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Abstract

A perfect Italian dominating function (PIDF) on a graph G is a function
f : V (G) → {0, 1, 2} satisfying the condition that for every vertex u with
f(u) = 0, the total weight of f assigned to the neighbors of u is exactly two.
The weight of a PIDF is the sum of its functions values over all vertices. The
perfect Italian domination number of G, denoted γp

I (G), is the minimum
weight of a PIDF of G. In this paper, we show that for every tree T of order

n ≥ 3, with ℓ(T ) leaves and s(T ) support vertices, γp
I (T ) ≤

4n−ℓ(T )+2s(T )−1
5 ,

improving a previous bound given by T.W. Haynes and M.A. Henning in
[Perfect Italian domination in trees, Discrete Appl. Math. 260 (2019) 164–
177].
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1. Introduction

Throughout this paper, G is a simple graph with vertex set V (G) and edge set
E(G) (briefly V,E). The order |V | of G is denoted by n = n(G). For every vertex
v ∈ V (G), the open neighborhood of v is the set NG(v) = N(v) = {u ∈ V (G) |
uv ∈ E(G)} and its closed neighborhood is the set NG[v] = N [v] = N(v) ∪ {v}.
The degree of a vertex v ∈ V is degG(v) = |N(v)|. A leaf of G is a vertex of
degree one and a support vertex is a vertex adjacent to a leaf. An end support

vertex is a support vertex having at most one non-leaf neighbor. For every vertex
v ∈ V , the set of all leaves adjacent to v is denoted by L(v) and L[v] = L(v)∪{v}.
We denote the set of leaves of a graph G by L(G) and the set of support vertices
by S(G). We also let |S(G)| = s(G) and |L(G)| = ℓ(T ). A double star DSq,p,
with q ≥ p ≥ 1, is a graph consisting of the union of two stars K1,q and K1,p

together with an edge joining their centers. The subdivision graph Sb(G) of a
graph G is that graph obtained from G by replacing each edge uv of G by a
vertex w and edges uw and vw. A healthy spider Sk(G) is the subdivision graph
of a star K1,k for k ≥ 2. A wounded spider Sk,t is a graph obtained from a star
K1,k by subdividing t edges exactly once, where 1 ≤ t ≤ k− 1. We denote by Pn

the path on n vertices. The distance dG(u, v) between two vertices u and v in
a connected graph G is the length of a shortest u − v path in G. The diameter

of a graph G, denoted by diam(G), is the greatest distance between two vertices
of G. For a vertex v in a rooted tree T , let C(v) denote the set of children of v,
D(v) denotes the set of descendants of v and D[v] = D(v)∪ {v}. Also, the depth

of v, depth(v), is the largest distance from v to a vertex in D(v). The maximal

subtree at v is the subtree of T induced by D[v], and is denoted by Tv.

For a real-valued function f : V −→ R, the weight of f is ω(f) =
∑

v∈V f(v),
and for S ⊆ V we define f(S) =

∑
v∈S f(v). So w(f) = f(V ).

A Roman dominating function on G, abbreviated RDF, is a function f :
V → {0, 1, 2} such that every vertex u ∈ V for which f(u) = 0 is adjacent to
at least one vertex v for which f(v) = 2. Roman domination was introduced by
Cockayne et al. in [7] and was inspired by the work of ReVelle and Rosing [12] and
Stewart [13]. Several new varieties of Roman domination have been introduced
since 2004, among them, we quote the Italian domination originally published
in [1] and called Roman {2}-domination. Further results on Roman domination
and its variant can be found in [2–6].

An Italian dominating function on G, abbreviated IDF, is a function f :
V → {0, 1, 2} satisfying the condition that for every vertex v ∈ V with f(v) = 0,∑

u∈N(v) f(u) ≥ 2, that is either v is adjacent to a vertex u with f(u) = 2, or
to at least two vertices x and y with f(x) = f(y) = 1. The Italian domination
number, denoted γI(G), is the minimum weight of an IDF in G.

The concept of perfect dominating sets introduced by Livingston and Stout
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in [11] has been extended to Roman and Italian dominating functions in [10]
and [9], respectively. An RDF f is called perfect if for every vertex v with
f(v) = 0, there is exactly one vertex u ∈ N(v) with f(u) = 2, while a IDF
g is perfect if for every vertex w with g(w) = 0, g(N(v)) = 2. The perfect

Roman domination number (respectively, perfect Italian domination number) of
G, denoted γpR(G) (respectively, γpI (G)), is the minimum weight of a perfect RDF
(respectively, perfect IDF) in G. A perfect IDF on G will be abbreviated PIDF.
A PIDF f is called a γpI (G)-function if ω(f) = γpI (G).

It was shown in [10] that every tree T of order n ≥ 3 satisfies γpR(T ) ≤
4
5n.

However, this upper bound has recently been improved by Darkooti et al. [8] for
trees T with ℓ(T ) ≥ 2s(T ) − 2, by showing that for any tree T of order n ≥ 3
with ℓ(T ) leaves and s(T ) support vertices, γpR(T ) ≤ (4n− ℓ(T ) + 2s(T ) − 2)/5.
Moreover, Henning and Haynes showed in [9] that 4

5n is also an upper bound of
the prefect Italian domination number for any tree of order n ≥ 3.

In this paper, we shall show that for any tree T of order n ≥ 3 with ℓ(T )
leaves and s(T ) support vertices, γpR(T ) ≤ (4n− ℓ(T ) + 2s(T ) − 1)/5. But first
let us point out that for both parameters γpR(G) and γpI (G), one may be larger or
smaller than the other even for trees. Indeed, for the path P5 we have γ

p
R(P5) = 4

and γpI (P5) = 3 while for the double star DS3,1 we have γpR(DS3,1) = 3 and
γpI (DS3,1) = 4. The next result shows that the differences γpI (G) − γpR(G) and
γpR(G)− γpI (G) can be arbitrarily large.

Observation 1. For any integer k ≥ 1, there exist trees Tk and Hk such that

γpI (Tk)− γpR(Tk) = k and γpR(Hk)− γpI (Hk) = k.

Proof. Let Tk be the tree formed by k double stars DS3,1 by adding a new
vertex attached to every support vertex of degree four. One can easily see that
γpI (Tk) = 4k + 1 while γpR(Tk) = 3k + 1.

Now, letHk be the tree formed by k paths P5 by adding a new vertex attached
to all center vertices of the paths. Then γpI (Hk) = 3k+1 while γpR(Hk) = 4k+1.

2. New Upper Bound

In this section, we present our main result which is an upper bound on the perfect
Italian domination number of a tree.

