for each color $c \in \varphi\left(v^{*}\right) \backslash\left\{c_{i}\right\}$, there is a vertex $x \in N_{H}\left(v^{*}\right)$ such that $\varphi\left(v^{*} x\right)=c$. Similarly, for each color $c \in \varphi\left(u^{*}\right) \backslash\left\{c_{1}\right\}$, there is a vertex $x \in N_{H}\left(u^{*}\right)$ such that $\varphi\left(u^{*} x\right)=c$. Therefore, $\left(\varphi\left(u^{*}\right) \backslash\left\{c_{1}\right\}\right) \cap\left(\varphi\left(v^{*}\right) \backslash\left\{c_{i}\right\}\right)=\emptyset$, because the vertices u^{*} and v^{*} are not adjacent in H. As the colors c_{1} and c_{i} are distinct, $\varphi\left(u^{*}\right) \cap \varphi\left(v^{*}\right)=\emptyset$. Consequently, $\varphi\left(u^{*} v^{*}\right) \in \varphi\left(u^{*}\right) \cap \varphi\left(v^{*}\right)=\emptyset$, a contradiction. So, this case is impossible.

Then $|Y| \geq k-1$ and there are vertices y_{1}, \ldots, y_{k-1} belonging to Y. Set $A^{*}=A \cup\left\{w y_{j}: 1 \leq j \leq k-1\right\}$ and consider a subgraph F of G induced by A^{*}. Clearly, F is an f-subgraph of G and so $\left|A^{*}\right| \leq \alpha_{f}(G)$. Hence

$$
\mathcal{K}_{f}(G)=|\varphi(G)|=|\varphi(w)|+|A|=1+(k-1)+|A|=1+\left|A^{*}\right| \leq 1+\alpha_{f}(G)
$$

The opposite inequality follows from Lemma 2.
Corollary 10. Let q be a positive integer. Let G be a graph such that

$$
\Delta(G)=|V(G)|-1 \quad \text { and } \quad \delta(G) \geq\lfloor(|V(G)|+3 q-3) / 2\rfloor
$$

Then

$$
\mathcal{K}_{q}(G)=1+\left\lfloor\frac{(q-1)|V(G)|}{2}\right\rfloor
$$

Proof. The case when $q=1$ is evident, so next we consider $q \geq 2$.
As $\delta(G) \geq\lfloor(|V(G)|+3 q-3) / 2\rfloor \geq(3 q-4) / 2+|V(G)| / 2$, there are pairwise edge-disjoint Hamilton cycles $C_{1}, C_{2}, \ldots, C_{k}$, where $k=\lceil(q-1) / 2\rceil$, in G (because of Dirac's theorem). Suppose that A is a subset of $E\left(C_{1}\right)$ such that it consists of either $\lfloor|V(G)| / 2\rfloor$ independent edges, when q is even, or all edges of C_{1}, when q is odd. Set $A^{*}=A \cup \bigcup_{j=2}^{k} E\left(C_{j}\right)$. It is easy to see that the subgraph of G induced by A^{*} is a q-subgraph with the maximum number of edges, i.e., $\alpha_{q}(G)=\left|A^{*}\right|=$ $\lfloor(q-1)|V(G)| / 2\rfloor$. Therefore, according to Theorem 4, we have the assertion.

In [11] there is determined $\mathcal{K}_{q}\left(K_{n}\right)$ within 1 , for $n \geq q+2$. Note that, by Corollary $10, \mathcal{K}_{q}\left(K_{n}\right)=1+\lfloor(q-1) n / 2\rfloor$, for $n \geq 3 q-1$, which is an extension of the result from [11].

References

[1] A. Adamaszek and A. Popa, Approximation and hardness results for the maximum edge q-coloring problem, J. Discrete Algorithms 38-41 (2016) 1-8. https://doi.org/10.1016/j.jda.2016.09.003
[2] S. Akbari, N. Alipourfard, P. Jandaghi and M. Mirtaheri, On N_{2}-vertex coloring of graphs, Discrete Math. Algorithms Appl. 10 (2018) 1850007. https://doi.org/10.1142/S1793830918500076
[3] K. Budajová and J. Czap, M_{2}-edge coloring and maximum matching of graphs, Int. J. Pure Appl. Math. 88 (2013) 161-167. https://doi.org/10.12732/ijpam.v88i2.1
[4] J. Czap, M_{i}-edge colorings of graphs, Appl. Math. Sci. 5 (2011) 2437-2442.
[5] J. Czap, A note on M_{2}-edge colorings of graphs, Opuscula Math. 35 (2015) 287-291. https://doi.org/10.7494/OpMath.2015.35.3.287
[6] J. Czap and P. Šugerek, M_{i}-edge colorings of complete graphs, Appl. Math. Sci. 9 (2015) 3835-3842. https://doi.org/10.12988/ams.2015.53264
[7] J. Czap, P. Šugerek and J. Ivančo, M_{2}-edge colorings of cacti and graph joins, Discuss. Math. Graph Theory 36 (2016) 59-69.
https://doi.org/10.7151/dmgt. 1842
[8] W. Feng, L. Zang and H. Wang, Approximation algorithm for maximum edge coloring, Theoret. Comput. Sci. 410 (2009) 1022-1029. https://doi.org/10.1016/j.tcs.2008.10.035
[9] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, Graphs Combin. 26 (2010) 1-30. https://doi.org/10.1007/s00373-010-0891-3
[10] J. Ivančo, M_{2}-edge colorings of dense graphs, Opuscula Math. 36 (2016) 603-612. https://doi.org/10.7494/OpMath.2016.36.5.603
[11] T. Jiang, Edge-colorings with no large polychromatic stars, Graphs Combin. 18 (2002) 303-308. https://doi.org/10.1007/s003730200022
[12] T. Larjomma and A. Popa, The min-max edge q-coloring problem, J. Graph Algorithms Appl. 19 (2015) 505-528. https://doi.org/10.7155/jgaa. 00373
[13] J.J. Montellano-Ballesteros, On totally multicolored stars, J. Graph Theory 51 (2006) 225-243. https://doi.org/10.1002/jgt. 20140

[^0]: ${ }^{1}$ This work was supported by the Slovak VEGA Grant $1 / 0368 / 16$ and by the Slovak Research and Development Agency under the contract No. APVV-15-0116.

