A NEW UPPER BOUND FOR THE PERFECT ITALIAN DOMINATION NUMBER OF A TREE

Sakineh Nazari-Moghaddam
Department of Mathematics
Dehloran Branch
University of Applied Science and Technology
Dehloran, Iran
e-mail: sakine.nazari.m@gmail.com
AND
Mustapha Chellali
LAMDA-RO Laboratory, Department of Mathematics
University of Blida
B.P. 270, Blida, Algeria
e-mail: m_chellali@yahoo.com

Abstract

A perfect Italian dominating function (PIDF) on a graph G is a function $f: V(G) \rightarrow\{0,1,2\}$ satisfying the condition that for every vertex u with $f(u)=0$, the total weight of f assigned to the neighbors of u is exactly two. The weight of a PIDF is the sum of its functions values over all vertices. The perfect Italian domination number of G, denoted $\gamma_{I}^{p}(G)$, is the minimum weight of a PIDF of G. In this paper, we show that for every tree T of order $n \geq 3$, with $\ell(T)$ leaves and $s(T)$ support vertices, $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}$, improving a previous bound given by T.W. Haynes and M.A. Henning in [Perfect Italian domination in trees, Discrete Appl. Math. 260 (2019) 164177].

Keywords: Italian domination, Roman domination, perfect Italian domination.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

Throughout this paper, G is a simple graph with vertex set $V(G)$ and edge set $E(G)$ (briefly $V, E)$. The order $|V|$ of G is denoted by $n=n(G)$. For every vertex $v \in V(G)$, the open neighborhood of v is the set $N_{G}(v)=N(v)=\{u \in V(G) \mid$ $u v \in E(G)\}$ and its closed neighborhood is the set $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=|N(v)|$. A leaf of G is a vertex of degree one and a support vertex is a vertex adjacent to a leaf. An end support vertex is a support vertex having at most one non-leaf neighbor. For every vertex $v \in V$, the set of all leaves adjacent to v is denoted by $L(v)$ and $L[v]=L(v) \cup\{v\}$. We denote the set of leaves of a graph G by $L(G)$ and the set of support vertices by $S(G)$. We also let $|S(G)|=s(G)$ and $|L(G)|=\ell(T)$. A double star $D S_{q, p}$, with $q \geq p \geq 1$, is a graph consisting of the union of two stars $K_{1, q}$ and $K_{1, p}$ together with an edge joining their centers. The subdivision graph $S_{b}(G)$ of a graph G is that graph obtained from G by replacing each edge $u v$ of G by a vertex w and edges $u w$ and $v w$. A healthy spider $S_{k}(G)$ is the subdivision graph of a star $K_{1, k}$ for $k \geq 2$. A wounded spider $S_{k, t}$ is a graph obtained from a star $K_{1, k}$ by subdividing t edges exactly once, where $1 \leq t \leq k-1$. We denote by P_{n} the path on n vertices. The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. The diameter of a graph G, denoted by $\operatorname{diam}(G)$, is the greatest distance between two vertices of G. For a vertex v in a rooted tree T, let $C(v)$ denote the set of children of v, $D(v)$ denotes the set of descendants of v and $D[v]=D(v) \cup\{v\}$. Also, the depth of v, depth (v), is the largest distance from v to a vertex in $D(v)$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}.

For a real-valued function $f: V \longrightarrow \mathbb{R}$, the weight of f is $\omega(f)=\sum_{v \in V} f(v)$, and for $S \subseteq V$ we define $f(S)=\sum_{v \in S} f(v)$. So $w(f)=f(V)$.

A Roman dominating function on G, abbreviated RDF, is a function f : $V \rightarrow\{0,1,2\}$ such that every vertex $u \in V$ for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. Roman domination was introduced by Cockayne et al. in [7] and was inspired by the work of ReVelle and Rosing [12] and Stewart [13]. Several new varieties of Roman domination have been introduced since 2004 , among them, we quote the Italian domination originally published in [1] and called Roman $\{2\}$-domination. Further results on Roman domination and its variant can be found in $[2-6]$.

An Italian dominating function on G, abbreviated IDF, is a function f : $V \rightarrow\{0,1,2\}$ satisfying the condition that for every vertex $v \in V$ with $f(v)=0$, $\sum_{u \in N(v)} f(u) \geq 2$, that is either v is adjacent to a vertex u with $f(u)=2$, or to at least two vertices x and y with $f(x)=f(y)=1$. The Italian domination number, denoted $\gamma_{I}(G)$, is the minimum weight of an IDF in G.

The concept of perfect dominating sets introduced by Livingston and Stout
in [11] has been extended to Roman and Italian dominating functions in [10] and [9], respectively. An RDF f is called perfect if for every vertex v with $f(v)=0$, there is exactly one vertex $u \in N(v)$ with $f(u)=2$, while a IDF g is perfect if for every vertex w with $g(w)=0, g(N(v))=2$. The perfect Roman domination number (respectively, perfect Italian domination number) of G, denoted $\gamma_{R}^{p}(G)$ (respectively, $\gamma_{I}^{p}(G)$), is the minimum weight of a perfect RDF (respectively, perfect IDF) in G. A perfect IDF on G will be abbreviated PIDF. A PIDF f is called a $\gamma_{I}^{p}(G)$-function if $\omega(f)=\gamma_{I}^{p}(G)$.

It was shown in [10] that every tree T of order $n \geq 3$ satisfies $\gamma_{R}^{p}(T) \leq \frac{4}{5} n$. However, this upper bound has recently been improved by Darkooti et al. [8] for trees T with $\ell(T) \geq 2 s(T)-2$, by showing that for any tree T of order $n \geq 3$ with $\ell(T)$ leaves and $s(T)$ support vertices, $\gamma_{R}^{p}(T) \leq(4 n-\ell(T)+2 s(T)-2) / 5$. Moreover, Henning and Haynes showed in [9] that $\frac{4}{5} n$ is also an upper bound of the prefect Italian domination number for any tree of order $n \geq 3$.

In this paper, we shall show that for any tree T of order $n \geq 3$ with $\ell(T)$ leaves and $s(T)$ support vertices, $\gamma_{R}^{p}(T) \leq(4 n-\ell(T)+2 s(T)-1) / 5$. But first let us point out that for both parameters $\gamma_{R}^{p}(G)$ and $\gamma_{I}^{p}(G)$, one may be larger or smaller than the other even for trees. Indeed, for the path P_{5} we have $\gamma_{R}^{p}\left(P_{5}\right)=4$ and $\gamma_{I}^{p}\left(P_{5}\right)=3$ while for the double star $D S_{3,1}$ we have $\gamma_{R}^{p}\left(D S_{3,1}\right)=3$ and $\gamma_{I}^{p}\left(D S_{3,1}\right)=4$. The next result shows that the differences $\gamma_{I}^{p}(G)-\gamma_{R}^{p}(G)$ and $\gamma_{R}^{p}(G)-\gamma_{I}^{p}(G)$ can be arbitrarily large.

Observation 1. For any integer $k \geq 1$, there exist trees T_{k} and H_{k} such that $\gamma_{I}^{p}\left(T_{k}\right)-\gamma_{R}^{p}\left(T_{k}\right)=k$ and $\gamma_{R}^{p}\left(H_{k}\right)-\gamma_{I}^{p}\left(H_{k}\right)=k$.
Proof. Let T_{k} be the tree formed by k double stars $D S_{3,1}$ by adding a new vertex attached to every support vertex of degree four. One can easily see that $\gamma_{I}^{p}\left(T_{k}\right)=4 k+1$ while $\gamma_{R}^{p}\left(T_{k}\right)=3 k+1$.

Now, let H_{k} be the tree formed by k paths P_{5} by adding a new vertex attached to all center vertices of the paths. Then $\gamma_{I}^{p}\left(H_{k}\right)=3 k+1$ while $\gamma_{R}^{p}\left(H_{k}\right)=4 k+1$.

2. New Upper Bound

In this section, we present our main result which is an upper bound on the perfect Italian domination number of a tree.