Theorem 2. If T is a tree of order n ≥ 3 with ℓ(T ) leaves and s(T ) support

vertices, then

γpI (T ) ≤
4n− ℓ(T ) + 2s(T )− 1

5
.

Proof. We proceed by induction on the order n. If n ∈ {3, 4}, then clearly

γpI (T ) ≤
4n−ℓ(T )+2s(T )−1

5 , establishing the base case. Let n ≥ 5 and assume that
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any tree T ′ of order n′, with 3 ≤ n′ < n satisfies γpI (T
′) ≤ 4n−ℓ(T ′)+2s(T ′)−1

5 . Let
T be a tree of order n. If diam(T ) = 2, then T is a star, where γpI (T ) = 2 <
4n−ℓ(T )+2s(T )−1

5 . If diam(T ) = 3, then T is a double star, and since n ≥ 5 we

have γpI (T ) = 4 ≤ 4n−ℓ(T )+2s(T )−1
5 . Hence, we may assume that T has diameter

at least 4. If n = 5, then T is a path P5, where γpI (P5) = 3 ≤ 4n−ℓ(T )+2s(T )−1
5 .

Hence let n ≥ 6.

Suppose v1v2 · · · vk (k ≥ 5) is a diametral path in T such that degT (v2) is as
large as possible. Root T at vk. First, assume that T has an end support vertex y
of degree three. Without loss of generality, assume that y = v2. Let T

′ = T −Tv2

and f ′ be a γpI (T
′)-function. If f ′(v3) = 0, then f ′ can be extended to a PIDF of

T by assigning a 0 to v2 and a 1 to the two leaves of v2. If f
′(v3) ≥ 1, then f ′ can

be extended to a PIDF of T by assigning a 2 to v2 and a 0 to the leaves of v2. In
either case, γpI (T ) ≤ γpI (T

′) + 2, and by the induction hypothesis we obtain

γpI (T ) ≤ γpI (T
′) + 2 ≤

4n′ − ℓ(T ′) + 2s(T ′)− 1

5
+ 2

≤
4(n− 3)− ℓ(T ) + 2 + 2s(T )− 1

5
+ 2

≤
4n− ℓ(T ) + 2s(T )− 1

5
.

Hence we can assume that T has no end support vertex of degree three, in par-
ticular we have degT (v2) 6= 3. Next, suppose that degT (v3) = 2. If degT (v2) = 2,
then let T ′ = T − Tv3 and f ′ be a γpI (T

′)-function. Note that n′ = n − 3,
s(T ′) ≤ s(T ) and ℓ(T ′) ≥ ℓ(T )−1. Now if f ′(v4) = 0, then the function f defined
by f(v2) = 2, f(v1) = f(v3) = 0 and f(x) = f ′(x) for x ∈ V (T ) \ {v1, v2, v3} is
a PIDF of T . If f ′(v4) ≥ 1, then the function f defined by f(v1) = f(v3) = 1,
f(v2) = 0 and f(x) = f ′(x) for x ∈ V (T ) \ {v1, v2, v3} is a PIDF of T . In either
case, γpI (T ) ≤ γpI (T

′) + 2, and by the induction hypothesis we obtain

γpI (T ) ≤ γpI (T
′) + 2 ≤

4(n− 3)− ℓ(T ) + 1 + 2s(T )− 1

5
+ 2

<
4n− ℓ(T ) + 2s(T )− 1

5
.

Suppose now that degT (v2) ≥ 4. Let T ′ = T − Tv3 and f ′ be a γpI -function
of T ′. Note that T ′ has order n′ ≥ 2. Clearly if n′ = 2, then γpI (T ) = 4 <
4n−ℓ(T )+2s(T )−1

5 . Hence we assume that n′ ≥ 3. If f ′(v4) = 0, then we can extend
f ′ to a PIDF of T by assigning a 2 to v2 and a 0 to every neighbor of v2. If
f ′(v4) ≥ 1, then we can extend f ′ to a PIDF f of T by assigning a 2 to v2, a 1
to v3, and a 0 to all leaves of v2. In either case, γpI (T ) ≤ γpI (T

′) + 3 and by the
induction hypothesis we obtain
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γpI (T ) ≤ γpI (T
′) + 3 ≤

4n′ − ℓ(T ′) + 2s(T ′)− 1

5
+ 3

≤
4(n− |L(v2)| − 2)− (ℓ(T )− |L(v2)|) + 2s(T )− 1

5
+ 3

=
4n− ℓ(T ) + 2s(T )− 1− 3L(v2)− 8

5
+ 3 <

4n− ℓ(T ) + 2s(T )− 1

5
.

From now on, we can assume that degT (v3) ≥ 3 and degT (v2) 6= 3. Note that
often in our proof a subtree T ′ of T is considered, and so in either case, let f ′ be
a γpI (T

′)-function. Consider the following cases.

Case 1. degT (v2) ≥ 4 and Tv3 6= DS3,1. Let us examine the following
situations.

Subcase 1.1. v3 has at least two leaves. Let T ′ be the tree of order n′ obtained
from T by removing all leaves of v2. Note that n′ = n− |L(v2)|, s(T

′) = s(T )− 1
and ℓ(T ′) = ℓ(T ) − |L(v2)| + 1. Since v3 has at least three leaves in T ′, we
conclude that f ′(v3) ≥ 1. Hence the function f defined by f(v2) = 2, f(x) = 0
for all x ∈ L(v2) and f(x) = f ′(x) for x ∈ V (T ) \L[v2] is a PIDF of T . It follows
that γpI (T ) ≤ γpI (T

′) + 2, and by the induction hypothesis we obtain

γpI (T ) ≤ γpI (T
′) + 2 ≤

4(n− |L(v2)|)− ℓ(T ) + |L(v2)| − 1 + 2s(T )− 3

5
+ 2

<
4n− ℓ(T ) + 2s(T )− 1

5
.

Subcase 1.2. v3 has exactly one leaf, say v′. If v2 is the unique child of v3
with depth 1, then let T ′ be the tree of order n′ obtained from T by removing
all vertices in Tv2 and adding two new vertices x1, x2 attached at v3. Since v3
has at least three leaves, we have f ′(v3) ≥ 1, and thus the function f defined
by f(v2) = 2, f(x) = 0 for x ∈ L(v2) and f(x) = f ′(x) for x ∈ V (T ) \L[v2] is
a PIDF of T . Hence γpI (T ) ≤ γpI (T

′) + 2, and since Tv3 6= DS3,1, we must have
|L(v2)| ≥ 4. It follows from the induction hypothesis that

γpI (T ) ≤ γpI (T
′) + 2 ≤

4(n+ 1− |L(v2)|)− ℓ(T ) + |L(v2)| − 2 + 2s(T )− 3

5
+ 2

<
4n− ℓ(T ) + 2s(T )− 1

5
.

