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Abstract

A Roman {2}-dominating function (R2F) is a function f : V → {0, 1, 2}
with the property that for every vertex v ∈ V with f(v) = 0 there is a
neighbor u of v with f(u) = 2, or there are two neighbors x, y of v with
f(x) = f(y) = 1. A total Roman {2}-dominating function (TR2DF) is an
R2F f such that the set of vertices with f(v) > 0 induce a subgraph with no
isolated vertices. The weight of a TR2DF is the sum of its function values
over all vertices, and the minimum weight of a TR2DF of G is the total
Roman {2}-domination number γtR2(G). In this paper, we initiate the study
of total Roman {2}-dominating functions, where properties are established.
Moreover, we present various bounds on the total Roman {2}-domination
number. We also show that the decision problem associated with γtR2(G) is
NP-complete for bipartite and chordal graphs. Moreover, we show that it is
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possible to compute this parameter in linear time for bounded clique-width
graphs (including trees).

Keywords: Roman domination, Roman {2}-domination, total Roman {2}-
domination.

2010 Mathematics Subject Classification: 05C69, 05C05.

1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set
E = E(G). The order |V | of G is denoted by n(G). For every vertex v ∈ V ,
the open neighborhood N(v) is the set {u ∈ V (G) : uv ∈ E(G)} and the closed

neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is
degG(v) = |N(v)|. The minimum and maximum degree of a graph G are denoted
by δ = δ(G) and ∆ = ∆(G), respectively. A leaf of G is a vertex of degree one,
while a support vertex of G is a vertex adjacent to a leaf. A support vertex is said
to be weak (respectively, strong) if it is adjacent to exactly one leaf (respectively,
at least two leaves).

Let Pn, Cn and Kn be the path, cycle and complete graph of order n and Kp,q

the complete bipartite graph with one partite set of cardinality p and the other
of cardinality q. The complement of a graph G is denoted by G. The join of two
graphs G and H, denoted by G∨H, is a graph obtained from G and H by joining
each vertex of G to all vertices of H. A tree is an acyclic connected graph. A
double star is a tree containing exactly two vertices that are not leaves. A double
star with respectively p and q leaves attached at each support vertex is denoted
by Sp,q. The corona of a graph H is the graph obtained from H by appending
a vertex of degree 1 to each vertex of H. The distance dG(u, v) between two
vertices u and v in a connected graph G is the length of a shortest u − v path
in G. The diameter of G, denoted by diam(G), is the maximum value among
distances between all pair of vertices of G.

A subset S ⊆ V is a dominating set if every vertex in V \S has a neighbor in
S, and S is a total dominating set, abbreviated TSD, if every vertex in V has a
neighbor in S, that is, N(v)∩S 6= ∅ for all v ∈ V . The domination number γ(G)
of a graph G is the minimum cardinality of a dominating set of G, and the total

domination number γt(G) is the minimum cardinality of a TDS of G.
For a graph G and a positive integer k, let f : V (G) → {0, 1, 2, . . . , k} be

a function, and let (V0, V1, V2, . . . , Vk) be the ordered partition of V = V (G)
induced by f , where Vi = {v ∈ V : f(v) = i} for i ∈ {0, 1, . . . , k}. There is a 1-1
correspondence between the functions f : V → {0, 1, 2, . . . , k} and the ordered
partitions (V0, V1, V2, . . . , Vk) of V , so we will write f = (V0, V1, V2, . . . , Vk). The
weight of f is the value f(V (G)) =

∑

u∈V (G) f(u).
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A function f : V (G) → {0, 1, 2} is a Roman dominating function, abbreviated
RDF, on G if every vertex u ∈ V for which f(u) = 0 is adjacent to at least
one vertex v for which f(v) = 2. The Roman domination number γR(G) is
the minimum weight of a RDF on G. Roman domination was introduced by
Cockayne et al. in [4] and was inspired by the work of ReVelle and Rosing [10],
and Stewart [11].

The definition of Roman dominating functions was motivated by an article
in Scientific American by Stewart entitled “Defend the Roman Empire” [11] and
suggested even earlier by ReVelle [9]. Each vertex in our graph represents a
location in the Roman Empire. A location (vertex v) is considered unsecured

if no legions are stationed there (i.e., f(v) = 0) and secured otherwise (i.e., if
f(v) ∈ {1, 2}). An unsecured location (vertex v) can be secured by sending a
legion to v from a neighboring location (an adjacent vertex u). But Constantine
the Great (Emperor of Rome) issued a decree in the 4th century A.D. for the
defense of the regions, where a legion cannot be sent from a secured location
having only one legion stationed there to an unsecured location, for otherwise it
leaves that location unsecured. Thus, two legions must be stationed at a location
(f(v) = 2) before one of the legions can be sent to a neighboring location. In this
way, Emperor Constantine the Great can defend the Roman Empire. Since it is
expensive to maintain a legion at a location, the Emperor would like to station
as few legions as possible, while still defending the Roman Empire. A Roman
dominating function of weight γR(G) corresponds to such an optimal assignment
of legions to locations.

In [2], Chellali et al. introduced the Roman {2}-domination (called in [7]
and elsewhere Italian domination) defined as follows: a Roman {2}-dominating

function is a function f = (V0, V1, V2) with the property that for every vertex
v ∈ V0 there is a vertex u ∈ N(v), with u ∈ V2 or there are two vertices x, y ∈ N(v)
with x, y ∈ V1. The Roman {2}-domination number γ{R2}(G) is the minimum
weight of a Roman {2}-dominating function on G.