Theorem 2. If T is a tree of order $n \geq 3$ with $\ell(T)$ leaves and $s(T)$ support vertices, then

$$
\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}
$$

Proof. We proceed by induction on the order n. If $n \in\{3,4\}$, then clearly $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}$, establishing the base case. Let $n \geq 5$ and assume that
any tree T^{\prime} of order n^{\prime}, with $3 \leq n^{\prime}<n$ satisfies $\gamma_{I}^{p}\left(T^{\prime}\right) \leq \frac{4 n-\ell\left(T^{\prime}\right)+2 s\left(T^{\prime}\right)-1}{5}$. Let T be a tree of order n. If $\operatorname{diam}(T)=2$, then T is a star, where $\gamma_{I}^{p}(T)=2<$ $\frac{4 n-\ell(T)+2 s(T)-1}{5}$. If $\operatorname{diam}(T)=3$, then T is a double star, and since $n \geq 5$ we have $\gamma_{I}^{p}(T)=4 \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}$. Hence, we may assume that T has diameter at least 4. If $n=5$, then T is a path P_{5}, where $\gamma_{I}^{p}\left(P_{5}\right)=3 \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}$. Hence let $n \geq 6$.

Suppose $v_{1} v_{2} \cdots v_{k}(k \geq 5)$ is a diametral path in T such that $\operatorname{deg}_{T}\left(v_{2}\right)$ is as large as possible. Root T at v_{k}. First, assume that T has an end support vertex y of degree three. Without loss of generality, assume that $y=v_{2}$. Let $T^{\prime}=T-T_{v_{2}}$ and f^{\prime} be a $\gamma_{I}^{p}\left(T^{\prime}\right)$-function. If $f^{\prime}\left(v_{3}\right)=0$, then f^{\prime} can be extended to a PIDF of T by assigning a 0 to v_{2} and a 1 to the two leaves of v_{2}. If $f^{\prime}\left(v_{3}\right) \geq 1$, then f^{\prime} can be extended to a PIDF of T by assigning a 2 to v_{2} and a 0 to the leaves of v_{2}. In either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+2$, and by the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+2 \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+2 s\left(T^{\prime}\right)-1}{5}+2 \\
& \leq \frac{4(n-3)-\ell(T)+2+2 s(T)-1}{5}+2 \\
& \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

Hence we can assume that T has no end support vertex of degree three, in particular we have $\operatorname{deg}_{T}\left(v_{2}\right) \neq 3$. Next, suppose that $\operatorname{deg}_{T}\left(v_{3}\right)=2$. If $\operatorname{deg}_{T}\left(v_{2}\right)=2$, then let $T^{\prime}=T-T_{v_{3}}$ and f^{\prime} be a $\gamma_{I}^{p}\left(T^{\prime}\right)$-function. Note that $n^{\prime}=n-3$, $s\left(T^{\prime}\right) \leq s(T)$ and $\ell\left(T^{\prime}\right) \geq \ell(T)-1$. Now if $f^{\prime}\left(v_{4}\right)=0$, then the function f defined by $f\left(v_{2}\right)=2, f\left(v_{1}\right)=f\left(v_{3}\right)=0$ and $f(x)=f^{\prime}(x)$ for $x \in V(T) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ is a PIDF of T. If $f^{\prime}\left(v_{4}\right) \geq 1$, then the function f defined by $f\left(v_{1}\right)=f\left(v_{3}\right)=1$, $f\left(v_{2}\right)=0$ and $f(x)=f^{\prime}(x)$ for $x \in V(T) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ is a PIDF of T. In either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+2$, and by the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+2 \leq \frac{4(n-3)-\ell(T)+1+2 s(T)-1}{5}+2 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

Suppose now that $\operatorname{deg}_{T}\left(v_{2}\right) \geq 4$. Let $T^{\prime}=T-T_{v_{3}}$ and f^{\prime} be a γ_{I}^{p}-function of T^{\prime}. Note that T^{\prime} has order $n^{\prime} \geq 2$. Clearly if $n^{\prime}=2$, then $\gamma_{I}^{p}(T)=4<$ $\frac{4 n-\ell(T)+2 s(T)-1}{5}$. Hence we assume that $n^{\prime} \geq 3$. If $f^{\prime}\left(v_{4}\right)=0$, then we can extend f^{\prime} to a PIDF of T by assigning a 2 to v_{2} and a 0 to every neighbor of v_{2}. If $f^{\prime}\left(v_{4}\right) \geq 1$, then we can extend f^{\prime} to a PIDF f of T by assigning a 2 to v_{2}, a 1 to v_{3}, and a 0 to all leaves of v_{2}. In either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+3$ and by the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+3 \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+2 s\left(T^{\prime}\right)-1}{5}+3 \\
& \leq \frac{4\left(n-\left|L\left(v_{2}\right)\right|-2\right)-\left(\ell(T)-\left|L\left(v_{2}\right)\right|\right)+2 s(T)-1}{5}+3 \\
& =\frac{4 n-\ell(T)+2 s(T)-1-3 L\left(v_{2}\right)-8}{5}+3<\frac{4 n-\ell(T)+2 s(T)-1}{5} .
\end{aligned}
$$

From now on, we can assume that $\operatorname{deg}_{T}\left(v_{3}\right) \geq 3$ and $\operatorname{deg}_{T}\left(v_{2}\right) \neq 3$. Note that often in our proof a subtree T^{\prime} of T is considered, and so in either case, let f^{\prime} be a $\gamma_{I}^{p}\left(T^{\prime}\right)$-function. Consider the following cases.

Case 1. $\operatorname{deg}_{T}\left(v_{2}\right) \geq 4$ and $T_{v_{3}} \neq D S_{3,1}$. Let us examine the following situations.

Subcase 1.1. v_{3} has at least two leaves. Let T^{\prime} be the tree of order n^{\prime} obtained from T by removing all leaves of v_{2}. Note that $n^{\prime}=n-\left|L\left(v_{2}\right)\right|, s\left(T^{\prime}\right)=s(T)-1$ and $\ell\left(T^{\prime}\right)=\ell(T)-\left|L\left(v_{2}\right)\right|+1$. Since v_{3} has at least three leaves in T^{\prime}, we conclude that $f^{\prime}\left(v_{3}\right) \geq 1$. Hence the function f defined by $f\left(v_{2}\right)=2, f(x)=0$ for all $x \in L\left(v_{2}\right)$ and $f(x)=f^{\prime}(x)$ for $x \in V(T) \backslash L\left[v_{2}\right]$ is a PIDF of T. It follows that $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+2$, and by the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+2 \leq \frac{4\left(n-\left|L\left(v_{2}\right)\right|\right)-\ell(T)+\left|L\left(v_{2}\right)\right|-1+2 s(T)-3}{5}+2 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5} .
\end{aligned}
$$

Subcase 1.2. v_{3} has exactly one leaf, say v^{\prime}. If v_{2} is the unique child of v_{3} with depth 1 , then let T^{\prime} be the tree of order n^{\prime} obtained from T by removing all vertices in $T_{v_{2}}$ and adding two new vertices x_{1}, x_{2} attached at v_{3}. Since v_{3} has at least three leaves, we have $f^{\prime}\left(v_{3}\right) \geq 1$, and thus the function f defined by $f\left(v_{2}\right)=2, f(x)=0$ for $x \in L\left(v_{2}\right)$ and $f(x)=f^{\prime}(x)$ for $x \in V(T) \backslash L\left[v_{2}\right]$ is a PIDF of T. Hence $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+2$, and since $T_{v_{3}} \neq D S_{3,1}$, we must have $\left|L\left(v_{2}\right)\right| \geq 4$. It follows from the induction hypothesis that

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+2 \leq \frac{4\left(n+1-\left|L\left(v_{2}\right)\right|\right)-\ell(T)+\left|L\left(v_{2}\right)\right|-2+2 s(T)-3}{5}+2 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

