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Abstract

A path in an edge-coloured graph is called a rainbow path if its edges
receive pairwise distinct colours. An edge-coloured graph is said to be rain-

bow connected if any two distinct vertices of the graph are connected by a
rainbow path. The minimum k for which there exists such an edge-colouring
is the rainbow connection number rc(G) of G. Recently, Bau et al. [Rainbow
connectivity in some Cayley graphs, Australas. J. Combin. 71 (2018) 381–
393] introduced this concept with the additional requirement that the edge-
colouring must be proper. The proper rainbow connection number of G, de-
noted by prc(G), is the minimum number of colours needed in order to make
it properly rainbow connected. Obviously, prc(G) ≥ max{rc(G), χ′(G)}.

In this paper we first prove an improved upper bound prc(G) ≤ n for
every connected graph G of order n ≥ 3. Next we show that the difference
prc(G) − max{rc(G), χ′(G)} can be arbitrarily large. Finally, we present
several sufficient conditions for graph classes satisfying prc(G) = χ′(G).
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1. Introduction

We use [20] for terminology and notation not defined here and consider only sim-
ple, finite and undirected graphs. Let G be a graph. We denote by V (G), E(G),
n,m,∆(G), diam(G) the vertex set, the edge set, number of vertices, number
of edges, maximum degree, and diameter of G, respectively. Let Kn, Cn, Pn be
a complete graph, a cycle and a path on n vertices, respectively. By NG(u) we
denote the set of neighbours of a vertex u ∈ V (G) and by d(u) its degree in G.
Let us denote by d(u, v) and d(uPv) the distance between two vertices u, v and
the length of a u, v-path P , respectively. For each integer n ≥ 4, the wheel is
defined as Wn = Cn + K1, the join of Cn and K1. For simplifying notation, let
[k] be the set {1, 2, . . . , k} for some positive integer k.

Let c : E(G) → [k] be an edge-colouring of G. If adjacent edges of G receive
different colours by c, then c is a proper colouring. The smallest number of colours
needed in a proper colouring of G, denoted by χ′(G), is called the chromatic index

of G. Vizing et al. [19] proved that for any graph G, χ′(G) is either its maximum
degree ∆(G) or ∆(G) + 1. If χ′(G) = ∆(G), then G is in class 1. Otherwise, G
is in class 2.

A path P in an edge-coloured graph G is called a rainbow path if its edges
have different colours. An edge-coloured graph G is rainbow connected if every
two vertices are connected by at least one rainbow path in G. For a connected
graph G, the rainbow connection number of G, denoted by rc(G), is defined
as the smallest number of colours required to make it rainbow connected. The
concept of rainbow connection was first introduced by Chartrand et al. [4] and
well-studied since then. Readers who are interested in this topic are referred to
[15, 17].

As an extension of proper colouring and motivated by rainbow connections
of graphs, Bau et al. [1] introduced the concept of proper rainbow connections
in connected graphs. Let G be a nontrivial connected graph. The proper edge-
coloured graph G is said to be properly rainbow connected if any two vertices
u, v ∈ V (G) are connected by a rainbow path. The proper rainbow connection

number prc(G) of a connected graph G is the smallest number of colours needed
to colour G properly rainbow connected.

By the definition above, if an edge-coloured graph G is properly rainbow
connected, then G is properly coloured and rainbow connected. Hence, the lower
bound of the proper rainbow connection number was obtained by the following
proposition.

Proposition 1 (Bau et al. [1]). Let G be a connected graph. Then

diam(G) ≤ rc(G) ≤ prc(G)
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and

χ′(G) ≤ prc(G).

On the other hand, if every edge of G receives a distinct colour from [m],
where m is the number edges of G, then G is properly rainbow connected. By
using Proposition 1 and Vizing’s Theorem in [19], the proper rainbow connection
number of an arbitrary connected graph is bounded as follows.

Corollary 2. Let G be a connected graph of size m. Then

max{rc(G), χ′(G)} ≤ prc(G) ≤ m.

The authors in [7] determined some graphs with large proper rainbow connec-
tion number. First of all, they characterized all graphs whose proper connection
numbers equal their size.

Theorem 3 (Jiang et al. [7]). Let G be a connected graph of size m. Then

prc(G) = m if and only if G is a tree or K3.

After that, they also classified connected graphs whose proper rainbow con-
nection numbers are close to the maximum possible value. Let H′ and H′′ be two
graph classes as shown in Figure 1, where the order of H ′ ∈ H′ is at least 4 and
the order of H ′′ ∈ H′′ is at least 5, respectively.

H ′

H ′

Figure 1. The graphs H ′ ∈ H′ and H ′′ ∈ H′′.

Theorem 4 (Jiang et al. [7]). If G is a connected graph of size m, then prc(G) =
m− 1 if and only if G ∈ H′ or G ∈ H′′.

Next, the proper rainbow connection numbers of special graphs were consid-
ered by Bau et al. [1] and Jiang et al. [7].

Theorem 5 (Bau et al. [1]). For each integer n ≥ 2,

prc(Kn) = χ′(Kn) =

{

n− 1, if n is even,

n, if n is odd.
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Corollary 6 (Jiang et al. [7]). For each interger n ≥ 4, prc(Cn) =
⌈

n
2

⌉

.

Chartrand et al. [4] determined the rainbow connection numbers of complete
graphs.

Proposition 7 (Chartrand et al. [4]). Let n ≥ 2 be an integer. Then rc(Kn) = 1.