There are many papers in the literature devoted to the study of Roman
domination type problems and its variations. One of the questions that arise
naturally when a Roman domination type problem is studied is to focus on its
complexity and algorithmic aspects. In 2008, Liedloff et al. [8] showed, among
other results, that it is possible to compute the Roman domination number of a
graph with bounded cliquewidth in linear time. Clearly, this implies that there
exists algorithms for computing the Roman domination number of trees in linear
time. Chellali et al. [2] proved that Roman {2}-domination problem is NP-
complete for bipartite graphs while Chen and Lu [3] recently showed it is NP-
complete even when restricted to split graphs. Moreover, the authors [3] presented
a linear time algorithm to obtain the Roman {2}-domination number of a block
graph.
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In this paper, we initiate the study of the total version of Roman {2}-
dominating function. A total Roman {2}-dominating function, abbreviated
TR2DF, is a Roman {2}-dominating function f = (V0, V1, V2) such that the
subgraph induced by V1∪V2 has no isolated vertices. The total Roman {2}-domi-

nation number γtR2(G) is the minimum weight of a TR2DF on G. A TR2DF on
G with weight γtR2(G) is called a γtR2(G)-function. Total Roman {2}-domination
number is well-defined for all graphs G with no isolated vertices since assigning a
1 to every vertex of G provides a TR2DF of G. Hence for all graphs G of order n
with δ(G) ≥ 1, 2 ≤ γtR2(G) ≤ n. We present various bounds on the total Roman
{2}-domination number and several properties are established. We show that
the decision problem associated with γtR2(G) is NP-complete for bipartite and
chordal graphs. Moreover, we show that it is possible to compute this parameter
in linear time for bounded clique-width graphs (including trees).

We note that throughout this paper, we only consider nontrivial connected
graphs that we will call ntc graphs.

2. Preliminary Results

We begin by giving some properties of total Roman {2}-dominating functions.
The following two facts lead to our first observation. Clearly assigning a 2 to
every vertex in a minimum total dominating set of a ntc graph G and a 0 to
the remaining vertices of G provides a TR2DF. Also, for every TR2DF f =
(V0, V1, V2) the set V1 ∪ V2 total dominates V (G).

Observation 1. For every ntc graph G,

γt(G) ≤ γtR2(G) ≤ 2γt(G).

Note that the lower bound of Observation 1 is attained for K2 ∨Kn−2 while
the upper bound is attained for the double star S3,3.

It is well-known that γt(G) ≤ 2γ(G) for every ntc graph G. So by Observation
1, we will have γtR2(G) ≤ 4γ(G). Our next result improves this upper bound to
γtR2(G) ≤ 3γ(G). We need the following result due to Bollobás and Cockayne [1].
If S is a set of vertices, then we say that a vertex v is a private neighbor of a vertex
u ∈ S (with respect to S) if N [v] ∩ S = {u}. The external private neighborhood

epn(u, S) of u with respect to S consists of those private neighbors of u in V \S.
For a TR2DF f = (V0, V1, V2) of an ntc graph, let V02 = {w ∈ V0 : N(w)∩V2 6= ∅}
and V01 = V0\V02.

Theorem 2 (Bollobás and Cockayne [1]). If G is a graph without isolated ver-

tices, then G has a minimum dominating set D such that for all d ∈ D, there

exists a neighbor f(d) ∈ V \D of d such that f(d) is not a neighbor of any vertex

x ∈ D\{d}.
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Proposition 3. For every ntc graph G, γtR2(G) ≤ 3γ(G).

Proof. Let D be a minimum dominating set of G satisfying the property of
Theorem 2. Since each vertex of D has an external private neighbor in V \D,
let W be a subset of V \D formed by the private neighbors chosen so that each
vertex of D has exactly one external private neighbor in D. Clearly |W | = |D| .
Now define the function f as follows: f(x) = 2 for all x ∈ D, f(x) = 1 for
all x ∈ W , and f(x) = 0 otherwise. Clearly f is a TR2DF of G of weight
2 |D|+ |W | = 3γ(G), and thus γtR2(G) ≤ 3γ(G).

For the sharpness of the bound in Proposition 3, consider the tree T obtained
from two stars K1,4 by adding an edge between a leaf of one star to a leaf of the
other star. The next observation is straightforward and is tight for double stars.

Observation 4. For every ntc graph G, γR2(G) ≤ γtR2(G).

Proposition 5. Let G be an ntc graph. Then for every γtR2(G)-function f = (V0,
V1, V2) such that |V2| is as small as possible, we have the following.

(i) Each vertex in V2 has at least two private neighbors in V0 with respect to V2.

(ii) 2|V2| ≤ |V02|.

Proof. (i) Suppose there exists a vertex v ∈ V2 with at most one private neighbor
in V0 with respect to V2. Then reassigning v and its private neighbor (if any)
the value 1 instead of 2 and 0, respectively provides a γtR2(G)-function with less
vertices assigned a 2, which contradicts the choice of f.

(ii) Follows from (i).

Proposition 6. Let G be an ntc graph with maximum degree ∆ ≤ 2. Then there

exists a γtR2(G)-function f = (V0, V1, V2) such that V2 = ∅.

Proof. Among all γtR2(G)-functions, let f = (V0, V1, V2) be a one such that |V2|
is as small as possible. If V2 6= ∅, then by Proposition 5, every vertex of V2 has at
least two private neighbors in V0 with respect to V2. But then since ∆ ≤ 2, each
vertex in V2 would be isolated in G[V1 ∪ V2], a contradiction. Hence V2 = ∅.

Recall that a subset S of V is a double dominating set of G if for every vertex
v ∈ V, |N [v] ∩ S| ≥ 2, that is, v is in S and has at least one neighbor in S or v is in
V \S and has at least two neighbors in S. The double domination number γ×2(G)
is the minimum cardinality of a double dominating set of G. Double domination
was introduced by Harary and Haynes [6] who proved that γ×2(Pn) =

⌈

2n+2
3

⌉

and
γ×2(Cn) =

⌈

2n
3

⌉

. The following result shows that the equality between γtR2(G)
and γ×2(G) occurs under certain conditions.

Proposition 7. Let G be an ntc graph. If G has a γtR2(G)-function f = (V0,
V1, V2) such that V2 = ∅, then γtR2(G) = γ×2(G).
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Proof. If S is a double dominating set of G, then (V \S, S, ∅) is clearly a TR2DF
on G, and thus γtR2(G) ≤ γ×2(G). Now if f = (V0, V1, V2) is a γtR2(G)-function
such that V2 = ∅, then V1 double dominates V (G), and thus γ×2(G) ≤ γtR2(G).
Therefore γtR2(G) = γ×2(G).

The following results are immediate consequences of Propositions 6, 7 and the
exact values of the double domination number of paths and cycles given above.

Proposition 8. For n ≥ 2, γtR2(Pn) =
⌈

2n+2
3

⌉

.

Proposition 9. For n ≥ 3, γtR2(Cn) =
⌈

2n
3

⌉

.

3. Complexity

Our aim in this section is to study the complexity of the following decision prob-
lem, to which we shall refer as TOTAL ROMAN {2}-DOMINATION.

