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Abstract

Let G be a plane graph. A facial path of G is a subpath of the boundary
walk of a face of G. We prove that each plane graph admits a 3-coloring
(a 2-coloring) such that every monochromatic facial path has at most 3
vertices (at most 4 vertices). These results are in a contrast with the results
of Chartrand, Geller, Hedetniemi (1968) and Axenovich, Ueckerdt, Weiner
(2017) which state that for any positive integer t there exists a 4-colorable
(a 3-colorable) plane graph Gt such that in any its 3-coloring (2-coloring)
there is a monochromatic path of length at least t. We also prove that every
plane graph is 2-list-colorable in such a way that every monochromatic facial
path has at most 4 vertices.
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1. Introduction and Notations

All graphs considered in this paper are simple connected plane graphs provided
that it is not stated otherwise. We use standard graph theory terminology accord-
ing to [3]. However, the most frequent notions of the paper are defined through
it. A plane graph is a particular drawing of a planar graph in the Euclidean plane
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such that no edges intersect except at their endvertices. Let G be a connected
plane graph with vertex set V (G), edge set E(G), and face set F (G). The bound-
ary of a face f is the boundary in the usual topological sense. It is the collection
of all edges and vertices contained in the closure of f that can be organized into
a closed walk in G traversing along a simple closed curve lying just inside the
face f . This closed walk is unique up to the choice of initial vertex and direction,
and is called the boundary walk of the face f (see [12], p. 101). The size of a
face f is the length of its boundary walk. A k-face is a face of size k. Let f

be a face of size k having the boundary walk v0v1 · · · vk−1v0 with vi ∈ V (G) and
vivi+1 ∈ E(G), i = 0, . . . , k − 1, subscripts taken modulo k. A facial path of f is
a subpath vmvm+1 · · · vn (subscripts taken modulo k) of the boundary walk of f
(i.e., a facial path is any path which is a consecutive part of the boundary walk
of a face). A k-path, denoted by Pk, is a path on k vertices.

A vertex k-coloring (or, simply, a k-coloring) of a graph G is a mapping
ϕ : V (G) → {1, . . . , k}. A coloring is proper if no two adjacent vertices obtain
the same color. A graph is k-colorable if it has a proper k-coloring. Unless
otherwise stated, the colorings in this paper are not necessarily proper.

The linear vertex-arboricity of a graph G is the minimum number of subsets
into which the vertex set of G can be partitioned so that every subset induces a
linear forest (i.e., a forest in which every component is a path).

Poh [15] and independently Goddard [11] proved that the linear vertex-
arboricity of any planar graph is at most three, thus every planar graph can be
colored with at most three colors so that each of its monochromatic components is
a path. Can these monochromatic paths be short? Chartrand, Geller, and Hedet-
niemi [7] proved that for every positive integer t, there exists a 4-colorable plane
triangulation Gt such that any its 3-coloring involves a monochromatic path of
length t. The same authors showed a similar result for 3-colorable graphs. They
proved [8] that for every positive integer t, there exists an outerplanar graph Gt

such that any its 2-coloring involves a monochromatic path of length t. Recently,
Axenovich, Ueckerdt, and Weiner [2] constructed for every t ≥ 2 a planar graph
Gt of girth 4 (triangle-free planar graphs are 3-colorable, see [13]) such that in
any 2-coloring of Gt there is a monochromatic path of length at least t. So in
planar graphs with small girth the monochromatic paths can be very long.

On the other hand, Borodin, Kostochka, and Yancey [5] proved that every
planar graph of girth at least 7 admits a 2-coloring such that each of its monochro-
matic components has at most 2 vertices. Axenovich, Ueckerdt, and Weiner [2]
proved a similar result for planar graphs of girth 6. They showed that every pla-
nar graph of girth at least 6 has a 2-coloring such that each of its monochromatic
components is a path of length at most 14. The problem whether planar graphs
of girth 5 admit a 2-coloring such that the monochromatic components are short
paths is open in general. Lovász [14] showed that every subcubic graph admits a
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2-coloring such that every vertex has at most one neighbor of the same color.

Broersma et al. [6] proved that it is NP-hard to decide whether a planar
graph has a 3-coloring (a 2-coloring) without monochromatic path Pn, n ≥ 3.

In this paper we focus on facial paths of plane graphs. We show that every
plane graph has a 3-coloring and also a 2-coloring such that every monochromatic
facial path is short. Among others we prove that every plane graph admits a
2-coloring such that each monochromatic facial path has at most 4 vertices and
every plane graph has a 3-coloring such that each monochromatic facial path
has at most 3 vertices. We also prove that every plane graph is 2-list-colorable
without monochromatic facial 5-paths.

