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Abstract

Let n ≥ 8 be an integer. We characterize the extremal digraphs of order
n with the maximum number of arcs avoiding distinct walks of length 4 with
the same endpoints.
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1. Introduction

The Turán-type problem is one of the hottest topics in extremal graph theory,
which concerns the number of edges in graphs containing no given subgraphs and
the extremal graphs achieving this maximum. Most of the previous results of
Turán problems concern undirected graphs and only a few Turán problems on
digraphs have been investigated; see [1–6].

In this paper, we consider simple digraphs, i.e., digraphs without multiple
arcs but allowing loops. We abbreviate directed walks and directed cycles as
walks and cycles, respectively. The number of vertices in a digraph is called its
order and the number of arcs its size. Denote by Fk the family of digraphs
consisting of two different walks of length k with the same initial vertex and
the same terminal vertex. A digraph D is said to be Fk-free if D contains no
subgraph from Fk. Let ex(n,Fk) be the maximum size of Fk-free digraphs of
order n, and let EX(n,Fk) be the set of Fk-free digraphs of order n with size
ex(n,Fk).

In 2007, Zhan posed the following Turán-type problem on digraphs at a
seminar, and later this problem was listed as an open question in [7].
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Problem 1. Given positive integers n and k, determine ex(n,Fk) and EX(n,Fk).

In 2010, Wu [6] solved the case k = 2. In 2011, Huang, Zhan [5] solved the
case k ≥ n − 1 and determined the extremal numbers for the cases k = n − 2
and k = n − 3. In 2019, Huang, Lyu and Qiao [4] characterized the extremal
digraphs for the cases k = n− 2 and k = n− 3. And they gave the solutions to
the case 5 ≤ k ≤ n− 4. They also determined the extremal number for the case
k = 4, but the structures of the extremal digraphs are not clear. In this paper,
we characterize the structures of the extremal digraphs when k = 4.

For a digraph D = (V,A), we denote by a(D) = |A| the size of D. Given
X ⊂ V, we denote by D[X] and D − X the subgraphs of D induced by X and
V\X, respectively. For convenience, a set X will be abbreviated as x if it is a
singleton {x}. For i, j ∈ V, if there is an arc from i to j, then we say j is a
successor of i, and i is a predecessor of j. The notation i → j means there is
an arc from i to j; i 9 j means there exists no arc from i to j. We denote by
(i, j) the arc from i to j. For u ∈ V and S ⊂ V, the notation u→ S means there
exists an arc from u to each vertex of S; u9 S means there is no arc from u to
any vertex of S. Analogously, we define S → u and S 9 u. For S, T ⊂ V, we
denote by A(S, T ) the set of arcs from S to T . The cardinalities of A(S, T ) is
denoted by a(S, T ). For convenience, S (Respectively, T ) will be abbreviated as
s (Respectively, t) if it is a singleton {s} (Respectively, {t}).

A digraph D = (V,A) is said to be transitive if for any three vertices
x, y, z ∈ V, (x, y) ∈ A and (y, z) ∈ A imply (x, z) ∈ A. Recall that a tour-
nament is an orientation of the complete graph. We denote by Tn the transitive
tournament on vertices {1, 2, . . . , n} such that i → j if and only if i < j. A
c-partite transitive tournament is an orientation of a complete c-partite graph
which is also transitive. A c-partite transitive tournament is called balanced if
any pair partite sets differ by at most one in size. We present the diagram of the
k-partite transitive tournaments as follows.

. . .V VVV 3 k21

Let M be the digraph as follows.
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We define H(n) as a family of digraphs of order n, each of whose elements
has a vertex partition V = V1 ∪ V2 ∪ V3, where |V1| = b(n − 5)/2c, |V2| = 5 and
|V3| = d(n−5)/2e, such that D[V1] and D[V3] are empty, and D[V2] is isomorphic
to M . Moreover, for x ∈ Vi, y ∈ Vj and i 6= j, x → y if and only if i < j.
For convenience, we also use H(n) to indicate a special digraph with the same
structure as we define above if it makes no confusion. In the following, we present
two examples in H(9) and H(10), respectively.

H(9) H(10)

Now we state our main result as follows.

Theorem 2. Let n ≥ 12 be an integer. Then D ∈ EX(n,F4) if and only if D
is a balanced 4-partite transitive tournament.

Remark that the cases n ∈ {5, 6, 7} have been solved in [4, 5]. In this paper,
we also characterize the extremal digraphs for n ∈ {8, 9, 10, 11}.

2. Lemmas

We always use 〈n〉 = {1, 2, . . . , n} to denote the vertex set of a digraph D of
order n unless otherwise stated. Let D = (V,A) be a digraph with vertex set V
and arc set A. Denote by

←−
D the reverse of D, which is obtained by reversing the

directions of all arcs of D. Denote by

N+(u) = {x ∈ V|(u, x) ∈ A} and N−(u) = {x ∈ V|(x, u) ∈ A}

the sets of successors and predecessors of a vertex u. The out-degree and in-degree
of u are d+(u) = |N+(u)| and d−(u) = |N−(u)|, respectively. Let dD(u) = a(D)−
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a(D − u) be the number of arcs incident with u. We abbreviate it as d(u) if no
confusion rises. We have

d(u) =

{
d+(u) + d−(u)− 1, if u→ u;
d+(u) + d−(u), otherwise.

