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Abstract

A subset D ⊆ VG is a dominating set of G if every vertex in VG −D has
a neighbor in D, while D is a paired-dominating set of G if D is a dominating
set and the subgraph induced by D contains a perfect matching. A graph G
is a DPDP -graph if it has a pair (D,P ) of disjoint sets of vertices of G such
that D is a dominating set and P is a paired-dominating set of G. The study
of the DPDP -graphs was initiated by Southey and Henning [Cent. Eur. J.
Math. 8 (2010) 459–467; J. Comb. Optim. 22 (2011) 217–234]. In this
paper, we provide conditions which ensure that a graph is a DPDP -graph.
In particular, we characterize the minimal DPDP -graphs.
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1. Introduction

LetG = (VG, EG) be a graph with vertex set V (G) = VG and edge set E(G) = EG,
where we allow multiple edges and loops. A set of vertices D ⊆ VG is a dominating
set of G if every vertex in VG\D has a neighbor in D, while D is 2-dominating set
of G if every vertex in VG \D has at least two neighbors in D. A set D ⊆ VG is
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a total dominating set of G if every vertex has a neighbor in D. A set D ⊆ VG is
a paired-dominating set of G if D is a dominating set and the subgraph induced
by D contains a perfect matching.

Ore [23] was the first to observe that a graph with no isolated vertex contains
two disjoint dominating sets. Consequently, the vertex set of a graph without
isolated vertices can be partitioned into two dominating sets. Various graph
theoretic properties and parameters of graphs having disjoint dominating sets are
studied in [1,8–10,14,20,21]. Characterizations of graphs with disjoint dominating
and total dominating sets are given in [11–13, 16, 17, 19, 25], while in [2, 4–6, 18]
graphs which have the property that their vertex set can be partitioned into
two disjoint total dominating sets are studied. Conditions which guarantee the
existence of a dominating set whose complement contains a 2-dominating set, a
paired-dominating set or an independent dominating set are presented in [7, 12,
15,19,20,22,26].

In this paper we restrict our attention to conditions which ensure a parti-
tion of vertex set of a graph into a dominating set and a paired-dominating set.
The study of graphs having a dominating set whose complement is a paired-
dominating set was initiated by Southey and Henning [24, 26]. They define a
DP -pair in a graph G to be a pair (D,P ) of disjoint sets of vertices of G such
that V (G) = D∪P where D is a dominating set and P is a paired-dominating set
of G. A graph that has a DP -pair is called a DPDP -graph (standing, as in [24,26],
for “dominating, paired dominating, partitionable graph”). It is easy to observe
that a complete graph Kn is a DPDP -graph if n ≥ 3 (and K3 is the smallest
DPDP -graph), a path Pn is a DPDP -graph if and only if n ∈ N \ {1, 2, 3, 5, 6, 9},
while a cycle Cn is a DPDP -graph if n ≥ 3 and n 6= 5. It was also proved
in [24] that every cubic graph is a DPDP -graph. In [26] the DPDP -graphs (and,
in particular, the DPDP -trees) were characterized as the graphs which can be
constructed from a labeled P4 by applying eight (four, respectively) operations.

For notation and graph theory terminology we in general follow [3]. Specif-
ically, for a vertex v of a graph G = (VG, EG), its neighborhood , denoted by
NG(v), is the set of all vertices adjacent to v, and the cardinality of NG(v), de-
noted by dG(v), is called the degree of v. The closed neighborhood of v, denoted
by NG[v], is the set NG(v) ∪ {v}. In general, for a subset X ⊆ VG of vertices,
the neighborhood of X, denoted by NG(X), is defined to be

⋃
v∈X NG(v), and

the closed neighborhood of X, denoted by NG[X], is the set NG(X) ∪ X. The
minimum degree of a vertex in G is denoted by δ(G). A vertex of degree one
is called a leaf, and the only neighbor of a leaf is called its support vertex (or
simply, its support). If a support vertex has at least two leaves as neighbors, we
call it a strong support, otherwise it is a weak support. The set of leaves, the
set of weak supports, the set of strong supports, and the set of all supports of G
is denoted by LG, S′G, S′′G, and SG, respectively. If v is a vertex of G, then by
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EG(v) and LG(v) we denote the set of edges and the set of loops incident with v
in G, respectively.

We denote the path, cycle, and complete graph on n vertices by Pn, Cn, and
Kn, respectively. The complete bipartite graph with one partite set of size n and
the other of size m is denoted by Kn,m. A star is the tree K1,k for some k ≥ 1.
For r, s ≥ 1, a double star S(r, s) is the tree with exactly two vertices that are
not leaves, one of which has r leaf neighbors and the other s leaf neighbors. We
define a pendant edge of a graph to be an edge incident with a vertex of degree 1.
We use the standard notation [k] = {1, . . . , k}.

2. 2-Subdivision Graphs of a Graph

Let H = (VH , EH) be a graph with no isolated vertices and with possible multi-
edges and multi-loops. By ϕH we denote a function from EH to 2VH that asso-
ciates with each e ∈ EH the set ϕH(e) of vertices incident with e. Let X2 be
a set of 2-element subsets of an arbitrary set (disjoint with VH ∪ EH), and let
ξ : EH → X2 be a function such that ξ(e) ∩ ξ(f) = ∅ if e and f are distinct ele-
ments of EH . If e ∈ EH and ϕH(e) = {u, v} (ϕH(e) = {v}, respectively), then we
write ξ(e) = {ue, ve} (ξ(e) =

{
v1e , v

2
e

}
, respectively). If α : LH → N is a function,

then let Φα : LH → LH × N be a function such that Φα(v) =
{

(v, i) : i ∈ [α(v)]
}

for v ∈ LH .

Now we say that a graph S2(H) = (VS2(H), ES2(H)) is the 2-subdivision graph
of H (with respect to the functions ξ : EH → X2 and α : LH → N), if VS2(H) =
V o
S2(H) ∪ V

n
S2(H), where

V o
S2(H) = (VH \ LH) ∪

⋃
v∈LH

Φα(v) and V n
S2(H) =

⋃
e∈EH

ξ(e),

and

ES2(H) =
⋃
e∈EH

{xy : ξ(e) = {x, y}} ∪
⋃
v∈LH

{ve(v, i) : e ∈ EH(v), i ∈ [α(v)]}

∪
⋃

v∈VH\LH

(
{vve : e ∈ EH(v)} ∪ {vv1e , vv2e : e ∈ LH(v)}

)
.