TOTAL ROMAN {2}-DOMINATION
Instance: Graph G = (V,E), positive integer k ≤ |V |.
Question: Does G have a total Roman {2}-dominating function of weight at
most k?

We show that this problem is NP-complete by reducing the well-known
NP-complete problem, Exact-3-Cover (X3C), to TOTAL ROMAN {2}-DOMI-
NATION.

EXACT 3-COVER (X3C)
Instance: A finite set X with |X| = 3q and a collection C of 3-element subsets
of X.
Question: Is there a subcollection C ′ of C such that every element of X appears
in exactly one element of C ′?

Theorem 10. TOTAL ROMAN {2}-DOMINATION is NP-Complete for bipar-

tite graphs.

Proof. TOTAL ROMAN {2}-DOMINATION is a member of NP, since we can
check in polynomial time that a function f : V → {0, 1, 2} has weight at most k
and is a total Roman {2}-dominating function. Now let us show how to transform
any instance of X3C into an instance G of TOTAL ROMAN {2}-DOMINATION
so that one of them has a solution if and only if the other one has a solution. Let
X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct} be an arbitrary instance of X3C.

For each xi ∈ X, we build a graph Hi obtained from a path P2 : xi-yi and two
stars K1,3 centered at ai and bi, by adding edges yiai and yibi. Hence, each Hi
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Figure 1. NP-Completeness for bipartite graphs.

has order 10. For each Cj ∈ C, we build a double star S3,3 with support vertices
uj and vj . Let cj be a leaf of the double star S3,3. Let Y = {c1, c2, . . . , ct}. Now
to obtain a graph G, we add edges cjxi if xi ∈ Cj . Clearly G is a bipartite graph.
Set k = 4t + 16q. Observe that for every total Roman {2}-dominating function
f on G, each Hi has weight at least 5 and each double star S3,3 has weight at
least 4.

Suppose that the instance X,C of X3C has a solution C ′. We construct a
total Roman {2}-dominating function f on G of weight k. For each i, assign
the value 2 to ai, bi; the value 1 to yi and 0 to the remaining vertices of Hi. For
every j, assign the value 2 to uj and vj , and 0 to each leaf. In addition, for every
cj , assign the value 1 if Cj ∈ C ′ and the value 0 if Cj /∈ C ′. Note that since
C ′ exists, its cardinality is precisely q, and so the number of cj ’s with value 1
is q, having disjoint neighborhoods in {x1, x2, . . . , x3q}. Since C ′ is a solution
for X3C, every vertex in X is adjacent to two vertices assigned a 1. Hence, it
is straightforward to see that f is a total Roman {2}-dominating function with
weight f(V ) = 4t+ q + 15q = k.

Conversely, suppose that G has a total Roman {2}-dominating function with
weight at most k. Among all such functions, let g = (V0, V1, V2) be one such that
{y1, y2, . . . , y3q} ∩ V2 is as small as possible. As observed above, since each Hi

has weight at least 5, we may assume that g(ai) = g(bi) = 2 and g(yi) > 0 so
that vertices ai, bi are not isolated in the subgraph induced by V1 ∪ V2. Hence
each leaf neighbor of ai or bi is assigned a 0 under g. If g(yi) = 2 for some i,
then we must have g(xi) = 0. In this case, reassigning a 1 to each of yi and xi
instead of 2 and 0, respectively, provides a total Roman {2}-dominating function
g′ with less vertices yi assigned a 2 than under g, contradicting our choice of g.
Hence g(yi) = 1 for every i ∈ {1, 2, . . . , 3q}. On the other hand, the total weight
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of all double stars corresponding to elements of C is at least 4t. In this case,
we can assume that g(uj) = g(vj) = 2 and so each leaf neighbor of uj or bj is
assigned a 0 under g. Note that each cj can be assigned a 0 since g(uj) = 2.
Since w(g) ≤ 4t+16q and the total weight assigned to vertices of V (G)\(X ∪ Y )
is 4t + 15q, we have to assign to vertices of (X ∪ Y ) weights whose total not
exceeding q in order that each vertex xi ∈ X has either g(xi) > 0 or has two
neighbors in V1. Since |X| = 3q, it is clear that this is only possible if there are q
vertices of {c1, c2, . . . , ct} that are assigned a 1. Since each cj has a exactly three
neighbors in {x1, x2, . . . , x3q}, we deduce that C ′ = {Cj : g(cj) = 1} is an exact
cover for C.

The next result is obtained by using the same proof of Theorem 10 on the
(same) graph G built for the transformation by adding all edges between the
vertices labelled cj in order that the resulting graph is chordal.

Theorem 11. TOTAL ROMAN {2}-DOMINATION is NP-Complete for chordal

graphs.

In the rest of this section, we prove that the decision problem associated
to γtR2(G) can be solved in linear time for the class of graphs with bounded
clique-width, which implies that it also can be computed in linear time for trees.

We make use of several useful objects and results, which are formally de-
scribed in [5, 8], related to logic structures. Namely, in what follows, a k-
expression on the vertices of a graph G with labels {1, 2, . . . , k} is an expression
using the following operations.

• i(x) create a new vertex x with label i,

G1 ⊕G2 create a new graph which is the disjoint union of the graphs Gi,

ηij(G) add all edges in G joining vertices with label i with vertices with label j,

ρi→j(G) change the label of all vertices with label i into label j.

We call the clique-width of a graph G the minimum positive integer k that
is needed to describe G by means of a k-expression. For example, the com-
plete graph K3 with set of vertices {a, b, c} can be described by the following
2-expression.

ρ2→1 (η12 (ρ2→1 (η12 (•1(a)⊕ •2(b)))⊕ •2(c))) .

In what follows, MSOL(τ1) stands for the monadic second order logic with quan-
tification over subsets of vertices. We denote by G(τ1) the logic structure <
V (G), R > where R is a binary relation such that R(u, v) holds if and only if
uv is an edge in G. An optimization problem is a LinEMSOL(τ) optimization

problem if it can be described in the following way (see [8] for more details, since
this is a version of the definition given by [5] restricted to finite simple graphs),
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Opt







∑

1≤i≤l

ai|Xi| : < G(τ1), X1, . . . , Xl > � θ(X1, . . . , Xl)







,

where θ is an MSOL(τ1) formula that contains free set-variables X1, . . . , Xl, in-
tegers ai and Opt is either min or max .