Let d be the number of loops in D. Since a(D) =
∑

u∈V d
+(u) =

∑
u∈V d

−(u),
then

2a(D) =
∑
u∈V

d(u) + d.(1)

To determine EX(n,F4) for n ≥ 8, we need the following technical lemmas.

Lemma 3 [4]. Let n ≥ 3 and p be nonnegative integers, and let D be a digraph
on n vertices. Given q ≥ 0 such that p(n− 1)/2 + q is a positive integer, if

a(D − i) ≤ (n− 1)(n− 2)

2
− p(n− 1)

2
− q for all i ∈ 〈n〉,

then

a(D) ≤ n(n− 1)

2
− p(n+ 1)

2
− q − 1.

Lemma 4. Let s, k, t, n be positive integers with t ≥ 3, s + k ≥ 3 and n = s+
k+t+1. Suppose D = (V,A) is a digraph of order n such that D−n is a blow-up
of Tt+2 with vertex partition V \ {n} =

⋃t+2
i=1 Vi, where

V1 = {1, . . . , k}, V2 = {k+1}, . . . , Vt+1 = {k+t}, Vt+2 = {k+t+1, . . . , k+t+s},

and (x, y) ∈ A for x ∈ Vi, y ∈ Vj if and only if i < j. If D is Ft+1-free and

d(n) ≥ max{s, k}+ 2,(2)

then

n9 n, n9 V1, Vt+2 9 n,

and

{(i, n), (n, j)} 6⊆ A for all 1 ≤ i, j ≤ n− 1 and j ≤ i+ 2.

Proof. It is sufficient to prove that n 9 n because the other results could be
obtained by adopting the same augments as in the proof of [4, Lemma 4]. We let
V ′1 = V1, V

′
2 = V \ (V1 ∪ Vt+2 ∪ {n}) and V ′3 = Vt+2. Note that we already have

n9 V ′1 and V ′3 9 n. To the contrary, suppose n→ n.
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Suppose a vertex u ∈ V ′1 is a predecessor of n. If a vertex u1 ∈ V ′2 is a
predecessor of n, there are the following two distinct walks of length t+ 1:{

u→ u1 → n→ · · · → n,
u→ n→ n→ · · · → n,

a contradiction. If a vertex u2 ∈ V ′2 is a successor of n, there are the following
two distinct walks of length t+ 1:{

u→ k + 1→ k + 2→ · · · → k + t+ 1,
u→ n→ · · · → n→ u2 → k + t+ 1,

a contradiction. If a vertex u3 ∈ V ′3 is a successor of n, there are the following
two distinct walks of length t+ 1:{

u→ k + 1→ k + 2→ · · · → k + t→ u3,
u→ n→ · · · → n→ u3,

a contradiction. Now we have d(n) ≤ |V ′1 | + 1 = k + 1, which contradicts (2).
Hence, V ′1 9 n. Similarly, we obtain n9 V ′3 .

Suppose u1, u2 ∈ V ′2 are two predecessors of n with u1 → u2. Then there are
the following two distinct walks of length t+ 1:{

u1 → n→ · · · → n,
u1 → u2 → n→ · · · → n,

a contradiction. Hence, V ′2 contains at most one predecessor of n. Similarly, V ′2
contains at most one successor of n. It follows that d(n) ≤ 3, which contradicts
(2). Hence, n9 n.

Lemma 5. Let k1, k2, n be positive integers with n = k1 +k2 +4 and k1 +k2 ≥ 3.
Suppose D = (V,A) is an F4-free n-vertex digraph such that D− n is a blow-up
of T5 with vertex partition V \ {n} =

⋃5
i=1 Vi, where

V1 = {1, . . . , k1}, V2 = {k1 + 1}, V3 = {k1 + 2}, V4 = {k1 + 3},
V5 = {k1 + 4, . . . , k1 + k2 + 3},

and (x, y) ∈ A for x ∈ Vi, y ∈ Vj if and only if i < j. If d(n) = k1 + k2 + 1 and
n has both predecessors and successors, then

(1) V1 → n and n→ V5;

(2) k1 + 1→ n or n→ k1 + 3.
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Proof. Let s ∈ 〈n − 1〉 be the largest integer with s → n, t ∈ 〈n − 1〉 be the
smallest integer with n → t. By Lemma 4, we have t > s + 2 and n 9 n. It
follows that

d(n) ≤ s+ (n− t) ≤ n− 3 = k1 + k2 + 1.