3. Main Result

In this paper, our aim is to characterize DPDP -graphs. The following result
provides a characterization of minimal DPDP -graphs, where a good subgraph is
defined in Section 5.
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Theorem 3.1. If G is a connected graph of order at least three, then the following
statements are equivalent.

(1) G is a minimal DPDP -graph.

(2) G = S2(H) for some connected graph H, and either
(
V o
S2(H), V

n
S2(H)

)
is the

unique DP -pair in G or G is a cycle of length 3, 6 or 9.

(3) G = S2(H) for some connected graph H that has neither an isolated vertex
nor a good subgraph.

(4) G = S2(H) for some connected graph H and no proper spanning subgraph of
G without isolated vertices is a 2-subdivision graph.

4. Properties of 2-Subdivision Graphs

We remark that 2-subdivision graphs are defined only for graphs without isolated
vertices and, intuitively, S2(H) is the graph obtained from H by inserting two
new vertices into each edge and each loop of H, and then replacing each pendant
edge vev by pendant edges ve(v, 1), . . . , ve(v, α(v)). In particular, it follows from
this definition that every tree of diameter three (i.e., every double star) is a 2-
subdivision graph of K2. Moreover, a path Pn (of order n) is a 2-subdivision
graph (of a path) if and only if n = 3k + 1 for every positive integer k and here
α assign to each leaf the value 1. Figure 1 shows a graph H and a possible
2-subdivision graph S2(H) of H where α : LH → {3}.
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Figure 1. A 2-subdivision graph S2(H) of a graph H.

Observation 4.1. Let H be a graph with no isolated vertex, and let G = S2(H)
be the 2-subdivision graph of H (with respect to functions ξ : EH → X2 and
α : LH → N). Then the following statements hold.

(1) dG(v) = dH(v) if v ∈ VH \ LH , and dG((v, i)) = 1 if v ∈ LH and i ∈ [α(v)].

(2) dG(x) = 2 if x ∈ V n
S2(H)\SG, and dG(ve) = 1+α(v) if v ∈ LH and e ∈ EH(v).
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(3) If x, y ∈ VG \ V n
S2(H) are distinct, and belong to the same component of G,

then either dG(x, y) ≡ 0 (mod 3) or x, y ∈ LG and dG(x, y) = 2.

(4) If x ∈ SG, then
∣∣∣NG(x) ∩ V n

S2(H)

∣∣∣ = 1 and NG(x) \ V n
S2(H) ⊆ LG.

(5) If x ∈ VG, then the following hold.

(a) If dG(x) > 2, then either x ∈ VH or x ∈ SG and |NG(x) \ LG| = 1.

(b) If x ∈ V n
S2(H), then either dG(x) = 2 or dG(x) > 2 and x ∈ SG.

(c) If x ∈ V n
S2(H) and dG(x) > 2, then x ∈ SG.

(6) Let G′ be a 2-subdivision graph which is a spanning subgraph of G. If F is
a component of G′, then F has exactly one of the following properties.

(a) F is an induced subgraph of G if no leaf of F is in V n
S2(H).

(b) F is a 2-subdivision graph of a path Pk+1 (k ≥ 1) and F has at most one
strong support if at least one leaf of F is in V n

S2(H). In addition, exactly
one of these support vertices is in VH . Moreover, if F has a strong
support, then this strong support vertex is in VH .

Proof. The statements (1)–(5) are immediate consequences of the definition of
the 2-subdivision graph. To prove (6), let G′ be a spanning subgraph of G that is
a 2-subdivision graph and let F be a component of G′. Since G′ is a 2-subdivision
graph, so too is the graph F , i.e., F = S2(H

′) for some connected graph H ′ (and
some functions ξ′ : EH′ → X2 and α′ : LH′ → N).

Case 1. LF ∩ V n
S2(H) = ∅. Since F is a 2-subdivision graph, the sets VF ∩ VH

and VF ∩ V n
S2(H) are nonempty. Assume first that v ∈ VF ∩ VH and e is a loop

at v in H. We claim that the vertices v1e and v2e , and the edges vv1e , v
1
ev

2
e , vv

2
e

belong to F . If v1e or v2e were not in F , then G′ (which is a spanning subgraph
of G) would have a component of order one or two, which is impossible in a 2-
subdivision graph. Now, since neither v1e nor v2e is a leaf in F , both v1e and v2e are
of degree 2 in F and this proves that the edges vv1e , v

1
ev

2
e , vv

2
e belong to F . We

can similarly show that if u, v ∈ VF ∩ VH and e is an edge joining u to v in H,
then the vertices ue and ve, and the edges vve, veue, ueu belong to F . From this
it follows that F is a 2-subdivision graph of the induced subgraph H[VF ∩ VH ]
and, therefore, F is an induced subgraph of G.

Case 2. LF ∩ V n
S2(H) 6= ∅. Let x0 be a leaf of F which belongs to V n

S2(H) in

G. Since G′ is a 2-subdivision graph, the vertex x0 does not belong to NG[SG].
In addition, if ∆(F ) ≤ 2, then F is a path, and, since F is a 2-subdivision graph,
we note that F = P3k+1 = S2(Pk+1) (for some positive integer k), as desired.
Thus assume that ∆(F ) ≥ 3. Let x be a vertex of degree at least 3 in F . It
follows from (5) applied to the graph F = S2(H

′) that either x ∈ VH′ or x ∈ SF
and |NF (x) \ LF | = 1. However, such a vertex x cannot be in VH′ = {y ∈
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VF : dF (x0, y) ≡ 0 (mod 3)}, as every vertex belonging to VH′ \LH′ ⊆ V n
S2(H) is of

degree 2 in G and in F , while vertices in F corresponding to elements of LH′ are
of degree 1. This proves that x ∈ SF and |NF (x) \ LF | = 1, that is, every vertex
of degree at least 3 in F is a strong support vertex and it has only one neighbor
which is not a leaf. From this it follows that F is a 2-subdivision graph S2(Pk+1)
with at least one strong support vertex (for some positive integer k).

It remains to show that F cannot have two strong support vertices. Suppose,
for the sake of contradiction, that s1 and s2 are distinct strong support vertices in
F . Let `1 and `2 be leaves in F adjacent to s1 and s2, respectively. Since s1 and
s2 are vertices of degree at least three in G = S2(H), it follows from (5) that each
of them belongs to VH or SG. There are three cases to consider. If s1, s2 ∈ VH ,
then it follows from (3) that dG(s1, s2) ≡ 0 (mod 3), implying that dF (`1, `2) ≡ 2
(mod 3) and dF (`1, `2) 6= 2, contradicting (3) in F . Hence renaming s1 and s2 if
necessary, we may assume that s2 ∈ SG. If s1 ∈ VH , then it follows from (3) that
dG(s1, `2) ≡ 0 (mod 3), implying that dF (`1, `2) ≡ 1 (mod 3), contradicting (3)
in F . Hence, s1 ∈ SG. Thus, no leaf of F belongs to V n

S2(H) in G, contradicting

our choice of F . This completes the proof of the statement (6).

