
Discussiones Mathematicae
Graph Theory 42 (2022) 921–935
https://doi.org/10.7151/dmgt.2317

NEW RESULTS RELATING INDEPENDENCE

AND MATCHINGS

Yair Caro

Department of Mathematics

University of Haifa–Oranim

Tivon 36006, Israel

e-mail: yacaro@kvgeva.org.il

Randy Davila

and

Ryan Pepper

Department of Mathematics and Statistics

University of Houston-Downtown

Houston, Texas 77002

e-mail: DavilaR@uhd.edu
PepperR@uhd.edu

Abstract

In this paper we study relationships between the matching number, writ-
ten µ(G), and the independence number, written α(G). Our first main result
is to show

α(G) ≤ µ(G) + |X| − µ(G[NG[X]]),

where X is any intersection of maximum independent sets in G. Our second
main result is to show

δ(G)α(G) ≤ ∆(G)µ(G),

where δ(G) and ∆(G) denote the minimum and maximum vertex degrees
of G, respectively. These results improve on and generalize known relations
between µ(G) and α(G). Further, we also give examples showing these im-
provements.
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1. Introduction

Graphs considered here will be finite, undirected, and with no loops. Let G
be a graph with order n(G) = |V (G)| and size m(G) = |E(G)|. The open
neighborhood of a vertex v ∈ V (G) is the set of all vertices adjacent to v, written
NG(v), whereas the closed neighborhood of v is NG[v] = NG(v) ∪ {v}. The
minimum and maximum vertex degrees of G will be denoted δ(G) and ∆(G),
respectively.

For a subset X ⊆ V (G), we will use the notations NG(X) =
⋃

v∈X NG(v)
and NG[X] = X ∪NG(X), also G[X] will denote the subgraph induced by X. A
matching is a subset M ⊆ E(G) of non-adjacent edges. Vertices incident with
a matching are called saturated by that matching. The matching number is the
cardinality of a maximum matching in G, and will be denoted by µ(G). A subset
X ⊆ V (G) is independent if no edge has both endpoints inX. The cardinality of a
maximum independent set in G, written α(G), is the independence number of G.
The core of G, written core(G), is the intersection of all maximum independent
sets in G.

The graph parameters α(G) and µ(G) are in general negatively correlated
(adding edges doesn’t increase the independence number and doesn’t decrease the
matching number) but incomparable as can be seen by the following observations.
Namely, if G = En, the n-vertex empty graph, then 0 = µ(G) < α(G) = n.
Further, if G = Kn, the n-vertex complete graph with n ≥ 3, then 1 = α(G) <
µ(G) =

⌊

n
2

⌋

.

However from the point of view of “almost all graphs”, random graph theory
gives c1 log(µ(G)) ≤ α(G) ≤ c2 log(µ(G)) with high probability [3, 5, 12]. Thus,
with high probability in a random graph, µ(G) is much higher than α(G). That
is, α(G) ≤ µ(G) for almost all graphs. In fact, in 1979 Pulleyblank [24] discussed
2-bicritical graphs in the context of a linear programming relaxation of the in-
dependence number; proving for these graphs that α(G) ≤ µ(G); for a relevant
and more recent discussion of 2-bicritical graphs see [16]. It should be noted that
this line of research was developed in part due to the interesting relationships
between independence structure and early combinatorial optimization literature;
for more on this relationship see [4, 20, 23].

Despite the above observations and examples, there exists many relationships
between α(G) and µ(G). The following inequality is one of the most well known
examples.

(1) n(G)− 2µ(G) ≤ n(G)− 2µ∗(G) ≤ α(G) ≤ n− µ(G).

Here µ∗(G) denotes the cardinality of a minimum maximal matching in G (this
invariant is also called the edge domination number of G, see [25] for more on
this topic). Graphs that satisfy the righthand side of (1) with equality are called
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König-Egerváry, and have been extensively studied; see for example [1, 15, 17, 18].
Boros et al. [2] proved α(G) ≤ µ(G) + |core(G)| − 1 whenever G is a graph
with α(G) > µ(G). Recently Levit et al. [19] proved a similar result, namely
α(G) ≤ µ(G)+ |core(G)|− |NG(core(G))| whenever G is a graph with a matching
from NG(core(G)) into core(G). Non-intersecting maximum independent sets
were also studied by Deniz et al. [8], who showed α(G) ≤ µ(G), provided G
contains two disjoint maximum independent sets. Levit et al. [19] also showed
that α(G) ≤ µ(G), under the condition that G contains a unique odd cycle.