Since the above equalities hold, we get t − s = 3, {1, . . . , s} → n and n →
{t, . . . , n − 1}. If s < k1, there are the following two distinct walks of length 4
from s to n− 1:{

s→ k1 + 1→ k1 + 2→ k1 + 3→ n− 1,
s→ n→ s+ 3→ k1 + 3→ n− 1,

a contradiction. Hence, s ≥ k1. Similarly, t ≤ k1 + 4. Then (1) follows. Note
that t = s+ 3, we have s = k1 or s = k1 + 1, then (2) follows immediately.

Lemma 6. Let n ≥ 9 and D ∈ EX(n,F4). If there is i0 ∈ V such that D−i0 is a
balanced 4-partite transitive tournament, then D is a balanced 4-partite transitive
tournament or isomorphic to H(n) or its reverse. Moreover, if n ≥ 12, then D
is a balanced 4-partite transitive tournament.

Proof. We assume that D−i0 is a balanced 4-partite transitive tournament with
vertex partition V(D− i0) = V1∪V2∪V3∪V4, and i→ j if and only if s(i) < s(j).
Here s(i) is the index of the set i belongs to. We let s and t be nonnegative
integers such that n = 4s+ t+ 1 and t < 4. We assume that

V1 = {u1, u2, . . . , u|V1|}, V2 = {v1, v2, . . . , v|V2|},
V3 = {w1, w2, . . . , w|V3|}, V4 = {x1, x2, . . . , x|V4|}.

Let {j1, j2, . . . , jt} be an arbitrary t-subset of {1, 2, 3, 4}. If i ∈ {j1, j2, . . . , jt},
we let |Vi| = s+ 1; else, we let |Vi| = s. It is clear that

s ≥ 2,(3)

and

d(i0) = 3s+ t.(4)

Suppose that i0 → i0. Then any pair of the predecessors or successors of i0
are not adjacent. It follows that

d(i0) = d+(i0) + d−(i0)− 1 ≤ 2s+ t̄+ 1,(5)

where t̄ = min{t, 2}, which contradicts (4). Hence i0 9 i0.
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Let s′ ∈ 〈4〉 be the largest integer such that there is a vertex i ∈ Vs′ with
i→ i0 and t′ ∈ 〈4〉 be the smallest integer such that there is a vertex j ∈ Vt′ with
i0 → j. Here we let s′ = 0 if V 9 i0 and t′ = 5 if i0 9 V.

We assert that

t′ ≥ 2.(6)

Otherwise, i0 has a successor in V1, say u1. Then there are the following two
distinct walks of length 4:{

i0 → u1 → v1 → w1 → x1,
i0 → u1 → v2 → w1 → x1,

a contradiction. Similarly, we have

s′ ≤ 3.(7)

Suppose s′ = t′ = 2. Without loss of generality, we let v1, v2 ∈ V2 with
v1 → i0 and i0 → v2. There are the following two distinct walks of length 4:{

v1 → i0 → v2 → w1 → x1,
v1 → i0 → v2 → w2 → x1,

a contradiction. Similarly, for the case s′ = t′ = 3, we also get a contradiction.
Combining with (6) and (7) we get

s′ 6= t′.(8)

Suppose s′ > t′. In fact, we only need to consider the case s′ = 3 and t′ = 2.
Let v1 ∈ V2 be a successor of i0 and w1 ∈ V3 be a predecessor of i0. If i0 has
another successor in V2, say v2, there are the following two distinct walks of
length 4: {

u1 → w1 → i0 → v1 → x1,
u1 → w1 → i0 → v2 → x1,

a contradiction. Hence, i0 has exactly one successor in V2. Similarly, i0 has
exactly one predecessor in V3. It follows from (4) and (6) that i0 has a predecessor
in V1, say u1. Then there are the following two distinct walks of length 4:{

u1 → i0 → v1 → w1 → x1,
u1 → w1 → i0 → v1 → x1,

a contradiction. Therefore, we get

t′ ≥ s′ + 1.(9)
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Suppose t′ = s′ + 1. If s′ = 1, without loss of generality, we let u1 → i0 and
i0 → v1. There are the following two distinct walks of length 4:{

u1 → i0 → v1 → w1 → x1,
u1 → i0 → v1 → w2 → x1,

a contradiction. Hence, we get s′ 6= 1. Similarly, we get s′ 6= 3. Combining
with (6) and (7), we get s′ = 2. Without loss of generality, we let v1 → i0 and
i0 → w1. If i0 has another successor in V3, say w2, there are the following two
distinct walks of length 4:{

u1 → v1 → i0 → w1 → x1,
u1 → v1 → i0 → w2 → x1,

a contradiction. Thus, i0 has exactly one successor in V3. Similarly, i0 has exactly
one predecessor in V2. Combining with (3) and (4), we get |V2| = |V3| = 2, V1 → i0
and i0 → V4. It follows that D is H(n) or its reverse.

Suppose t′ = s′ + 2. By (3) and (4), we get Vi → n for i ≤ s′ and n→ Vj for
j ≥ t′. Moreover, |Vs′+1| = s. We can conclude that D is a balanced 4-partite
transitive tournament.

For the case n ≥ 12, it is sufficient to notice that a(H(n)) < ex(n,F4).