We next present the following elementary property of a DPDP -graph.

Observation 4.2. If (D,P ) is a DP -pair in a graph G, then every leaf of G
belongs to D, while every support of G is in P , that is, LG ⊆ D and SG ⊆ P .

A connected graph G is said to be a minimal DPDP -graph, if G is a DPDP -
graph and no proper spanning subgraph of G is a DPDP -graph.

We remark that a complete graph Kn is a minimal DPDP -graph only if
n = 3. We observe that a path Pn is a minimal DPDP -graph if and only if
n ∈ {4, 7, 10, 13}, while a cycle Cn is a minimal DPDP -graph if and only if
n ∈ {3, 6, 9}. From the definition of a minimal DPDP -graph we immediately
have the following important (and intuitively easy) observation.

Observation 4.3. Every spanning supergraph of a DPDP -graph is a DPDP -
graph, and, trivially, every DPDP -graph is a spanning supergraph of some mini-
mal DPDP -graph.

We show next that the 2-subdivision graph of an isolate-free graph is aDPDP -
graph.

Proposition 4.4. If a graph H has no isolated vertex, then its 2-subdivision
graph S2(H) is a DPDP -graph.

Proof. Let S2(H) be the subdivision graph of H (with respect to functions
ξ : EH → X2 and α : LH → N). We shall prove that (D,P ) is a DP -pair in
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S2(H), where

D = V o
S2(H) = (VH \ LH) ∪

⋃
v∈LH

Φα(v)

and P = V n
S2(H) = VS2(H) \ D. If x ∈ P , then x ∈ ξ(e) for some e ∈ EH , and

x is adjacent in S2(H) to a vertex incident with e in H. This proves that D is
a dominating set of S2(H). Assume now that y ∈ D. If y ∈ VH \LH , then, since
H has no isolated vertex, there is an edge f incident with y in H, and therefore
y is adjacent to yf ∈ P (or to y1f ∈ P and y2f ∈ P if f is a loop) in S2(H). If
y ∈ Φα(v) for some v ∈ LH , then y is adjacent to ve in S2(H), where e is the
only pendant edge incident with v in H. Consequently, P is a dominating set
of S2(H). In addition, since the two vertices of ξ(e) are adjacent in S2(H) for
every e ∈ EH , the set P =

⋃
e∈EH

ξ(e) is a paired-dominating set of S2(H). This
proves that S2(H) is a DPDP -graph.

Since every graph is homeomorphic to its 2-subdivision graph, it follows
from Proposition 4.4 that every graph without isolated vertices is homeomorphic
to a DPDP -graph. Consequently, the structure of DPDP -graphs becomes more
complex.

The next theorem presents general properties of DP -pairs in a minimal
DPDP -graph.

Theorem 4.5. If G is a minimal DPDP -graph and (D,P ) is a DP -pair in G,
then the following four statements hold.

(1) D is a maximal independent set in G.

(2) The induced graph G[P ] consists of independent edges, that is, δ(G[P ]) =
∆(G[P ]) = 1.

(3) If x ∈ P , then |NG(x) \ P | = 1 or NG(x) \ P is a nonempty subset of LG.

(4) G is a 2-subdivision graph of some graph H.

Proof. (1) If D is not an independent set, then D contains two vertices, say x
and y, that are adjacent. In this case, (D,P ) would be a DP -pair in G − xy,
contradicting the minimality of G. Hence, the set D is both an independent and
dominating set of G, implying that D is a maximal independent set in G.

(2) Since P is a paired-dominating set of G, by definition, G[P ] has a perfect
matching, say M . If xy is an edge of G[P ] which is not in M , then (D,P ) would
be a DP -pair in G − xy, violating the minimality of G. Hence, the edges of M
are the only edges of G[P ].

(3) Assume that x ∈ P . It follows from (2) that x has exactly one neighbor
in P , say x′. Thus since (D,P ) is a DP -pair in G, we note that NG(x) \ {x′} is
a nonempty subset of the dominating set D of G. If every neighbor of x in D is
a leaf, then NG(x) \ P is a nonempty subset of LG. Hence we may assume that
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x contains a neighbor y in D that is not a leaf, for otherwise the desired result
follows. If x contains a neighbor in D different from y, then x is dominated by
a vertex belonging to D \ {y} and y is dominated by some vertex in P \ {x},
implying that (D,P ) is a DP -pair in G − xy, contradicting the minimality of
G. Hence in this case, the vertex y is the only neighbor of x in D, and so
NG(x) = {x′, y} and |NG(x) \ P | = 1.

(4) Let G be a minimal DPDP -graph, and let (D,P ) be a DP -pair in G.
For a support vertex s, the set of leaves adjacent to s is denoted by LG(s), i.e.,
LG(s) = NG(s)∩LG. Let G∗ denote the graph resulting from G by replacing the
vertices of LG(s) by a new vertex vs and joining vs to s, for every s ∈ SG, i.e.,
G∗ = (VG∗ , EG∗), where VG∗ = (VG \ LG) ∪ {vs : s ∈ SG} and EG∗ = EG−LG

∪
{svs : s ∈ SG}. By (2) and (3) above, we note that every vertex of P has degree 2
in G∗. Further, every vertex of P has exactly one neighbor in P .

We define a graph H = (VH , EH , ϕH) as follows. Let VH = VG∗ \ P . For
every edge v1v2 in G∗ that joins two vertices of P we do the following. If v1 and
v2 have a common neighbor, say v, in G∗, then in H we add a loop in H at the
vertex v. If v1 and v2 do not have a common neighbor in G∗, then we add the
edge u1u2 to H where u1 is the neighbor of v1 different from v2 and where u2 is
the neighbor of v2 different from v1 (and so u1v1v2u2 is a path in G∗). We let
ϕH : EH → 2VH be the function such that ϕH(m) = NG∗(m)\m if m ∈ EH . Now
let ξ : EH → 2VH and α : LH → N be functions such that ξ(e) = e if e ∈ EH , and
α(vs) = |LG(s)| if vs ∈ LH . With these definitions, the graph G is isomorphic
to the 2-subdivision graph S2(H) of H (with respect to functions ξ : EH → 2VH

and α : LH → N). That means that we can restore the graph G by applying the
operation S2 to the graph H.