Suppose that v_{3} has (at least) two children with depth 1 , say a and b such that $\operatorname{deg}_{T}(a) \geq 4$ and $\operatorname{deg}_{T}(b) \geq 4$. Let T^{\prime} be the tree formed from T by deleting all leaves of a and b. Note that $n^{\prime}=n-|L(a)|-|L(b)|, s\left(T^{\prime}\right)=s(T)-2$ and $\ell\left(T^{\prime}\right)=\ell(T)-|L(a)|-|L(b)|+2$. Clearly, $f^{\prime}\left(v_{3}\right) \geq 1$ since v_{3} has three leaves in T^{\prime}. Thus the function f defined by $f(a)=f(b)=2, f(x)=0$ for all
$x \in L(a) \cup L(b)$ and $f(x)=f^{\prime}(x)$ for all $x \in V(T) \backslash(L[a] \cup L[b])$ is a PIDF of T, and so $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+4$. Using the fact $|L(a)| \geq 3$ and $|L(b)| \geq 3$ and the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+4 \\
& \leq \frac{4(n-|L(a)|-|L(b)|)-\ell(T)+|L(a)|+|L(b)|-2+2 s(T)-5}{5}+4 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

Hence we can assume now that v_{2} is the unique child of v_{3} with depth one and degree at least 4 . Recall that since $\operatorname{deg}_{T}\left(v_{2}\right) \neq 3$, we may assume that every child of v_{3} with depth 1 that is different from v_{2} has degree two. Note that $\left|C\left(v_{3}\right)\right| \geq 3$. Assume first that $\left|C\left(v_{3}\right)\right| \geq 4$, and let T^{\prime} be the tree of order n^{\prime} obtained from $T-T_{v_{3}}$ by adding three new vertices x_{1}, x_{2}, x_{3} attached at v_{4}. Note that $n^{\prime}=$ $n-\left|C\left(v_{3}\right)\right|-\left|L\left(T_{v_{3}}\right)\right|+3, \ell\left(T^{\prime}\right)=\ell(T)-L\left(T_{v_{3}}\right)+3, s\left(T^{\prime}\right) \leq s(T)-\left|C\left(v_{3}\right)\right|+1$. Now, since v_{4} has three leaves in T^{\prime}, we must have $f^{\prime}\left(v_{4}\right) \geq 1$, and thus the function f defined by $f\left(v_{2}\right)=2, f(x)=1$ for $x \in\left\{v^{\prime}, v_{3}\right\} \cup\left(L\left(T_{v_{3}}\right) \backslash L\left(v_{2}\right)\right)$, $f(x)=0$ for all $x \in\left(C\left(v_{3}\right) \backslash\left\{v_{2}, v^{\prime}\right\}\right) \cup L\left(v_{2}\right)$ and $f(x)=f^{\prime}(x)$ for otherwise, is a PIDF of T. Hence $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\left|C\left(v_{3}\right)\right|+2$, and by the induction hypothesis it follows that

$$
\begin{aligned}
& \gamma_{I}^{p}(T) \\
& \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\left|C\left(v_{3}\right)\right|+2 \\
& \leq \frac{4\left(n-\left|C\left(v_{3}\right)\right|+3-\left|L\left(T_{v_{3}}\right)\right|\right)-\ell(T)+\left|L\left(T_{v_{3}}\right)\right|-3+2 s(T)-2\left|C\left(v_{3}\right)\right|+1}{5} \\
& +\left|C\left(v_{3}\right)\right|+2 \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}+\frac{-\left|C\left(v_{3}\right)\right|-3\left|L\left(T_{v_{3}}\right)\right|+21}{5}
\end{aligned}
$$

Moreover, since $\left|L\left(T_{v_{3}}\right)\right| \geq\left|C\left(v_{3}\right)\right|+2$, we have $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}+$ $\frac{-4\left|C\left(v_{3}\right)\right|+15}{5}<\frac{4 n-\ell(T)+2 s(T)-1}{5}$ because of $\left|C\left(v_{3}\right)\right| \geq 4$. Next, we can assume that $\left|C\left(v_{3}\right)\right|=3$, that is $T_{v_{3}}$ is isomorphic to H_{1} in Figure 1. In this case, let T^{\prime} be the tree formed from T by removing all vertices of $T_{v_{3}}$ except v_{3}. Clearly v_{3} is a leaf in T^{\prime}. If $f^{\prime}\left(v_{3}\right)=0$, then $f\left(v_{4}\right)=2$ and so the function f defined by $f\left(v_{3}\right)=f\left(v^{\prime}\right)=f\left(u_{1}\right)=1, f\left(v_{2}\right)=2, f(x)=0$ for all $x \in L\left(v_{2}\right) \cup\left\{u_{2}\right\}$ and $f(x)=f^{\prime}(x)$ for otherwise is a PIDF of T. If $f^{\prime}\left(v_{3}\right)=1$, then we can extend f^{\prime} to be a PIDF of T as above when $f^{\prime}\left(v_{3}\right)=0$, except that we do not assign a 1 to v_{3}. In either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+5$. It follows from the induction hypothesis that

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+5 \leq \frac{4\left(n-4-\left|L\left(v_{2}\right)\right|\right)-\ell(T)+\left|L\left(v_{2}\right)\right|+1+2 s(T)-5}{5}+5 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

Finally, if $f^{\prime}\left(v_{3}\right)=2$, then the function f defined by $f\left(v_{2}\right)=f\left(u_{2}\right)=2, f(x)=0$ for all $x \in L\left(v_{2}\right) \cup\left\{u_{1}, v^{\prime}\right\}$ and $f(x)=f^{\prime}(x)$ for otherwise is a PIDF of T. Using the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+4 \leq \frac{4\left(n-4-\left|L\left(v_{2}\right)\right|\right)-\ell(T)+\left|L\left(v_{2}\right)\right|+1+2 s(T)-5}{5}+4 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

Figure 1. The trees.
Subcase 1.3. v_{3} is not a support vertex. Suppose that v_{3} has at least three children of degree at least 4 , say a, b and c. Let T^{\prime} be the tree obtained from T by removing all leaves of a, b and c. Note that $n^{\prime}=n-|L(a)|-|L(b)|-|L(c)|$, $s\left(T^{\prime}\right)=s(T)-2$ and $\ell\left(T^{\prime}\right)=\ell(T)-|L(a)|-|L(b)|-|L(c)|+3$. Clearly, since v_{3} has three leaves in $T^{\prime}, f^{\prime}\left(v_{3}\right) \geq 1$, and thus the function f defined by $f(a)=$ $f(b)=f(c)=2, f(x)=0$ for all $x \in L(a) \cup L(b) \cup L(c)$ and $f(x)=f^{\prime}(x)$ for all $x \in V(T) \backslash(L[a] \cup L[b] \cup L[c])$ is a PIDF of T. By the induction hypothesis, it follows that

$$
\begin{aligned}
& \gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+6 \\
& \leq \frac{4(n-|L(a)|-|L(b)|-|L(c)|)-\ell(T)+|L(a)|+|L(b)|+|L(c)|-3+2 s(T)-5}{5}+6 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