By Theorem 5 and Proposition 7, it can be readily seen that the difference
prc(G) − rc(G) can be arbitrarily large.

The Cartesian product of two graphs G and H written G�H is the graph
with vertex set V (G) × V (H) specified by putting (u1, u2) adjacent to (v1, v2) if
and only if (1) u1 = u2 and v1v2 ∈ E(H), or (2) v1 = v2 and u1u2 ∈ E(G). Bau
et al. [1] and Jiang et al. [7] determined proper connection numbers of Cartesian
products by the following results.

Proposition 8 (Bau et al. [1]). Let n, p1, . . . , pn > 1 be integers and G =
Kp1� · · ·�Kpn . Then

n
∑

i=1

(pi − 1) ≤ prc(G) ≤
n
∑

i=1

χ′
(

Kpi

)

.

Theorem 9 (Jiang et al. [7]). Suppose that n ≥ 1, and p1, . . . , pn > 1 are

integers. If G = Kp1� · · ·�Kpn, then prc(G) = χ′(G).

2. Upper Bounds

In this section we will show improved upper bounds for the proper rainbow con-
nection number of graphs.

The concept of rainbow connection was first introduced by Chartrand et al.

[4]. Moreover, they gave the relation between rainbow connection number of a
connected graph and rainbow connection number of its spanning tree as follows.

Proposition 10 (Chartrand et al. [4]). Let G be a connected graph and T be a

spanning tree of G. Then rc(G) ≤ rc(T ).

By Proposition 10, it can be readily seen that if G has n vertices, then
rc(G) ≤ n − 1. Moreover, by Theorem 5 and Corollary 6, proper connection
numbers of complete graphs and cycles do not exceed their number of vertices.
These facts are our motivation to improve the upper bound for the proper rainbow
connection number as follows.

Theorem 11. Let G be a nontrivial, connected graph of order n and maximum

degree ∆(G). Then

max{∆(G), diam(G)}≤ prc(G) ≤ χ′(G)+(n−1−△(G))=

{

n, if G is in class 2,

n−1, if G is in class 1.
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w

w1 w2 w△(G)

1 2 △(G)

Figure 2. Tree K1,△(G).

Proof. Since ∆(G) ≤ χ′(G) by Vizing’s Theorem in [19] and diam(G) ≤ rc(G)
by Chartrand et al. [4], the lower bound is easily obtained.

Next, we consider the upper bound. Since G has maximum degree △(G),
there exists a vertex w ∈ V (G) such that dG(w) = △(G). Let NG(w) =
{w1, w2, . . . , w△(G)} be the neighbour set of w ∈ V (G). We construct a tree
T ∼= K1,△(G), which consists of the vertex w as a root of the tree K1,△(G) and
all the vertices in the set NG(w). Let c be a proper edge-colouring of G with
χ′(G) colours {1, 2, . . . , χ′(G)}. We may assume that the edges of T have colours
1, 2, . . . ,∆(G). Since G is connected, we can extend the tree T to a spanning
tree T ′ of G by properly adding n − 1 − ∆(G) edges. Now we recolour these
n− 1 − ∆(G) edges by using n− 1 − ∆(G) new colours. This leads to an proper
edge-colouring c′ of G, since every new colour is used exactly once. Moreover, the
tree T ′ is rainbow coloured, which shows that G is properly rainbow-connected.

By using Vizing’s Theorem in [19], prc(G) ≤ n, if G is in class 2 or prc(G) ≤
n− 1, if G is in class 1. We obtain the result.

Now, we improve the upper bound by requiring a structural condition.

Proposition 12. Let G be a connected graph with maximum degree ∆(G) ≤ n−2
and w ∈ V (G) such that d(w) = ∆(G). If there is a Hamiltonian cycle in

G−N [w], then prc(G) ≤ n+∆(G)
2 + 1.

Proof. Suppose that G has a vertex w with d(w) = ∆(G) and there is a Hamil-
tonian cycle, say C, in G − N [w]. Let us colour all the edges of E(G) \ E(C)
by c : E(G) \ E(C) → [χ′(G)] in order to make it a proper colouring. Next, we

continue to colour all remaining edges of C with
⌈

|V (C)|
2

⌉

new colours. It can be

readily seen that G is properly rainbow connected using χ′(G)+
⌈

|V (C)|
2

⌉

colours.

Since ∆(G) ≤ n− 2, it can be readily seen that

prc(G) ≤ ∆(G) + 1 +

⌈

n− 1 − ∆(G)

2

⌉

≤ n + ∆(G)

2
+ 1.

The result is obtained.
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3. Estimating the Difference prc(G) − rc(G)

Next observe that

0 ≤ prc(G) − rc(G) ≤ n− 1

for all connected graphs G, where the upper bound is attained for Kn if n is odd.
We now extend this observation as follows.

Proposition 13. Let G be a connected graph of order n ≥ 3 with clique number

ω(G). If n+1
2 ≤ ω(G) ≤ n− 1, then

prc(G) − rc(G) ≥ 2ω(G) − n− 1.

Proof. First observe that rc(G) ≤ n + 1 − ω(G). To see this, take a clique of
size ω(G) and colour all edges between its vertices by one colour. Next we add
n − ω(G) edges to obtain a spanning subgraph of G. We colour each edge by a
new colour and can colour all remaining edges arbitrarily. Then this colouring
makes G rainbow connected. Since G is connected and ω(G) ≤ n− 1, we deduce
that ∆(G) ≥ ω(G). Hence by Theorem 11 we obtain prc(G) ≥ ω(G). Now the
inequality follows.