We use the following result on LinEMSOL optimization problems.

Theorem 12 (Courcelle et al. [5]). Let k ∈ N and let C be a class of graphs of

clique-width at most k. Then every LinEMSOL(τ1) optimization problem on C
can be solved in linear time if a k-expression of the graph is part of the input.

We extend a result proved by Liedloff et al. (see Theorem 31 in [8]) regarding
the complexity of the Roman domination decision problem to the corresponding
decision problem for the total Roman {2}-domination number.

Theorem 13. The total Roman {2}-domination problem is a LinEMSOL(τ1)
optimization problem.

Proof. Let us show that the total Roman {2}-domination problem can be ex-
pressed as a LinEMSOL(τ1) optimization problem. Let f = (V0, V1, V2) be a
total Roman {2}-domination function in G = (V,E) and let us define the free
set-variables Xi such that Xi(v) = 1 whenever v ∈ Vi and Xi(v) = 0, other-
wise. For the sake of congruence with the logical system notation, we denote
by |Xi| =

∑

v∈V Xi(v), even when, clearly, is |Xi| = |Vi|. Observe that the total
Roman {2}-domination decision problem corresponds to achieve the optimum for
the following expression.

min
Xi

{|X1|+ 2|X2| : < G(τ1), X0, X1, X2 > � θ(X0, X1, X2)} ,

where θ is the formula given by

θ(X0, X1, X2) = (∀v ((X1(v) ∨X2(v)) → ∃u ((X1(u) ∨X2(u)) ∧R(u, v))))

∧ (∀v (X1(v) ∨X2(v) ∨ ∃u (R(u, v) ∧X2(u))

∨ ∃u,w (R(u, v) ∧R(w, v) ∧X1(u) ∧X1(w)))) .

Clearly, θ is an MSOL(τ1) formula that describes the total Roman {2}-
domination problem. Namely, the formula has two main clauses. The first one
requires that every vertex v with a positive label 1 or 2 must have a neighbor u
with a positive label. The latter implies that the induced subgraph by the set of
vertices V1∪V2 has no isolated vertices. The second clause of the formula assures
that for any vertex v of the graph either the vertex itself has a positive label, or
either it has a neighbor with a label 2, or either it has two different neighbors
having label 1 each. Hence, when the formula θ is satisfied, the requirements of
a total Roman {2}-domination assignment in G holds.
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As a consequence, we may derive the following corollary.

Corollary 14. The decision problem associated to the total Roman {2}-domi-

nation problem can be solved in linear time on any graph G with clique-width

bounded by a constant k, provided that either there exists a linear-time algorithm

to construct a k-expression of G, or a k-expression of G is part of the input.

Since any graph with bounded treewidth is also a bounded clique-width
graph, and it is well-known that any tree graph has treewidth equal to 1, then
we can deduce that the total Roman {2}-domination problem can be solved in
linear time for the class of trees. Besides, there are several classes of graphs G
with bounded clique-width cw(G) like, for example, the cographs (cw(G) ≤ 2)
and the distance hereditary graphs (cw(G) ≤ 3), for which it is also possible to
solve the total Roman {2}-domination problem in linear time.

4. Graphs with Small or Large Total Roman {2}-domination

As mentioned in Section 1, for all ntc graphs G of order n, 2 ≤ γtR2(G) ≤ n. In
this section, we characterize all ntc graphs G such that γtR2(G) ∈ {2, 3, n}.

Proposition 15. Let G be an ntc graph. For any graph H, we have γtR2(K2 ∨
H) = 2. Conversely, if γtR2(G) = 2, there is some graph H such that G = K2∨H.

Proof. If G = K2 ∨ H, then clearly γtR2(G) = 2. Conversely, assume that
γtR2(G) = 2 and let f = (V0, V1, V2) be a γtR2(G)-function. By definition of
TR2DF of G, we have γtR2(G) = |V1| + 2|V2| = 2. Since G[V1 ∪ V2] has no
isolated vertex, we deduce that |V2| = 0 and |V1| = 2. Now let V1 = {x, y}.
Clearly, xy ∈ E(G), because G[V1 ∪ V2] has no isolated vertex, and every vertex
in V (G)\{x, y} is adjacent to both x and y. Thus G ∼= K2 ∨ H, and H is any
graph of order n− 2.

Proposition 16. Let G be an ntc graph of order n ≥ 5. Then γtR2(G) = 3 if

and only if either G has exactly one vertex of degree n− 1 or ∆(G) ≤ n− 2 and

G is obtained from two disjoint graphs G1 and G2 such that G1 ∈ {P3, C3} and

G2 is any graph of order n− 3 by adding edges between vertices of G1 and G2 in

order that every vertex of G2 has at least two neighbors in G1.

Proof. If ∆(G) = n − 1 and G has exactly one vertex u of degree n − 1, then
the function f defined on V (G) by f(u) = 2, f(v) = 1 for some v ∈ V (G)\{u}
and f(w) = 0 for all w ∈ V \{u, v} is a TR2DF and so γtR2(G) ≤ 3. Since
G has exactly one vertex of degree n − 1, we deduce from Proposition 15 that
γtR2(G) ≥ 3 and the equality follows.
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Now assume that ∆(G) ≤ n− 2 and G is obtained from two disjoint graphs
G1 and G2 such that G1 ∈ {P3, C3} and G2 is any graph of order n−3 by adding
edges between vertices of G1 and G2 in order that every vertex of G2 has at
least two neighbors in G1. Then the function f defined on V (G) by f(u) = 1 for
every vertex u ∈ V (G1) and f(v) = 0 for all v ∈ V (G2) is a TR2DF of G. Hence
γtR2(G) ≤ 3, and the equality follows as above from Proposition 15.

Conversely, assume that γtR2(G) = 3. Then G has at most one vertex of
degree n− 1, for otherwise γtR2(G) = 2 (by Proposition 15). Let f = (V0, V1, V2)
be a γtR2(G)-function. Since γtR2(G) = |V1| + 2|V2| = 3, then it must be either
|V1| = |V2| = 1 or either |V1| = 3 and |V2| = 0. If |V1| = |V2| = 1, with V2 = {u}
and V1 = {v}, then uv ∈ E(G) and every vertex in V \{x, y} must be adjacent to
u, because f is a TR2DF. So u is the unique vertex of degree n− 1. Now assume
that V2 = ∅ and |V1| = 3, where V1 = {u, v, w}. Since G[V1] has no isolated
vertices, G[V1] ∈ {P3, C3}. Moreover, every vertex in V0 = V \{u, v, w} must be
adjacent to at least two vertices of V1. Clearly, if G1 = G[V1] and G2 = G[V0],
then G is an ntc graph as described in the statement.