3. The Structures of the Extremal Digraphs for n ≥ 8

In this section, we characterize the extremal digraphs for n ≥ 8. Denote by F1 the
digraph T8 − {(1, 2), (1, 3), (2, 3), (7, 8)}, F2 the digraph T8 − {(1, 2), (4, 5), (4, 6),
(7, 8)}. In case the readers are not familiar with the structures of F1 and F2, we
present them as follows.

F1 F2

Theorem 7. A digraph D ∈ EX(8,F4) if and only if D is a balanced 4-partite

transitive tournament or isomorphic to one of {F1,
←−
F1, F2,

←−
F2}.
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Proof. The sufficiency of this theorem is obvious. It is sufficient to show the
necessity part. Suppose D ∈ Ex(8,F4). It follows that a(D) = ex(8,F4) = 24
from [4, Theorem 1]. By [5, Corollary 11], we have a(D − i) ≤ 19 for all i ∈ 〈8〉.
We distinguish two cases.

Case 1. a(D−i) = 19 for some i ∈ 〈8〉. By [4, Theorem 9], we assume without
loss of generality that D−8 = T7−{(1, 2), (6, 7)}. Since d(8) = a(D)−a(D−8) =
5, applying Lemma 4, we obtain {6, 7, 8}9 8, 8 9 {1, 2} and {(i, 8), (8, j)} 6⊂ A
for j ≤ i+ 2.

If 8 has no predecessor, then D is isomorphic to F1. If 8 has no successor, then
D is isomorphic to the reverse of F1. If 8 has both predecessors and successors,
applying Lemma 5, we obtain D is isomorphic to F2 or its reverse.

Case 2. a(D − i) ≤ 18 for all i ∈ 〈8〉. By the definition of d(i) and (1), we
obtain

d(i) = 6 for all i ∈ 〈8〉.(10)

Moreover, there exists no loops in D, i.e.,

i9 i for all i ∈ 〈8〉.(11)

Claim 1. There exists no 2-cycles in D.

Otherwise, without loss of generality we assume 7 ↔ 8. By (10) we get
a(D − {7, 8}) = a(D) − d(7) − d(8) + 2 = 14. Applying [4, Theorem 8] to
D − {7, 8}, we have D − {7, 8} is isomorphic to T6 − {(1, 2)} or T6 − {(5, 6)}.
Suppose D− {7, 8} is isomorphic to T6 − {(1, 2)}. Without loss of generality, we
let D−{7, 8} = T6−{(1, 2)}. If 8→ 1, there are the following two distinct walks
of length 4: {

8→ 1→ 3→ 4→ 6,
8→ 1→ 3→ 5→ 6,

a contradiction. Similarly, we get 8 9 {1, 2} and 7 9 {1, 2}.
Combining with (10) we have 1→ {7, 8}. If there is u ∈ {3, 4, 5} with 8→ u,

there are the following two distinct walks of length 4:{
1→ 3→ 4→ 5→ 6,
1→ 7→ 8→ u→ 6,

a contradiction. If 8→ 6, there are the following two distinct walks of length 4:{
1→ 3→ 4→ 5→ 6,
1→ 8→ 7→ 8→ 6,
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a contradiction. By (10), 8 has at least 2 predecessors in {3, 4, 5, 6}. We assume
u1, u2 are two predecessors of 8 with 3 ≤ u1 < u2 ≤ 6. Then there are the
following two distinct walks of length 4:{

1→ u1 → 8→ 7→ 8,
1→ u2 → 8→ 7→ 8,

a contradiction. For the case D − {7, 8} is isomorphic to T6 − {(5, 6)}, we also
get a contradiction. This completes the proof of Claim 1. 2

It follows that

a(i, j) + a(j, i) ≤ 1 for distinct i, j ∈ 〈8〉.(12)

For each pair {i, j} ⊂ 〈8〉, we have a(D−{i, j}) = a(D)−12+a(i, j)+a(j, i) ≤ 13.
Applying Lemma 3 to D − 8, there exists i ∈ 〈7〉 such that a(D − {i, 8}) ≥ 13.
Thus a(D − {i, 8}) = 13. Without loss of generality, we assume

a(D − {7, 8}) = 13.(13)

Moreover,

a(7, 8) + a(8, 7) = 1.(14)

By (10) and (12), we have dD−{7,8}(i) ≥ 4 for i ∈ 〈6〉. It follows from (13)
that a(D−{i, 7, 8}) ≤ 9 for i ∈ 〈6〉. Applying Lemma 3 to D−{7, 8}, there exists
i ∈ 〈6〉 such that a(D − {i, 7, 8}) = 9. Without loss of generality, we assume

a(D − {6, 7, 8}) = 9.(15)

Moreover,

a(6, i) + a(i, 6) = 1 for i ∈ {7, 8}.(16)

By (10) and (12), we have dD−{6,7,8}(i) ≥ 3 for i ∈ 〈5〉. It follows from (15)
that a(D− {i, 6, 7, 8}) ≤ 6 for i ∈ 〈5〉. Applying Lemma 3 to D− {6, 7, 8}, there
is i ∈ 〈5〉 such that a(D − {i, 6, 7, 8}) ≥ 6. Hence, the equality holds for some
i ∈ 〈5〉. Without loss of generality, we assume

a(D − {5, 6, 7, 8}) = 6.(17)

Moreover,

a(5, i) + a(i, 5) = 1 for i ∈ {6, 7, 8}.(18)

Let α = {1, 2, 3, 4}. It is clear that

a(D[α]) = a(D − α) = 6.(19)
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We have the following claim.