Note that for G ∼= Kn and n even it holds prc(Kn)−rc(Kn) = 2ω(Kn)−n−2.

Next we analyse the values of prc(G) and rc(G) for graphs with respect to
their minimum degree.

Theorem 14. Let G be a connected graph of order n ≥ 3 and minimum degree

δ = δ(G). If

1. δ ≥ 3, then rc(G) ≤ 3n
4 ([18]),

2. δ ≥ 4, then rc(G) ≤ 3n
δ+1 + 3 ([3]).

Now observe that δ ≥ 3n
δ+1 + 3 if δ ≥ 1 +

√
3n + 4. With prc(G) ≥ χ′(G) ≥

∆(G) ≥ δ(G) we thus obtain

Theorem 15. Let G be a connected graph of order n and with δ(G) ≥ 1 +√
3n + 4. Then

prc(G) − rc(G) ≥ δ −
(

3n

δ + 1
+ 3

)

.

Further observe that

0 ≤ prc(G) − χ′(G) ≤ (n− 1) − 2 = n− 3

for all connected graphs with n ≥ 3, where the upper bound is attained for the
path Pn.
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Since prc(G) ≥ max{rc(G), χ′(G)} by Corollary 2, it is natural to ask whether
the difference prc(G)−max{rc(G), χ′(G)} is unbounded as well. In our next the-
orem we show that the difference prc(G) − max{rc(G), χ′(G)} can be arbitrarily
large.

Theorem 16. Let k, t be two integers, where k ≥ t ≥ 1. There always exists a

connected graph Gk,t with ∆(G) = 2t2 + 1 and diam(G) = 2t2 + 1 + k such that

prc(G) ≥ max{rc(G), χ′(G)} + t.

v1

v2

u3 u4 u5 u6
2

1

3

2 4 5

Figure 3. Graph G1,1 with rc(G) = 4 and prc(G) = rc(G) + 1 = 5.

Proof. Firstly, if k = t = 1, then we take a connected graph with ∆(G) = 3
and diam(G) = 4 as shown in Figure 3. Clearly, rc(G) = 4, χ′(G) = 3 and
prc(G) = 5 = rc(G) + t.

Now, we consider t ≥ 2. Let W2t2 be a wheel consisting of a cycle C =
v1 · · · v2t2v1 and a center vertex v. Let G be a connected graph constructed from
W2t2 and a path P = u2t2+1 · · ·u4t2+1+k of order 2t2 + 1 + k by identifying v
and u2t2+1 as shown in Figure 4. It can be readily seen that ∆(G) = 2t2 + 1
and diam(G) = 2t2 + 1 + k. Hence, χ′(G) ≤ ∆(G) + 1 = 2t2 + 2 and thus
max{rc(G), χ′(G)} = rc(G) ≥ 2t2 + 1 + k. Let us define a colouring c with
2t2 + 1 + k colours to colour all the edges of G as follows.

c(e) =































1 if e = vvi, i ∈
[

2t2
]

,

i + 1 − 2t2 if e = uiui+1, i ∈
[

2t2 + 1, 4t2 + k
]

,

i if e = vivi+1, i ∈
[

t2
]

,

i− t2 if e = vivi+1, i ∈
[

t2 + 1, 2t2 − 1
]

,

t2 if e = v2t2v1.

It can be readily seen that G is rainbow connected with 2t2+1+k colours. Thus,
rc(G) ≤ 2t2 + 1 + k. So we deduce that rc(G) = 2t2 + 1 + k.

Next, we show that prc(G) ≥ 2t2 + 1 + k + t.
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v ≡ u
2t2+1

v2t2−1

v2t2

v1 v2

u2t2+2 u2t2+3 u4t2+k u4t2+1+k

Figure 4. The graph Gk,t for t ≥ 2.

Suppose that prc(G) ≤ 2t2+k+t. Then there is a colouring c with 2t2+k+t
colours which makes G properly rainbow connected. Since P is the only path
from u2t2+1 to u4t2+1+k, P is a rainbow path. Hence we may assume that its
2t2 + k edges are coloured with the colours 1, 2, . . . , 2t2 + k. Since G is properly
rainbow connected, all the edges that are incident to v receive distinct colours.
Moreover, every rainbow path from u4t2+1+k to a vertex vi, 1 ≤ i ≤ 2t2, uses
exactly one edge vvj , whose colour is distinct from 1, 2, . . . , 2t2 + k. Hence we
may assume that p of these edges, where 1 ≤ p ≤ t, have a colour from the set
2t2 +k+ 1, . . . , 2t2 +k+ t. Suppose first that p = 1. We may assume that vv1 has
the only colour from the set 2t2 + k + 1, . . . , 2t2 + k + t. Then any rainbow path
from vt2+1 to u4t2+1+k has t2 + 1 + (2t2 + k) > 2t2 + k + t edges, a contradiction.
Next suppose that p ≥ 2. So there are p integers 1 ≤ i1 < i2 < · · · < ip ≤ 2t2

such that the edges vvi1 , . . . , vvip have these p colours. So there is a partition of
the cycle C into p paths, each connecting vij with vij+1

along the cycle of length
|ij+1 − ij | (modulo 2t2). Hence the longest of these p paths has length at least
2t2

p
≥ 2t2

t
= 2t. We may assume that the path from vi1 to vi2 has length at least

2t and that i1 = 1. Then any rainbow path from vt+1 to u4t2+1+k has at least
t + 1 + 2t2 + k edges, a contradiction.