2. Results

As every planar graph has a proper 4-coloring [1], i.e., admits a 4-coloring without
monochromatic facial 2-paths, we focus here on 2-colorings and 3-colorings.

Czap, Jendrol’, and Valiska [10] proved that every 3-connected plane graph
admits a 2-coloring without monochromatic facial 5-paths. First we show that
3-connectedness is not necessary in this assertion.

Theorem 1. Every plane graph admits a 2-coloring without monochromatic fa-

cial 5-paths.

Proof. Suppose there is a counterexample to Theorem 1. Let G be a counterex-
ample with the minimum number of vertices.

First we prove that the minimum degree of G is at least two. Suppose that
v is a vertex of degree one and let u be its neighbor in G. By the minimality of
G, the graph G− v admits a 2-coloring ϕ without monochromatic facial 5-paths.
The coloring of G − v can be easily extended to a coloring of G. It suffices to
color v with a color different from ϕ(u).

Now we extend G to a plane (multi)graph by adding some edges. Let f be
a face of G of size at least four. Let v0v1 · · · vk−1v0 be the boundary walk of f .
The vertices vi and vi+2 are distinct since G is simple and it has no vertex of
degree one. We insert into f the diagonals v0v2, v2v4, . . . , vk−2v0 if k is even, and
the diagonals v0v2, v2v4, . . . , vk−3vk−1 if k is odd. In such a way we obtain a new
plane (multi)graph H. By the Four Color Theorem [1], H has a proper coloring
with at most four colors, say a, b, c, d. Note that every 3-cycle uses three different
colors. If we assign 1 to all the vertices colored with a, b and assign 2 to all the
vertices colored with c, d, then we obtain a 2-coloring of H such that no 3-cycle
is monochromatic. This coloring of H induces a coloring of G. Now suppose
that G has a monochromatic facial 5-path vivi+1vi+2vi+3vi+4 (subscripts taken
modulo k). From the subscripts i+1, i+2, i+3 at least one is odd. Without loss
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of generality assume that i + 1 is odd. Then vivi+1vi+2 is a 3-face in H, so two
colors appear on these three vertices, consequently the path vivi+1vi+2vi+3vi+4

cannot be monochromatic, a contradiction.

From the proof of Theorem 1 it follows that every plane graph G admits a
2-coloring such that G is without monochromatic facial 5-paths, moreover, no
monochromatic facial 4-path appears on faces of even size. The following result
improves this assertion.

Theorem 2. Every 2-connected plane graph without 5-faces admits a 2-coloring
without monochromatic facial 4-paths.

Proof. Let G be a 2-connected plane graph without 5-faces. Let f be a face of
G of size at least four. Let v0v1 · · · vk−1v0 be the boundary walk of f . If k is
even, then we insert the diagonals v0v2, v2v4, . . . , vk−2v0 into f . Assume that k

is odd. Now, k is at least 7, since G has no 5-faces. First we add the diagonals
v0v2, v2v4, . . . , vk−3vk−1 into f , then we add v2vk−3 and finally we put a vertex v

to the new 4-face v0v2vk−3vk−1 and join it with the vertices v0, v2, vk−3, vk−1, see
Figure 1 for illustration.
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Figure 1. The extension of faces of odd size.

In such a way we obtain a new plane (multi)graph H. The Four Color Theo-
rem implies that H has a 2-coloring such that no 3-cycle is monochromatic. This
coloring of H induces a required coloring of G. The facial path vk−2vk−1v0v1 of f
cannot be monochromatic in G, since otherwise the 3-cycle v2vk−3v is monochro-
matic in H. Every other facial 4-path of f contains three vertices which form a
3-face in H, therefore two colors appear on them.

Conjecture 3. Every plane graph admits a 2-coloring without monochromatic

facial 4-paths.

If Conjecture 3 is true, then, because of the next theorem, the bound 4 for the
number of vertices is best possible. Note that Conjecture 3 is true for outerplane
graphs [10].

Theorem 4. There is an infinite family of plane graphs such that any 2-coloring
involves a monochromatic facial 3-path.
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Proof. Consider a plane graph G containing the configurationH depicted in Fig-
ure 2. Suppose to the contrary that G admits a 2-coloring ϕ without monochro-
matic facial P3. The face f determined by the vertices v1, v2, v3 has size 3. The
fact that ϕ uses two colors implies that there is a pair of adjacent vertices on
the boundary of f that have the same color. Without loss of generality we can
assume that ϕ(v2) = ϕ(v3) = 1. Then necessarily ϕ(v4) = ϕ(v5) = 2, otherwise
G contains a monochromatic facial 3-path. Now, there is no admissible color for
the vertex v6, because v4v6v5 and v3v6v2 are facial 3-paths, a contradiction.

v1

v2v3

v4 v5

v6

Figure 2. The configuration H.