Theorem 17. Let G be an ntc graph of order n. Then γtR2(G) = n if and only

if G ∈ {K2,K1,2} or every vertex of G is either a leaf or a weak support vertex.

Proof. Assume that γtR2(G) = n. Clearly, if n ∈ {2, 3}, then G ∈ {K2,K1,2}.
Hence assume that n ≥ 4. Suppose first that G has a vertex w which is neither a
leaf nor a support vertex. Define the function f by f(w) = 0 and f(x) = 1 for all
x ∈ V (G)\{w}. Clearly f is a TR2DF on G with weight n − 1, a contradiction.
Thus, each vertex of G is either a leaf or a support vertex. Now suppose that G
has a strong support vertex, say u. Let u1 and u2 be two leaves adjacent to u.
Define the function f by f(u) = 2, f(u1) = f(u2) = 0 and f(x) = 1 otherwise.
Since n ≥ 4, f is clearly a TR2DF on G of weight n − 1, a contradiction too.
Therefore, every vertex of G is either a leaf or a weak support vertex as desired.

The converse is obvious.

5. Bounds

We present in this section some bounds on the total Roman {2}-domination
number of ntc graphs in terms of the order, maximum and minimum degrees.

Proposition 18. Let G be an ntc graph of order n with girth g ≥ 6 and minimum

degree δ ≥ 2. Then γtR2(G) ≤ n+ 2− (∆ + δ).

Proof. Let u be a vertex of G of maximum degree and let v be any neighbour
of u. Define the function f on V (G) by f(u) = 1, f(v) = 1, f(w) = 0 for all
w ∈ N({u, v})\{u, v} and f(w) = 1 otherwise. Since since δ ≥ 2 and g ≥ 6,
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set A = V (G)\N [{u, v}] is non-empty and no vertex of A has two neighbors
N [{u, v}]. Hence f is well defined and is a TR2DF of weight 2+n−(∆+degG(v)),
and thus

γtR2(G) ≤ 2 + n− (∆ + degG(v)) ≤ n+ 2− (∆ + δ).

The sharpness of the previous bound can be seen by considering the cycles
C6 and C7. Moreover, to see that the condition δ ≥ 2 is essential in the statement
of Proposition 18, consider the star K1,n−1 with n ≥ 3, where γtR2(K1,n−1) =
3 > n+ 2− (∆ + δ) = 2.

Corollary 19. Let G be an ntc graph of order n with girth g ≥ 6 and minimum

degree δ ≥ 2 such that γtR2(G) = n + 2 − (∆ + δ). Then for every vertex u of

maximum degree we have that d(v) = δ(G) for all v ∈ N(u).

Proposition 20. Let G be an ntc graph. Then

γtR2(G) ≥

⌈

2n

∆+ 1

⌉

.

If γtR2(G) = 2n
∆+1 , then V2 = ∅ for all γtR2(G)-function f = (V0, V1, V2).

Proof. Let f = (V0, V1, V2) be a γtR2(G)-function and let us denote by V02 =
{w ∈ V0 : N(w)∩V2 6= ∅} and by V01 = V0\V02. Thus V (G) = V01∪V02∪V1∪V2.
Since any vertex v ∈ V2 must have at least one neighbor in V1∪V2, we deduce that
for each v ∈ V2, |N(v) ∩ V02| ≤ ∆− 1 and thus |V02| ≤ (∆− 1)|V2|. Analogously,
2|V01| ≤ (∆− 1)|V1|, because each vertex in V01 must have at least two neighbors
in V1. Hence

n = |V01|+ |V02|+ |V1|+ |V2| ≤
∆− 1

2
|V1|+ (∆− 1)|V2|+ |V1|+ |V2|

=
∆+ 1

2
|V1|+∆|V2| ≤

∆+ 1

2
(|V1|+ 2|V2|) =

∆ + 1

2
γtR2(G),

which leads to the desired result. If γtR2(G) = 2n
∆+1 , then all the previous in-

equalities become equalities and hence |V2| = 0.

The sharpness of the bound in Proposition 20 can be shown for cycles.

6. Total Roman {2}-Domination of Trees

In this section, we present a lower and upper bounds on the total Roman {2}-
domination number of trees. We start with a simple observation.

Observation 21. Let G be a graph without isolated vertices and v ∈ V (G) a

support vertex of G.
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• For any total Roman {2}-dominating function f of G, f(v) ≥ 1.

• If v is a strong support vertex, then there exists a γtR2(G)-function f such

that f(v) = 2.

Theorem 22. Let T be a tree of order n ≥ 2 with ℓ(T ) leaves. Then

γtR2(T ) ≥

⌈

2(n− ℓ(T ) + 3)

3

⌉

.

This bound is sharp for paths, stars and double stars.

Proof. The proof is by induction on n. Clearly for all nontrivial trees of order

n ≤ 4 we have γtR2(T ) >
⌈

2(n−ℓ(T )+3)
3

⌉

. For the inductive hypothesis, let n ≥ 5

and assume that for every tree of order at least 2 and less than n the result is
true. Let T be a tree of order n. If diam(T ) = 2, then T is a star, which yields

γtR2(T ) = 3 =
⌈

2(n−n+1+3)
3

⌉

. If diam(T ) = 3, then T is a double star and we

have γtR2(T ) = 4 =
⌈

2(n−n+2+3)
3

⌉

. Henceforth we can assume diam(T ) ≥ 4. Let

f be a γtR2(T )-function.
If T has a strong support vertex u with at least two leaves, say u1 and u2,

then let T ′ = T − u1. By Observation 21, f(u) ≥ 1 and we may assume without
loss of generality that f(u2) ≥ f(u1). Now the function f , restricted to T ′ is a
TR2DF of T ′ and we deduce from the inductive hypothesis that

γtR2(T )=ω(f)≥γtR2(T
′) ≥

⌈

2((n− 1)− (ℓ(T )− 1) + 3)

3

⌉

=

⌈

2(n− ℓ(T ) + 3)

3

⌉

.

