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Abstract

In this paper, we determine the achromatic and diachromatic numbers
of some circulant graphs and digraphs each one with two lengths and give
bounds for other circulant graphs and digraphs with two lengths. In partic-
ular, for the achromatic number we state that α(C16q2+20q+7(1, 2)) = 8q+5,

and for the diachromatic number we state that dac(
−→
C 32q2+24q+5(1, 2)) =

8q + 3. In general, we give the lower bounds α(C4q2+aq+1(1, a)) ≥ 4q + 1

and dac(
−→
C 8q2+2(a+4)q+a+3(1, a)) ≥ 4q+ 3 when a is a non quadratic residue

of Z4q+1 for graphs and Z4q+3 for digraphs, and the equality is attained, in
both cases, for a = 3.

Finally, we determine the achromatic index for circulant graphs of q2 +
q + 1 vertices when the projective cyclic plane of odd order q exists.
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1. Introduction

A complete k-vertex-coloring of a graph G is a vertex-coloring of G using k
colors such that for every pair of colors there are at least two incident vertices
in G colored with this pair of colors. The chromatic χ(G) and achromatic α(G)
numbers of G are the smallest and the largest number of colors in a complete
proper k-vertex-coloring of G. Therefore

(1) χ(G) ≤ α(G).

The concept of the achromatic number has been intensely studied in graphs since
it was introduced by Harary, Hedetniemi and Prins [13] in 1967. The achromatic
index α1(G) is defined similarly to the achromatic number α(G) but with edges
instead of vertices; for more references of results related to these parameter see
for instance [2–5,9, 10,14,24].

The chromatic number and achromatic number have been generalized for di-
graphs by several authors [12,21]. In particular, the dichromatic number, defined
by Neumann-Lara [20], and the diachromatic number, defined by the authors [1],
generalize the concepts of chromatic and achromatic numbers, respectively. An
acyclic k-vertex-coloring of a digraph D is a k-vertex coloring, such that D has
no monochromatic cycles and a complete k-vertex-coloring of a digraph D is a
vertex coloring using k colors such that for every ordered pair (i, j) of different
colors, there is at least one arc (u, v) such that u has color i and v has color j.
The dichromatic number dc(D) and diachromatic number dac(D) of D are the
smallest and the largest number of colors in a complete acyclic k-vertex-coloring
of D. Therefore

(2) dc(D) ≤ dac(D).

Given a set J ⊆ {1, . . . , n− 1}, the circulant digraph
−→
C n(J) is defined as the

digraph with vertex set equal to Zn and A(
−→
C n(J)) = {ij : j − i ≡ s (mod n),

s ∈ J}, we call J the set of lengths of
−→
C n(J). Moreover, to obtain a circulant

graph Cn(J) we define the edges of Cn(J), where in this case J ⊆
{

1, . . . ,
⌊
n
2

⌋}
,

as E(Cn(J)) = {ij : |j − i| ≡ s (mod n), s ∈ J}.
In [11] it was obtained asymptotically results of the achromatic and harmo-

nious numbers of circulant graphs. In [14] it was determined that the achro-
matic number of the cycle Cn is equal to its achromatic index, that is, α(Cn) =
α1(Cn) = max

{
k : k

⌊
k
2

⌋
≤ n

}
− s(n), where s(n) is the number of positive in-

teger solutions to n = 2x2 + x + 1. On the other hand, in the collection of pa-
pers [4,6,7,15,17,18,22] the achromatic index of Kn was determined for n ≤ 14,
when n = p2+p+1 for p an odd prime power and n = q2+2q+1−a for q a power
of two and a ∈ {0, 1, 2}. For the no-proper version of these results see [2,3,16,23].
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In this paper, we determine the achromatic and diachromatic numbers of
some circulant graphs and digraphs each one with two lengths and we give
bounds for other circulant graphs and digraphs with two lengths. In partic-
ular, for the achromatic number we state that α(C16q2+20q+7(1, 2)) = 8q + 5,
whenever 8q + 5 is a prime, and for the diachromatic number we state that

dac(
−→
C 32q2+24q+5(1, 2)) = 8q + 3, whenever 8q + 3 is a prime. In general, we give

the lower bounds α(C4q2+aq+1(1, a)) ≥ 4q+ 1 and dac(
−→
C 8q2+2(a+4)q+a+3(1, a)) ≥

4q + 3 when a is a non quadratic residue of Z4q+1 for graphs and Z4q+3 for di-
graphs, and the equality is attained, in both cases, for a = 3. In the last section,
we determine the achromatic index for circulant graphs of q2+q+1 vertices when
the projective cyclic plane of odd order q exists.