4. Graph Classes with prc(G) = rc(G)

Proposition 17. Let Cn by a cycle of order n ≥ 4. Then

prc(Cn) = rc(Cn) =
⌈n

2

⌉

.

Next observe that any colouring, which makes a tree rainbow connected, is
a proper colouring. So we deduce that

Proposition 18. Let T by a tree of order n ≥ 2. Then

prc(T ) = rc(T ) = n− 1.
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Starting with a given tree T we can generate a large variety of classes of
graphs satisfying prc(G) = rc(G). For example we can attach to each leaf of T a
finite number of cycles each of length at least 4.

Another class of graphs is described in [7]. Here g(G) denotes the girth of G.

Proposition 19. Let G be a connected graph with rc(G) < g(G) − 2. Then

prc(G) = rc(G).

5. Graph Classes with prc(G) = χ′(G)

The proper rainbow connection numbers of complete graphs Kn are determined in
Theorem 5. Now we consider the proper rainbow connection number of connected
graphs whose diameter is 2.

Proposition 20. Let G be a connected graph of order n ≥ 3. If diam(G) = 2,
then prc(G) = χ′(G).

Proof. Let c : E(G) → [χ′(G)] be a proper edge-colouring of G. Now we show
that for every pair ofvertices u, v ∈ V (G), there is at least one rainbow path. If
uv ∈ E(G), then uv is the rainbow path between the two vertices u, v. On the
other hand, if uv /∈ E(G), there is at least one vertex, say w, such that w ∈ NG(u)
and w ∈ NG(v), since diam(G) = 2. Clearly, c(uw) 6= c(wv), since G is proper.
Hence, uwv is the rainbow path connecting two vertices u, v. We conclude that
G is properly rainbow connected. Thus, prc(G) ≤ χ′(G).

With the aid of Proposition 1, we are now able to obtain that prc(G) =
χ′(G).

By using Proposition 20, we determine proper rainbow connection numbers
of some graphs whose diameter equals 2.

First, we determine the proper rainbow connection number for wheels.

Proposition 21. For each integer n ≥ 4, prc(Wn) = n.

Proof. Suppose that a wheel Wn of order n + 1 consists of a cycle Cn =
v1v2 · · · vnv1 and a single vertex w joined to all vertices of the cycle Cn. Now
observe that χ′(Wn) = n for n ≥ 4.

Clearly, diam(Wn) = 2. By using Proposition 20, prc(Wn) = χ′(n) = n. We
obtain the result.

Next we determine the proper rainbow connection number for the complete
bipartite graph Ks,t.
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Theorem 22. Let s, t be two integers. If Ks,t is a complete bipartite graph, then

prc(Ks,t) = max{s, t}.

Let us mention the following result which is very useful to prove our Theo-
rem 22.

Theorem 23 (König et al. [10]). If G is bipartite, then G is in class 1.

Now we are able to prove Thereom 22.

Proof. With the aid of Theorem 23, it can be readily seen that χ′(Ks,t) =
∆(Ks,t) = max{s, t}. On the other hand, diam(Ks,t) = 2. By using Proposition
20, prc(Ks,t) = χ′(Ks,t).

We conclude that prc(Ks,t) = max{s, t}.

We know that the chromatic index χ′(G) depends on the property of G being
overfull or not overfull. G is called overfull if the number of vertices n is odd, and
the number of edges m is greater than 1

2 △ (G)(n− 1). Let us mention the result
of Hoffman et al. [6] on the chromatic index of complete multipartite graph.

Lemma 24 (Hoffman et al. [6]). Let G be a complete multipartite graph. Then

χ′(G) = △(G) if G is not overfull. Otherwise, χ′(G) = △(G) + 1.

Now the, proper connection number of a complete multipartite graph is de-
termined as follows.

Proposition 25. Let G be a complete multipartite graph. If G is overfull, then

prc(G) = △(G) + 1. Otherwise, prc(G) = △(G).

Proof. Suppose that G is a complete multipartite graph. It can be readily seen
that diam(G) = 2. By using Proposition 20, prc(G) = χ′(G).

Now, applying Lemma 24, χ′(G) = △(G)+1 if G is overfull or χ′(G) = △(G)
if G is not overfull. Hence, the result is obtained.

In [4], Chartrand et al. showed that rc(G) = 1 if and only if G is complete.
After that, Caro et al. [2] investigated graphs with small rainbow connection
numbers and they gave a sufficient condition that guarantees rc(G) = 2.

Theorem 26 (Caro et al. [2]). Let G be a nontrivial, connected graph of mini-

mum degree δ(G). If δ(G) ≥ n
2 + log2 n, then rc(G) = 2

Next, we show that dense graphs have large proper rainbow connection num-
ber.

Proposition 27. Let G be a proper edge-coloured graph of order n and minimum

degree δ(G). If δ(G) ≥ n−1
2 , then prc(G) = χ′(G).
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Proof. We show that diam(G) ≤ 2. Let u, v ∈ V (G) be two non adjacent ver-
tices. Then d(u) + d(v) = |N(u)∪N(V |+ |N(u)∩N(v)| ≥ 2 · n−1

2 = n− 1. Since
|N(u) ∪N(v)| ≤ n− 2, we conclude |N(u) ∩N(v)| ≥ 1. Hence there is a proper
coloured path uwv for a vertex w ∈ N(u)∩N(v). This shows that diam(G) ≤ 2.
Now prc(G) = χ′(G) follows by Proposition 20.