Suppose that v3 has (at least) two children with depth 1, say a and b such that
degT (a) ≥ 4 and degT (b) ≥ 4. Let T ′ be the tree formed from T by deleting
all leaves of a and b. Note that n′ = n − |L(a)| − |L(b)|, s(T ′) = s(T ) − 2
and ℓ(T ′) = ℓ(T ) − |L(a)| − |L(b)| + 2. Clearly, f ′(v3) ≥ 1 since v3 has three
leaves in T ′. Thus the function f defined by f(a) = f(b) = 2, f(x) = 0 for all
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x ∈ L(a) ∪ L(b) and f(x) = f ′(x) for all x ∈ V (T ) \ (L[a] ∪ L[b]) is a PIDF of
T , and so γpI (T ) ≤ γpI (T

′) + 4. Using the fact |L(a)| ≥ 3 and |L(b)| ≥ 3 and the
induction hypothesis we obtain

γpI (T ) ≤ γpI (T
′) + 4

≤
4(n− |L(a)| − |L(b)|)− ℓ(T ) + |L(a)|+ |L(b)| − 2 + 2s(T )− 5

5
+ 4

<
4n− ℓ(T ) + 2s(T )− 1

5
.

Hence we can assume now that v2 is the unique child of v3 with depth one and
degree at least 4. Recall that since degT (v2) 6= 3, we may assume that every child
of v3 with depth 1 that is different from v2 has degree two. Note that |C(v3)| ≥ 3.
Assume first that |C(v3)| ≥ 4, and let T ′ be the tree of order n′ obtained from
T − Tv3 by adding three new vertices x1, x2, x3 attached at v4. Note that n′ =
n− |C(v3)| − |L(Tv3)|+ 3, ℓ(T ′) = ℓ(T )−L(Tv3) + 3, s(T ′) ≤ s(T )− |C(v3)|+ 1.
Now, since v4 has three leaves in T ′, we must have f ′(v4) ≥ 1, and thus the
function f defined by f(v2) = 2, f(x) = 1 for x ∈ {v′, v3} ∪ (L(Tv3) \L(v2)),
f(x) = 0 for all x ∈ (C(v3) \ {v2, v

′})∪L(v2) and f(x) = f ′(x) for otherwise, is a
PIDF of T . Hence γpI (T ) ≤ γpI (T

′)+ |C(v3)|+2, and by the induction hypothesis
it follows that

γpI (T )

≤ γpI (T
′) + |C(v3)|+ 2

≤
4(n− |C(v3)|+ 3− |L(Tv3)|)− ℓ(T ) + |L(Tv3)| − 3 + 2s(T )− 2|C(v3)|+ 1

5

+ |C(v3)|+ 2 ≤
4n− ℓ(T ) + 2s(T )− 1

5
+

−|C(v3)| − 3|L(Tv3)|+ 21

5
.

Moreover, since |L(Tv3)| ≥ |C(v3)| + 2, we have γpI (T ) ≤ 4n−ℓ(T )+2s(T )−1
5 +

−4|C(v3)|+15
5 < 4n−ℓ(T )+2s(T )−1

5 because of |C(v3)| ≥ 4. Next, we can assume
that |C(v3)| = 3, that is Tv3 is isomorphic to H1 in Figure 1. In this case, let
T ′ be the tree formed from T by removing all vertices of Tv3 except v3. Clearly
v3 is a leaf in T ′. If f ′(v3) = 0, then f(v4) = 2 and so the function f defined
by f(v3) = f(v′) = f(u1) = 1, f(v2) = 2, f(x) = 0 for all x ∈ L(v2) ∪ {u2} and
f(x) = f ′(x) for otherwise is a PIDF of T . If f ′(v3) = 1, then we can extend f ′

to be a PIDF of T as above when f ′(v3) = 0, except that we do not assign a 1 to
v3. In either case, γpI (T ) ≤ γpI (T

′) + 5. It follows from the induction hypothesis
that

γpI (T ) ≤ γpI (T
′) + 5 ≤

4(n− 4− |L(v2)|)− ℓ(T ) + |L(v2)|+ 1 + 2s(T )− 5

5
+ 5

<
4n− ℓ(T ) + 2s(T )− 1

5
.
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Finally, if f ′(v3) = 2, then the function f defined by f(v2) = f(u2) = 2, f(x) = 0
for all x ∈ L(v2) ∪ {u1, v

′} and f(x) = f ′(x) for otherwise is a PIDF of T . Using
the induction hypothesis we obtain

γpI (T ) ≤ γpI (T
′) + 4 ≤

4(n− 4− |L(v2)|)− ℓ(T ) + |L(v2)|+ 1 + 2s(T )− 5

5
+ 4

<
4n− ℓ(T ) + 2s(T )− 1

5
.

· · ·· · · · · ·

v2

v3 v3

u

H3 H4

· · · · · ·

v′

v3

u1

v3

v2 u2

H1 H2

Figure 1. The trees.

Subcase 1.3. v3 is not a support vertex. Suppose that v3 has at least three
children of degree at least 4, say a, b and c. Let T ′ be the tree obtained from T
by removing all leaves of a, b and c. Note that n′ = n − |L(a)| − |L(b)| − |L(c)|,
s(T ′) = s(T ) − 2 and ℓ(T ′) = ℓ(T ) − |L(a)| − |L(b)| − |L(c)| + 3. Clearly, since
v3 has three leaves in T ′, f ′(v3) ≥ 1, and thus the function f defined by f(a) =
f(b) = f(c) = 2, f(x) = 0 for all x ∈ L(a) ∪ L(b) ∪ L(c) and f(x) = f ′(x) for all
x ∈ V (T ) \ (L[a] ∪ L[b] ∪ L[c]) is a PIDF of T . By the induction hypothesis, it
follows that

γp
I (T ) ≤ γp

I (T
′) + 6

≤
4(n− |L(a)| − |L(b)| − |L(c)|)− ℓ(T ) + |L(a)|+ |L(b)|+ |L(c)| − 3 + 2s(T )− 5

5
+ 6

<
4n− ℓ(T ) + 2s(T )− 1

5
.
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Hence, v3 has at most two children of degree at least 4, say v3 and u (if any).
Let T ′ be the tree of order n′ obtained from T −Tv3 by adding three new vertices
attached at v4. Note that n

′ = n−|C(v3)|−|L(Tv3)|+2, s(T ′) ≤ s(T )−|C(v3)|+1
and ℓ(T ′) = ℓ(T )−|L(Tv3)|+3. Clearly, f ′(v4) ≥ 1. Hence the function f defined
by f(x) = 2 for x ∈ {v2, u}, f(x) = 1 for x ∈ (L(Tv3) ∪ {v3}) \ (L(v2) ∪ L(u)),
f(x) = 0 for x ∈ (C(v3) \ {v2, u})∪ (L(v2)∪L(u)) and f(x) = f ′(x) for otherwise
is a PIDF of T . By the induction hypothesis we obtain

γpI (T ) ≤ γpI (T
′) + |C(v3)|+ 3

≤
4(n− |C(v3)| − |L(Tv3)|+ 2)−ℓ(T ) + |L(Tv3)|−3 + 2s(T )−2|C(v3)|+1

5

+ |C(v3)|+ 3 ≤
4n− ℓ(T ) + 2s(T )− 1

5
+

−|C(v3)| − 3|ℓ(Tv3)|+ 22

5
.