2. Complete Colorings on Circulant Graphs and Digraphs

In this section we consider circulant graphs and digraphs of order prime p. We
use simple upper bounds for the achromatic and diachromatic number and some
properties of quadratic and non-quadratic residues.

An upper bound of the achromatic number of a graph G with size m is

(3) α(G) ≤

⌊
1

2
+

√
1

4
+ 2m

⌋
.

The authors [4] determined the following upper bound of the diachromatic
number of a digraph D with size m

(4) dac(G) ≤

⌊
1

2
+

√
1

4
+m

⌋
.

First to continue we give the definition and some properties about quadratic
residuos and non quadratic residuos of odd primes that we will use in order to
prove our results (see [8]).

Definition. Let p be an odd prime and gcd(a, p) = 1. If the quadratic congruence
x2 ≡ a (mod p) has a solution, then a is said to be a quadratic residue of p,
denoted here by QR. Otherwise, a is called a quadratic nonresidue of p, and
denoted by NQR.

In the following Remark we list some properties, about quadratic and non
quadratic residues, depending if p is an odd prime congruent with either 1 or 3
modulo 4.

Remark 1. Let p be an odd prime and consider Zp. If p ≡ 1 (mod 4), then we
have the following properties.
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1. If i ∈ QR (i ∈ NQR, respectivley), then −i ∈ QR (−i ∈ NQR, respectively).

2. Let i ∈ QR. If j ∈ QR (j ∈ NQR, respectively), then ij ∈ QR (ij ∈ NQR,
respectively).

3. The integer 2 ∈ NQR if and only if p = 8q + 5.

If p ≡ 3 (mod 4), then we have the following.

1. If i ∈ QR (i ∈ NQR, respectively), then −i ∈ NQR (−i ∈ QR, respectively).

2. The integer 2 ∈ NQR if and only if p = 8q + 3.

In both cases |QR| =
⌊
p−1
2

⌋
.

2.1. Achromatic number on circulant graphs

Let p be a an odd prime power such that p = 4q + 1 and let QR be the set of
quadratic residues and NQR the set of non residues quadratics in Zp.

Theorem 2. Let 4q + 1 be an odd prime number and let a ∈ NQR. Then
α(C4q2+aq+1(1, a)) ≥ 4q + 1.

Proof. Before we start the proof, we can note that even though Remark 1 states

that for any p odd prime |QR| =
⌊
p−1
2

⌋
, it also states that for p = 4q + 1, if

a ∈ QR, then −a ∈ QR, and as we construct a circulant graph we only consider
one of these values in QR.

To prove the theorem we give a complete and proper coloring of C4q2+aq+1

(1, a) with 4q + 1 colors, that is, K4q+1 is a homeomorphic image of the graph
C4q2+aq+1(1, a). Let K4q+1 be the complete graph and consider the quadratic
residue QR4q+1 = {1, r2, . . . , rq} in Z4q+1.

We define the following color sequences, where 2 ≤ i ≤ q.

R1 = (0, 1, 2, . . . , 4q, 0, 1, . . . , a− 3, a− 2),
R2 = (a− 1, a− 1 + r2, a− 1 + 2r2, . . . , a− 1 + (4q)r2, a− 1,

a− 1 + r2, a− 1 + 2r2, . . . , a− 1 + (a− 2)r2),
R3 = (a− 1 + (a− 1)r2, a− 1 + (a− 1)r2 + r3, a− 1 + (a− 1)r2 + 2r3, . . . ,

a− 1 + (a− 1)r2 + (4q)r3,
a− 1 + (a− 1)r2, a− 1 + (a− 1)r2 + r3, . . . , a− 1 + (a− 1)r2 + (a− 2)r3),