So the first source of motivation in our paper is to try and obtain a deeper
understanding of these kinds of inequalities relating α(G) and µ(G) via the card-
nality of the core of G. Another source of motivation comes from the following
example: If G is the bipartite graph Kδ,n−δ, where n ≥ 2δ ≥ 2, then δ(G) = δ
and ∆(G) = n − δ. Clearly n − δ = ∆(G) = α(G) and δ = µ(G), and so,

α(G) = ∆(G)
δ(G) µ(G). Thus, a natural question arises, namely, is this the best pos-

sible upper-bound on α(G) in terms of the parameters µ(G), δ(G), and ∆(G)?
Our main two theorems supply answers to the problems and motivation men-

tioned above. These two theorems are shown below.

Theorem 1. If G is a graph and X is any intersection of maximum independent

sets, then

α(G) ≤ µ(G) + |X| − µ(G[NG[X]]),

and this bound is sharp.

Theorem 2. If G is a graph, then

δ(G)α(G) ≤ ∆(G)µ(G),

and this bound is sharp.

As can easily be seen, these two results generalize and in many cases improve
on many of the known relationships between α(G) and µ(G). The remainder of
our paper is structured as follows. In Section 2 we prove Theorem 1. In Section 3
we prove Theorem 2. In Section 4 we give constructions of infinite families of
graphs which achieve equality in Theorem 2 and also discuss how Theorem 2
improves on several known upper bounds for α(G). Finally in Section 5, we give
concluding remarks, suggestions for future work, and a new conjecture.

For notation and terminology not found here, we refer the reader to West
[26]. We will also make use of the standard notation [k] = {1, . . . , k}.

2. Proof of Theorem 1

In this section we prove Theorem 1. Before doing so, we will need the following
two lemmas. The following lemma is widely known, and may be considered
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“folklore” in the literature.

Lemma 3. If A is an independent set and X is a maximum independent set,

then there is a matching from A\(A ∩ X) to X\A that saturates each vertex in

A\(A ∩X)1 .

Using Lemma 3, we next prove a technical lemma that bounds the difference
between the size of independent sets and the matchings numbers of their closed
neighborhoods.

Lemma 4. If A is an independent set and X is any intersection of maximum

independent sets with X ⊆ A, then

|A| − µ(G[NG[A]]) ≤ |X| − µ(G[NG[X]]).

Proof. Let X = X1 ∩ · · · ∩ Xk, where Xi is a maximum independent set in G
for each i ∈ [k], and let A ⊆ V (G) be any independent set satisfying X ⊆ A.
For notational convenience, let X0 = A and Ar =

⋂r−1
i=0 Xi. Note Ar is an

independent set for all r ∈ [k]. By Lemma 3 there is a matching from Xr\Ar

to Ar\(Ar ∩Xr) that saturates every vertex contained in Ar\(Ar ∩Xr). Let Mr

denote one such matching for each r ∈ [k], and consider M1 and M2, and let
vw ∈ M2. Without loss of generality suppose w ∈ X2. Then, by the construction
of M2, v is necessarily contained in X0 ∩ X1. Since M1 matches vertices from
X1\X0 to vertices in X0\(X0 ∩X1), and since X0 and X1 are independent sets,
it must be the case that v is not the endpoint of any edge in M1. This same
reasoning will hold for M2 with respect to M3, and so on. Hence, edges in Mj

and Mi will not share endpoints for any i 6= j and i, j ∈ [k]. Furthermore, each
edge in Mr contains at least one endpoint in A, again for each r ∈ [k]. Thus,
M = M1, . . . ,Mk is a matching in the induced subgraph G[NG[A]].

Thus far we have only saturated vertices in Ak = X0 ∩ · · · ∩ Xk−1. Let Q
be a maximum matching in G[NG[X]]. Next observe that Q is edge independent
from the matching M1 ∪M2 ∪ · · · ∪Mk−1. Thus, M = M1 ∪M2 ∪ · · · ∪Mk ∪Q
is a matching in G[NG[A]]. This implies the following inequality

µ(G[NG[A]]) ≥ |M | =

∣

∣

∣

∣

∣

k
⋃

i=1

Mi

∣

∣

∣

∣

∣

+ |Q|

=
k

∑

i=1

(

|Ai\(Ai ∩Xi)|
)

+ µ(G[NG[X]])

=

k
∑

i=1

(

|Ai| − |Ai+1|
)

+ µ(G[NG[X]])

= |A| − |X|+ µ(G[NG[X]]),

(2)

1We acknowledge that A\(A∩X) is equivalent to A\X. However, we use A\(A∩X) in place
of A\X because this view of the set difference becomes useful in subsequent proofs.