This proof immediately leads to the following extension.

Proposition 28. Let G be a proper edge-coloured graph of order n ≥ 3. If d(u)+
d(v) ≥ n− 1 for every pair of non adjacent vertices u, v ∈ V (G), then prc(G) =
χ′(G).

Proposition 29. Let G be a proper edge-coloured graph of order n ≥ 9 and

minimum degree δ(G). If δ(G) ≥ n−2
2 , then prc(G) = χ′(G).

Proof. Let u,w ∈ V (G) be any two vertices. If d(u,w) ≤ 2, then u and w are
connected by a rainbow path of length at most two. Hence we may assume that
d(u,w) ≥ 3. Then N [u]∪N [w] = V (G) implying δ(G) = n−2

2 . Since G is connected
we conclude that d(u,w) = 3. We may assume 4 ≤ d(u) ≤ d(w), since n ≥ 9. Let
U = N(u) = {u1, u2, . . . , ud(u)} and W = N(w) = {w1, w2, . . . , wd(w)}. Suppose
uiwj , uiwk ∈ E(G). Then at least one of the two paths uuiwjw and uuiwkw
is a rainbow uw-path. By symmetry we conclude that E(U,W ) is an induced
matching. Suppose u1w1 ∈ E(G), but uu1w1w is no rainbow uw-path. We may
assume that c(uu1) = c(w1w) = 1, c(u1w1) = 2. Since N(u1) ∩ W = {w1}, we
conclude that |N(u1) ∩ (U \ {u1})| ≥ δ(G) − 2 ≥ n−6

2 ≥ 2. We may assume that
u1u2, u1u3 ∈ E(G). Now uu2u1w1w or uu3u1w1w is a rainbow uw-path. Hence
G is rainbow connected. Now prc(G) = χ′(G) follows by Proposition 20.

Sharpness. For n = 8 consider the following graph F8 with vertices V (F8) =
{u, u1, u2, u3, w, w1, w2, w3} and edges E(F8) = {uu1, uu2, uu3, u1u2, u2u3, u1w1,
u3w3, w1w2, w2w3, ww1, ww2, ww3}. Then χ′(F8) = 3 and we may assume that
c(uui) = i for 1 ≤ i ≤ 3. Then the colours of five further edges are uniquely de-
termined as follows: c(u1u2) = 3, c(u2u3) = 1, c(u1w1) = c(u3w3) = c(ww2) = 2.
For the four remaining edges we obtain (1) c(w2w3) = c(ww1) = 3 and c(w1w2) =
c(ww3) = 1 or (2) c(w2w3) = c(ww1) = 1 and c(w1w2) = c(ww3) = 3.

This is a proper edge-colouring of F8, but F8 is not rainbow connected.
If we recolour in (1) the edges u2u3 and w2w3 by colour 4, then F8 becomes
proper rainbow connected. Hence prc(F8) = 4. If we switch in (1) the colours
of u1u2, u2u3 and w1w2, w2w3, then F8 becomes rainbow connected showing that
rc(F8) = 3 = diam(F8).

This proof immediately leads to the following extension.

Proposition 30. Let G be a proper edge-coloured graph of order n ≥ 9. If d(u)+
d(v) ≥ n− 2 for every pair of non adjacent vertices u, v ∈ V (G), then prc(G) =
χ′(G).
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u

u1

u2

u3

w1

w2

w3

w

Figure 5. Graph F8 with χ′(F8) = 3 but prc(G) = 4.

Proposition 31. Let G be a proper edge-coloured graph of order n ≥ 9 and

minimum degree δ(G). If δ(G) ≥ n+k
3 for an integer k ≥ 3, then prc(G) = χ′(G).

Proof. Let u,w ∈ V (G) be any two vertices. If d(u,w) ≤ 2, then u and w are
connected by a rainbow path of length at most two. Hence we may assume that
d(u,w) ≥ 3.

Case 1. d(u,w) = 3. Let R = V (G) \ (N [u] ∪N [w]). Then |R| ≤ n − 2(δ +
1). Following arguments in the previous proof we conclude that E(U,W ) is an
induced matching. Then δ ≤ d(u1) ≤ |R| + 4 ≤ n − 2δ + 2 implying δ ≤ n

3 , a
contradiction.

Case 2. d(u,w) = 4. Let uu1xw1w be a uw-path of length 4, and let R =
V (G)\(N [u]∪N [w]). Thus x ∈ R and |R| ≤ n−2(δ+1). If |N(x)∩(U ∪W )| ≥ 5,
then there is always a rainbow uw-path uuixwjw for two vertices ui and wj . Hence
we may assume that |N(x)∩ (U ∪W )| ≤ 4 implying δ− 4 ≤ d(x)− 4 ≤ |R| − 1 ≤
n− 2δ − 3. This gives δ ≤ n+1

3 , a contradiction.