Ri = (a− 1 + (a− 1)r2 + (a− 1)r3+ · · ·+ (a− 1)ri−1,
a− 1 + (a− 1)r2 + (a− 1)r3+ · · ·+ (a− 1)ri−1 + ri,
a− 1 + (a− 1)r2 + (a− 1)r3+ · · ·+ (a− 1)ri−1 + 2ri, . . . ,
a− 1 + (a− 1)r2 + (a− 1)r3+ · · ·+ (a− 1)ri−1 + (4q)ri,
a− 1 + (a− 1)r2 + (a− 1)r3+ · · ·+ (a− 1)ri−1,
a− 1 + (a− 1)r2 + (a− 1)r3+ · · ·+ (a− 1)ri−1 + ri,
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a− 1 + (a− 1)r2 + (a− 1)r3+ · · ·+ (a− 1)ri−1 + 2ri, . . . ,
a− 1 + (a− 1)r2 + (a− 1)r3+ · · ·+ (a− 1)ri−1 + (a− 2)ri),

Rq = (a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)rq−1,
a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)rq−1 + rq,
a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)rq−1 + 2rq, . . .
a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)rq−1 + (4q)rq
a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)rq−1,
a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)rq−1 + rq,
a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)rq−1 + 2rq, . . .
a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)rq−1 + (a− 2)rq),

Rq+1 = (a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)rq).

For 1 ≤ i ≤ q, we concatenate Ri with Ri+1 and finally, we concatenate Rq+1 with
R1, obtaining a 4q+1-coloring of the cycle C4q2+aq+1. We add the edges between
vertices of distance a on the cycle C4q2+aq+1 obtaining the graph C4q2+aq+1(1, a).
Observe that, in addition to the edges between vertices of distance a in each Ri,
for 1 ≤ i ≤ q, between Ri and Ri+1, we have the edge between the (4q + 1)-th
vertex of Ri and the first vertex of Ri+1,

{a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)ri−1 + (4q)ri,

a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)ri}.

For instance, between R1 and R2 we add the edges (a − 2, a − 1), (4q, a − 1).
Finally, between Rq+1 and R1, we have the edge between the unique vertex of
Rq+1 and the a-th vertex of R1,

{a− 1 + (a− 1)r2 + (a− 1)r3 + · · ·+ (a− 1)rq, a− 1}.

Summarizing, the concatenation (Rq+1R1 · · ·RqRq+1) in cyclic order contains
all the edges {l, k} for every pair {l, k} ∈ Z4q+1, such that in Ri are the edges
{j, j + ri} and {j, j + ari} with ri ∈ QR4q+1 and ari ∈ NQR4q+1 less the edges
{a− 1 + (a− 1)r2 + · · ·+ (a− 1)ri−1 + 4qri, a− 1 + (a− 1)r2 + · · ·+ (a− 1)ri}.

For 1 ≤ i ≤ q, each sequence Ri has order 4q + a and Rq+1 has only one
element, then the order of circulant graph is equal to 4q2 + aq + 1 and we can
embed C4q2+aq+1(1, a) in K4q+1, and

4q + 1 ≤ α(C4q2+aq+1(1, a)).

By Remark 1, 2 ∈ NQR if and only if p = 8q + 5, applying Equation 3 for
a = 2, we have the following result.

Corollary 3. Let 8q+5 be a prime number. Then α(C16q2+20q+7(1, 2)) = 8q+5.

Moreover, when a = 3 we have also the following.
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Corollary 4. Let 4q+1 be a prime number. If 3 ∈ NQR, then α(C4q2+aq+1(1, 3))
= 4q + 1.

Proof. If a = 3, C4q2+3q+1(1, 3) has 8q2+6q+2 edges and K4q+2 has 8q2+6q+1
edges, by Equation 3, it follows that α(C4q2+3q+1(1, 3)) ≤ 4q + 2. Suppose that
α(C4q2+3q+1(1, 3)) = 4q+2. Observe that there is only one pair of colors repeated
in the coloring of the graph C4q2+3q+1(1, 3). Consider a homomorphism ϕ :
V (C4q2+3q+1(1, 3))→ V (K4q+2). Let us consider the multigraph induced by the
homomorphism ϕ. Since K4q+2 is (4q+1)-regular and C4q2+3q+1(1, 3) is 4-regular,
then each vertex of the multigraph has degree at least 4q + 4. Hence, there are
at least 3(4q+ 2)/2 set of colors repeated (or multiedges), a contradiction. Thus,
α(C4q2+3q+1(1, 3)) = 4q + 1.

For instance, applying Corollary 3, for q = 1 we have that 8q + 5 = 13,
and the quadratic residues in Z13 are QR = {1, 3, 4}, and by the Corollary 3,
α(C43(1, 2)) = 13. In this case the coloring is defined by the following sequences.