By Theorem 4.5 (4) every minimal DPDP -graph is a 2-subdivision graph of
some graph. The converse, however, is not true in general. For example, if H is
the underlying graph of any of the graphs in Figure 2, then its 2-subdivision graph
S2(H) is a DPDP -graph, but it is not a minimal DPDP -graph. The following
result, which is a special case of Theorem 6.2 proven later in the paper, will be
useful to establish which 2-subdivision graphs are not minimal DPDP -graphs.

Proposition 4.6. Let x and y be adjacent vertices of degree 2 in a graph H
without isolated vertices, and let x′ and y′ be the vertices such that NH(x) \
{y} = {x′} and NH(y) \ {x} = {y′}, respectively. If the sets NH(x′) \ {x, y}
and NH(y′) \ {x, y} are both nonempty, then the 2-subdivision graph S2(H) is
a DPDP -graph but not a minimal DPDP -graph.

Proof. It follows from Proposition 4.4 that S2(H) is a DPDP -graph and (D,P )
is a DP -pair in S2(H), where D = V o

S2(H) and P = V n
S2(H). The pair (D′, P ′),

where D′ = (D\{x, y})∪
{
xxy, yxy, x

′
xx′ , y

′
yy′
}

and P ′ =
(
P \
{
x′xx′ , y

′
yy′
})
∪{x, y}
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is a DP -pair in the proper spanning subgraph S2(H) \
{
xxyyxy, x

′x′xx′ , y
′y′yy′

}
of

S2(H). Thus, S2(H) is a DPDP -graph but not a minimal DPDP -graph.

As a consequence of Proposition 4.6, we can readily determine the minimal
DPDP -paths and minimal DPDP -cycles.

Corollary 4.7. The following holds.

(a) If Pn is a path of order n, then S2(Pn) is a DPDP -graph for every n ≥ 2,
and S2(Pn) is a minimal DPDP -graph if and only if n ∈ {2, 3, 4, 5}.

(b) If Cm is a cycle of size m, then S2(Cm) is a DPDP -graph for every positive
integer m, and S2(Cm) is a minimal DPDP -graph if and only if m ∈ [3].

5. Good Subgraphs of a Graph

In this section, we define a good subgraph of a graph. Let Q be a subgraph
without isolated vertices of a graph H, and let E−Q denote the set of edges be-
longing to EH \ EQ that are incident with a vertex of Q. Let E be a set such
that E−Q ⊆ E ⊆ EH \ EQ, and let AE is a set of arcs obtained by assigning an
orientation for each edge in E. Then by H(AE) we denote the partially oriented
graph obtained from H by replacing the edges in E by the arcs belonging to AE .
If e ∈ E, then by eA we denote the only arc in AH that corresponds to e. By H0

we denote the subgraph of H(AE) induced by the vertices that are not the initial

vertex of an arc belonging to AE , i.e., by the set
{
v ∈ VH : d+H(AE)(v) = 0

}
.

We say that Q is a good subgraph of H if there exist a set of edges E (where
E−Q ⊆ E ⊆ EH \EQ) and a set of arcs AE such that in the resulting graph H(AE),
which we simply denote by H for notational convenience, the arcs in AE form
a family P =

{
Px : x ∈ VQ

}
of oriented paths indexed by the vertices of Q and

such that the following holds.

(1) Every vertex of Q is an initial vertex of exactly one path belonging to P. For
each vertex v ∈ Q, we denote the (unique) path belonging to P that begins
at v by Pv. Thus, if v ∈ VQ, then d+H(v) = 1 and d−H(v) = dH(v)− dQ(v)− 1.

(2) If x is an inner vertex of a path Pv ∈ P, then d+H(x) = 1 and d−H(x) =
dH(x)− 1.

(3) If x is a end vertex of a path Pv ∈ P, then d−H(x) < dH(x).

Examples of good subgraphs in small graphs are presented in Figure 2. For
clarity, the edges of a good subgraph Q are drawn in bold, the arcs belonging to
oriented paths are thin (and their orientations are represented by arrows), and
all other edges, if any, belong to the subgraph H0, are thin and without arrows.

We remark that not every graph has a good subgraph (see also Observation
7.3 and Corollary 7.2). On the other hand, if Q is a graph with no isolated
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vertex, and H is the graph obtained from Q by attaching one pendant edge to
each vertex of Q and then subdividing this edge, then Q is a good subgraph in
H, implying that every graph without isolated vertices can be a good subgraph
of some graph.
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Figure 2. Examples of good subgraphs (drawn in bold) in small graphs.

From the definition of a good subgraph we immediately have the following
observation.

Observation 5.1. Neither a leaf nor a support vertex of a graph H belongs to
a good subgraph in H.

6. Structural Characterization of DPDP -graphs

In this section, we present a proof of our main result, namely Theorem 3.1, which
provides a characterization of minimal DPDP -graphs. We proceed further with
the following result.

Theorem 6.1. If G is a connected graph of order at least 3, then G is a minimal
DPDP -graph if and only if G = S2(H) for some connected graph H, and either(
V o
S2(H), V

n
S2(H)

)
is the only DP -pair in S2(H) or S2(H) is a cycle of length 3, 6

or 9.
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Proof. If G = S2(H) is a cycle of length 3, 6 or 9, then G is clearly a minimal

DPDP -graph, as claimed. Thus assume that
(
V o
S2(H), V

n
S2(H)

)
is the only DP -

pair in G = S2(H). Certainly, G is a DPDP -graph, and we shall prove that G is
a minimalDPDP -graph. Suppose, to the contrary, thatG is not a minimalDPDP -
graph. Then some proper spanning subgraph G′ of G is a DPDP -graph. Let
(D′, P ′) be a DP -pair in G′ and, consequently, in G (by Observation 4.3). Thus(
V o
S2(H), V

n
S2(H)

)
and (D′, P ′) are DP -pairs in G, and

(
V o
S2(H), V

n
S2(H)

)
6= (D′, P ′),

noting that
(
V o
S2(H), V

n
S2(H)

)
is a DP -pair in no proper spanning subgraph of

G = S2(H). This contradicts the uniqueness of a DP -pair in G and proves that
G is a minimal DPDP -graph.