Since |L(Tv3)| ≥ |C(v3)| + 2, we have γpI (T ) ≤ 4n−ℓ(T )+2s(T )−1
5 + −4|C(v3)|+16

5 .

If |C(v3)| ≥ 4, then γpI (T ) ≤ 4n−ℓ(T )+2s(T )−1
5 . Hence, 2 ≤ |C(v3)| ≤ 3. If

|C(v3)| = 3 and v3 has two children of degree at least 4, then one can easily

see that γpI (T ) ≤ 4n−ℓ(T )+2s(T )−1
5 (since |L(Tv3)| ≥ |C(v3)| + 4). In the sequel,

we can assume that Tv3 is isomorphic to one of H2, H3, H4 depicted in Figure 1.
In that case, let T ′′ be the tree formed from T by removing all vertices of Tv3

except v3. Clearly v3 is a leaf in T ′′. Let f ′′ be a γpI (T
′′)-function. If f ′′(v3) = 0,

then f ′′(v4) = 2 and so let f be a PIDF of T defined as follows: f(x) = f ′′(x)
for all x ∈ V (T ′) \ {v3} and f(v3) = 1. Moreover, every child of v3 of degree 2
is assigned a 0 and its unique leaf a 1; every child of v3 of degree at least 4 is
assigned a 2 and its leaves a 0. If f ′′(v3) = 1, then f ′′ will be extended to a
PIDF of T as above when f ′(x) = 0, except we do not assign a 1 to v3. Finally, if
f ′′(v3) = 2, then we use the following assignment for vertices of Tv3 : assign a 2 to
each child of v3 and a 0 to each of their leaves. Now, if Tv3 = H2, then in either
case described above, we have γpI (T ) ≤ γpI (T

′′) + 4. By the induction hypothesis
we obtain

γpI (T ) ≤ γpI (T
′′) + 4 ≤

4(n− 3− |L(v2)|)− ℓ(T ) + |L(v2)|+ 1 + 2s(T )− 3

5
+ 4

<
4n− ℓ(T ) + 2s(T )− 1

5
.

If Tv3 = H3, then γpI (T ) ≤ γpI (T
′′)+5, and by the induction hypothesis we obtain

γpI (T ) ≤ γpI (T
′′) + 5

≤
4(n− 2− |L(v2)| − |L(u)|)− ℓ(T ) + |L(v2)|+ |L(u)|+ 2s(T )− 3

5
+ 5

<
4n− ℓ(T ) + 2s(T )− 1

5
.
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Moreover, if Tv3 = H4, then γpI (T ) ≤ γpI (T
′′)+6, and by the induction hypothesis

it follows that

γpI (T ) ≤ γpI (T
′′) + 6 ≤

4(n− 5− |L(v2)|)− ℓ(T ) + 2 + |L(v2)|+ 2s(T )− 5

5
+ 6

<
4n− ℓ(T ) + 2s(T )− 1

5
.

Before discussing Case 2, we will need the following claim.

Claim. Let T be a wounded spider of order n different from DS2,1, with s(T )
support vertices and ℓ(T ) leaves. Then we have the following.

(i) If 6s(T )− 2ℓ(T ) ≥ 11, then γpI (T ) ≤
4n−ℓ(T )+2s(T )−6

5 .

(ii) If 6s(T )− 2ℓ(T ) ≤ 11, then γpI (T ) ≤
4n−ℓ(T )+2s(T )−3

5 .

Proof. Let v be the center vertex of T .
(i) If 6s(T ) − 2ℓ(T ) ≥ 11, then the function f defined by assigning a 1 to v

and every leaf of T, and a 0 to remaining vertices of T , is a PIDF of T and so

γpI (T ) ≤ ω(f) = ℓ(T ) + 1 ≤
4n− ℓ(T ) + 2s(T )− 6

5
.

(ii) Let t = |L(v)|−1. Clearly, ℓ(T ) = s(T )+ t and since 6s(T )−2ℓ(T ) ≤ 11,
then T is a double star and since T is not a DS2,1, we can see that we have
4s(T ) − 2t ≤ 11 and thus t ≥ 2s(T ) − 11

2 . Now if s(T ) = 2, then T is a double

star and since T is not a DS2,1, we can see that γpI (T ) ≤
4n−ℓ(T )+2s(T )−3

5 . Hence,
let s(T ) ≥ 3. Then the function f defined by assigning a 2 to the support vertices
of T and a 0 to remaining vertices of T is a PIDF of T of weight 2s(T ). Since,

n = s(T )+ℓ(T ) and ℓ(T ) = s(T )+ t, it follows that 4n−ℓ(T )+2s(T )−3
5 = 9s(T )+3t−3

5 .
Moreover, since t ≥ 2s(T )− 11

2 we obtain

9s(T ) + 3t− 3

5
≥

9s(T ) + 6s(T )− 33
2 − 3

5
= 3s(T )−

39

10
.

Now, if s(T ) ≥ 4, then 3s(T ) − 39
10 ≥ 2s(T ) ≥ γpI (T ) and so the desired result

follows. Thus we assume that s(T ) = 3. If t ≥ 2s(T )− 7
2 , then as above we have

9s(T )+3t−3
5 ≥ 3s(T )− 27

10 ≥ 2s(T ) ≥ γpI (T ). Hence, let t ≤ 2s(T )− 7
2 = 2.5. Note

that in this case ℓ(T ) ∈ {3, 4, 5}. Then assigning a 1 to v and the leaves of T
and a 0 to remaining vertices of T provides a PIDF of T of weight ℓ(T ) + 1 ≤
4n−ℓ(T )+2s(T )−3

5 , which completes the proof of the claim. �

We note from the proof of the claim that there exist PIDFs of T of weight

at most
4|V (Tv3

)|−ℓ(Tv3
)+2s(Tv3

)−3

5 that assign to the center vertex a 1 or 2.
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Now we are ready to examine the next case.