R1 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0),
R2 = (1, 4, 7, 10, 0, 3, 6, 9, 12, 2, 5, 8, 11, 1),
R3 = (4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9, 0, 4),
R4 = (8).

2.2. Diachromatic number on circulant digraphs

Let p = 4q+ 3 be a prime. In this case
−→
C p(J) is a circulant digraph for J , recall

that by Remark 1 if i ∈ QR, then −i ∈ NQR.

Theorem 5. Let 4q + 3 be a prime number and let a ∈ NQR. Then

dac(
−→
C 8q2+2(a+4)q+a+3(1, a)) ≥ 4q + 3. Moreover, for a = 3 the equality holds.

Proof. We proceed as in the proof of Theorem 2, considering the 2q+1 quadratic
residues and thus 2q+ 1 sequences R1, R2, . . . , R2q+1 each one of order 4q+ a+ 2
and R2q+2 of order 1.

For the inequalities, when a = 3 proceed as in Corollary 4 considering the
complete digraph K4q+4 with (4q+ 4)(4q+ 3) arcs and (4q+ 3) (in/out)-regular.

In this case the size of K4q+4 equals the size of
−→
C 8q2+14q+6(1, 3) and the (in/out)-

degree of each vertex of the multidigraph is congruent with 0 modulo 4. Since the
complete digraph K4q+4 is (4q+3) (in/out)-regular, for any pair of colors i and j

there are 4q+ 3 arcs from i to j, but that is impossible because
−→
C 8q2+14q+6(1, 3)

has unique edges between many pair of colors.

Moreover, applying Remark 1 to Theorem 5 and the Equation 4 we have also
the following result.
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Corollary 6. Let 8q + 3 be a prime number. Then dac(
−→
C 32q2+24q+5(1, 2)) =

8q + 3.

For instance, if q = 1, then 8q + 3 = 11, the quadratic residues in Z11 are

QR = {1, 3, 4, 5, 9}, and by Corollary 6, dac(
−→
C 61(1, 2)) = 11. In this case the

coloring is defined by the following sequences.

R1 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0),
R2 = (1, 4, 7, 10, 2, 5, 8, 0, 3, 6, 9, 1),
R3 = (4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 0, 4),
R4 = (8, 2, 7, 1, 6, 0, 5, 10, 4, 9, 3, 8),
R5 = (2, 0, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2),
R6 = (0).

3. Achromatic Index of Circulant Graphs

In this section, we endeavor to determine the achromatic index of some circu-
lant graphs. In order to obtain upper bounds, we analyze the behavior of some
functions. While to obtain lower bounds, we exhibit a proper and complete edge-
coloring of Cn(J) using some definitions and remarks about projective planes.

A projective plane consists of a set of n points, a set of lines, and an incidence
relation between points and lines having the following properties.

• Given any two different points there is exactly one line incident to both of
them.

• Given any two different lines there is exactly one point incident to both of
them.

• There are four points, such that no line is incident to more than two of them.

For some number q, such a plane has n = q2 + q + 1 points and n lines; each
line contains q + 1 points and each point belongs to q + 1 lines. The number q
is called the order of the projective plane. If a projective plane of order q exists,
then it is denoted by Πq. When q is a prime power, a projective plane of order
q does exist which is denoted by PG(2, q) owing to the fact that it arising from
the finite field of order q and it is called the algebraic projective plane.

Let P be the set of points of Πq and let L = {L0, . . . , Ln−1} be the set of
lines of Πq. The complete graph Kn can be seen to have the vertex set P, and,
for i ∈ {0, . . . , n− 1}, the line Li can be interpreted as the subgraph Kq+1 of Kn

induced by the points of Lj ; we denote this graph by Li. From the properties
of Πq it follows that if i, j ∈ {0, . . . , n − 1}, i 6= j, then |V (Li) ∩ V (Lj)| = 1.
Moreover, {E(l0), . . . , E(ln−1)} is a partition of E(Kn).

Now, we recall the concept of difference sets of a Zn group. A subset D =
{d0, d1, . . . , dq} of Zn is a difference set if for each g ∈ Zn, g 6= 0, there is a
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unique pair of different elements di, dj ∈ D such that g = di − dj . Therefore,
if D ⊂ Zn is a difference set and i ∈ Zn is an arbitrary element, then both
−D := {−d0,−d1, . . . ,−dq} and D+ i := {d0 + i, d1 + i, . . . , dq + i} are difference
sets. See Table 1 for some examples.