New Results Relating Independence and Matchings 925

where all the terms in the summation, except the first and last, cancel out because
the summation in the inequality is a telescoping series. Rearranging the above
inequality, we finish the proof of our lemma.

We now use Lemma 4 to prove Theorem 1, whose statement is recalled below.

Theorem 1. If G is a graph and X is any intersection of maximum independent

sets, then

α(G) ≤ µ(G) + |X| − µ(G[NG[X]]),

and this bound is sharp.

Proof. Let X be an intersection on maximum independent sets, one of which is
the set A. By Lemma 4, we have

|A| − µ(G[NG[A]]) ≤ |X| − µ(G[NG[X]]).

Since NG[A] = V (G) implies µ(G[NG[A]]) = µ(G), and since |A| = α(G), we
obtain

α(G)− µ(G) ≤ |X| − µ(G[NG[X]]).

Rearranging the above inequality proves the inequality posed in the theorem. To
see this inequality is sharp, see Example 7.

Remark 5. Let Q be a set of maximum independent sets in a graph G, where
|Q| ≥ 3. In light of Theorem 1, it is natural to ask what number of elements
in Q together form the optimal intersection with respect to the upper bound
on α(G) given by the theorem? The answer comes from Lemma 4, X is the
intersection of all elements in Q and A is the intersection of two elements in Q,
then |A| − µ(G[NG[A]]) ≤ |X| − µ(G[NG[X]]). Rearranging, we obtain

α(G) ≤ µ(G) + |A| − µ(G[NG[A]]) ≤ µ(G) + |X| − µ(G[NG[X]]).

Thus, every collection of three or more elements in Q has a pair that yields a
better bound on α(G).

As a consequence of Remark 1, we obtain the following corollary.

Corollary 6. If G is a graph with no unique maximum independent set, and Q
is the set of all maximum independent sets in G, then

α(G) ≤ µ(G) + min
{

|A ∩B| − µ(G[NG[A ∩B]]) : A,B ∈ Q
}

.

The following example gives an infinite family of graphs satisfying Theorem 1
with equality. Moreover, it also shows a family of graphs where any intersection
of maximum independent sets will satisfy Theorem 1 with equality.
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Example 7. With this example, we establish the inequality of Theorem 1 being
sharp, and in doing so, we also show the existence of graphs where any choice of
intersecting maximum independent sets satisfies the inequality with equality. Let
p, q, and r be non-negative integers, where p, q, and r are odd. Let G(p, q, r) be
the graph obtained by attaching each vertex of G1 (the complete graph Kp with a
pendant attached to each vertex) to each vertex of G2 = Kq, and then attaching
each vertex of the empty graph with order r, denoted G3, to every vertex of G2.
For the graph G(p, q, r), observe the following.

A. core(G(p, q, r)) = V (G3).

B. α(G) = p+ r.

C. µ(G) =

{

p+ q, if r ≥ q,

p+ r+q
2 , if r < q.

D. If X is any intersection maximum independent sets in G(p, q, r), then

|X| − µ(G[NG[X]]) =

{

r − q, if r ≥ q,
r−q
2 , if r < q.

With the above equations, if X is any intersection of maximum independent
sets in G(p, q, r), then

α(G(p, q, r)) = µ(G(p, q, r)) + |X| − µ
(

G
[

NG(p,q,r)[X]
])

.2

The infinite family of graphs given in Example 7 provide examples where
any choice of intersecting maximum independent sets will satisfy Theorem 1 with
equality. The graph presented in Figure 1 provides an example where no choice
of intersecting maximum independent sets will satisfy Theorem 1 with equality.

Figure 1. A graph G where no choice of intersecting maximum independent sets satisfies
Theorem 1 with equality.

One interesting application of Theorem 1 can be seen by considering well-
covered graphs, a heavily studied notion; see for example [10, 22]. A graph is
well-covered if all maximal independent sets are also maximum. Observe that if

2Note: |X| − µ(G[NG(p,q,r)[X]]) < 0 whenever r < q.
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G is an isolate-free and well-covered graph, then for every vertex v ∈ V (G) there
is a neighbor of v, say w, so that v cannot appear in any maximum independent
set containing w. Since we may greedily construct a maximal independent set
(which is also a maximum independent set in well-covered graphs), starting from
either v or w, it follows that the intersection of all maximum independent sets in
G is necessarily empty. Therefore, taking X = core(G) = ∅ in Theorem 1 implies
the following corollary.