Claim 2. D[α] and D − α are both transitive tournaments.

It is sufficient to show that they both have no cycles. Suppose D[α] has
a cycle. By Claim 1, (11) and [3, Lemma 2.2], D[α] has a 3-cycle. Without
loss of generality, we let 1 → 2 → 3 → 1. By Claim 1, (11) and (17), we get
a(i, 4) + a(4, i) = 1 for i ∈ {1, 2, 3}. If 4 has both predecessors and successors in
{1, 2, 3}, assume without loss of generality that 1→ 4 and 4→ {2, 3}, then there
are the following two distinct walks of length 4:{

4→ 2→ 3→ 1→ 2,
4→ 3→ 1→ 4→ 2,

a contradiction. Hence, 4 → {1, 2, 3} or {1, 2, 3} → 4. Let B be a digraph
on {1, 2, 3, 4} with arc set {(1, 2), (2, 3), (3, 1), (1, 4), (2, 4), (3, 4)}. Then D[α] is
isomorphic to B or its reverse. Applying the same arguments as above, D− α is

a transitive tournament or isomorphic to one of {B,
←−
B}.

Suppose D[α] is isomorphic to B or
←−
B and so is D − α. Without loss of

generality, let {(1, 2), (2, 3), (3, 1)} ⊂ A(D[α]) and {(5, 6), (6, 7), (7, 5)} ⊂ A(D −
α). If 1→ 5, there are the following two distinct walks of length 4:{

1→ 2→ 3→ 1→ 5,
1→ 5→ 6→ 7→ 5,

a contradiction. Hence, we have 1 9 5. Similarly, we have {1, 2, 3} 9 5 and
5 9 {1, 2, 3}. It follows that d(5) ≤ 4, which contradicts (10). Hence, D− α is a
transitive tournament. Without loss of generality, let

D − α = T8 − α.

Suppose D[α] = B. We can obtain

a({1, 2, 3}, {5}) ≤ 1.(20)

Otherwise, there are the following distinct walks of length 4:
1→ 5→ 6→ 7→ 8,
1→ 2→ 5→ 7→ 8,
1→ 2→ 3→ 5→ 8,

a contradiction. We obtain a({1, 2}, {6}) ≤ 1, otherwise there are the following
distinct walks of length 4:{

3→ 1→ 6→ 7→ 8,
3→ 1→ 2→ 6→ 8,
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a contradiction. Similarly, we get a({1, 3}, {6}) ≤ 1 and a({2, 3}, {6}) ≤ 1, which
implies that

a({1, 2, 3}, {6}) ≤ 1.(21)

By (10) and (20), 5 has one successor in {1, 2, 3}, say u1. Similarly, 6 has one
successor in {1, 2, 3}, say v1. We let u1 → u2 → u3 be the walk along 1 → 2 →
3 → 1, and v2 ∈ {1, 2, 3} be the successor of v1. Then there are the following
distinct walks of length 4:{

5→ u1 → u2 → u3 → 4,
5→ 6→ v1 → v2 → 4,

a contradiction.

Suppose D[α] =
←−
B . Note that the reverse of a transitive tournament is

still a transitive tournament. Applying the same arguments, we could get a
contradiction.

Now we have proved D[α] is a transitive tournament. Exchanging the roles
of D[α] and D−α and repeating the same arguments as above, we get that D−α
is also a transitive tournament. This completes Claim 2. 2

Next, we show D is a balanced 4-partite transitive tournament. Without loss
of generality, let

D[α] = T4 and D − α = T8 − α.

We obtain 6 9 1, otherwise there are the following two distinct walks of length 4:{
5→ 6→ 1→ 2→ 4,
5→ 6→ 1→ 3→ 4.

Similarly, we get {2, 3, 4}9 5, 8 9 {1, 2, 3}, {3, 4}9 6, 7 9 {1, 2} and 4 9 7.

Suppose 1→ 5. We obtain that i9 i+4 for i ∈ {2, 3, 4}, otherwise there are
two distinct walks of length 4 from 1 to 8. If 1 9 6, by (10), we get 6→ {2, 3, 4}.
Then there are the following two distinct walks of length 4:{

1→ 5→ 6→ 2→ 4,
1→ 5→ 6→ 3→ 4,

a contradiction. Hence, 1 → 6. Then 6 9 2, otherwise there are the following
two distinct walks of length 4:{

1→ 5→ 6→ 2→ 4,
1→ 6→ 2→ 3→ 4,
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a contradiction. By (10), we get 6→ {3, 4}. It follows that 7 9 {3, 4}, otherwise
there are the following distinct walks of length 4:{

1→ 5→ 6→ 3→ 4,
1→ 6→ 7→ 3→ 4,

{
1→ 5→ 6→ 3→ 4,
1→ 5→ 6→ 7→ 4.