Case 3. d(u,w) = 5. Let uu1x1x2w1w be a uw-path of length 5, and let
R = V (G) \ (N [u] ∪ N [w]). Thus x1, x2 ∈ R and |R| ≤ n − 2(δ + 1). Note that
N(x1) ∩ W = N(x2) ∩ U = ∅. If |N(x1) ∩ U | ≤ 5, then δ − 5 ≤ d(x) − 5 ≤
|R| − 1 ≤ n− 2δ− 3. This gives δ ≤ n+2

3 , a contradiction. Hence we may assume
that |N(x1) ∩ U ≥ 6. Now there is always a rainbow uw-path uuix1x2w1w for a
vertex ui.

Case 4. d(u,w) = t ≥ 6. Let uu1x1x2 · · ·xt−3w1w be a uw-path of length t.
Then N [x2]∩N [u] = N [x2]∩N [w] = ∅ implying 3(δ+1) ≤ n, a contradiction.

6. Lower Bound

In this section, we consider the lower bound of proper rainbow connection in
dense graphs and some conditions on size of graphs.
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6.1. Dense graphs

Dense graphs tend to have a small rainbow connection number. However, dense
graphs have a large proper rainbow connection number. This follows immediately
from its average degree.

Proposition 32. Let G be a nontrivial, connected graph of order n ≥ 2 and

average degree d(G) = 2|E(G)|
n

. Then prc(G) ≥ ⌈d(G)⌉.

Proof. It can be readily seen that prc(G) ≥ △(G) since prc(G) ≥ χ′(G) by
Proposition 1 and χ′(G) ≥ △(G) by Vizing’s Theorem. On the other hand,
△(G) ≥ ⌈d(G)⌉. Hence, prc(G) ≥ ⌈d(G)⌉.

We obtain the result.

Proposition 33. Let G be a connected graph of order n and size |E(G)| ≥ k n
2 .

Then prc(G) ≥ k.

Proof. By the handshaking lemma we obtain 2|E(G)|
n

= d(G) ≥ k. Now the
result follows by Proposition 32.

6.2. Size of graphs

The problem of rainbow connection depending on size of graphs are studied by
Kemnitz and Schiermeyer in [9] as follows. For every integer k with 1 ≤ k ≤
n− 1, compute and minimize the function f(n, k) with the following property. If
|E(G)| ≥ f(n, k), then rc(G) ≤ k, where

f(n, k) ≥
(

n− k + 1

2

)

+ (k − 1).

It has been shown in [9, 12, 8] that equality holds for k = 1, 2, 3, 4, n − 6, n −
5, n− 4, n− 3, n− 2, n− 1. Now, we obtain the following result.

Theorem 34. Let G be a connected proper edge-coloured graph of order n ≥ 3.
If

|E(G)| ≥
(

n− 2

2

)

+ 2,

then prc(G) = χ′(G) or G ∈ {P4, Z2, G6.3}.

Proof. We perform an induction on the order n of G. For n = 3 we obtain
|E(G)| ≥ 2 and verify that prc(G) = χ′(G). Now let G be a connected graph of
order n ≥ 4 and size |E(G)| ≥

(

n−2
2

)

+ 2. Then ∆(G) ≥ ⌈d(G)⌉ ≥
⌈

n− 5 + 10
n

⌉

≥
n− 4.

Let w ∈ V (G) be a vertex with d(w) = ∆(G), and let N(w) = W = {w1, w2,
. . . , w∆(G)} be its neighours. We distinguish four cases.



822 T. Duy Doan and I. Schiermeyer

1. If ∆(G) = n−1, then G[{wwi|1 ≤ i ≤ n−1}] induces a spanning subgraph
H of G, which is rainbow-connected. Hence G is rainbow-connected.

2. If ∆(G) = n− 2, then let V (G) \N [w] = {u}. First observe that N(u) ⊂
N(w). So we may assume that uwi ∈ E(G) for 1 ≤ i ≤ d(u). If d(u) ≥ 2, then
G[{wwi|1 ≤ i ≤ n − 2} ∪ {uw1, uw2}] induces a spanning subgraph H of G,
which is rainbow-connected. Hence G is rainbow-connected. If d(u) = 1, let
c(w1u) = 1, c(ww1) = 2. If c(wwi) 6= 1 for 2 ≤ i ≤ n − 2, then G is rainbow-
connected. Hence we may assume that c(ww2) = 1. Then we are sure that all
pairs of vertices x, y ∈ V (G) are rainbow-connected except for the pair (u,w2), if
d(u,w2) ≥ 3. Hence we may assume that w1w2 /∈ E(G). Suppose there is a vertex
wi ∈ N(w1) ∩N(w2) for some 3 ≤ i ≤ n− 2. We may assume that c(w1wi) = 3.
Then c(w2wi) 6= 1, 3 and so uw1wiw2 is a rainbow path. Suppose there is no such
vertex wi. Then |E(G)| ≥ 1 + (n− 3) + 1 + (n− 4) = 2n− 5, which implies that
|E(G)| =

(

n−2
2

)

+2. Thus we have d(u) = 1 and d(w1)+d(w2) = 3+(n−4) = n−1.
Therefore, G − {w1, w2, u} ∼= Kn−3. We may further assume that w2wi ∈ E(G)
for 3 ≤ i ≤ d(w2) + 1.

Suppose first that d(w2) ≥ 3. If c(w2w3) = 2, then uw1ww4w2 is a rainbow
uw2-path. If c(w2w3) 6= 2, then uw1ww3w2 is a rainbow uw2-path. Suppose
next that d(w2) = 2, which implies n ≥ 5. If c(w2w3) 6= 2, then uw1ww3w2 is a
rainbow uw2-path. Hence we may assume that c(w2w3) = 2. Then uw1w4w3w2

is a rainbow uw2-path for n ≥ 6. If n = 5, then G ∼= Z2. Note that χ′(Z2) =
rc(Z2) = 3, but prc(Z2) = 4. Hence Z2 is an exceptional graph.