Corollary 8. If G is an isolate-free and well-covered graph, then

α(G) ≤ µ(G).

Theorem 1 also generalizes and improves several known results. For example,
recall α(G) ≤ µ(G), whenever G contains two disjoint maximum independent
sets (Deniz et al. [8]). Since Theorem 1 implies α(G) ≤ µ(G) whenever any
collection of maximum independent sets has an empty intersection, their result
is a corollary of Theorem 1. Another example comes from considering the bound
α(G) ≤ µ(G) + |core(G)| − 1, whenever α(G) > µ(G) (Boros et al. [2]). Taking
X = core(G) in the statement of Theorem 1, observe that if α(G) > µ(G) and
µ(G[NG[core(G)]]) > 1, then Theorem 1 improves upon this result. In particular,
we make note of the following corollary.

Corollary 9. If G is a graph, then

α(G) ≤ µ(G) + |core(G)| − µ(G[NG[core(G)]]).

3. Proof of Theorem 2

In this section we prove Theorem 2. Before doing so we first prove a theorem
and recall a lemma. The following result was motivated by a conjecture of the
automated conjecturing program TxGRAFFITI, which in turn was motivated
by GRAFFITI of Fajtlowicz [9], and later GRAFITTI.pc of DeLaVina [7]. The
program TxGRAFFITI [6] was written by the second author, and generates pos-
sible graph inequalities on simple connected graphs. When asked to conjecture
on the independence number, TxGRAFITTI conjectured α(G) ≤ µ(G) for all
3-regular and connected graphs. The following theorem confirms and generalizes
this conjecture.

Theorem 10. If G is a r-regular graph with r > 0, then

α(G) ≤ µ(G).
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Proof. Let G be an r-regular graph with r > 0, X ⊆ V (G) be a maximum
independent set , and Y = V (G)\X. By removing edges from G with both
endpoints in Y , we next form a bipartite graph H with partite sets X and Y .
Since those edges removed from G in order to form H were only edges with both
endpoints in Y , any vertex chosen in X will have the same open neighborhood
in H as it does in G. It follows that since G is r-regular and since X is an
independent set, any vertex in X will have exactly r neighbors in Y , both in G
and in H.

Let S ⊆ X be chosen arbitrarily, and let e(S,NH(S)) denote the number
of edges from S to NH(S). Since each vertex in S has exactly r neighbors in
Y , we observe that e(S,NH(S)) = r|S|. However, since each vertex in NH(S)
has at most r neighbors in X, we also have e(S,NH(S)) ≤ r|NH(S)|. It follows
that r|S| ≤ r|NH(S)|, and so, |S| ≤ |NH(S)|. By Hall’s Theorem [14], there
exists a matching M that can match X to a subset of Y . Since X is a maximum
independent set and since M is also a matching in G, we conclude α(G) = |M | ≤
µ(G), proving the theorem.

A k-edge-coloring of G is an assignment of k colors to the edges of G so
that no two edges with the same color share an endpoint. The minimum integer
k so that G has a k-edge-coloring is the edge chromatic number of G, written
χ′(G). By Vizing’s Theorem, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1 for all graphs. Graphs
satisfying ∆(G) = χ′(G) are class 1, whereas graphs satisfying χ′(G) = ∆(G)+1
are class 2. Let G∆ denote the subgraph induced by the set of maximum degree
vertices in G. With these definitions, we next recall a result due to Fournier [11].

Lemma 11. If G is class 2, then G∆ contains at least one cycle.

As a consequence of Lemma 11, all class 2 graphs satisfy |G∆| ≥ 3 and
E(G∆) 6= ∅. With this observation, we are now ready to prove Theorem 2.
Recall its statement.

Theorem 2. If G is a graph, then

δ(G)α(G) ≤ ∆(G)µ(G),

and this inequality is sharp.