Hence, v_{3} has at most two children of degree at least 4 , say v_{3} and u (if any). Let T^{\prime} be the tree of order n^{\prime} obtained from $T-T_{v_{3}}$ by adding three new vertices attached at v_{4}. Note that $n^{\prime}=n-\left|C\left(v_{3}\right)\right|-\left|L\left(T_{v_{3}}\right)\right|+2, s\left(T^{\prime}\right) \leq s(T)-\left|C\left(v_{3}\right)\right|+1$ and $\ell\left(T^{\prime}\right)=\ell(T)-\left|L\left(T_{v_{3}}\right)\right|+3$. Clearly, $f^{\prime}\left(v_{4}\right) \geq 1$. Hence the function f defined by $f(x)=2$ for $x \in\left\{v_{2}, u\right\}, f(x)=1$ for $x \in\left(L\left(T_{v_{3}}\right) \cup\left\{v_{3}\right\}\right) \backslash\left(L\left(v_{2}\right) \cup L(u)\right)$, $f(x)=0$ for $x \in\left(C\left(v_{3}\right) \backslash\left\{v_{2}, u\right\}\right) \cup\left(L\left(v_{2}\right) \cup L(u)\right)$ and $f(x)=f^{\prime}(x)$ for otherwise is a PIDF of T. By the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\left|C\left(v_{3}\right)\right|+3 \\
& \leq \frac{4\left(n-\left|C\left(v_{3}\right)\right|-\left|L\left(T_{v_{3}}\right)\right|+2\right)-\ell(T)+\left|L\left(T_{v_{3}}\right)\right|-3+2 s(T)-2\left|C\left(v_{3}\right)\right|+1}{5} \\
& +\left|C\left(v_{3}\right)\right|+3 \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}+\frac{-\left|C\left(v_{3}\right)\right|-3\left|\ell\left(T_{v_{3}}\right)\right|+22}{5} .
\end{aligned}
$$

Since $\left|L\left(T_{v_{3}}\right)\right| \geq\left|C\left(v_{3}\right)\right|+2$, we have $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}+\frac{-4\left|C\left(v_{3}\right)\right|+16}{5}$. If $\left|C\left(v_{3}\right)\right| \geq 4$, then $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}$. Hence, $2 \leq\left|C\left(v_{3}\right)\right| \leq 3$. If $\left|C\left(v_{3}\right)\right|=3$ and v_{3} has two children of degree at least 4 , then one can easily see that $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}\left(\right.$ since $\left.\left|L\left(T_{v_{3}}\right)\right| \geq\left|C\left(v_{3}\right)\right|+4\right)$. In the sequel, we can assume that $T_{v_{3}}$ is isomorphic to one of H_{2}, H_{3}, H_{4} depicted in Figure 1. In that case, let $T^{\prime \prime}$ be the tree formed from T by removing all vertices of $T_{v_{3}}$ except v_{3}. Clearly v_{3} is a leaf in $T^{\prime \prime}$. Let $f^{\prime \prime}$ be a $\gamma_{I}^{p}\left(T^{\prime \prime}\right)$-function. If $f^{\prime \prime}\left(v_{3}\right)=0$, then $f^{\prime \prime}\left(v_{4}\right)=2$ and so let f be a PIDF of T defined as follows: $f(x)=f^{\prime \prime}(x)$ for all $x \in V\left(T^{\prime}\right) \backslash\left\{v_{3}\right\}$ and $f\left(v_{3}\right)=1$. Moreover, every child of v_{3} of degree 2 is assigned a 0 and its unique leaf a 1 ; every child of v_{3} of degree at least 4 is assigned a 2 and its leaves a 0 . If $f^{\prime \prime}\left(v_{3}\right)=1$, then $f^{\prime \prime}$ will be extended to a PIDF of T as above when $f^{\prime}(x)=0$, except we do not assign a 1 to v_{3}. Finally, if $f^{\prime \prime}\left(v_{3}\right)=2$, then we use the following assignment for vertices of $T_{v_{3}}$: assign a 2 to each child of v_{3} and a 0 to each of their leaves. Now, if $T_{v_{3}}=H_{2}$, then in either case described above, we have $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime \prime}\right)+4$. By the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime \prime}\right)+4 \leq \frac{4\left(n-3-\left|L\left(v_{2}\right)\right|\right)-\ell(T)+\left|L\left(v_{2}\right)\right|+1+2 s(T)-3}{5}+4 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

If $T_{v_{3}}=H_{3}$, then $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime \prime}\right)+5$, and by the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime \prime}\right)+5 \\
& \leq \frac{4\left(n-2-\left|L\left(v_{2}\right)\right|-|L(u)|\right)-\ell(T)+\left|L\left(v_{2}\right)\right|+|L(u)|+2 s(T)-3}{5}+5 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

Moreover, if $T_{v_{3}}=H_{4}$, then $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime \prime}\right)+6$, and by the induction hypothesis it follows that

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime \prime}\right)+6 \leq \frac{4\left(n-5-\left|L\left(v_{2}\right)\right|\right)-\ell(T)+2+\left|L\left(v_{2}\right)\right|+2 s(T)-5}{5}+6 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

Before discussing Case 2, we will need the following claim.
Claim. Let T be a wounded spider of order n different from $D S_{2,1}$, with $s(T)$ support vertices and $\ell(T)$ leaves. Then we have the following.
(i) If $6 s(T)-2 \ell(T) \geq 11$, then $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-6}{5}$.
(ii) If $6 s(T)-2 \ell(T) \leq 11$, then $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-3}{5}$.

Proof. Let v be the center vertex of T.
(i) If $6 s(T)-2 \ell(T) \geq 11$, then the function f defined by assigning a 1 to v and every leaf of T, and a 0 to remaining vertices of T, is a PIDF of T and so

$$
\gamma_{I}^{p}(T) \leq \omega(f)=\ell(T)+1 \leq \frac{4 n-\ell(T)+2 s(T)-6}{5}
$$

(ii) Let $t=|L(v)|-1$. Clearly, $\ell(T)=s(T)+t$ and since $6 s(T)-2 \ell(T) \leq 11$, then T is a double star and since T is not a $D S_{2,1}$, we can see that we have $4 s(T)-2 t \leq 11$ and thus $t \geq 2 s(T)-\frac{11}{2}$. Now if $s(T)=2$, then T is a double star and since T is not a $D S_{2,1}$, we can see that $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-3}{5}$. Hence, let $s(T) \geq 3$. Then the function f defined by assigning a 2 to the support vertices of T and a 0 to remaining vertices of T is a PIDF of T of weight $2 s(T)$. Since, $n=s(T)+\ell(T)$ and $\ell(T)=s(T)+t$, it follows that $\frac{4 n-\ell(T)+2 s(T)-3}{5}=\frac{9 s(T)+3 t-3}{5}$. Moreover, since $t \geq 2 s(T)-\frac{11}{2}$ we obtain

$$
\frac{9 s(T)+3 t-3}{5} \geq \frac{9 s(T)+6 s(T)-\frac{33}{2}-3}{5}=3 s(T)-\frac{39}{10}
$$

Now, if $s(T) \geq 4$, then $3 s(T)-\frac{39}{10} \geq 2 s(T) \geq \gamma_{I}^{p}(T)$ and so the desired result follows. Thus we assume that $s(T)=3$. If $t \geq 2 s(T)-\frac{7}{2}$, then as above we have $\frac{9 s(T)+3 t-3}{5} \geq 3 s(T)-\frac{27}{10} \geq 2 s(T) \geq \gamma_{I}^{p}(T)$. Hence, let $t \leq 2 s(T)-\frac{7}{2}=2.5$. Note that in this case $\ell(T) \in\{3,4,5\}$. Then assigning a 1 to v and the leaves of T and a 0 to remaining vertices of T provides a PIDF of T of weight $\ell(T)+1 \leq$ $\frac{4 n-\ell(T)+2 s(T)-3}{5}$, which completes the proof of the claim.

We note from the proof of the claim that there exist PIDFs of T of weight at most $\frac{4\left|V\left(T_{v_{3}}\right)\right|-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-3}{5}$ that assign to the center vertex a 1 or 2.