Then d(7) ≤ 5, which contradicts (10). Therefore, we get 1 9 5. Applying the
same arguments, we get 5 9 1. It follows from (10) that

1→ {6, 7, 8}, 5→ {2, 3, 4}.

Suppose 2→ 6. We obtain that i 9 i+ 4 for i ∈ {3, 4}, otherwise there are
two distinct walks of length 4 from 1 to 8. By Claim 1 we have 6 9 2. If 2 9 7,
by (10), we have 7 → {3, 4}. Then there are the following two distinct walks of
length 4: {

1→ 2→ 6→ 7→ 4,
1→ 6→ 7→ 3→ 4,

a contradiction. Hence 2 → 7. By (10) we have 2 9 8. Moreover, we get 3 → 8
and 8→ 4. There are the following two distinct walks of length 4:{

5→ 6→ 7→ 8→ 4,
5→ 2→ 6→ 8→ 4,

a contradiction. Therefore, 2 9 6. Similarly, we get 6 9 2. By (10), we get

2→ {7, 8}, 6→ {3, 4}.

Suppose 3 → 7. It is clear that 4 9 8. It follows from (10) that 3 9 8.
Moreover, we get 8 → 4. Then there are the following two distinct walks of
length 4: {

5→ 6→ 7→ 8→ 4,
5→ 2→ 7→ 8→ 4,

a contradiction. Hence, 3 9 7. Similarly, we get 7 9 3. It follows from (10) that
4 9 8, 8 9 4 and

3→ 8, 7→ 4.

Then D is a balanced 4-partite transitive tournament. This completes the proof.
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Denote by F3 the digraph T9 − {(1, 2), (1, 3), (2, 3), (7, 8), (7, 9), (8, 9)}, F4

the digraph T9 − {(1, 2), (1, 3), (2, 3), (5, 6), (5, 7), (8, 9)}, F5 the digraph T9 −
{(1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (8, 9)}. We present these digraphs as follows.

F3 F4 F5

We give the structures of the extremal digraphs for n = 9 as follows.

Theorem 8. A digraph D ∈ EX(9,F4) if and only if D is a balanced 4-partite

transitive tournament or isomorphic to one of {F3, F4,
←−
F4, F5,

←−
F5, H(9)}.

Proof. The sufficiency of this theorem is obvious. It is sufficient to show the
necessity part. Suppose D ∈ Ex(9,F4). By [4, Theorem 1] we have a(D) =
ex(9,F4) = 30 and

d(i) ≥ 6 for all i ∈ V.(22)
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Combining with Lemma 3, there exists i ∈ V such that a(D − i) = 24. By
Theorem 7, D − i or its reverse is a balanced 4-partite transitive tournament or
isomorphic to one of {F1, F2}. Without loss of generality, we let i = 9. It follows
that

d(9) = 6.(23)

We consider the following cases.

Case 1. D − 9 = F1. By Lemma 4, we get {7, 8, 9}9 9 and 9 9 {1, 2, 3}. If
9 has no successor, then 〈6〉 → 9. Moreover, D = F3. Now assume 9 has at least
one successor. Since 9 9 {1, 2, 3, 9} and (23), 9 has a predecessor. By Lemma

5, D is isomorphic to F4 or F5. For the case D − {9} =
←−
F1, we get that D is

isomorphic to one of {F3,
←−
F4,
←−
F5}.

Case 2. D − 9 = F2. By (22) we get dD−4(9) ≥ 4. Applying Lemma 4 to
D − 4 we have

9 9 {1, 2} and {7, 8, 9}9 9.(24)

We claim that

a(4, 9) + a(9, 4) = 1.(25)

Recalling the structure of F2 and (22), we have a(4, 9) +a(9, 4) ≥ 1. If 4↔ 9, we
have {1, 2} → 9. Otherwise a(D− i) = 24 for i ∈ {1, 2}. Applying Theorem 7 to
D − i, we get that D has no cycle, a contradiction. Similarly, we get {7, 8} → 9.
Combining with (23), we get 6 9 9. Applying Theorem 7 to D − 6, we have
D − 6 has no cycles, a contradiction.

Suppose 9 has no predecessor in {1, 2, 3}∪{5, 6, 7, 8}. By (23) (24) and (25),
we obtain 9 → {3, 5, 6, 7, 8}. If a(4, 9) = 1, there are the following two distinct
walks of length 4: {

4→ 9→ 3→ 5→ 7,
4→ 9→ 3→ 6→ 7,

a contradiction. Hence, 4 9 9 and 9→ 4. Then D is isomorphic to F4. Suppose
9 has no successors in {1, 2, 3}∪{5, 6, 7, 8}. Similarly, we get that D is isomorphic

to
←−
F5.