Proof. Clearly, if δ(G) = 0, we are done. So we will assume δ(G) > 0. Proceed-
ing by way of contradiction, suppose the theorem is false. Among all counter-
examples, let G be one with a minimum number of edges. By Theorem 10, any
r-regular graph with r > 0 will satisfy the theorem, and so, the graph G must
satisfy δ(G) < ∆(G). Before proceeding, we remind the reader that all graphs
are either class 1 or class 2.
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If G is a class 1, then χ′(G) = ∆(G). Since each color class in a χ′(G)-edge
coloring forms a matching in G, and since every edge in G belongs to exactly
one color class, it is clear that m(G) ≤ χ′(G)µ(G). Moreover, each vertex in any
maximum independent set will have at least δ(G) edges incident with it, implying
δ(G)α(G) ≤ m(G). It follows that δ(G)α(G) ≤ ∆(G)µ(G), which is impossible,
because G is a counter-example. Thus, G is not class 1.

If G is class 2, then Lemma 11 implies G∆ has a non-empty edge set. Let vw
be one such edge and let H = G− vw. Clearly, α(G) ≤ α(H) and µ(H) ≤ µ(G).
Since δ(G) < dG(v) = dG(w) = ∆(G), it follows that δ(H) = δ(G). Since G∆

contains a cycle, it has at least 3 vertices, and so, ∆(H) = ∆(G). Finally, G
being a minimum counterexample implies δ(H)α(H) ≤ ∆(H)µ(H). It follows
that δ(G)α(G) ≤ ∆(G)µ(G), which is again impossible, since G is a counter-
example. Since G is neither class 1 nor class 2, yet all graphs are either class 1
or class 2, we reach a contradiction and the theorem is proven.

We shall give various constructions demonstrating sharpness in Theorem 2
in the discussion section below.

4. Discussion of Theorem 2

In this section we show infinite families of graphs where Theorem 2 is sharp, as
well as discuss improvements on known bounds for α(G).

4.1. Examples where equality holds for Theorem 2.

We now give constructions of bipartite graphs with δ(G)α(G) = ∆(G)µ(G), and
regular non-bipartite graphs with α(G) = µ(G).

Construction 1. (δ,∆)-bipartite graphs. Namely, the graph G with V (G) =
A∪B where A and B are independent sets and all degrees in A equal ∆(G) and
all degrees in B are equal δ(G). In these graphs α(G) = |B|, µ(G) = |A|, and
δ(G)|B| = ∆(G)|A|. See Figure 2 for one such example.

Figure 2. The (δ,∆)-bipartite graph G with δ(G) = 3, ∆(G) = 4, and δ(G)α(G) =
∆(G)µ(G).
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Construction 2. Let r ≥ 4 with r ≡ 0 mod 2. Take r/2 copies of of Kr,r,
and for each Kr,r delete a single edge. Next let G(1, r) be the graph obtained
by attaching each degree r − 1 vertex of each copy of Kr,r to an isolated vertex
v (see Figure 3 for an example with r = 4). This resulting graph is r-regular,
non-bipartite, and satisfies α(G(1, r)) = µ(G(1, r)) = r2/2 = (n(G(1, r))− 1)/2.

Figure 3. The non-bipartite regular graph G(1, 4) with α(G(1, 4)) = µ(G(1, 4)).

Construction 3. Let r ≥ 3. Consider r copies of Kr,r, say G1, . . . , Gr. For each
graph Gi, subdivide a single edge by a vertex gi, for i ∈ [r]. Next take an empty
graph Er−2 on r − 2 vertices and attach by an edge, each gi for i ∈ [r] to each
vertex of Er−2. Denote the resulting graph by G(2, r). Note, G(2, r) is r-regular
and non-bipartite with n(G(2, r)) = 2r2 + 2r − 2 and α(G(2, r) = r2 + r − 2 =
(n(G(2, r))−2)/2 = n(G(2, r))/2−1 = µ(G(2, r)). As G has no perfect matching
(by Tutte’s Theorem since when we deleted B, |B| = k−2 we are left with k odd
blocks). See Figure 4 for an example of G(2, r).

Figure 4. The non-bipartite regular graph G(2, 4) with α(G(2, 4)) = µ(G(2, 4)).

Construction 4. Suppose r ≥ 3 and let G be r-regular bipartite graph with
α(G) = µ(G) (e.g. Kr,r). Take r copies of G and subdivide by a vertex wi,
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for i = 1, . . . , r an edge on a cycle to get G∗ which is non-bipartite. Next take
one copy of K2,r. The r vertices of K2,r have degree 2. Connect each wi, for
i = 1, . . . , r, to r−2 vertices of the r vertices of K2,r so that the induced subgraph
on the wi vertices and the r vertices of K2,r is r − 2 regular forming G(3, r); see
Figure 5 for an example of G(3, r). Now, n(G(3, r) = 2r2 + 2r + 2 (if G = Kr,r),
α(G(3, r)) = r2 + r = (n(G(3, r)) − 2)/2 = n(G(3, r)/2 − 1 = µ(G(3, r)). Since
G(3, r) cannot have a perfect matching, because of Tutte’s Theorem and the fact
the deleting the r vertices of K2,r leaves r + 2 odd components.