Case 2. degT (v2) = 2 or Tv3 = DS3,1. From Case 1 and since v2 was chosen
having a maximum degree, we conclude that Tv3 is a spider. Assume first that Tv3

is a healthy spider. If |C(v3)| ≥ 3, then let T ′ be the tree obtained by removing
Tv3 and adding three new vertices attached at v4. Note that n

′ = n−2|C(v3)|+2,
s(T ′) ≤ s(T ) − |C(v3)| + 1 and ℓ(T ′) = ℓ(T ) − |C(v3)| + 3. Clearly, f ′(v4) ≥ 1
(since v4 has three leaves in T ′). Thus the function f defined by f(x) = 1 for
x ∈ L(Tv3)∪{v3}, f(x) = 0 for x ∈ C(v3) and f(x) = f ′(x) for x ∈ V (T ) \V (Tv3)
is a PIDF of T . Hence γpI (T ) ≤ γpI (T

′) + |C(v3)| + 1, and by the induction
hypothesis we obtain

γpI (T )

≤ γpI (T
′) + |C(v3)|+ 1

≤
4(n− 2|C(v3)|+ 2)− ℓ(T ) + |C(v3)| − 3 + 2s(T )− 2|C(v3)|+1

5
+ |C(v3)|+1

≤
4n− ℓ(T ) + 2s(T )− 1− 4|C(v3)|+ 12

5
≤

4n− ℓ(T ) + 2s(T )− 1

5
.

Now, assume that |C(v3)| = 2, and let T ′ = T − Tv3 . If f
′(v4) ≥ 1, then the

function f defined by f(x) = 1 for x ∈ L(Tv3)∪{v3}, f(x) = 0 for every x ∈ C(v3)
and f(x) = f ′(x) for all x ∈ V (T ) \V (Tv3) is a PIDF of T of weight γpI (T

′) + 3.
If f ′(v4) = 0, then the function f defined by f(x) = 1 for x ∈ V (Tv3) \ {v3},
f(v3) = 0 and f(x) = f ′(x) for all x ∈ V (T ) \V (Tv3) is a PIDF of T of weight
γpI (T

′) + 4. In either case, γpI (T ) ≤ γpI (T
′) + 4 and by the induction hypothesis

we obtain

γpI (T ) ≤ γpI (T
′) + 4 ≤

4(n− 5)− ℓ(T ) + 2 + 2s(T )− 3

5
+ 4

=
4n− ℓ(T ) + 2s(T )− 1

5
.

Suppose now that Tv3 is a wounded spider Sk,t. If Tv3 = DS2,1, then let

T ′ = T−Tv3 . Clearly n′ ≥ 2. If n′ = 2, then γpi (T
′) = 5 < 4n−ℓ(T )+2s(T )−1

5 . Hence
we assume that n′ ≥ 3. If f ′(v4) ≥ 1, then the function f defined by f(v2) =
f(v3) = 2, f(x) = 0 for x ∈ L(Tv3) and f(x) = f ′(x) for x ∈ V (T ) \V (Tv3) is a
PIDF of T . If f ′(v4) = 0, then the function f defined by f(v1) = 2, f(x) = 1 for
x ∈ L(v3), f(v2) = f(v3) = 0 and f(x) = f ′(x) for x ∈ V (T ) \V (Tv3) is a PIDF
of T . In either case, γpI (T ) ≤ γpI (T

′) + 4. If degT (v4) ≥ 3, then s(T ′) = s(T )− 2
and ℓ(T ′) = ℓ(T )− 3 and by the induction hypothesis we obtain

γpI (T ) ≤ γpI (T
′) + 4 ≤

4(n− 5)− ℓ(T ) + 3 + 2s(T )− 5

5
+ 4

<
4n− ℓ(T ) + 2s(T )− 1

5
.
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If degT (v4) = 2, then s(T ′) ≤ s(T )−1 and ℓ(T ′) = ℓ(T )−2 and by the induction
hypothesis we obtain

γpI (T ) ≤ γpI (T
′) + 4 ≤

4(n− 5)− ℓ(T ) + 2 + 2s(T )− 3

5
+ 4

=
4n− ℓ(T ) + 2s(T )− 1

5
.

From now on we may assume that v4 has no child x such that Tx = DS2,1.
Let s1 be the number of children of v4 that are leaves and for i ≥ 2, let si

be the number of children of v4 of degree i whose children are all leaves. As we
assumed at the beginning of the proof, T has no end support vertex with degree
three, it follows that s3 = 0. Let s≥4 be the number of children of v4 of degree
at least 4 having no grandchild. Thus

s≥4 =
∑

i≥4

si.

Adopting our earlier notation, for each child v of v4 with depth 2, let nv denote
the number of children in the subtree Tv of T . Furthermore, let n∗ denote the
sum of the number of vertices in all such trees Tv. Also, let s∗ and ℓ∗ denote
the sum of the number of support vertices and leaves vertices in all such trees
Tv, respectively. Note that every child of v4 is one of the following four types:
(1) a leaf; (2) a support vertex of degree 2; (3) a vertex with depth 2; (4) a
support vertex of degree at least 4 whose children are all leaves. For ease of
discussion, we sometimes refer to these children as Type-1, Type-2, Type-3, or
Type-4, respectively. Moreover, let m be the number of leaves of all Type-4
children. Consider now the following subcases.

Subcase 2.1. s1 + s≥4 ≥ 3. Let T ′ = T − Tv3 be a tree of order n′. We claim
that f ′(v4) ≥ 1. Suppose to the contrary that f ′(v4) = 0. This implies that at
most two children of v4 in T ′ are assigned positive values under f ′. But since
every Type-1 and Type-4 child of v4 must be assigned a positive value by f ′ when
f ′(v4) = 0, this implies that s1 + s≥4 ≤ 2, a contradiction. Hence, f ′(v4) ≥ 1.
Consequently, we can extend f ′ to a PIDF f by adding to it any PIDF of Tv3 of

weight at most
4nv3

−ℓ(Tv3
)+2s(Tv3

)−3
5 assigning a 1 or 2 to v3 (as claimed above).

By the induction hypothesis we obtain

γpI (T ) ≤ γpI (T
′) +

4nv3 − ℓ(Tv3) + 2s(Tv3)− 3

5

≤
4(n− nv3)− ℓ(T ) + ℓ(Tv3) + 2s(T )− 2s(Tv3)− 1

5

+
4nv3 − ℓ(Tv3) + 2s(Tv3)− 3

5
<

4n− ℓ(T ) + 2s(T )− 1

5
.
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In the sequel, we may assume that s1 + s≥4 ≤ 2.