Suppose 9 has both predecessors and successors in {1, 2, 3} ∪ {5, 6, 7, 8}. By
(23) and (25), we get dD−4(9) = 5. Applying Lemma 5 to D − 4, we obtain
{1, 2} → 9, 9 → {7, 8}, a(3, 9) + a(9, 6) = 1. If 4 → 9, then there are the
following two distinct walks of length 4:{

1→ 3→ 5→ 6→ 7,
1→ 3→ 4→ 9→ 7,
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a contradiction. Hence, it follows 9→ 4 from (25). Then we get 3→ 9, otherwise
there are the following walks of length 4:{

1→ 3→ 5→ 6→ 7,
1→ 3→ 9→ 4→ 7,

a contradiction. Hence, D is isomorphic to H(9).

For the case D − 9 =
←−
F2, applying the same arguments as above, we can

conclude that D is isomorphic to one of {
←−
F4, F5, H(9)}.

Case 3. D − 9 is a balanced 4-partite transitive tournament. By Lemma
6, D is a balanced 4-partite transitive tournament or isomorphic to H(9). This
completes the proof.

Denote by F6 the digraph T10−{(1, 2), (1, 3), (2, 3), (5, 6), (5, 7), (8, 9), (8, 10),
(9, 10)}, whose structure is presented as follows.

F6

We give the structures of the extremal digraphs for n = 10 as follows.

Theorem 9. A digraph D ∈ EX(10,F4) if and only if D is a balanced 4-partite

transitive tournament or isomorphic to one of {F6,
←−
F6, H(10),

←−
H (10)}.

Proof. The sufficiency of this theorem is obvious. It is sufficient to show the
necessity part. Suppose D ∈ Ex(10,F4). By [4, Theorem 1] we have a(D) =
ex(10,F4) = 37 and

d(i) ≥ 7 for all i ∈ V.(26)

Combining with Lemma 3, there exists i ∈ V such that a(D − i) = 30. By
Theorem 8, D − i or its reverse is a balanced 4-partite transitive tournament or
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isomorphic to one of {F3, F4, F5, H(9)}. Without loss of generality, we let i = 10.
It is clear that

d(10) = 7.(27)

We consider the following cases.

Case 1. D − 10 = F3. By Lemma 4, 10 9 {1, 2, 3} and {7, 8, 9, 10}9 10. It
follows from (27) that 10 has both successors and predecessors in 〈9〉. By Lemma
5, D is isomorphic to F6 or its reverse.

Case 2. D − 10 = F4. It follows from (27) that dD−5(10) ≥ 5. Applying
Lemma 4 to D− 5, we have 10 9 1. Combining with (26) we obtain that 1→ 10
and a(D − 1) = 30. Applying the same arguments as in the proof of Case 2 of
Theorem 8, D − 1 or its reverse is isomorphic to one of {F4, F5, H(9)}. We can
conclude that D or its reverse is isomorphic to one of {F6, H(10)}. For the case

D − 10 =
←−
F4, we get the same result.

Case 3. D − 10 = F5. Using the same arguments as in the above case,
we get that D or its reverse is isomorphic to one of {F6, H(10)}. For the case

D − 10 =
←−
F5, we get the same result.

Case 4. D − 10 = H(9). Without loss of generality, we let

H(9) = T9 − {(1, 2), (3, 4), (3, 5), (5, 7), (6, 7), (8, 9)}.

By [5, Lemma 1(iv)], a({3, 7}, 10) + a(10, {3, 7}) ≤ 3. Combing with (27), we
get dD−{3,7}(10) ≥ 4. Applying Lemma 4 to D − {3, 7}, we obtain 10 9 {1, 2},
{8, 9, 10} 9 10. It follows from (26) that a(3, 10) + a(10, 3) ≥ 1 and a(7, 10) +
a(10, 7) ≥ 1. Moreover, at least one equality holds. Without loss of generality, we
let a(3, 10)+a(10, 3) = 1. Then a(D−3) = 30. By Theorem 8, D−3 contains no
cycle, which implies that a(7, 10) +a(10, 7) = 1. Now we have a(D−{3, 7}) = 24
and dD−{3,7}(10) = 5.

If 10 has no predecessor, we easily get D is isomorphic to the reverse of
H(10). Similarly, if 10 has no successor, D is isomorphic to H(10). Now assume
10 has both predecessors and successors. Applying Lemma 5 to D−{3, 7}, we get
{1, 2} → 10, 10→ {8, 9}, and a(4, 10) + a(10, 6) = 1. Without loss of generality,
we assume 4 → 10. Since a(7, 10) + a(10, 7) = 1, we may assume 7 → 10,
otherwise we can rename the vertices 7 and 10. Then there are the following
walks of length 4: {

1→ 3→ 7→ 10→ 8,
1→ 4→ 5→ 6→ 8,

a contradiction.
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Case 5. D − 10 is a balanced 4-partite transitive tournament. By Lemma 6,
D is a balanced 4-partite transitive tournament or isomorphic to one of {H(10),
←−
H (10)}. This completes the proof.