Suppose next that G is a minimal DPDP -graph. By Theorem 4.5, G is a 2-
subdivision graph of some connected graph H, i.e., G = S2(H), and the pair

(D,P ) =
(
V o
S2(H), V

n
S2(H)

)
is a DP -pair in S2(H). It remains to prove that either(

V o
S2(H), V

n
S2(H)

)
is the only DP -pair in S2(H) or S2(H) is a cycle of length 3, 6

or 9. We consider three cases depending on ∆(H).

Case 1. ∆(H) = 1. In this case, H = P2, and its 2-subdivision graph S2(P2)
(which is a double star S(r, s) for some positive integers r and s) has the desired
property.

Case 2. ∆(H) = 2. In this case, H is a cycle Cm where m ≥ 1 or a path Pn
where n ≥ 3. Now, since S2(H) is a minimal DPDP -graph, Corollary 4.7, implies
that H = Cm and m ∈ [3], or H = Pn and n ∈ {3, 4, 5}. In each of these six
cases S2(H) has the desired property.

Case 3. ∆(H) ≥ 3. In this case, we claim that (D,P ) =
(
V o
S2(H), V

n
S2(H)

)
is the only DP -pair in S2(H). Suppose to the contrary that (D′, P ′) is another
DP -pair in G. Then, since D and D′ are maximal independent sets in G (by
Theorem 4.5) and D 6= D′, each of the sets D \ D′ and D′ \ D is a nonempty
subset of P ′ and P , respectively. Let v be a vertex of maximum degree among all
vertices in D\D′ ⊆ P ′. Since v ∈ P ′, it follows from Theorem 4.5 that dH(v) ≥ 2.
We deal with the two cases when dH(v) = 2 and dH(v) ≥ 3 in turn.

Case 3.1. dH(v) ≥ 3. We distinguish three subcases.

Subcase 3.1.1. There are only loops at v in H. Since dH(v) ≥ 3, there are at
least two loops at v, say e and f . Renaming loops if necessary, we may assume
that v1e is the (unique) neighbor of v belonging to P ′. We note that v2e ∈ D′ and
that all other neighbors of v in G, including v1f and v2f , belong to D′. Therefore,

(D′, P ′) is also a DP -pair in the proper subgraph G− vv2e of G, contradicting the
minimality of G.
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Subcase 3.1.2. There is exactly one loop at v in H. Let e be the loop at v
in H and let f be an edge of H incident with v. If v1e (v2e , respectively) is the
(unique) neighbor of v belonging to P ′, then as in Subcase 3.1.1 we infer that
(D′, P ′) is a DP -pair in the subgraph G− vv2e (G− vv1e , respectively) of G. If vf
is the (unique) neighbor of v belonging to P ′, then (D′, P ′) is a DP -pair in the
subgraph G− v1ev2e of G. In both cases we get a contradiction to the minimality
of G.

Subcase 3.1.3. There is no loop at v in H. In this case, there are three distinct
edges, say e, f , and g, incident with v joining v to u, w, and z, respectively.
Assume first that u, w, and z are distinct and, without loss of generality, ve
is the (unique) neighbor of v which belongs to P ′. Then, since G is a minimal
DPDP -graph and (D′, P ′) is a DP -pair in G, Theorem 4.5 implies that the vertices
ue, vf , vg belong to D′, while u, w, wf , z, and zg belong to P ′. This implies that
(D′, P ′) is a DP -pair in G − vvg, contradicting the minimality of G. We derive
similar contradictions if u, w, and z are not distinct, and one of the vertices ve, vf ,
vg is the (unique) neighbor of v that belongs to P ′. We omit the proofs of these
cases which are analogous to the previous case when u, w, and z are distinct.

Case 3.2. dH(v) = 2. By our choice of the vertex v, this implies that
dH(x) = 2 for every x ∈ D \D′. Since ∆(H) ≥ 3, we note that H is not a cycle,
implying that there is no loop at v. Let e and f be the two edges incident with v.
Renaming the edges e and f if necessary, we may assume that ve is the (unique)
neighbor of v in P ′.

Suppose that e and f are parallel edges. Let u be the second common vertex
of e and f . In this case, we note that dH(u) ≥ 3 as H is not a cycle. Since G is
a minimal DPDP -graph and (D′, P ′) is a DP -pair in G, Theorem 4.5 implies that
the vertices ue and vf belong to D′, while u and uf belong to P ′. In particular,
u ∈ P ′, dH(u) ≥ 3, and ue is a neighbor of u not in P ′ of degree 2. This
contradicts Theorem 4.5 which states that every neighbor of u not in P ′ is a leaf
of G. Hence, the edges e and f are not parallel edges. Thus, e and f join v to
distinct vertices u and w, respectively.

Recall that by our earlier assumption, ve is the (unique) neighbor of v in
P ′. Theorem 4.5 implies that the vertices ue and vf belong to D′, while u, w
and vf belong to P ′. If dH(u) ≥ 3, then noting that ue is a neighbor of u not
in P ′ of degree 2, we contradict Theorem 4.5. Hence, dH(u) = 2. Analogously,
dH(w) = 2. Let u′ and w′ be the neighbor of u and w, respectively, different from
v in H, and so NH(u) \ {v} = {u′} and NH(w) \ {v} = {w′}. Since H 6= C3,
we note that w′ 6= u (and u′ 6= w). We remark that possibly, u′ = w′. Since
∆(H) ≥ 3, at least one of the vertices u′ and w′ is not a leaf in H. By symmetry,
we may assume that u′ is not a leaf in H, and so dH(u′) ≥ 2. Proposition 4.6 with
x = v, y = u, x′ = w, and y′ = u′ implies that G is not a minimal DPDP -graph,
the final contradiction which completes the proof of Theorem 6.1.
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We next provide a characterization of minimal DPDP -graphs in terms of
good subgraphs. In the next theorem we prove that minimal DPDP -graphs are
precisely 2-subdivision graphs of graphs that have neither an isolated vertex nor
a good subgraph.

Theorem 6.2. A graph G is a minimal DPDP -graph if and only if G = S2(H),
where H is a graph that has neither an isolated vertex nor a good subgraph.

Proof. Assume first that G is a minimal DPDP -graph, and let (D,P ) be a DP -
pair in G. It follows from Theorem 4.5 that G = S2(H) for some graph H. Since
no DPDP -graph has an isolated vertex, neither S2(H) nor H has an isolated
vertex. We now claim that H has no good subgraph. Suppose, to the contrary,
that Q is a good subgraph in H. By definition, there exist a set of edges E (where
E−Q ⊆ E ⊆ EH\EQ) and an orientation AE of E such that in the partially oriented
graph H(AE) there exists a family of oriented paths P = {Px : x ∈ VQ} satisfying
the properties (1)–(3) stated in the definition of a good subgraph.