Finally suppose that d(w2) = 1. Then G consists of a complete graph of order
n− 2 induced by V (G) \ {u,w2} and two pendant edges attached at w and w1. If
n ≥ 4 is odd, then χ′(G) = n−2 = ∆(G). Observe that the Kn−2 is coloured with
n−2 colours and that w and w1 have distinct palettes of colours for their incident
edges. Hence the pendant edges ww2 and w1u have distinct colours. This shows
that G is rainbow connected. If n ≥ 4 is even, then G ∼= P4 for n = 4 implying
prc(G) = rc(G) = 3. Therefore, P4 is an exceptional graph, since χ′(P4) = 2.

If n ≥ 6, take an optimal edge colouring of the Kn−2 using n − 3 colours.
Now switch the colour from ww3 to the edge ww2, and colour the edges ww3

and w1u with a new colour. Now observe that this colouring makes G properly
rainbow connected.

3. If ∆(G) = n−3, then let V (G)\N [w] = U = {u1, u2}. We first distinguish
two cases.

Case 1. u1u2 ∈ E(G). We first show that G−wi is connected for 1 ≤ i ≤ n−3.
Suppose that G − wi is disconnected for some i with 1 ≤ i ≤ n − 3. Then
|E(G)| ≤ |E(G[N [w] − wi])| + |E(G[{u1, u2}])| + d(wi) ≤

(

n−3
2

)

+ 1 + (n − 3) <
(

n−2
2

)

+ 2, a contradiction. Now G − w1 and G − w2 both have size at least
(

n−2
2

)

+ 2− (n− 3) =
(

(n−1)−2
2

)

+ 2. So by induction both G−w1 and G−w2 are
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Figure 6. Graph Z2.

rainbow connected or an exceptional graph. Furthermore w1 and w2 are rainbow
connected, since 1 ≤ d(w1, w2) ≤ 2. This shows that G is rainbow connected or
an exceptional graph.

Case 2. u1u2 /∈ E(G). Let d(u1) ≥ d(u2) ≥ 1. Then d(w) +
∑n−3

i=1 d(wi) ≤
(n− 3) + (n− 3)(n− 3) − d(u1) − d(u2) implying |E(G)| ≤

(

n−2
2

)

+ d(u1)+d(u2)
2 <

(

n−2
2

)

+ 2 for d(u1) + d(u2) ≤ 3, a contradiction. Hence we may assume that
d(u1) + d(u2) ≥ 4. Now if d(u1) ≥ 3, d(u2) = 1 or d(u1) ≥ 2, d(u2) ≥ 2, then
there are always two vertices wi, wj such that G − wi and G − wj are both
connected. This shows that G is rainbow connected or an exceptional graph.

This discussion shows, that in both cases G is either properly rainbow con-
nected or an exceptional graph. So suppose that m(G−wi) =

(

n−3
2

)

+2 and G−wi

is not properly rainbow connected for some 1 ≤ i ≤ d(w). We may choose the
labeling of the vertices of G such that G−w1 is not properly rainbow connected.

If n = 5, then G− w1
∼= P4. Taking into account that d(w1) = 2 = ∆(G) we

conclude that G ∼= C5. Now we have prc(C5) = 3 = rc(C5) = χ′(C5).

If n = 6, then G − w1
∼= Z2. Now up to isomorphism the following three

graphs G6.1, G6.2 and G6.3 are possible.

(a) G6.1 : c(ww2) = c(w1w3) = c(u1u2) = 1, c(ww1) = c(w2w3) = 2, c(ww3) =
c(w1u1) = c(w2u2) = 3. This shows that prc(G6.1) = rc(G6.1) = χ′(G6.1) = 3.

(b) G6.2 : c(ww2) = c(w1w3) = c(u1u2) = 1, c(ww1) = c(w2w3) = 2, c(ww3) =
c(w1u1) = 3, c(w2u1) = 4. Observe that χ′(G6.2) = 4. This shows that prc(G6.2) =
χ′(G6.2) = 4, whereas rc(G6.2) = 3.

(c) For G6.3 we can show that rc(G6.3) = χ′(G6.3) = 3, whereas prc(G6.3) = 4.
Up to a permutation of the colours G6.3 has to be coloured as follows: G6.3 :
c(ww1) = c(w2w3) = c(u1u2) = 1, c(ww2) = c(w1u2) = 2, c(ww3) = c(w2u2) =
c(w1u1) = 3. Thus G6.3 is an exceptional graph.

If n = 7, then G − w1
∼= G6.3. Observe that d(w1) = 4. Now we can always

find two vertices x, y ∈ V (G6.3) such that d(x, y) ≤ 2, G − x and G − y are
connected, and ∆(G − x) = ∆(G − y) = 4. Hence, G is no exceptional graph.
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Now by induction it follows that there are no exceptional graphs G with size
(

n−2
2

)

+ 2 for all n ≥ 7.

w3w1 w2

w

u1 u2

1
3 3

1 2

2 13

Figure 7. Graph G6.1.

w3w1 w2

w

u1 u21

3

1 2

2 13

4

Figure 8. Graph G6.2.

w2

w1 w3

w

u1 u21

3

1

1 32

32

Figure 9. Graph G6.3.