Subcase 2.2. s1 = 2. Since s1 + s≥4 ≤ 2, we deduce that s≥4 = 0. Let F
be the forest formed by the Type-3 children of v4 and their descendants. We
note any component of F is a wounded spider including Tv3 and different from
DS2,1. Let T ′ be the tree obtained from T by deleting all vertices in V (F ) and
adding a new vertex a attached at v4. Since v4 has three leaf neighbors in T ′, we
have f ′(v4) ≥ 1. Let f be the PIDF of T defined as follows: f(x) = f ′(x) for all
x ∈ V (T ′) \ {a} and let the restriction of f to each component, say Tv, in F be

any PIDF of that component of weight at most 4nv−ℓ(Tv)+2s(Tv)−3
5 . By our earlier

observations, the total weight assigned to F is at most 4n∗−ℓ∗+2s∗−3
5 . Now, by

the induction hypothesis we obtain

γpI (T ) ≤ γpI (T
′) +

4n∗ − ℓ∗ + 2s∗ − 3

5

≤
4(n− n∗ + 1)− ℓ(T ) + ℓ∗ − 1 + 2s(T )− 2s∗ − 1

5
+

4n∗ − ℓ∗ + 2s∗ − 3

5

≤
4n− ℓ(T ) + 2s(T )− 1

5
.

Hence, in the next we may assume that s1 ∈ {0, 1}.

Subcase 2.3. s2 ≥ 3. Let T ′ be the tree of order n′ obtained from T − Tv4

by adding three new vertices x1, x2, x3 attached at v5. Note that n′ = n −
n∗ − s1 − 2s2 − s≥4 − m + 2, ℓ(T ′) = ℓ(T ) − ℓ∗ − s1 − s2 − m + 3 and s(T ′) ≤
s(T )−s∗−s1−s2−s≥4+1. Clearly, f ′(v5) ≥ 1 (since v5 has three leaves in T ′). Let
f be the PIDF of T defined by f(x) = f ′(x) for all x ∈ V (T ′) \ {x1, x2, x3} and
let f(v4) = 1. Then assign the weights to the descendants of v4 in T as follows:
assign a 1 to each Type-1 (leaf) child of v4 (recall that s1 ∈ {0, 1}); assign a 0 to
each Type-2 child of v4 and a 1 to its leaf neighbor; assign a 2 to each Type-4
child of v4 and a 0 to each of its leaves. Finally, for each Type-3 child v, assign a

PIDF to the subtree Tv rooted at v of weight at most 4nv−ℓ(Tv)+2s(Tv)−3
5 so that

f(v) ≥ 1. By our earlier observations, the total weight assigned to all Type-3
children of v and their descendants is at most 4n∗−ℓ∗+2s∗−3

5 . It follows from the
induction hypothesis that

γp
I (T ) ≤ γp

I (T
′) +

4n∗ − ℓ∗ + 2s∗ − 3

5
+ s1 + s2 + 2s≥4 + 1

≤
4n′ − ℓ(T ′) + 2s(T ′)− 1

5
+

4n∗ − ℓ∗ + 2s∗ − 3

5
+ s1 + s2 + 2s≥4 + 1

≤
4(n− n∗ − s1 − 2s2 −m− s≥4 + 2)− ℓ(T ) + ℓ∗ + s1 + s2 +m− 3

5

+
2s(T )− 2s∗ − 2s1 − 2s2 − 2s≥4 + 1

5
+

4n∗ − ℓ∗ + 2s∗ − 3

5
+ s1 + s2 + 2s≥4 + 1

=
4n− ℓ(T ) + 2s(T )− 1

5
+

9− 3m− 4s2 + 4s≥4

5
.
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Using the fact thatm ≥ 3s≥4, it follows that γ
p
I (T ) ≤

4n−ℓ(T )+2s(T )−1
5 +

9−4s2−5s≥4

5 .

Now since s2 ≥ 3, we deduce that γpI (T ) ≤
4n−ℓ(T )+2s(T )−1

5 .

By Subcase 2.3, we can assume that s2 ≤ 2.

Subcase 2.4. s2 + s≥4 ≥ 1. Let T ′ be the tree of order n′ obtained by
deleting all vertices of Tv4 except v4. Note that n

′ = n−n∗− s1− 2s2− s≥4−m,
s(T ′) ≤ s(T )−s∗−s1−s2−s≥4+1 and ℓ(T ′) = ℓ(T )− ℓ∗−s1−s2−m+1 (since
v4 is a leaf vertex in T ′). First, let f ′(v4) = 2 and f be a PIDF of T defined by
f(x) = f ′(x) for all x ∈ V (T ′); and then assign the weights to the descendants
of v4 in T as follows: assign a 0 to each Type-1 (leaf) child of v4, assign a 2 to
each Type-2 child of v4 and a 0 to its leaf, and assign a 2 to each Type-4 child of
v4 and a 0 to its leaves. Finally, for each Type-3 child v, assign a PIDF to the
subtree Tv rooted at v. By our earlier observations, the total weight assigned to
all Type-3 children of v and their descendants is at most 4n∗−ℓ∗+2s∗−3

5 . By the
induction hypothesis it follows that

γpI (T ) ≤ γpI (T
′) +

4n∗ − ℓ∗ + 2s∗ − 3

5
+ 2s2 + 2s≥4

≤
4n′ − ℓ(T ′) + 2s(T ′)− 1

5
+

4n∗ − ℓ∗ + 2s∗ − 3

5
+ 2s2 + 2s≥4

≤
4(n− n∗ − s1 − 2s2 −m− s≥4)− ℓ(T ) + ℓ∗ + s1 + s2 +m− 1

5

+
2s(T )− 2s∗ − 2s1 − 2s2 − 2s≥4 + 1

5
+

4n∗ − ℓ∗ + 2s∗ − 3

5
+ 2s2 + 2s≥4

≤
4n− ℓ(T ) + 2s(T )− 1

5
+

−5s1 + s2 − 3m+ 4s≥4 − 2

5
.

Now since m ≥ 3s≥4 and s2 ≤ 2, we get

γpI (T ) ≤
4n−ℓ(T ) + 2s(T )−1

5
+

−5s1 + s2 − 5s≥4 − 2

5
<

4n− ℓ(T ) + 2s(T )−1

5
.