Now we are ready to examine the next case.
Case 2. $\operatorname{deg}_{T}\left(v_{2}\right)=2$ or $T_{v_{3}}=D S_{3,1}$. From Case 1 and since v_{2} was chosen having a maximum degree, we conclude that $T_{v_{3}}$ is a spider. Assume first that $T_{v_{3}}$ is a healthy spider. If $\left|C\left(v_{3}\right)\right| \geq 3$, then let T^{\prime} be the tree obtained by removing $T_{v_{3}}$ and adding three new vertices attached at v_{4}. Note that $n^{\prime}=n-2\left|C\left(v_{3}\right)\right|+2$, $s\left(T^{\prime}\right) \leq s(T)-\left|C\left(v_{3}\right)\right|+1$ and $\ell\left(T^{\prime}\right)=\ell(T)-\left|C\left(v_{3}\right)\right|+3$. Clearly, $f^{\prime}\left(v_{4}\right) \geq 1$ (since v_{4} has three leaves in T^{\prime}). Thus the function f defined by $f(x)=1$ for $x \in L\left(T_{v_{3}}\right) \cup\left\{v_{3}\right\}, f(x)=0$ for $x \in C\left(v_{3}\right)$ and $f(x)=f^{\prime}(x)$ for $x \in V(T) \backslash V\left(T_{v_{3}}\right)$ is a PIDF of T. Hence $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\left|C\left(v_{3}\right)\right|+1$, and by the induction hypothesis we obtain

$$
\begin{aligned}
& \gamma_{I}^{p}(T) \\
& \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\left|C\left(v_{3}\right)\right|+1 \\
& \leq \frac{4\left(n-2\left|C\left(v_{3}\right)\right|+2\right)-\ell(T)+\left|C\left(v_{3}\right)\right|-3+2 s(T)-2\left|C\left(v_{3}\right)\right|+1}{5}+\left|C\left(v_{3}\right)\right|+1 \\
& \leq \frac{4 n-\ell(T)+2 s(T)-1-4\left|C\left(v_{3}\right)\right|+12}{5} \leq \frac{4 n-\ell(T)+2 s(T)-1}{5} .
\end{aligned}
$$

Now, assume that $\left|C\left(v_{3}\right)\right|=2$, and let $T^{\prime}=T-T_{v_{3}}$. If $f^{\prime}\left(v_{4}\right) \geq 1$, then the function f defined by $f(x)=1$ for $x \in L\left(T_{v_{3}}\right) \cup\left\{v_{3}\right\}, f(x)=0$ for every $x \in C\left(v_{3}\right)$ and $f(x)=f^{\prime}(x)$ for all $x \in V(T) \backslash V\left(T_{v_{3}}\right)$ is a PIDF of T of weight $\gamma_{I}^{p}\left(T^{\prime}\right)+3$. If $f^{\prime}\left(v_{4}\right)=0$, then the function f defined by $f(x)=1$ for $x \in V\left(T_{v_{3}}\right) \backslash\left\{v_{3}\right\}$, $f\left(v_{3}\right)=0$ and $f(x)=f^{\prime}(x)$ for all $x \in V(T) \backslash V\left(T_{v_{3}}\right)$ is a PIDF of T of weight $\gamma_{I}^{p}\left(T^{\prime}\right)+4$. In either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+4$ and by the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+4 \leq \frac{4(n-5)-\ell(T)+2+2 s(T)-3}{5}+4 \\
& =\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

Suppose now that $T_{v_{3}}$ is a wounded spider $S_{k, t}$. If $T_{v_{3}}=D S_{2,1}$, then let $T^{\prime}=T-T_{v_{3}}$. Clearly $n^{\prime} \geq 2$. If $n^{\prime}=2$, then $\gamma_{i}^{p}\left(T^{\prime}\right)=5<\frac{4 n-\ell(T)+2 s(T)-1}{5}$. Hence we assume that $n^{\prime} \geq 3$. If $f^{\prime}\left(v_{4}\right) \geq 1$, then the function f defined by $f\left(v_{2}\right)=$ $f\left(v_{3}\right)=2, f(x)=0$ for $x \in L\left(T_{v_{3}}\right)$ and $f(x)=f^{\prime}(x)$ for $x \in V(T) \backslash V\left(T_{v_{3}}\right)$ is a PIDF of T. If $f^{\prime}\left(v_{4}\right)=0$, then the function f defined by $f\left(v_{1}\right)=2, f(x)=1$ for $x \in L\left(v_{3}\right), f\left(v_{2}\right)=f\left(v_{3}\right)=0$ and $f(x)=f^{\prime}(x)$ for $x \in V(T) \backslash V\left(T_{v_{3}}\right)$ is a PIDF of T. In either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+4$. If $\operatorname{deg}_{T}\left(v_{4}\right) \geq 3$, then $s\left(T^{\prime}\right)=s(T)-2$ and $\ell\left(T^{\prime}\right)=\ell(T)-3$ and by the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+4 \leq \frac{4(n-5)-\ell(T)+3+2 s(T)-5}{5}+4 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

If $\operatorname{deg}_{T}\left(v_{4}\right)=2$, then $s\left(T^{\prime}\right) \leq s(T)-1$ and $\ell\left(T^{\prime}\right)=\ell(T)-2$ and by the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+4 \leq \frac{4(n-5)-\ell(T)+2+2 s(T)-3}{5}+4 \\
& =\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

From now on we may assume that v_{4} has no child x such that $T_{x}=D S_{2,1}$.
Let s_{1} be the number of children of v_{4} that are leaves and for $i \geq 2$, let s_{i} be the number of children of v_{4} of degree i whose children are all leaves. As we assumed at the beginning of the proof, T has no end support vertex with degree three, it follows that $s_{3}=0$. Let $s \geq 4$ be the number of children of v_{4} of degree at least 4 having no grandchild. Thus

$$
s_{\geq 4}=\sum_{i \geq 4} s_{i} .
$$

Adopting our earlier notation, for each child v of v_{4} with depth 2 , let n_{v} denote the number of children in the subtree T_{v} of T. Furthermore, let n^{*} denote the sum of the number of vertices in all such trees T_{v}. Also, let s^{*} and ℓ^{*} denote the sum of the number of support vertices and leaves vertices in all such trees T_{v}, respectively. Note that every child of v_{4} is one of the following four types: (1) a leaf; (2) a support vertex of degree 2 ; (3) a vertex with depth 2 ; (4) a support vertex of degree at least 4 whose children are all leaves. For ease of discussion, we sometimes refer to these children as Type-1, Type-2, Type-3, or Type-4, respectively. Moreover, let m be the number of leaves of all Type-4 children. Consider now the following subcases.

Subcase 2.1. $s_{1}+s_{\geq 4} \geq 3$. Let $T^{\prime}=T-T_{v_{3}}$ be a tree of order n^{\prime}. We claim that $f^{\prime}\left(v_{4}\right) \geq 1$. Suppose to the contrary that $f^{\prime}\left(v_{4}\right)=0$. This implies that at most two children of v_{4} in T^{\prime} are assigned positive values under f^{\prime}. But since every Type- 1 and Type- 4 child of v_{4} must be assigned a positive value by f^{\prime} when $f^{\prime}\left(v_{4}\right)=0$, this implies that $s_{1}+s_{\geq 4} \leq 2$, a contradiction. Hence, $f^{\prime}\left(v_{4}\right) \geq 1$. Consequently, we can extend f^{\prime} to a PIDF f by adding to it any PIDF of $T_{v_{3}}$ of weight at most $\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-3}{5}$ assigning a 1 or 2 to v_{3} (as claimed above). By the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-3}{5} \\
& \leq \frac{4\left(n-n_{v_{3}}\right)-\ell(T)+\ell\left(T_{v_{3}}\right)+2 s(T)-2 s\left(T_{v_{3}}\right)-1}{5} \\
& +\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-3}{5}<\frac{4 n-\ell(T)+2 s(T)-1}{5} .
\end{aligned}
$$

In the sequel, we may assume that $s_{1}+s_{\geq 4} \leq 2$.
Subcase 2.2. $s_{1}=2$. Since $s_{1}+s_{\geq 4} \leq 2$, we deduce that $s_{\geq 4}=0$. Let F be the forest formed by the Type- 3 children of v_{4} and their descendants. We note any component of F is a wounded spider including $T_{v_{3}}$ and different from $D S_{2,1}$. Let T^{\prime} be the tree obtained from T by deleting all vertices in $V(F)$ and adding a new vertex a attached at v_{4}. Since v_{4} has three leaf neighbors in T^{\prime}, we have $f^{\prime}\left(v_{4}\right) \geq 1$. Let f be the PIDF of T defined as follows: $f(x)=f^{\prime}(x)$ for all $x \in V\left(T^{\prime}\right) \backslash\{a\}$ and let the restriction of f to each component, say T_{v}, in F be any PIDF of that component of weight at most $\frac{4 n_{v}-\ell\left(T_{v}\right)+2 s\left(T_{v}\right)-3}{5}$. By our earlier observations, the total weight assigned to F is at most $\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}$. Now, by the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5} \\
& \leq \frac{4\left(n-n^{*}+1\right)-\ell(T)+\ell^{*}-1+2 s(T)-2 s^{*}-1}{5}+\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5} \\
& \leq \frac{4 n-\ell(T)+2 s(T)-1}{5} .
\end{aligned}
$$