4. If ∆(G) = n − 4, then n ≥ 7. Let V (G) \ N [w] = U = {u1, u2, u3}. We
distinguish three cases.

Case 1. U is connected. We first show that G− wi is connected for 1 ≤ i ≤
n− 4. Suppose that G− wi is disconnected for some i with 1 ≤ i ≤ n− 4. Then
|E(G)| ≤ |E(G[N [w]−wi])|+ |E(G[{u1, u2, u3}])|+d(wi) ≤

(

n−4
2

)

+3+(n−4) =
(

n−3
2

)

+3 <
(

n−2
2

)

+2, a contradiction. Hence we may assume that |N(U)∩W | ≥ 2.

Fact 1. Then there are always two vertices wi, wj such that G−wi and G−wj are
both connected. Now G−wi and G−wj both have size at least

(

n−2
2

)

+3−(n−4) =
(

(n−1)−2
2

)

+ 4. So by induction both G − wi and G − wj are rainbow connected.
Furthermore w1 and w2 are rainbow connected, since 1 ≤ d(w1, w2) ≤ 2. This
shows that G is rainbow connected.

Case 2. |E(U)| = 1. We may assume that E(U) = u1u2. If |E(U,W )| ≤ 3,
then

∑

v∈V (G) d(v) ≤ (n−3)(n−4)+2+3 implying m(G) ≤
(

n−3
2

)

+2 <
(

n−2
2

)

+2,
a contradiction. Hence we may assume that |E(U,W )| ≥ 4. Now considering the
two components {u1, u2} and u3 of U as two vertices we can follow the previous
Case 2 for ∆(G) = n− 3.

Case 3. E(U) = ∅. Let d(u1) ≥ d(u2) ≥ d(u3) ≥ 1. If d(u3) ≥ 2, then
there are always two vertices wi, wj such that G−wi and G−wj are connected.
Moreover, d(wi, wj) ≤ 2 and we apply Fact 1. So we may assume that d(u3) =
1. Let u3w1 ∈ E(G). If |E({u1, u2},W − w1| ≥ 4, then there are two vertices
wi, wj , 2 ≤ i < j ≤ j such that G − wi and G − wj are connected and we
apply Fact 1. Hence we may assume that |E(U,W )| ≤ 3 + 3 = 6. This implies
|E(G)| ≤

(

n−3
2

)

+ 6 <
(

n−2
2

)

+ 2, a contradiction.

Sharpness. For even n ≥ 6 take a complete graph of order n − 2 and label
its vertices v1, v2, . . . , vn−2. Now we add two vertices vn−1, vn, add the edges
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v1

v2

v3 vn−4

vn−3

vn−2

vn−1 vn

Figure 10. Graph Fn, where n is even.

v1vn−1, vn−2vn, and delete the edge v1vn−2. Let Fn denote the resulting graph.
Then |E(Fn)| =

(

n−2
2

)

+ 1,∆(Fn) = χ′(Fn) = n− 3, rc(Fn) = diam(Fn) = 4, but
prc(G) = n− 2, if n is even. This can be seen as follows. In any edge colouring
of Fn using n − 3 colours, Fn − {vn−2, vn−1, vn} uses all n − 3 colours, each on
n−4
2 edges. Applying the same argument on Fn − {v1, vn−1, vn}, we deduce that

v1 and vn−2 have the same palette of n − 4 colours for their incident edges in
Fn−{vn−1, vn}. Suppose these colours are 1, 2, . . . , n−4. Then both edges v1vn−1

and vn−2vn obtain colour n− 3. But then there is no rainbow vn−1vn-path.

References

[1] S. Bau, P. Johnson, E. Jones, K. Kumwenda and R. Matzke, Rainbow connectivity

in some Cayley graphs, Australas. J. Combin. 71 (2018) 381–393.

[2] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster, On rainbow connection,
Electron. J. Combin. 15 (2008) #R57.
doi:10.37236/781

[3] L.S. Chandran, A. Das, D. Rajendraprasad and N.M. Varma, Rainbow connection

number and connected dominating sets, J. Graph Theory 71 (2012) 206–218.
doi:10.1002/jgt.20643

[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in

graphs, Math. Bohem. 133 (2008) 85–98.

[5] L. Chen, X. Li and Y. Shi, The complexity of determining the rainbow vertex-

connection of a graph, Theoret. Comput. Sci. 412 (2011) 4531–4535.
doi:10.1016/j.tcs.2011.04.032

[6] D.G. Hoffman and C.A. Rodger, The chromatic index of complete multipartite

graphs, J. Graph Theory 16 (1992) 159–163.
doi:10.1002/jgt.3190160207

[7] H. Jiang, W. Li, X. Li and C. Magnant, On proper (strong) rainbow connection of

graphs , Discuss. Math. Graph Theory 41 (2021) 469–479.
doi:10.7151/dmgt.2201

http://dx.doi.org/10.37236/781
http://dx.doi.org/10.1002/jgt.20643
http://dx.doi.org/10.1016/j.tcs.2011.04.032
http://dx.doi.org/10.1002/jgt.3190160207
http://dx.doi.org/10.7151/dmgt.2201


826 T. Duy Doan and I. Schiermeyer

[8] A. Kemnitz, J. Przyby lo, I. Schiermeyer and M. Woźniak, Rainbow connection in
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