Thus in the sequel, we can assume that T has no strong support vertex. Let
v1v2 · · · vk be a diametral path in T and root T in vk. Since T has no strong
support vertex, any child of v3 is a leaf or a support vertex of degree 2. We
consider the following cases.

Case 1. degT (v3) ≥ 3. First suppose v3 is a support vertex. By Observation
21, we may assume f(v2) = f(v3) = 2. Let T ′ = T − v1 and define h : V (T ′) →
{0, 1, 2} by h(v2) = 1 and h(x) = f(x) for x ∈ V (T ′)\{v2}. Clearly h is a TR2DF
of T ′. It follows from the induction hypothesis that

γtR2(T ) = ω(f) = ω(h) + 1 ≥ γtR2(T
′) + 1

≥
⌈

2((n−1)−ℓ(T )+3)
3

⌉

+ 1 >
⌈

2(n−ℓ(T )+3)
3

⌉

,

as desired. Now suppose v3 is not a support vertex. Assume u2 is a child of v3
and u1 is a leaf adjacent to u2. Clearly f(u1) + f(u2) ≥ 2 and f(v1) + f(v2) ≥ 2.
Assume without loss of generality that f(v2) ≥ f(u2). Let T ′ = T − {u1, u2}. If
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f(v3) ≥ 1 or deg(v3) ≥ 4, then clearly the function f restricted to T ′ is a TR2DF
of T and we conclude from the inductive hypothesis that

γtR2(T ) = ω(f) = ω(f |T ′) + 2 ≥ γtR2(T
′) + 2

≥
⌈

2((n−2)−(ℓ(T )−1)+3)
3

⌉

+ 2 >
⌈

2(n−ℓ(T )+3)
3

⌉

,

as desired. Hence assume that f(v3) = 0 and deg(v3) = 3. Let T ′ = T −
{u1, u2, v1}. Then the function g : V (T ′) → {0, 1, 2} defined by g(v3) = 1 and
g(x) = f(x) for x ∈ V (T ′)\{v3}, is a TR2DF of T ′ of weight γtR2(T )− 2. By the
inductive hypothesis we have

γtR2(T ) = ω(f) = ω(g) + 2 ≥ γtR2(T
′) + 2

≥
⌈

2((n−3)−(ℓ(T )−1)+3)
3

⌉

+ 2 >
⌈

2(n−ℓ(T )+3)
3

⌉

.

Case 2. degT (v3) = 2. As above we have f(v1) + f(v2) ≥ 2. If f(v3) ≥ 1,
then the function g : V (T − v1) → {0, 1, 2} defined by g(v2) = 1 and g(x) = f(x)
for x ∈ V (T ′)\{v2}, is a TR2DF of T − v1 of weight γtR2(T ) − 1 and by the
inductive hypothesis we obtain

γtR2(T ) = ω(f) = ω(g) + 1 ≥ γtR2(T − v1) + 1

≥
⌈

2((n−1)−ℓ(T )+3)
3

⌉

+ 1 >
⌈

2(n−ℓ(T )+3)
3

⌉

.

Hence let f(v3) = 0. If f(v1) + f(v2) ≥ 3, then reassigning v1, v2, v3 the
value 1 provides a γtR2(T )-function f ′ for which f ′(v3) ≥ 1, and this situation
was considered above. Therefore, we can assume that f(v1) + f(v2) = 2. More
precisely, f(v1) = f(v2) = 1. It follows that f(v4) ≥ 1. Let T ′ = T − {v1, v2, v3}.
Clearly T ′ is nontrivial since diam(T ) ≥ 4. Now if T ′ has order 2, then T is a

path P5 and γtR2(P5) = 4 ≥
⌈

2(n−ℓ(T )+3)
3

⌉

. Hence suppose that T ′ has order at

least three. Note that ℓ(T )− 1 ≤ ℓ(T ′) ≤ ℓ(T ). Also, the function f restricted to
T ′ is a T2RDF of T ′ of weight ω(f)−2. We deduce from the inductive hypothesis
on T ′ that

γtR2(T ) = ω(f) = ω(f |T ′) + 2 ≥ γtR2(T
′) + 2

≥
⌈

2((n−3)−ℓ(T )+3)
3

⌉

+ 2 ≥
⌈

2(n−ℓ(T )+3)
3

⌉

,

which competes the proof.

Lemma 23. If T is a tree obtained from a path v1v2 · · · vk (k ≥ 4) by adding a

pendant path vk−1w, then γtR2(T ) <
2(k+3)

3 .
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Proof. If k ≡ 0 (mod 3), then define the function f by f(v3i+1) = f(v3i+2) = 1
for 0 ≤ i ≤ k

3 − 2, f(vk−2) = 1, f(vk−1) = 2 and f(v) = 0 for any remaining
vertex v. If k ≡ 1 (mod 3), then define the function f by f(v3i+1) = f(v3i+2) = 1
for 0 ≤ i ≤ k−1

3 − 1, f(vk−1) = 2 and f(v) = 0 for any remaining vertex v.
If k ≡ 2 (mod 3), then define the function f by f(v3i+1) = f(v3i+2) = 1 for
0 ≤ i ≤ k−2

3 −1, f(vk−2) = 1, f(vk−1) = 2 and f(v) = 0 for any remaining vertex

v. Clearly f is an TR2DF of weight smaller than 2(k+3)
3 .

Theorem 24. For every tree T of order n(T ) ≥ 4 with s(T ) support vertices,

γtR2(T ) ≤
3n(T ) + 2s(T )

4

with equality if and only if T is the corona of a tree.

Proof. If T is the corona of a tree T ′, then γtR2(T ) = n(T ) = 3n(T )+2s(T )
4 . To

prove that if T is a tree of order n(T ) ≥ 4 with s(T ) support vertices, then

γtR2(T ) ≤
3n(T )+2s(T )

4 with equality only if T is the corona of a tree, we proceed
by induction on the order n(T ). If n(T ) = 4, then T is either a star K1,3, where

γtR2(K1,3) = 3 < 3n(T )+2s(T )
4 or a path P4 where γtR2(P4) = 4 = 3n(T )+2s(T )

4 and
P4 is the corona of the path P2. Let n(T ) ≥ 5 and assume that every T ′ of order

n(T ′) < n(T ) with s(T ′) support vertices satisfies γtR2(T
′) ≤ 3n(T ′)+2s(T ′)

4 with
equality only if T ′ is the corona of a tree. Let T be a tree of order n(T ). If T

is a star, then γtR2(T ) = 3 < 3n(T )+2s(T )
4 . Likewise, if T is a double star, then

γtR2(T ) = 4 < 3n(T )+2s(T )
4 (since n(T ) ≥ 5). Henceforth, we can assume that T

has diameter at least 4. Denote by Tx the subtree induced by a vertex x and its
descendants in the rooted tree T.