We adopt the following notation: If e is an edge belonging to E, ϕH(e) =
{v, u}, ξ(e) = {ve, ue}, and eA = (v, u), then v, ve, ue, u is the 4-path corre-
sponding to e in S2(H), and we write p1(e) = v, p2(e) = ve, p3(e) = ue, and
p4(e) = u. If e is a loop belonging to E, ϕH(e) = {v}, ξ(e) = {v1e , v2e}, then
v, v1e , v

2
e , v is the 3-cycle corresponding to e in S2(H), and we write p1(e) = v,

p2(e) = v1e , p3(e) = v2e , and p4(e) = v. Finally, we denote by e(Px) the edge in E
corresponding to the last arc (or loop) in the oriented path Px ∈ P.

Let us consider now the spanning subgraph G′ of G = S2(H) in which

EG′ = ES2(H) \

 ⋃
e∈EQ

{xy : ξ(e) = {x, y}} ∪ {p3
(
e(Px)

)
p4
(
e(Px)

)
: Px ∈ P}

 .

More intuitively, G′ is the graph obtained from S2(H) by removing the middle
edge from the 4-path corresponding to each edge of Q, and the third edge from
the 4-path corresponding to the last arc in every path Px ∈ P. A graph H, its 2-
subdivision graph S2(H), and the subgraph G′ of S2(H) corresponding to a good
subgraph Q in H (drawn in bold) and a family of oriented paths P = {Px : x ∈
VQ} are shown in Figure 3. Formally, H, S2(H), and G′ are the underlying graphs
of the graphs in Figure 3.

We note that the sets

D′ = VH0 ∪ {p3(eA) : eA ∈ AE} ∪
⋃
e∈EQ

ξ(e)

and
P ′ =

⋃
eA∈AE

{p1(eA), p2(eA)} ∪
⋃

e∈EH0

ξ(e)
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form a partition of the vertex set of G′. We now claim that (D′, P ′) is a DP -pair
in G′. If VH0 6= ∅, then it follows from the construction of G′ that G′[VH0 ∪⋃
e∈EH0

ξ(e)] = S2(H0) and therefore, as it follows from the proof of Proposition

4.4, the pair (VH0 ,
⋃
e∈EH0

ξ(e)) is a DP -pair in S2(H0). Thus, it remains to

prove that the sets D′′ = D′ \ VH0 and P ′′ = P ′ \
⋃
e∈EH0

ξ(e) form a DP -pair in

G′′ = G′ − S2(H0).

We show firstly that D′′ is a dominating set of G′′. Let x be an arbitrary
vertex in VG′′ \ D′′ = P ′′. Then either x = p2(eA) or x = p1(eA) for some
eA ∈ AE . In the first case x is adjacent to p3(eA) ∈ D′′. Thus assume that
x = p1(eA) and eA ∈ AE . If x = p1(eA) ∈ VQ, then there exists an edge f in Q
incident with x, and therefore x is adjacent to vf ∈ ξ(f) ⊆ D′′. Finally assume
that x = p1(eA) 6∈ VQ. Now eA belongs to some oriented path Pv ∈ P. Since
x = p1(eA) 6∈ VQ, there exists an arc fA on Pv such that p4(fA) = x = p1(eA),
and therefore x is adjacent to p3(fA) ∈ D′′. This proves that D′′ is a dominating
set of G′′.

We show next that P ′′ is a dominating set of G′′. Let y be an arbitrary
vertex in VG′′ \ P ′′ = D′′. If y = p3(eA) for some eA ∈ AE , then y is adjacent
to p2(eA) ∈ P ′′. Finally assume that y ∈ ξ(e) for some e ∈ EQ. Without
loss of generality, we may assume that ϕH(e) = {u, v}, ξ(e) = {ve, ue}, and
y = ve. Thus, y is adjacent to p1(fA) ∈ P ′′ where fA is the first arc in the
unique path Pv ∈ P starting at v. This implies that P ′′ is a dominating set of
G′′. In addition, P ′′ is a paired-dominating set of G′′, as the edges p1(eA)p2(eA),
where eA ∈ AE , form a perfect matching in the subgraph induced by P ′′. This
proves that (D′′, P ′′) is a DP -pair in G′′, and implies that (D′, P ′) is a DP -pair
in a proper spanning subgraph G′ of G, contradicting the minimality of G.

Assume now that H is a graph that has neither an isolated vertex nor a good
subgraph. By Proposition 4.4, the 2-subdivision graph G = S2(H) of H is
a DPDP -graph. We claim that G is a minimal DPDP -graph. Suppose, to the
contrary, that G is not a minimal DPDP -graph. Thus some proper spanning
subgraph G′ of G is a minimal DPDP -graph, and it follows from Theorem 4.5
that G′ is a 2-subdivision graph of some graph H ′, i.e., G′ = S2(H

′).

Since G′ is a proper spanning subgraph of G, the set EG \EG′ (of the edges
removed from G) is nonempty and it is the union of disjoint subsets E′nn =
(EG \ EG′) ∩ Enn and E′no = (EG \ EG′) \ Enn, where Enn is the set of edges of
G each of which joins two vertices in

⋃
e∈EH

ξ(e). It follows from the definition
of the 2-subdivision graph that if xy ∈ EG \EG′ , then both x and y are leaves in
G′ if xy ∈ E′nn and at least one of the vertices x and y is a leaf in G′ if xy ∈ E′no,
and {x, y} ∩ NG[LG] = ∅ (since G′ is a DPDP -graph). This implies that G′ has
two types of components: those which have at least one leaf belonging to the
set V n

S2(H), and those in which no leaf belongs to V n
S2(H). From this and from

Observation 4.1 (6) (and Corollary 4.7) it follows that if F is a component of G′,



Minimal Graphs with Disjoint Dominating and ... 841

then F = S2(Pk+1) for some k ∈ [4] and F has at most one strong support vertex
if LF ∩ V n

S2(H) 6= ∅ or F is an induced subgraph of G if LF ∩ V n
S2(H) = ∅.