Hence, in the next we may assume that $s_{1} \in\{0,1\}$.
Subcase 2.3. $s_{2} \geq 3$. Let T^{\prime} be the tree of order n^{\prime} obtained from $T-T_{v_{4}}$ by adding three new vertices x_{1}, x_{2}, x_{3} attached at v_{5}. Note that $n^{\prime}=n-$ $n^{*}-s_{1}-2 s_{2}-s_{\geq 4}-m+2, \ell\left(T^{\prime}\right)=\ell(T)-\ell^{*}-s_{1}-s_{2}-m+3$ and $s\left(T^{\prime}\right) \leq$ $s(T)-s^{*}-s_{1}-s_{2}-s_{\geq 4}+1$. Clearly, $f^{\prime}\left(v_{5}\right) \geq 1$ (since v_{5} has three leaves in T^{\prime}). Let f be the PIDF of T defined by $f(x)=f^{\prime}(x)$ for all $x \in V\left(T^{\prime}\right) \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$ and let $f\left(v_{4}\right)=1$. Then assign the weights to the descendants of v_{4} in T as follows: assign a 1 to each Type-1 (leaf) child of v_{4} (recall that $s_{1} \in\{0,1\}$); assign a 0 to each Type- 2 child of v_{4} and a 1 to its leaf neighbor; assign a 2 to each Type- 4 child of v_{4} and a 0 to each of its leaves. Finally, for each Type-3 child v, assign a PIDF to the subtree T_{v} rooted at v of weight at most $\frac{4 n_{v}-\ell\left(T_{v}\right)+2 s\left(T_{v}\right)-3}{5}$ so that $f(v) \geq 1$. By our earlier observations, the total weight assigned to all Type-3 children of v and their descendants is at most $\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}$. It follows from the induction hypothesis that

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}+s_{1}+s_{2}+2 s_{\geq 4}+1 \\
& \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+2 s\left(T^{\prime}\right)-1}{5}+\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}+s_{1}+s_{2}+2 s_{\geq 4}+1 \\
& \leq \frac{4\left(n-n^{*}-s_{1}-2 s_{2}-m-s_{\geq 4}+2\right)-\ell(T)+\ell^{*}+s_{1}+s_{2}+m-3}{5} \\
& +\frac{2 s(T)-2 s^{*}-2 s_{1}-2 s_{2}-2 s_{\geq 4}+1}{5}+\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}+s_{1}+s_{2}+2 s_{\geq 4}+1 \\
& =\frac{4 n-\ell(T)+2 s(T)-1}{5}+\frac{9-3 m-4 s_{2}+4 s_{\geq 4}}{5} .
\end{aligned}
$$

Using the fact that $m \geq 3 s_{\geq 4}$, it follows that $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}+\frac{9-4 s_{2}-5 s \geq 4}{5}$. Now since $s_{2} \geq 3$, we deduce that $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}$.

By Subcase 2.3, we can assume that $s_{2} \leq 2$.
Subcase 2.4. $s_{2}+s_{\geq 4} \geq 1$. Let T^{\prime} be the tree of order n^{\prime} obtained by deleting all vertices of $T_{v_{4}}$ except v_{4}. Note that $n^{\prime}=n-n^{*}-s_{1}-2 s_{2}-s \geq 4-m$, $s\left(T^{\prime}\right) \leq s(T)-s^{*}-s_{1}-s_{2}-s_{\geq 4}+1$ and $\ell\left(T^{\prime}\right)=\ell(T)-\ell^{*}-s_{1}-s_{2}-m+1$ (since v_{4} is a leaf vertex in $\left.T^{\prime}\right)$. First, let $f^{\prime}\left(v_{4}\right)=2$ and f be a PIDF of T defined by $f(x)=f^{\prime}(x)$ for all $x \in V\left(T^{\prime}\right)$; and then assign the weights to the descendants of v_{4} in T as follows: assign a 0 to each Type- 1 (leaf) child of v_{4}, assign a 2 to each Type- 2 child of v_{4} and a 0 to its leaf, and assign a 2 to each Type- 4 child of v_{4} and a 0 to its leaves. Finally, for each Type-3 child v, assign a PIDF to the subtree T_{v} rooted at v. By our earlier observations, the total weight assigned to all Type-3 children of v and their descendants is at most $\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}$. By the induction hypothesis it follows that

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}+2 s_{2}+2 s_{\geq 4} \\
& \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+2 s\left(T^{\prime}\right)-1}{5}+\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}+2 s_{2}+2 s_{\geq 4} \\
& \leq \frac{4\left(n-n^{*}-s_{1}-2 s_{2}-m-s_{\geq 4}\right)-\ell(T)+\ell^{*}+s_{1}+s_{2}+m-1}{5} \\
& +\frac{2 s(T)-2 s^{*}-2 s_{1}-2 s_{2}-2 s_{\geq 4}+1}{5}+\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}+2 s_{2}+2 s_{\geq 4} \\
& \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}+\frac{-5 s_{1}+s_{2}-3 m+4 s_{\geq 4}-2}{5}
\end{aligned}
$$

Now since $m \geq 3 s_{\geq 4}$ and $s_{2} \leq 2$, we get
$\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}+\frac{-5 s_{1}+s_{2}-5 s_{\geq 4}-2}{5}<\frac{4 n-\ell(T)+2 s(T)-1}{5}$.

Suppose now that $f^{\prime}\left(v_{4}\right) \in\{0,1\}$, and let f be a PIDF of T defined by $f(x)=$ $f^{\prime}(x)$ for all $x \in V\left(T^{\prime}\right)$ and let $f\left(v_{4}\right)=1$. Then assign the weights to the descendants of v_{4} in T as follows: assign a 1 to each Type- 1 (leaf) child of v_{4}; assign a 0 to each Type- 2 child of v_{4} and a 1 to its leaf neighbor and assign a 2 to each Type- 4 child of v_{4} and 0 to its leaves. Finally, for each Type- 3 child v, assign a PIDF of weight at most $\frac{4 n_{v}-\ell\left(T_{v}\right)+2 s\left(T_{v}\right)-3}{5}$ to vertices of T_{v} rooted at v so that $f(v) \geq 1$. By our earlier observations, the total weight assigned to all Type-3 children of v and their descendants is at most $\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}$. By the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}+s_{1}+s_{2}+2 s_{\geq 4}+1 \\
& \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+2 s\left(T^{\prime}\right)-1}{5}+\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}+s_{1}+s_{2}+2 s_{\geq 4}+1 \\
& \leq \frac{4\left(n-n^{*}-s_{1}-2 s_{2}-m-s_{\geq 4}\right)-\ell(T)+\ell^{*}+s_{1}+s_{2}+m-1}{5} \\
& +\frac{2 s(T)-2 s^{*}-2 s_{1}-2 s_{2}-2 s_{\geq 4}+1}{5}+\frac{4 n^{*}-\ell^{*}+2 s^{*}-3}{5}+s_{1}+s_{2}+2 s_{\geq 4}+1 \\
& \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}+\frac{-4 s_{2}-3 m+4 s_{\geq 4}+3}{5}
\end{aligned}
$$

Now since $m \geq 3 s_{\geq 4}$, it follows that $\gamma_{I}^{p}(T) \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}+\frac{-4 s_{2}-5 s_{\geq 4}+3}{5}$, and since $s_{2}+s_{\geq 4} \geq 1$, the result follows.