Theorem 5. Every plane graph admits a 3-coloring without monochromatic fa-

cial 4-paths.

Proof. We proceed as in the proof of Theorem 1. Let G be a counterexample
with the minimum number of vertices. In this case we extend G to a 1-planar
graph. A graph is called 1-planar if there exists its drawing in the plane such
that each edge is crossed at most once.

Using the same arguments as in the proof of Theorem 1 we can show that G
has no vertex of degree one.

Now we extend G to a 1-planar (multi)graph by adding some edges. Let g

be a face of G of size at least four. Let v0v1 · · · vk−1v0 be the boundary walk of
g. The vertices vi and vi+2 are distinct since G is simple and has no vertex of
degree one. If k is even, then we insert the diagonals v0v2, v2v4, . . . , vk−2v0 into
g. If k is odd, then we insert the diagonals v0v2, v2v4, . . . , vk−3vk−1 and finally we
insert vk−1v1 which crosses v0v2. In such a way we obtain a 1-plane (multi)graph
H. Every 1-planar graph has a proper coloring with at most six colors [4]. So
H has a proper coloring with at most six colors, say a, b, c, d, e, f . Evidently
every 3-cycle uses three different colors. If we assign 1 to all the vertices colored
with a, b, assign 2 to all the vertices colored with c, d and assign 3 to all the
vertices colored with e, f , then we obtain a 3-coloring of H such that no 3-cycle
is monochromatic. This coloring of H induces a coloring of G. Now suppose that
G has a monochromatic facial 4-path vivi+1vi+2vi+3 (subscripts taken modulo k).
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If i+ 1 or i+ 2 is odd, then vivi+1vi+2 or vi+1vi+2vi+3 is a 3-cycle in H, so two
colors appear on these three vertices. If i+1 and i+2 are even, then necessarily
k is odd. In this case vivi+1vi+2 = vk−1v0v1 or vi+1vi+2vi+3 = vk−1v0v1. Since
vk−1v0v1 is a 3-cycle in H it cannot be monochromatic, a contradiction.

Conjecture 6. Every plane graph admits a 3-coloring without monochromatic

facial 3-paths.

Conjecture 6 holds for plane graphs without cycles of length t, for some
t ∈ {3, 4, 5}. A graph is (3, 1)-colorable if it has a 3-coloring such that every
vertex has at most one neighbor receiving the same color as itself. Clearly, if
every vertex has at most one neighbor receiving the same color as itself, then
there is no monochromatic 3-path. From Grötzsch’s theorem [13] it follows that
planar graphs without 3-cycles are (3, 1)-colorable. Wang and Xu [17] proved that
planar graphs without 4-cycles are (3, 1)-colorable. Finally, Wang and Xu [18]
showed that planar graphs without 5-cycles are also (3, 1)-colorable. Note that
the (3,1)-coloring problem is NP-complete even for planar graphs, see [9].

3. List Coloring

A list assignment of a graph G is a function L that assigns a list L(v) of possible
colors to each vertex v ∈ V (G). An L-coloring is a coloring of G such that each
vertex v ∈ V (G) is assigned a color from L(v). We say that G is 2-list-colorable
if G admits an L-coloring for every list assignment L with |L(v)| = 2 for all
v ∈ V (G).

Now, we show that the list version of Theorem 1 also holds.

Theorem 7. Every plane graph is 2-list-colorable without monochromatic facial

5-paths.

Proof. Suppose there is a counterexample to Theorem 7. Let G be a coun-
terexample with the minimum number of vertices and let L be a list assignment
for which G has no L-coloring without monochromatic facial 5-paths. Using the
same arguments as in the proof of Theorem 1 we can show that G has no vertex
of degree one. Now we extend G to a plane (multi)graph H in the same way as
in the proof of Theorem 1. Thomassen [16] proved that every planar graph is
2-list-colorable without monochromatic triangles. Therefore, H has an L-coloring
without monochromatic triangles. Using the same arguments as in the proof of
Theorem 1 we can show that any such L-coloring of H is also an L-coloring of G
without monochromatic facial 5-paths, a contradiction.

We finish the paper with conjecture that the list version of Theorem 5 holds
as well.
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Conjecture 8. Every plane graph is 3-list-colorable without monochromatic fa-

cial 4-paths.

Conjecture 8 is closely related to the following question. Is every 1-planar
graph 3-list-colorable without monochromatic triangles? If the answer is yes,
then Conjecture 8 is true.
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