Let F1, . . . , F` be that components of G′ for which LFi ∩ V n
S2(H) 6= ∅ where

i ∈ [`]. From this and from the fact that Fi = S2(Pki+1) is of diameter 3ki + 1 it
follows that exactly one support vertex of Fi is a vertex of H, say {vi} = SFi∩VH
for i ∈ [`]. Let vi be the (unique) leaf farthest from vi in Fi, and let ṽi be the
only vertex in NG(vi) \NG′(v

i) ⊆ VH . Let P i be the vi − vi path in Fi, and let
P̃i be the vi − ṽi path obtained from P i by adding ṽi and the edge viṽi. Since
vi, ṽi ∈ VG′ and dG′(v

i, ṽi) = 3ki − 1 for some ki ∈ [4], we may assume that P i is
the path vi = x0, x1, . . . , x3ki−1 = vi and P̃i is the path vi = x0, x1, . . . , x3ki−1 =
vi, x3ki = ṽi, where x0, x3, . . . , x3ki ∈ VH , while x3j+1 = x3je and x3j+2 = x3j+3

e ,
where e is an edge joining x3j and x3j+3 in H for j ∈ {0} ∪ [ki − 1] (or x3j+1 =
x3j 1e and x3j+2 = x3j 2e if e is a loop at x3j and j = ki − 1). Now let Pi be
the oriented path

(
x0, a

(
x0, x3

)
, x3, . . . , x3ki−3, a

(
x3ki−3, x3ki

)
, x3ki

)
in H, where

a(x3j , x3j+3) is the arc which goes from x3j to x3j+3 and which corresponds to
the path

(
x3j , x3j+1, x3j+2, x3j+3

)
in the path P̃i for j ∈ {0} ∪ [ki − 1].

Let Q = (VQ, EQ) be the subgraph of H, where VQ consists of those vertices of
H which are support vertices in F1, . . . , F`, that is, VQ = {v1, v2, . . . , v`}, and EQ
consists of those edges (and loops) of H whose middle edges were removed in the
process of forming G′ from G, i.e., EQ = {e ∈ EH : ξ(e) = {x, y} and xy ∈ E′nn}
(see Figure 3, where Q (defined by G′) is the bold subgraph of the underlying
graph of H). All that remains to prove is that Q is a good subgraph in H.

✻

✲ ✲

✲

✻

✻

H

✻

✲ ✲

✲

✻

✻

S2(H)

✻

✲ ✲

✲

✻

✻

G′

 !"#$% &' ($)*+, - - )./ ) 0!.!0)1 ,*)..!." DPDP 2,#3"$)*+ 45Figure 3. Graphs H, S2(H), and a minimal spanning DPDP -subgraph G′ of S2(H).

Since the paths P̃1, . . . , P̃` are edge-disjoint inG′, it follows from the definition
of P1, . . . , P` that P = {P1, . . . , P`} is a family of arc-disjoint (not necessarily
vertex-disjoint) oriented paths (in H) indexed by the vertices of Q. In addition,
Pi is the only path belonging to P and growing out from the vertex vi ∈ VQ,
implying that d+H(vi) = 1 and d−H(vi) = dH(vi) − dQ(vi) − 1 for i ∈ [`]. From
the same fact it follows that if the paths Pi, Pj ∈ P, where i 6= j, are not vertex-
disjoint, then the end vertex of (at least) one of them is the only vertex belonging
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to the second one. Consequently, if x is a non-end vertex of a path Pi ∈ P, then
d+H(x) = 1 (and d−H(x) = dH(x) − 1). Finally assume that y is an end vertex of
a path Pi ∈ P. If d−H(y) ≥ dH(y), then y would be an isolated vertex in a DPDP -
graph G′, which is impossible. Therefore, d−H(y) < dH(y). This proves that Q is
a good subgraph in H and this completes the proof of Theorem 6.2.

We are now in a position to present a proof of our main result, namely
Theorem 3.1. Recall its statement.

Theorem 3.1. If G is a connected graph of order at least three, then the following
statements are equivalent.

(1) G is a minimal DPDP -graph.

(2) G = S2(H) for some connected graph H, and either
(
V o
S2(H), V

n
S2(H)

)
is the

unique DP -pair in G or G is a cycle of length 3, 6 or 9.

(3) G = S2(H) for some connected graph H that has neither an isolated vertex
nor a good subgraph.

(4) G = S2(H) for some connected graph H and no proper spanning subgraph of
G without isolated vertices is a 2-subdivision graph.

Proof. The statements (1), (2), and (3) are equivalent by Theorems 6.1 and 6.2.
We shall prove that (1) and (4) are equivalent.

Assume that G is a minimal DPDP -graph. By Theorem 4.5, G = S2(H) for
some connected graph H. In addition, since G is a minimal DPDP -graph, no
proper spanning subgraph of G is a DPDP -graph. Thus no proper spanning sub-
graph of G having no isolated vertex is a 2-subdivision graph, as, by Proposition
4.4, every 2-subdivision graph of a graph with no isolated vertex is a DPDP -graph.
This proves the implication (1)⇒ (4).

If G = S2(H) for some connected graph H, then G is a DPDP -graph (by
Proposition 4.4). Assume that no proper spanning subgraph of G without iso-
lated vertices is a 2-subdivision graph. We claim that G is a minimal DPDP -
graph. Suppose, to the contrary, that G is not a minimal DPDP -graph. Then,
since G is a DPDP -graph, some proper spanning subgraph G′ of G is a minimal
DPDP -graph. Consequently, G′ has no isolated vertex (as no DPDP -graph has
an isolated vertex). In addition, from the minimality of G′ and from Theorem
4.5 it follows that G′ is a 2-subdivision graph. But this contradicts the statement
(4) and proves the implication (4)⇒ (1).

The corona F ◦ K1 of a graph F is the graph obtained from F by adding
a pendant edge to each vertex of F . A corona graph is a graph obtained from
a graph F by attaching any number of pendant edges to each vertex of F . In
particular, the corona F ◦K1 of a graph F is a corona graph.



Minimal Graphs with Disjoint Dominating and ... 843

Corollary 6.3. If H is a corona graph, then its 2-subdivision graph S2(H) is
a minimal DPDP -graph. In particular, S2(F ◦K1) is a minimal DPDP -graph for
every graph F .

Proof. Since every vertex of a corona graph is a leaf or a support vertex, it
follows from Observation 5.1 that H has no good subgraph, and, therefore, S2(H)
is a minimal DPDP -graph, by Theorem 6.2.

Corollary 6.4. If H is a connected graph, then S2(S2(H)) is a minimal DPDP -
graph if and only if H has either exactly one edge or exactly one loop.