Subcase 2.5. $s_{2}+s_{\geq 4}=0$. Recall that $s_{1} \in\{0,1\}$. Let v^{\prime} be the leaf neighbor of v_{4} (if any). First, let v_{4} has at least two children of Type-3. Let T^{\prime} be the tree of order n^{\prime} obtained by deleting all vertices of $T_{v_{4}}$ except v_{4}. Note that $n^{\prime}=n-n^{*}-s_{1}, s\left(T^{\prime}\right) \leq s(T)-s^{*}-s_{1}+1$ and $\ell\left(T^{\prime}\right)=\ell(T)-\ell^{*}-s_{1}+1$ (since v_{4} is a leaf vertex in T^{\prime}). We also note that if $f^{\prime}\left(v_{4}\right)=0$, then since v_{4} is a leaf in T^{\prime}, we must have $f^{\prime}\left(v_{5}\right)=2$. Now, we define a PIDF f of T by $f(x)=f^{\prime}(x)$ for all $x \in V\left(T^{\prime}\right) \backslash\left\{v_{4}\right\}$. Moreover, $f\left(v^{\prime}\right)=1, f\left(v_{4}\right)=1$ if $f^{\prime}\left(v_{4}\right)=0$ and $f\left(v_{4}\right)=f^{\prime}\left(v_{4}\right)$ if $f^{\prime}\left(v_{4}\right) \geq 1$. Also, for each other child v of v_{4}, assign a PIDF to the subtree T_{v} of weight at most $\frac{4 n_{v}-\ell\left(T_{v}\right)+2 s\left(T_{v}\right)-3}{5}$. Since there are at least two Type- 3 children of v_{4}, the total weight assigned to such subtree T_{v} is $\frac{4 n^{*}-\ell^{*}+2 s^{*}-2 \cdot 3}{5}$. Hence in either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\frac{4 n^{*}-\ell^{*}+2 s^{*}-6}{5}+s_{1}+1$. Using the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\frac{4 n^{*}-\ell^{*}+2 s^{*}-6}{5}+s_{1}+1 \\
& \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+2 s\left(T^{\prime}\right)-1}{5}+\frac{4 n^{*}-\ell^{*}+2 s^{*}-6}{5}+s_{1}+1 \\
& \leq \frac{4\left(n-n^{*}-s_{1}\right)-\ell(T)+\ell^{*}+s_{1}-1+2 s(T)-2 s^{*}-2 s_{1}+1}{5} \\
& +\frac{4 n^{*}-\ell^{*}+2 s^{*}-6}{5}+s_{1}+1 \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

In the sequel, v_{3} is the only child of v_{4} of Type-3. We distinguish the following.
(i) $T_{v_{3}}=D S_{1,3}$. Consider two situations depending on whether $s_{1}=0$ or $s_{1}=1$.
(a) $s_{1}=0$. Hence $\operatorname{deg}_{T}\left(v_{4}\right)=2$. Let $T^{\prime}=T-T_{v_{4}}$. Clearly, $n^{\prime} \geq 1$. If $n^{\prime}=1$, then T is a wounded spider and by the claim the result follows, and if $n^{\prime}=2$, then
one can easily see that $\gamma_{I}^{p}(T)=6<\frac{4 n-\ell(T)+2 s(T)-1}{5}=7.2$. So let $n^{\prime} \geq 3$. Note that $n^{\prime}=n-7, \ell\left(T^{\prime}\right) \geq \ell(T)-4$ and $s\left(T^{\prime}\right) \leq s(T)-1$. Any $\gamma_{I}^{p}\left(T^{\prime}\right)$-function can be extended to a PIDF of T by assigning a 2 to v_{2}, v_{3} and a 0 to remaining vertices of $T_{v_{4}}$ except v_{4} which will be assigned a 0 if $f^{\prime}\left(v_{5}\right)=0$ and a 1 if $f^{\prime}\left(v_{5}\right) \geq 1$. In either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+5$. By the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+s\left(T^{\prime}\right)-1}{5}+5 \leq \frac{4(n-7)-\ell(T)+4+2 s(T)-3}{5}+5 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

(b) $s_{1}=1$. Let T^{\prime} be the tree obtained from T by removing all vertices $T_{v_{3}}$ except v_{3}. If $f^{\prime}\left(v_{3}\right)=0$, then $f^{\prime}\left(v_{4}\right)=2$, and so f^{\prime} can be extended to a PIDF of T by assigning a 2 to v_{2}, v_{3} and a 0 to remaining vertices of $T_{v_{3}}$. Hence $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+4$. If $f^{\prime}\left(v_{3}\right)=2$, then $f^{\prime}\left(v_{4}\right)=0$ and so the other leaf neighbor of v_{4} is assigned a 1 , which is a contradiction. Hence, $f^{\prime}\left(v_{3}\right)=1$. Now, if $\left|L\left(v_{3}\right)\right|=1$, then we extend f^{\prime} to a PIDF of T by assigning a 2 to v_{2}, a 1 to $L\left(v_{3}\right)$ and a 0 to the remaining vertices of $T_{v_{3}}$. If $\left|L\left(v_{3}\right)\right|=3$, then we extend f^{\prime} to a PID-function of T by assigning a 1 to $L\left(T_{v_{3}}\right)$ and a 0 to v_{2}. In either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+4$. By the induction hypothesis we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+s\left(T^{\prime}\right)-1}{5}+4 \leq \frac{4(n-5)-\ell(T)+3+2 s(T)-5}{5}+4 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

(ii) $T_{v_{3}}=S_{k, t} \neq D S_{3,1}$. We recall that $T_{v_{3}}$ is different from $D S_{2,1}$. First let $6 s\left(T_{v_{3}}\right)-2 \ell\left(T_{v_{3}}\right) \geq 11$. By our Claim, $\gamma_{I}^{p}\left(T_{v_{3}}\right) \leq \frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-6}{5}$. Let T^{\prime} be the tree obtained from T by removing all vertices of $T_{v_{4}}$ except v_{4}. Note that $n^{\prime} \geq 2$. Moreover, if $n^{\prime}=2$, then one can see that $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T_{v_{3}}\right)+2<$ $\frac{4 n-\ell(T)+2 s(T)-1}{5}$. Hence let $n^{\prime} \geq 3$. Note that $n^{\prime}=n-n_{v_{3}}-s_{1}, \ell\left(T^{\prime}\right)=\ell(T)-$ $\ell\left(T_{v_{3}}\right)-s_{1}+1$ and $s\left(T^{\prime}\right) \leq s(T)-s\left(T_{v_{3}}\right)-s_{1}+1$. Then any $\gamma_{I}^{p}\left(T^{\prime}\right)$-function f^{\prime} can be extended to a PIDF of T by adding to it a PIDF of $T_{v_{3}}$ of weight $\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-6}{5}$ that assigns a 1 to v_{3}. Moreover, the leaf neighbor of v_{4} (if any) is assigned a 1 , while v_{4} will be assigned a 1 if $f^{\prime}\left(v_{4}\right)=0$ (note that in that case $f^{\prime}\left(v_{5}\right)=2$) or v_{4} will keep the same assignment under f^{\prime} if $f^{\prime}\left(v_{4}\right) \geq 1$. In either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\gamma_{I}^{p}\left(T_{v_{3}}\right)+s_{1}+1$. Using the induction, we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+s\left(T^{\prime}\right)-1}{5}+\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-6}{5}+s_{1}+1 \\
& \leq \frac{4\left(n-n_{v_{3}}-s_{1}\right)-\ell(T)+\ell\left(T_{v_{3}}\right)+s_{1}-1+2 s(T)-2 s\left(T_{v_{3}}\right)-2 s_{1}+1}{5} \\
& +\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-6}{5}+s_{1}+1=\frac{4 n-\ell(T)+2 s(T)-1}{5} .
\end{aligned}
$$