Suppose now that f ′(v4) ∈ {0, 1}, and let f be a PIDF of T defined by f(x) =
f ′(x) for all x ∈ V (T ′) and let f(v4) = 1. Then assign the weights to the
descendants of v4 in T as follows: assign a 1 to each Type-1 (leaf) child of v4;
assign a 0 to each Type-2 child of v4 and a 1 to its leaf neighbor and assign a
2 to each Type-4 child of v4 and 0 to its leaves. Finally, for each Type-3 child
v, assign a PIDF of weight at most 4nv−ℓ(Tv)+2s(Tv)−3

5 to vertices of Tv rooted
at v so that f(v) ≥ 1. By our earlier observations, the total weight assigned to
all Type-3 children of v and their descendants is at most 4n∗−ℓ∗+2s∗−3

5 . By the
induction hypothesis we obtain
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γp
I (T ) ≤ γp

I (T
′) +

4n∗ − ℓ∗ + 2s∗ − 3

5
+ s1 + s2 + 2s≥4 + 1

≤
4n′ − ℓ(T ′) + 2s(T ′)− 1

5
+

4n∗ − ℓ∗ + 2s∗ − 3

5
+ s1 + s2 + 2s≥4 + 1

≤
4(n− n∗ − s1 − 2s2 −m− s≥4)− ℓ(T ) + ℓ∗ + s1 + s2 +m− 1

5

+
2s(T )− 2s∗−2s1 − 2s2 − 2s≥4 + 1

5
+

4n∗ − ℓ∗ + 2s∗−3

5
+ s1 + s2 + 2s≥4 + 1

≤
4n− ℓ(T ) + 2s(T )− 1

5
+

−4s2 − 3m+ 4s≥4 + 3

5
.

Now since m ≥ 3s≥4, it follows that γ
p
I (T ) ≤

4n−ℓ(T )+2s(T )−1
5 +

−4s2−5s≥4+3
5 ,

and since s2 + s≥4 ≥ 1, the result follows.

Subcase 2.5. s2+ s≥4 = 0. Recall that s1 ∈ {0, 1}. Let v′ be the leaf neighbor
of v4 (if any). First, let v4 has at least two children of Type-3. Let T ′ be the
tree of order n′ obtained by deleting all vertices of Tv4 except v4. Note that
n′ = n−n∗−s1, s(T

′) ≤ s(T )−s∗−s1+1 and ℓ(T ′) = ℓ(T )−ℓ∗−s1+1 (since v4
is a leaf vertex in T ′). We also note that if f ′(v4) = 0, then since v4 is a leaf in T ′,
we must have f ′(v5) = 2. Now, we define a PIDF f of T by f(x) = f ′(x) for all
x ∈ V (T ′) \ {v4}. Moreover, f(v′) = 1, f(v4) = 1 if f ′(v4) = 0 and f(v4) = f ′(v4)
if f ′(v4) ≥ 1. Also, for each other child v of v4, assign a PIDF to the subtree Tv of

weight at most 4nv−ℓ(Tv)+2s(Tv)−3
5 . Since there are at least two Type-3 children of

v4, the total weight assigned to such subtree Tv is 4n∗−ℓ∗+2s∗−2·3
5 . Hence in either

case, γpI (T ) ≤ γpI (T
′) + 4n∗−ℓ∗+2s∗−6

5 + s1 + 1. Using the induction hypothesis we
obtain

γpI (T ) ≤ γpI (T
′) +

4n∗ − ℓ∗ + 2s∗ − 6

5
+ s1 + 1

≤
4n′ − ℓ(T ′) + 2s(T ′)− 1

5
+

4n∗ − ℓ∗ + 2s∗ − 6

5
+ s1 + 1

≤
4(n− n∗ − s1)− ℓ(T ) + ℓ∗ + s1 − 1 + 2s(T )− 2s∗ − 2s1 + 1

5

+
4n∗ − ℓ∗ + 2s∗ − 6

5
+ s1 + 1 ≤

4n− ℓ(T ) + 2s(T )− 1

5
.

In the sequel, v3 is the only child of v4 of Type-3. We distinguish the follow-
ing.

(i) Tv3 = DS1,3. Consider two situations depending on whether s1 = 0 or
s1 = 1.

(a) s1 = 0. Hence degT (v4) = 2. Let T ′ = T − Tv4 . Clearly, n
′ ≥ 1. If n′ = 1,

then T is a wounded spider and by the claim the result follows, and if n′ = 2, then
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one can easily see that γpI (T ) = 6 < 4n−ℓ(T )+2s(T )−1
5 = 7.2. So let n′ ≥ 3. Note

that n′ = n−7, ℓ(T ′) ≥ ℓ(T )−4 and s(T ′) ≤ s(T )−1. Any γpI (T
′)-function can be

extended to a PIDF of T by assigning a 2 to v2, v3 and a 0 to remaining vertices
of Tv4 except v4 which will be assigned a 0 if f ′(v5) = 0 and a 1 if f ′(v5) ≥ 1. In
either case, γpI (T ) ≤ γpI (T

′) + 5. By the induction hypothesis we obtain

γpI (T ) ≤
4n′ − ℓ(T ′) + s(T ′)− 1

5
+ 5 ≤

4(n− 7)− ℓ(T ) + 4 + 2s(T )− 3

5
+ 5

<
4n− ℓ(T ) + 2s(T )− 1

5
.

(b) s1 = 1. Let T ′ be the tree obtained from T by removing all vertices
Tv3 except v3. If f ′(v3) = 0, then f ′(v4) = 2, and so f ′ can be extended to
a PIDF of T by assigning a 2 to v2, v3 and a 0 to remaining vertices of Tv3 .
Hence γpI (T ) ≤ γpI (T

′) + 4. If f ′(v3) = 2, then f ′(v4) = 0 and so the other leaf
neighbor of v4 is assigned a 1, which is a contradiction. Hence, f ′(v3) = 1. Now,
if |L(v3)| = 1, then we extend f ′ to a PIDF of T by assigning a 2 to v2, a 1 to
L(v3) and a 0 to the remaining vertices of Tv3 . If |L(v3)| = 3, then we extend f ′

to a PID-function of T by assigning a 1 to L(Tv3) and a 0 to v2. In either case,
γpI (T ) ≤ γpI (T

′) + 4. By the induction hypothesis we obtain

γpI (T ) ≤
4n′ − ℓ(T ′) + s(T ′)− 1

5
+ 4 ≤

4(n− 5)− ℓ(T ) + 3 + 2s(T )− 5

5
+ 4

<
4n− ℓ(T ) + 2s(T )− 1

5
.