Figure 5. The non-bipartite regular graph G(3, 4) with α(G(3, 4)) = µ(G(3, 4)).

4.2. Improvements on known bounds for α(G)

If G is a graph with δ(G) ≥ 1, then Theorem 2 implies the following upper bound
on α(G),

(3) α(G) ≤
∆(G)

δ(G)
µ(G).

This bound is interesting, as the righthand side of (3) is computable in polyno-
mial time. Moreover, inequality (3) can also improve on known computationally
efficient upper bounds for α(G) in some classes of graphs. For example, the an-

nihilation number of G, written a(G), is a degree sequence invariant for which
α(G) ≤ a(G) [21]. This bound improves on many known bounds, for example

α(G) ≤ a(G) ≤ n(G) − m(G)
∆(G) (see [21]). However, a(G) ≥ n(G)

2 for all graphs.

Thus, for r-regular graphs with r > 0, inequality (3) gives the improvement

α(G) ≤ µ(G) ≤
n(G)

2
≤ a(G) ≤ n(G)−

m(G)

∆(G)
,
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and

α(G) ≤ µ(G) ≤ n(G)− µ(G).

Further observe that for sufficiently large r-regular graphs with r > 0, inequality
(3) can give dramatic improvements on the minimum degree bound α(G) ≤
n(G)− δ(G).

5. Concluding Remarks

In this paper we have proven two theorems relating α(G) and µ(G). These two
theorems imply a myriad of interesting corollaries bounding α(G) from above;
some of which we summarize in the following theorem.

Theorem 12. Let G be a graph and X ⊆ V (G) be any intersection of maximum

independent sets.

1. α(G) ≤ µ(G) + |X| − µ(G[NG[X]]).

2. α(G) ≤ µ(G) + core(G)− µ(G[NG[core(G)]]).

3. If core(G) = ∅, then α(G) ≤ µ(G).

4. If X is isolate-free and well-covered, then α(G) ≤ µ(G).

5. If δ(G) ≥ 1, then α(G) ≤ ∆(G)
δ(G) µ(G).

6. If G is r-regular with r > 0, then α(G) ≤ µ(G).

As mentioned before, many of the cases contained in Theorem 12 yield im-
provements on known upper bounds for α(G), most notably being the case of
Theorem 12.6. Observing this, we believe the following problem merits further
inspection.

Problem 13. Characterize α(G) = µ(G) whenever G is 3-regular.

More generally, we also suggest the following problem.

Problem 14. Characterize all graphs G for which δ(G)α(G) = ∆(G)µ(G).

Next we remark on the cardinality of minimum maximal matchings in G,
written µ∗(G). Recall,

n(G)− 2µ∗(G) ≤ α(G) ≤ n(G)− µ(G),

for any graph G. Thus, by Theorem 12 we obtain

(4) n(G)− 2µ∗(G) ≤ µ(G),
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whenever G is r-regular with r > 0, or isolate-free and well-covered, or has an
empty core. Rearranging (4), we obtain the inequality

α(G)

2
≤

n(G)− µ(G)

2
≤ µ∗(G),

for all graphs satisfying one or more of the above mentioned properties. Hence,
α(G) ≤ 2µ∗(G) for these families of graphs. We suggest that future work include
studying relationships between independent sets and µ∗(G). More specifically, we
suggest considering the following conjecture of TxGRAFFITI. Recall the inde-

pendent domination number of G, written i(G), is the minimum cardinality of a
maximal independent set in G; for an excellent survey on independent domination
see the paper of Goddard and Henning [13].

Conjecture 15 (TxGraffiti 2019). If G is an r-regular graph with r > 0, then

i(G) ≤ µ∗(G).

If Conjecture 15 is true, we believe the following question merits further investi-
gation.

Problem 16. Is it true that δ(G)i(G) ≤ ∆(G)µ∗(G) for all graphs?

We would like to acknowledge and thank Craig Larson for his early conver-
sations on some of the conjectures of TxGRAFFITI presented in this paper. The
authors would like to also express their sincere thanks to the anonymous referees
for their helpful comments and suggestions that greatly improved the exposition
and clarity of the manuscript.
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