Therefore, we can now assume that $6 s\left(T_{v_{3}}\right)-2 \ell\left(T_{v_{3}}\right) \leq 11$. Recall that (by the proof of the Claim) there exists PIDF, say g, of $T_{v_{3}}$ of weight at most $\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-3}{5}$ assigning a 2 to v_{3}. We now consider two situations depending on whether $s_{1}=0$ or $s_{1}=1$.
(a) $s_{1}=0$. Then $\operatorname{deg}_{T}\left(v_{4}\right)=2$. Let $T^{\prime}=T-T_{v_{4}}$. If $n^{\prime}=1$, then T is a wounded spider and by the claim the result follows, and if $n^{\prime}=2$, then one can easily see that g can be extended to a PIDF of T by assigning a 2 to v_{6} and a 0 to both v_{4} and v_{5}, and thus $\gamma_{I}^{p}(T) \leq \frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-3}{5}+2 \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}$. So let $n^{\prime} \geq 3$. In this case, any $\gamma_{I}^{p}\left(T^{\prime}\right)$-function can be extended to a PIDF of T by adding to it the PIDF g of $T_{v_{3}}$. Moreover, v_{4} will be assigned a 0 if $f^{\prime}\left(v_{5}\right)=0$ and a 1 if $f^{\prime}\left(v_{5}\right) \geq 1$. In either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-3}{5}+1$. Using the fact that $n^{\prime}=n-n_{v_{3}}-1, \ell\left(T^{\prime}\right) \geq \ell(T)-\ell\left(T_{v_{3}}\right), s\left(T^{\prime}\right) \leq s(T)-s\left(T_{v_{3}}\right)+1$, it follows from the induction hypothesis that

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+s\left(T^{\prime}\right)-1}{5}+\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-3}{5}+1 \\
& \leq \frac{4\left(n-n_{v_{3}}-1\right)-\ell(T)+\ell\left(T_{v_{3}}\right)+2 s(T)-2 s\left(T_{v_{3}}\right)+1}{5} \\
& +\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-3}{5}+1=\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

(b) $s_{1}=1$. Assume first that v_{3} has at least four leaves, and let $T^{\prime}=$ $T \backslash\left\{w, v_{1}, v_{2}\right\}$, where $w \in L\left(v_{3}\right)$. Since v_{3} has at least three leaves we have $f^{\prime}\left(v_{3}\right) \geq 1$. If $f^{\prime}\left(v_{3}\right)=2$, then f^{\prime} is extended to a PIDF of T by assigning a 2 to v_{2} and a 0 to w, v_{1}. If $f^{\prime}\left(v_{3}\right)=1$, then f^{\prime} to a PIDF of T by assigning a 1 to v_{1}, w and 0 to v_{2}. In either case, $\gamma_{I}^{p}(T) \leq \gamma_{I}^{p}\left(T^{\prime}\right)+2$. By the induction hypothesis we get

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+s\left(T^{\prime}\right)-1}{5}+2 \leq \frac{4(n-3)-\ell(T)+2+2 s(T)-3}{5}+2 \\
& <\frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

Hence, we can assume that v_{3} has at most three leaves and thus $\ell\left(T_{v_{3}}\right) \leq s\left(T_{v_{3}}\right)+$ 2. Let T^{\prime} be the tree obtained from T by removing all vertices of $T_{v_{3}}$ except v_{3}. Then $n^{\prime}=n-n_{v_{3}}+1, \ell\left(T^{\prime}\right)=\ell(T)-\ell\left(T_{v_{3}}\right)+1$ and $s\left(T^{\prime}\right)=s(T)-s\left(T_{v_{3}}\right)$. If $f^{\prime}\left(v_{3}\right)=0$, then $f^{\prime}\left(v_{4}\right)=2$, and f^{\prime} can be extended to a PIDF of T by adding to it the PIDF g of $T_{v_{3}}$, where v_{3} is reassigned $g\left(v_{3}\right)$ instead of $f^{\prime}\left(v_{3}\right)$. Applying our induction hypothesis, we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+s\left(T^{\prime}\right)-1}{5}+\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-3}{5} \\
& \leq \frac{4\left(n-n_{v_{3}}+1\right)-\ell(T)+\ell\left(T_{v_{3}}\right)-1+2 s(T)-2 s\left(T_{v_{3}}\right)-1}{5} \\
& +\frac{4 n_{v_{3}}-\ell\left(T_{v_{3}}\right)+2 s\left(T_{v_{3}}\right)-3}{5}=\frac{4 n-\ell(T)+2 s(T)-1}{5} .
\end{aligned}
$$

If $f^{\prime}\left(v_{3}\right)=2$, then $f^{\prime}\left(v_{4}\right)=0$ and the other leaf neighbor of v_{4} in T^{\prime} is assigned a 1 , which provides a contradiction. Hence let $f^{\prime}\left(v_{3}\right)=1$. Then we extend f^{\prime} to a PIDF of T by assigning a 1 to all leaves vertices of $T_{v_{3}}$ and a 0 to remaining vertices of $T_{v_{3}}$ but v_{3}. Using the fact that $\ell\left(T_{v_{3}}\right) \leq s\left(T_{v_{3}}\right)+2, n_{v_{3}}=\ell\left(T_{v_{3}}\right)+s\left(T_{v_{3}}\right)$ and the induction hypothesis, we obtain

$$
\begin{aligned}
\gamma_{I}^{p}(T) & \leq \frac{4 n^{\prime}-\ell\left(T^{\prime}\right)+s\left(T^{\prime}\right)-1}{5}+\ell\left(T_{v_{3}}\right) \\
& \leq \frac{4\left(n-n_{v_{3}}+1\right)-\ell(T)+\ell\left(T_{v_{3}}\right)-1+2 s(T)-2 s\left(T_{v_{3}}\right)-1}{5}+\ell\left(T_{v_{3}}\right) \\
& \leq \frac{4 n-\ell(T)+2 s(T)-1}{5}
\end{aligned}
$$

This completes the proof.

References

[1] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. McRae, Roman \{2\}-domination, Discrete Appl. Math. 204 (2016) 22-28.
https://doi.org/10.1016/j.dam.2015.11.013
[2] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Roman domination in graphs, in: Topics in Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), Springer (2020) 365-409.
[3] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination, in: Structures of Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)) 273-307.
https://doi.org/10.1007/978-3-030-58892-2_10
[4] M. Chellai, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman dominationm II, AKCE Int. J. Graphs Comb. 17 (2020) 966-984.
https://doi.org/10.1016/j.akcej.2019.12.001
[5] M. Chellai, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Combin. Comput. 115 (2020) 141-171.
[6] M. Chellai, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, The Roman domatic problem in graphs and digraphs: A survey, Discuss. Math. Graph Theory, in-press.
https://doi.org/10.7151/dmgt. 2313
[7] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22. https://doi.org/10.1016/j.disc.2003.06.004
[8] M. Darkooti, A. Alhevaz, S. Rahimi and H. Rahbani, On perfect Roman domination number in trees: complexity and bounds, J. Comb. Optim. 38 (2019) 712-720. https://doi.org/10.1007/s10878-019-00408-y
[9] T.W. Haynes and M.A. Henning, Perfect Italian domination in trees, Discrete Appl. Math. 260 (2019) 164-177. https://doi.org/10.1016/j.dam.2019.01.038
[10] M.A. Henning, W.F. Klostermeyer and G. MacGillivray, Perfect Roman domination in trees, Discrete Appl. Math. 236 (2018) 235-245.
https://doi.org/10.1016/j.dam.2017.10.027
[11] M. Livingston and Q.F. Stout, Perfect dominating sets, Congr. Numer. 79 (1990) 187-203.
[12] C.S. ReVelle and K.E. Rosing, Defendens Imperium Romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585-594. https://doi.org/10.1080/00029890.2000.12005243
[13] I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (1999) 136-139. https://doi.org/10.1038/scientificamerican1299-136

Received 4 September 2019
Revised 8 April 2020 Accepted 10 April 2020