If T has a strong support vertex u with at least three leaves, then let T ′ be
the tree obtained from T by removing a leaf neighbor w of u. Let f be a γtR2(T

′)-
function f such that f(u) = 2, f(v) ≥ 1 for some v ∈ NT ′(u). Clearly, f can
be extended to TR2D-function of T by assigning a 0 to w, and thus γtR2(T ) ≤
γtR2(T

′). Now using the induction on T ′ and the fact that n(T ′) = n(T )− 1 and
s(T ′) = s(T ), we obtain the desired result. Henceforth, we can assume that every
support vertex of T is adjacent to at most two leaves.

Let v1v2 · · · vk be a diametral path in T such that degT (v2) is as large as
possible and root T at vk. Clearly degT (v2) ∈ {2, 3}. We consider the following
cases.

Case 1. degT (v2) = 3. We distinguish the following subcases.

Subcase 1.1. degT (v3) ≥ 3. If v3 is a support vertex or v3 has a child with
degree 3 other than v2, then any γtR2(T − Tv2)-function can be extended to a
TR2D-function of T by assigning 2 to v2 and 0 to the leaf neighbors of v2 and
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so γtR2(T ) ≤ γtR2(T − Tv2) + 2. Since T − Tv2 is a tree of order at least four, by
induction on T −Tv2 and using the facts n(T −Tv2) = n(T )− 3 and s(T −Tv2) =

s(T ) − 1, we obtain γtR2(T ) ≤ γtR2(T
′) + 2 ≤ 3n(T ′)+2s(T ′)

4 + 2 < 3n(T )+2s(T )
4 .

Hence assume that every child of v3 except v2 is of degree 2. Let w2 be a child of
v3 besides v2 and let w1 be the leaf neighbor of w2. Clearly any γtR2(T − Tw2

)-
function can be extended to a TR2D-function of T by assigning 1 to w1, w2 and
so γtR2(T ) ≤ γtR2(T −Tw2

)+ 2. Note that T −Tw2
is a tree of order at least four

with n(T − Tw2
) = n(T )− 2 and s(T − Tw2

) = s(T )− 1. Using the induction on

T − Tw2
, we obtain γtR2(T ) ≤ γtR2(T

′) + 2 < 3n(T ′)+2s(T ′)
4 + 2 < 3n(T )+2s(T )

4 .

Subcase 1.2. degT (v3) = 2 and degT (v4) ≥ 3. If T − Tv3 = P3, then clearly

γtR2(T ) = 5 < (3n(T )+2s(T ))
4 . Hence assume that T − Tv3 has order at least

four. Clearly any γtR2(T − Tv3)-function can be extended to a TR2D-function
of T by assigning a 2 to v2, a 1 to v1 and a 0 to the leaves of v2. It follows
from the induction hypothesis on T − Tv3 and the facts n(T − Tv3) = n− 4 and
s(T − Tv3) = s(T )− 1 that

γtR2(T ) ≤ γtR2(T − Tv2) + 3 ≤
3n(T − Tv3) + 2s(T − Tv3)

4
+ 3

≤
3(n(T )− 4) + 2(s(T )− 1)

4
+ 3 <

(3n(T ) + 2s(T ))

4
.

Subcase 1.3. degT (v3) = 2 and degT (v4) = 2. First let degT (v5) ≥ 3. Hence
T − Tv4 has order at least three. If T − Tv4 = P3, then it is easy to see that

γtR2(T ) = 6 < 3n(T )+2s(T )
4 . Thus let T − Tv4 6= P3. Then any γtR2(T − Tv4)-

function can be extended to a TR2D-function of T by assigning a 2 to v2 and v3,
and a 0 to other vertices in Tv4 . Using the induction hypothesis on T − Tv4 and
the facts n(T − Tv4) = n(T )− 5 and s(T − Tv4) = s(T )− 1 we obtain

γtR2(T ) ≤
3n(T − Tv4) + 2s(T − Tv4)

4
+ 4 <

3n(T ) + 2s(T )

4
.

Assume now that degT (v5) = 2. If deg(vi) ≤ 2 for each i ≥ 5, then the
result follows from Lemma 23. Hence let t be the smallest integer such that
deg(vt) ≥ 3 for some t ≥ 6. Let T ′ = T − Tvt−1

. Note that T ′ has order at least
three. Suppose that n(T ′) = 3, that is T ′ = P3. Then any γtR2(Tvt−1

)-function as
defined in Lemma 23 can be extended to a TR2DF of T by assigning a 2 to vt and
a 0 to other vertices of T ′, and clearly we have γtR2(T ) <

3n(T )+2s(T )
4 . Suppose

now that n(T ′) ≥ 4. If t ≡ 1 (mod 3), then any γtR2(T − Tvt−1
)-function can be

extended to a TR2D-function of T by assigning a 2 to v2, a 1 to v3, v3i+2, v3i+3

for 1 ≤ i ≤ t−1
3 −1 and a 0 to the remaining vertices of Tvt−1

. Using the induction

on T − Tvt−1
and the fact 2(t−1)

3 can be rewritten 3(t−1)
4 − t−1

12 , we have
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γtR2(T ) ≤ γtR2(T − Tvt−1
) +

2(t− 1)

3
+ 1

≤
3n(T − Tv4) + 2s(T − Tv4)

4
+

3(t− 1)

4
−

t− 1

12
+ 1

=
3(n(T )− t) + 2(s(T )− 1)

4
+

3(t− 1)

4
−

t− 1

12
+ 1 <

3n(T ) + 2s(T )

4
.