Zn Difference set Zn Difference set

Z13 1,2,5,7 Z91 1,2,4,10,28,50,57,62,78,82

Z31 1,2,4,9,13,19 Z133 1,2,4,13,21,35,39,82,89,95,105,110

Z57 1,2,4,14,33,37,44,53 Z183 1,2,4,17,24,29,43,77,83,87,120,138,155,176

Table 1. Some known different sets for some Zn.

Next, we recall the notion of cyclic planes using the polygon model. Let
q > 1 be an integer, and n = q2 + q+ 1. If the group Zn contains a difference set
D = {d0, d1, . . . , dq}, then there exists a projective plane called cyclic projective
plane of order q, defined as follows: the points are the elements of Zn that is
the set of integers {0, 1, . . . , n − 1}, and the lines are the sets {Li}n−1

i=0 , where
Li = D + i. Throughout the paper when we deal with elements of Zn all sums
are taken modulo n.

The class of cyclic projective planes is wider than the class of algebraic projec-
tive planes, but each known finite cyclic plane is isomorphic to PG(2, q) for a suit-
able q. The following representation of the cyclic planes comes from Kárteszi [19],
and it is useful to illustrate our proofs. Consider the numbering of the vertices
of a regular n-gon with the elements of Zn in clockwise order. Note that the
subpolygon with q + 1 vertices induced by a difference set D has the property
that all the chords obtained by joining pairs of their points have different lengths,
and it represents the line L0 of Πq. Moreover the line Li is obtained by rotating
L0 around the center by angle 2π i

n for i ∈ {1, . . . , n− 1}, see Figure 1.

1
2

3

4

5

6
78

9

10

11

12

13
1

2

3
4

5

6

Figure 1. The line L0 of the cyclic model of Π3 as a polygon of 13 vertices, i.e., the line
L0 of the circulant graph C13(1, 2, 3, 4, 5, 6).

Finally, we recall that any complete graph of even order q + 1 admits a 1-
factorization with q perfect matchings and we define the following definitions in
order to simplify the proofs.
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Definition. Let q + 1 be an even integer, {F1, . . . , Ft} a set of perfect matching
pairwise edge-disjoint of Kq+1 for some t ∈ {1, . . . , q} and W =

⋃t
j=1 Fj . An

edge-coloring ς : E(W ) → C, for C = {c1, . . . , ct} a set of t colors, will say to be
of Type Mt if for every j ∈ {1, 2, . . . , t} the set {xy ∈ E(W ) : ς(xy) = cj} is Fj .

Since each color class is a matching, we will say that W is an owner of the
set of colors C.

In order to prove our theorem, we show the following lemma.

Lemma 7. Let n = q2 + q+ 1 with q a natural number, such that Πq exists. Let
Kn be a representation of Πq and let ς : E(Kn) → C be a partial edge-coloring
of Kn. Suppose that each line Li of Kn is an owner of the set of colors Ci ⊆ C.
Then ς is complete.

Proof. Let {c1, c2} ⊆
⋃n

i=1 Ci. If there is an i ∈ {1, . . . , n} such that {c1, c2} ⊆ Ci,
since Li is an owner of Ci, it follows that each u ∈ V (Li) is incident with edges
colored c1 and c2.

If c1 ∈ Ci and c2 ∈ Cj with i 6= j, then there is u ∈ V (G) such that
u = V (Li) ∩ V (Lj) and since Li and Lj are owners of Ci and Cj , respectively,
by the properties of the projective plane, u is incident with edges colored c1
and c2.

Theorem 8. Let Πq be a cyclic projective plane of odd order q with difference
set D, n = q2 + q + 1 and Cn(J) a circulant graph such that J ⊆

{
1, . . . ,

⌊
n
2

⌋}
.

If the chords of D have lengths of J of L0 and they are the union of t matchings
(1 ≤ t ≤ q), then

tn ≤ α1(Cn(J)).