Theorem 10. A digraph D ∈ EX(11,F4) if and only if D is a balanced 4-partite
transitive tournament or isomorphic to H(11).

Proof. The sufficiency of this theorem is obvious. It is sufficient to show the
necessity part. Suppose D ∈ Ex(11,F4). By [4, Theorem 1], we get a(D) =
ex(11,F4) = 45 and

d(i) ≥ 8 for all i ∈ V.(28)

By Lemma 3 and Theorem 9, there exists i ∈ V such that D − i or its reverse is
a balanced 4-partite transitive tournament or isomorphic to one of {F6, H(10)}.
Without loss of generality, let i = 11. It is clear that

d(11) = 8.(29)

We consider the following cases.

Case 1. D − 11 = F6. By (29) we get dD−5(11) ≥ 6. Applying Lemma
5 to D − 5, we obtain 11 9 {1, 2, 3} and {8, 9, 10, 11} 9 11. By (28) we get
1→ 11 and d(1) = 8. Applying the same arguments as in Case 2 of Theorem 9,
we get that D − 1 is isomorphic to one of {F6, H(10)}. Similarly, we get D − 10

is isomorphic to one of {F6,
←−
H (10)}. We can conclude that D is isomorphic to

H(11).

Case 2. D − 11 = H(10). Without loss of generality, we let

H(10) = T10 − {(1, 2), (3, 4), (3, 5), (6, 7), (5, 7), (8, 9), (8, 10), (9, 10)}.

By [5, Lemma 1(iv)], a({3, 7}, 11) + a(11, {3, 7}) ≤ 3. Combing with (29), we
get dD−{3,7}(11) ≥ 5. Applying Lemma 4 to D − {3, 7}, we get 10 9 11. It
follows from (28) that 11 → 10 and a(D − 10) = 37. By Theorem 9, we get
a(3, 11) + a(11, 3) = 1 and a(7, 11) + a(11, 7) = 1. Applying Theorem 9 to D− 3

and D−7, respectively, we get D−3 is isomorphic to one of {F6, H(10),
←−
H (10)},

and so is D − 7. We can conclude that D is isomorphic to H(11). Similarly, for

the case D − 11 =
←−
H (10), we also get D is isomorphic to H(11).

Case 3. D − 11 is a balanced 4-partite transitive tournament. By Lemma 6,
D is a balanced 4-partite transitive tournament or isomorphic to H(11).

Now we give the proof of Theorem 2.
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Proof of Theorem 2. The sufficiency of this theorem is obvious. It is sufficient
to show the necessity part. We first consider the case n = 12. Suppose D ∈
Ex(12,F4). By [4, Theorem 1], we get a(D) = ex(12,F4) = 54 and

d(i) ≥ 9 for all i ∈ V.(30)

Combining with (1) we get

d(i) = 9 for all i ∈ V.(31)

By Theorem 10, there exists i ∈ V such that D−i is a balanced 4-partite transitive
tournament or isomorphic to H(11). Without loss of generality, let i = 12. We
consider the following cases.

Case 1. D − 12 = H(11). Here we let

H(11) = T11 − {(1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (6, 8), (7, 8), (9, 10),

(9, 11), (10, 11)}.

By (31) we get dD−{4,8}(12) ≥ 5. Applying Lemma 4 to D−{4, 8}, we get 12 9 1.
Combining with (31) and the structure of H(11), we get a(1, 12) = 1 and D − 1
is isomorphic to H(11). It follows that 12 and 1 share the same predecessors and
successors. We may assume 1 → 12, then there are the following two walks of
length 4 with the same endpoints:{

1→ 12→ 5→ 6→ 9,
1→ 5→ 6→ 7→ 9,

a contradiction.

Case 2. D − 12 is a balanced 4-partite transitive tournament. By Lemma 6,
D is a balanced 4-partite transitive tournament.

For the case n ≥ 13, Lemma 6 guarantees our result. This completes the
proof.

4. Conclusion

In this paper, we characterize the structures of the digraphs in EX(n,F4) by an-
alyzing the detailed structures of its subgraph of order n−1. There exists at least
one walk of length 4 in some digraphs of Ex(n,F4) when n ∈ {5, 6, 7, 8, 9, 10, 11},
while for n ≥ 12 there is not any walk of length 4 in the digraphs belonging to
Ex(n,F4). As far as we know, for any fixed k ≥ 5 and sufficiently large n, there
is no walk of length k in the digraphs in EX(n,Fk). So it is interesting to figure
out: what will happen to the maximum size of Fk-free digraphs when there exists
a walk of length k? We pose a problem as follows.
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Problem 11. Given positive integers n and k, determine the maximum size of
Fk-free digraphs in which there exists a walk of length k as well as the structures
of the extremal digraphs attaining this maximum.

For other extremal problems on digraphs, the techniques we used may still
be valid. In our opinion, these techniques might be effective when the target
digraphs contain enough arcs. But in most situations the detailed arguments are
very different for different digraphs.
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