(ii) Tv3 = Sk,t 6= DS3,1. We recall that Tv3 is different from DS2,1. First

let 6s(Tv3) − 2ℓ(Tv3) ≥ 11. By our Claim, γpI (Tv3) ≤
4nv3

−ℓ(Tv3
)+2s(Tv3

)−6
5 . Let

T ′ be the tree obtained from T by removing all vertices of Tv4 except v4. Note
that n′ ≥ 2. Moreover, if n′ = 2, then one can see that γpI (T ) ≤ γpI (Tv3) + 2 <
4n−ℓ(T )+2s(T )−1

5 . Hence let n′ ≥ 3. Note that n′ = n − nv3 − s1, ℓ(T
′) = ℓ(T ) −

ℓ(Tv3) − s1 + 1 and s(T ′) ≤ s(T ) − s(Tv3) − s1 + 1. Then any γpI (T
′)-function

f ′ can be extended to a PIDF of T by adding to it a PIDF of Tv3 of weight
4nv3

−ℓ(Tv3
)+2s(Tv3

)−6
5 that assigns a 1 to v3. Moreover, the leaf neighbor of v4 (if

any) is assigned a 1, while v4 will be assigned a 1 if f ′(v4) = 0 (note that in that
case f ′(v5) = 2) or v4 will keep the same assignment under f ′ if f ′(v4) ≥ 1. In
either case, γpI (T ) ≤ γpI (T

′) + γpI (Tv3) + s1 + 1. Using the induction, we obtain

γpI (T ) ≤
4n′ − ℓ(T ′) + s(T ′)− 1

5
+

4nv3 − ℓ(Tv3) + 2s(Tv3)− 6

5
+ s1 + 1

≤
4(n− nv3 − s1)− ℓ(T ) + ℓ(Tv3) + s1 − 1 + 2s(T )− 2s(Tv3)− 2s1 + 1

5

+
4nv3 − ℓ(Tv3) + 2s(Tv3)− 6

5
+ s1 + 1 =

4n− ℓ(T ) + 2s(T )− 1

5
.
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Therefore, we can now assume that 6s(Tv3) − 2ℓ(Tv3) ≤ 11. Recall that (by
the proof of the Claim) there exists PIDF, say g, of Tv3 of weight at most
4nv3

−ℓ(Tv3
)+2s(Tv3

)−3
5 assigning a 2 to v3. We now consider two situations de-

pending on whether s1 = 0 or s1 = 1.

(a) s1 = 0. Then degT (v4) = 2. Let T ′ = T − Tv4 . If n
′ = 1, then T is a

wounded spider and by the claim the result follows, and if n′ = 2, then one can
easily see that g can be extended to a PIDF of T by assigning a 2 to v6 and a 0 to

both v4 and v5, and thus γpI (T ) ≤
4nv3

−ℓ(Tv3
)+2s(Tv3

)−3
5 + 2 ≤ 4n−ℓ(T )+2s(T )−1

5 . So
let n′ ≥ 3. In this case, any γpI (T

′)-function can be extended to a PIDF of T by
adding to it the PIDF g of Tv3 . Moreover, v4 will be assigned a 0 if f ′(v5) = 0 and

a 1 if f ′(v5) ≥ 1. In either case, γpI (T ) ≤ γpI (T
′)+

4nv3
−ℓ(Tv3

)+2s(Tv3
)−3

5 +1. Using
the fact that n′ = n− nv3 − 1, ℓ(T ′) ≥ ℓ(T )− ℓ(Tv3), s(T

′) ≤ s(T )− s(Tv3) + 1,
it follows from the induction hypothesis that

γpI (T ) ≤
4n′ − ℓ(T ′) + s(T ′)− 1

5
+

4nv3 − ℓ(Tv3) + 2s(Tv3)− 3

5
+ 1

≤
4(n− nv3 − 1)− ℓ(T ) + ℓ(Tv3) + 2s(T )− 2s(Tv3) + 1

5

+
4nv3 − ℓ(Tv3) + 2s(Tv3)− 3

5
+ 1 =

4n− ℓ(T ) + 2s(T )− 1

5
.

(b) s1 = 1. Assume first that v3 has at least four leaves, and let T ′ =
T \ {w, v1, v2}, where w ∈ L(v3). Since v3 has at least three leaves we have
f ′(v3) ≥ 1. If f ′(v3) = 2, then f ′ is extended to a PIDF of T by assigning a
2 to v2 and a 0 to w, v1. If f

′(v3) = 1, then f ′ to a PIDF of T by assigning a 1 to
v1, w and 0 to v2. In either case, γpI (T ) ≤ γpI (T

′)+2. By the induction hypothesis
we get

γpI (T ) ≤
4n′ − ℓ(T ′) + s(T ′)− 1

5
+ 2 ≤

4(n− 3)− ℓ(T ) + 2 + 2s(T )− 3

5
+ 2

<
4n− ℓ(T ) + 2s(T )− 1

5
.

Hence, we can assume that v3 has at most three leaves and thus ℓ(Tv3) ≤ s(Tv3)+
2. Let T ′ be the tree obtained from T by removing all vertices of Tv3 except v3.
Then n′ = n − nv3 + 1, ℓ(T ′) = ℓ(T ) − ℓ(Tv3) + 1 and s(T ′) = s(T ) − s(Tv3). If
f ′(v3) = 0, then f ′(v4) = 2, and f ′ can be extended to a PIDF of T by adding
to it the PIDF g of Tv3 , where v3 is reassigned g(v3) instead of f ′(v3). Applying
our induction hypothesis, we obtain
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γpI (T ) ≤
4n′ − ℓ(T ′) + s(T ′)− 1

5
+

4nv3 − ℓ(Tv3) + 2s(Tv3)− 3

5

≤
4(n− nv3 + 1)− ℓ(T ) + ℓ(Tv3)− 1 + 2s(T )− 2s(Tv3)− 1

5

+
4nv3 − ℓ(Tv3) + 2s(Tv3)− 3

5
=

4n− ℓ(T ) + 2s(T )− 1

5
.

If f ′(v3) = 2, then f ′(v4) = 0 and the other leaf neighbor of v4 in T ′ is assigned
a 1, which provides a contradiction. Hence let f ′(v3) = 1. Then we extend f ′ to
a PIDF of T by assigning a 1 to all leaves vertices of Tv3 and a 0 to remaining
vertices of Tv3 but v3. Using the fact that ℓ(Tv3) ≤ s(Tv3)+2, nv3 = ℓ(Tv3)+s(Tv3)
and the induction hypothesis, we obtain

γpI (T ) ≤
4n′ − ℓ(T ′) + s(T ′)− 1

5
+ ℓ(Tv3)

≤
4(n− nv3 + 1)− ℓ(T ) + ℓ(Tv3)− 1 + 2s(T )− 2s(Tv3)− 1

5
+ ℓ(Tv3)

≤
4n− ℓ(T ) + 2s(T )− 1

5
.

This completes the proof.
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