Proof. In order to prove this theorem, we exhibit a proper and complete edge-
coloring of Cn(J) for n = q2 + q + 1, with k = tn colors. Since J is a subset of{

1, . . . ,
⌊
n
2

⌋}
and

⌊
n
2

⌋
=
(
q+1
2

)
, then t = 2|J |/(q + 1). Let C be a set of k colors,

and let {C0, . . . , Cn−1} be a partition of C such that Ci is a set of t colors for all
i ∈ {0, . . . , n− 1}.

Let V (Cn(J)) be representing the points of a cyclic plane Πq, and let {L0, . . . ,
Ln−1} be the set of lines of induced in V (Cn(J)) such that V (L0) = D.

To color the edges of V (Cn(J)) with ς : V (Cn(J)) → [k], we assign partial
colorings of Type Mi using the colors of Ci to the lines of Li for all i ∈ {0, . . . ,
n− 1}.

Since each color class is a matching, the coloring is proper. Since each line
Li is an owner of each color of Ci (1 ≤ i ≤ n) by Lemma 7, it follows that the
resultant edge-coloring ς :=

⋃n
i=1 ςi of V (Cn(J)) is a complete edge-coloring using

k colors.
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Next, we analyze the upper bounds. Note that a circulant graph G = Cn(J)
is r-regular with r = 2|J |, therefore, it has size n

(
r
2

)
and by Equation 3, we have

that

α1(G) ≤

⌊
1

2
+

√
1

4
+ nr(r − 1)

⌋
.

This equation works better with some graphs (normally with sparse graphs,
i.e., those for which its size is much less than |V |2) but for these graphs we give
a different approach to obtain an upper bound, first introduced for complete
graphs, see [17]. Let fn,r(x) and gn,r(x) be functions that count the maximum
number of chromatic classes in two different ways, where x is the size of the
smallest chromatic class defined as follows.

fn,r(x) =
nr

2x
and gn,r(x) =

{
2x(r − 1) + 1

x(n− 2x+ r − 1) + 1

if r < n− 2x,

if r ≥ n− 2x.

Since fn,r is a decreasing function and gn,r is increasing function, we get that

α1(G) ≤ max {min{bfn,r(x)c , gn,r(x) : x ∈ N}} ,

and thus,
α1(G) ≤ max {min{fn,r(x), gn,r(x) : x ∈ R}} .

Theorem 9. Let n = q2 + q + 1 and Cn(J) be a circulant r-regular graph such
that r = (q + 1)t with 1 ≤ t ≤ q. If there exists Πq a cyclic projective plane of
order odd q such that J ⊆

{
1, . . . ,

⌊
n
2

⌋}
, the chords of D have lengths of J of L0

and they are the union of t matchings, then

α1(Cn(J)) = tn.

Proof. Since the result is true for complete graphs, assume 1 ≤ t ≤ q − 1.
By Theorem 8, tn ≤ α1(Cn(J)) and α1(Cn(J)) ≤ fn,r(x) = n(q+1)t

2x and then

x ≤ q+1
2 .

Suppose x = q+1
2 . Then fn,r(x) = tn and gn,r(x) = ((q + 1)t − 1)(q + 1) +

1 = tn + tq − q since (q + 1) ≤ t(q + 1) ≤ q2 − 1 < q2 = n − 2x. Hence
min{bfn,r(x)c , gn,r(x)} = fn,r(x) = tn = q2t+ qt+ t.

Now, suppose x = q−1
2 . Then fn,r(x) = tn q+1

q−1 = q3t+2q2t+2qt+t
q−1 and gn,r(x) =

((q+ 1)t−1)(q−1) + 1 = q3t−q2t−qt+t−(q2−3q+2)
q−1 (newly, since (q+ 1) ≤ t(q+ 1) ≤

q2 − 1 < q2 = n− 2x). Hence min{bfn,r(x)c , gn,r(x)} = gn,r(x) = q2t− t− q + 2
since q ≥ 3.

Therefore,

α1(Cn(J)) ≤ max
{
q2t+ qt+ t, q2t− t− q + 2}

}
= q2t+ qt+ t = tn,

i.e.,
α1(Cn(J)) = tn.



Achromatic Numbers for Circulant Graphs and Digraphs 723

For example, α1(Cn(1, 2)) = α1(Cn(3, 6)) = α1(Cn(4, 5)) = 13, α1(Cn(3, 4, 5,
6)) = α1(Cn(1, 2, 4, 5)) = α1(Cn(1, 2, 3, 6)) = 26 and α1(Cn(1, 2, 3, 4, 5, 6)) = 39.
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