Proof. If EH = ∅, then H consists of an isolated vertex, and S2(S2(H)) =
S2(H) = H is not a DPDP -graph. If |EH | = 1, then H = P2 (or H = C1, re-
spectively), and S2(S2(H)) = P10 (or S2(S2(H)) = C9, respectively) is a minimal
DPDP -graph. Assume now that |EH | ≥ 2. Thus, VH \ LH 6= ∅. If v ∈ VH \ LH ,
then |EH(v)| ≥ 2 and we consider two cases. Assume first that there is a loop e in
EH(v). In this case the vertices v1e , v

2
e , and the edge v1ev

2
e form a good subgraph

in S2(H). Consequently, by Theorem 6.2, S2(S2(H)) is not a minimal DPDP -
graph. Assume now that EH(v) = {e1, . . . , ek} where k ≥ 2, and no loop belongs
to EH(v). Then the vertices v, ve1 , . . . , vek−1

, and the edges vve1 , vve2 , . . . , vvek−1

form a good subgraph in S2(H). From this and from Theorem 6.2 it again follows
that S2(S2(H)) is not a minimal DPDP -graph.

7. DPDP -Trees

In this section we study the DPDP -trees, minimal DPDP -trees, and good sub-
graphs in trees. We begin with the following characterization of DPDP -trees.

Proposition 7.1. A tree T is a DPDP -tree if and only if T is a spanning su-
pergraph of a 2-subdivision graph of a forest without isolated vertices and good
subgraphs.

Proof. IfH is a forest without isolated vertices, then the forest S2(H) is aDPDP -
graph (by Proposition 4.4) and every spanning supergraph of S2(H) is a DPDP -
graph. In particular, any tree which is a spanning supergraph of S2(H) is
a DPDP -tree.

Assume now that a tree T is a DPDP -graph. Let R be a spanning minimal
DPDP -subgraph of T . Then R is a forest and it follows from Theorems 4.5 (4)
and 6.2 that R = S2(F ) for some forest F (without isolated vertices and good
subgraphs) and therefore T is a spanning supergraph of S2(F ).

We are interested in recognizing the structure of trees having a good sub-
graph. The following result shows that if a tree has a good forest, then it also
has a good subtree.



844 M.A. Henning and J. Topp

Proposition 7.2. A tree has a good subgraph if and only if it has a good subtree.

Proof. Assume that a forest Q is a good subgraph in a tree H. Let Q1, . . . , Qk
(k ≥ 2) be the components of Q. It suffices to prove that one of the components
Q1, . . . , Qk is a good subgraph inH. Let P = {Pv : v ∈ VQ} be a family of oriented
paths indexed by the vertices of Q and having the properties (1)–(3) stated in the
definition of a good subgraph (for some subset E, where E−Q ⊆ E ⊆ EH \EQ, and
some orientation AE of the edges in E). Let Pi denote the family {Pv : v ∈ VQi}
where i ∈ [k]. From the properties of P and from the fact that H is a tree it
follows that Pi is a family of vertex-disjoint paths, each vertex of Qi is the initial
vertex of exactly one path belonging to Pi, and no path Pv ∈ Pi terminates at
a vertex of Qi or at a leaf of H. (Although, this time a path belonging to Pi can
terminate at a vertex belonging to Qj or to a path in Pj , j 6= i.) However, from
the same facts it follows that there exists a subtree Qi0 ∈ {Q1, . . . , Qk} such that
no path Pv ∈

⋃
j 6=i0 Pj terminates at Qi0 . Now Qi0 is a good subtree in H as the

family Pi0 has the properties (1)–(3) stated in the definition of a good subgraph
(for the partially ordered graph H[AEi0

], where AEi0
is the set of arcs belonging

to AE and covered by the paths of Pi0 , see Q2 or Q5 in Figure 4).

H

✻

✻ ✻ ✻

✻ ✻ ✻

✻ ✻✻

✲ ✲ ✲✛ ✛

Q1

Q2 Q3 Q4 Q5

Figure 4. A good forest in a tree.

We observe that every tree can be a good subtree in a tree. The following
result describes the place of a good subtree in a tree and connections between
this good subtree and the rest of the tree.

Proposition 7.3. A tree Q is a good subgraph in a tree H if and only if no
leaf of H is a neighbor of Q and the subgraph of H induced by the set NH [VQ] is
a corona graph, that is, if and only if NH [VQ]∩LH = ∅ and H[NH [VQ]] = Q◦K1.

Proof. Let Q be a good subgraph of H and let P = {Pv : v ∈ VQ} be a family
of oriented paths indexed by the vertices of Q and having the properties (1)–(3)
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stated in the definition of a good subgraph (for some subset E, where E−Q ⊆ E ⊆
EH \ EQ, and some orientation AE of the edges in E). From these properties
and from the fact that H is a tree it follows that P is a family of vertex-disjoint
paths, each vertex of Q is the initial vertex of exactly one path belonging to P,
and no path Pv ∈ P terminates at a vertex of Q or at a leaf of H. This proves
that NH [VQ] ∩ LH = ∅. (The same follows directly from Observation 5.1.) In
addition, every vertex v of Q is adjacent to exactly one vertex in VH \ VQ, say
sv, which is the terminal vertex of the first arc in Pv. Since H is a tree, the set
{sv : v ∈ VQ} is independent and, consequently, the subgraph of H induced by
VQ ∪ {sv : v ∈ VQ} (= VH [VQ]) is a corona graph isomorphic to Q ◦K1.

Now assume that Q is a subtree of H such that NH [VQ] ∩ LH = ∅ and
H[NH [VQ]] = Q ◦ K1. For a vertex v of Q, let v` denote the only vertex in
NH(v)\VQ. Since the edge set E = {vv` : v ∈ VQ}, the arc set AE = {(v, v`) : v ∈
VQ}, and the family of oriented paths P = AE have properties (1)–(3) of the
definition of a good subgraph, we note that Q is a good subgraph in H.

Corollary 7.4. If H is a tree of order at least two, then S2(H) is a DPDP -tree.
In addition, the DPDP -tree S2(H) is not a minimal DPDP -tree if and only if
there is a tree Q in H − (LH ∪ SH) such that Q ◦K1 is a subtree in H −LH and
dH(x) = dQ(x) + 1 for each vertex x of Q.

8. Open Problems

We close this paper with the following list of open problems that we have yet to
settle.

(a) How difficult is it to recognize graphs having good subgraphs?

(b) How difficult is it to recognize whether a given graph is a good subgraph in
a graph?

(c) How difficult is it to recognize whether a given tree has good subtree?

(d) Provide an algorithm for the problem of determining a good subgraph of
a graph.

(e) Since every graph without isolated vertices is homeomorphic to a DPDP -
graph, it would be interesting to find the smallest number of subdivisions of
edges of a graph in order to obtain a DPDP -graph.
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