Assume now that t ≡ 2 (mod 3). Then any γtR2(T − Tvt−1
)-function can

be extended to a TR2D-function of T by assigning a 2 to v2, a 1 to v3i, v3i+1

for 1 ≤ i ≤ t−2
3 and a 0 to the remaining vertices of T vt−1

. By the induction
hypothesis on T − Tvt−1

we obtain

γtR2(T ) ≤ γtR2(T − Tvt−1
) +

2(t− 2)

3
+ 2

≤
3n(T − Tv4) + 2s(T − Tv4)

4
+

3(t− 2)

4
−

t− 2

12
+ 2

=
3(n(T )− t) + 2(s(T )− 1)

4
+

3(t− 2)

4
−

t− 2

12
+ 2 <

3n(T ) + 2s(T )

4
.

Finally, assume that t ≡ 0 (mod 3). Then any γtR2(T − Tvt−1
)-function can

be extended to a TR2D-function of T by assigning a 2 to v2, a 1 to v3, v3i+1, v3i+2

for 1 ≤ i ≤ t
3 − 1 and a 0 to the remaining vertices of Tvt−1

. By the induction
hypothesis on T − Tvt−1

we have

γtR2(T ) ≤ γtR2(T − Tvt−1
) +

2t

3
+ 1

≤
3(n(T )− t) + 2(s(T )− 1)

4
+

3t

4
−

t

12
+ 1

=
3n(T ) + 2s(T )

4
+

6− t

12
≤

3n(T ) + 2s(T )

4
.

If further γtR2(T ) =
3n(T )+2s(T )

4 , then we have equality throughout the pre-
vious inequality chain. In particular, we have t = 6 and γtR2(T − Tvt−1

) =
3(n(T )−t)+2(s(T )−1)

4 . It follows from the induction on T − Tvt−1
that T − Tvt−1

is
the corona of a tree and v6 is support vertex (since degT (v6) ≥ 3). It follows that
for any γtR2(T − Tvt−1

)-function g, g(v6) ≥ 1 and clearly g can be extended to a
TR2D-function of T by assigning a 2 to v2, a 1 to v3, v5 and a 0 to other vertices
in Tv5 . By the induction hypothesis we obtain γtR2(T ) ≤ γtR2(T − Tvt−1

) + 4 <
3n(T )+2s(T )

4 .

Case 2. degT (v2) = 2. By the choice of the diametral path, we deduce that
every child of v3 with depth one has degree two. Consider the following subcases.
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Subcase 2.1. degT (v3) ≥ 3. Suppose first that v3 is a strong support vertex,
and let u,w be two leaves of v3. Let T

′ = T − {u, v1, v2}. Clearly T ′ is a tree of
order n(T ′) = n(T ) − 3 ≥ 4 with s(T ′) = s(T ) − 1 support vertices. Let g be a
γtR2(T

′)-function. Then we extend g to a TR2D-function of T by assigning a 1
to v1, v2 and a 0 to u. In addition if g(v3) 6= 2, then we reassign v3 and w the
values 2 and 0 instead of 1 to both. Now using the induction hypothesis on T ′,
we get

γtR2(T ) ≤ γtR2(T
′) + 2 ≤

3n(T ′) + 2s(T ′)

4
+ 2

=
3(n(T )− 3) + 2(s(T )− 1)

4
+ 2 <

3n(T ) + 2s(T )

4
.

Now, suppose that v3 is not support vertex. Recall that every child of v3
is a support vertex of degree two. Let T ′ = T − Tv3 . Clearly Tv3 has order
2 degT (v3) − 1 and T ′ has order n(T ′) ≥ 2 (since diam(T ) ≥ 4). If n(T ′) = 2,

then γtR2(T ) = 2 degT (v3) < 3n(T )+2s(T )
4 , and if n(T ′) = 3, then γtR2(T ) =

2 degT (v3) + 1 < 3n(T )+2s(T )
4 . Hence we assume that n(T ′) ≥ 4, and thus by

induction on T ′, γtR2(T
′) ≤ 3n(T ′)+2s(T ′)

4 . Since any γtR2(T
′)-function can be

extended to a TR2D-function of T by assigning a 0 to v3 and a 1 to each of the
remaining vertices of Tv3 , γtR2(T ) ≤ γtR2(T

′) + 2(degT (v3) − 1). Using the fact
that s(T ′) ≤ s(T )− degT (v3) + 2, we obtain

γtR2(T ) ≤ γtR2(T
′) + 2(degT (v3)− 1) =

3n(T ′) + 2s(T ′)

4
+ 2(degT (v3)− 1)

≤
3(n(T )− 2 degT (v3) + 1) + 2(s(T )−degT (v3) + 2)

4
+ 2(degT (v3)−1)

<
3n(T ) + 2s(T )

4
.

Next we can assume that v3 is a support vertex with degT (v3) = 3. Let
T ′ = T − {v1, v2}. As above we can easily see that

γtR2(T ) ≤ γtR2(T
′) + 2 ≤

3n(T ′) + 2s(T ′)

4
+ 2 ≤

3n(T ) + 2s(T )

4
.

If further γtR2(T ) =
3n(T )+2s(T )

4 , then we have equality throughout the pre-

vious inequality chain. In particular, γtR2(T − {v1, v2}) =
3(n(T )−2)+2(s(T )−1)

4 . It
follows from the induction on T −{v1, v2} that T −{v1, v2} is the corona of some
tree, implying that T is the corona of a tree.

Subcase 2.2. degT (v3) = 2 and degT (v4) ≥ 3. If T ′ = T − Tv3 = P3, then

clearly γtR2(T ) = 5 < 3n(T )+2s(T )
4 . Hence assume that T ′ 6= P3. If v4 is support



Total Roman {2}-Dominating Functions in Graphs 955

vertex or has a child with depth 1 and degree at least 3, then clearly there exists a
γtR2(T

′)-function that assigns a non-zero positive value to v4 and such a γtR2(T
′)-

function can be extended to a TR2D-function of T by assigning a 1 to v1, v2 and
a 0 to v3. It follows from the induction hypothesis on T ′ that

γtR2(T ) ≤ γtR2(T
′) + 2 ≤

3n(T ′) + 2s(T ′)

4
+ 2 <

3n(T ) + 2s(T )

4
.

Now let v4 have child w2 with depth 1 and degree two, and let w1 be the leaf
neighbor of w2. Let T ′ = T − {w2, w1}. Clearly, γtR2(T ) ≤ γtR2(T

′) + 2. By the

inductive hypothesis on T ′ and since T ′ is not a corona, γtR2(T
′) < 3n(T ′)+2s(T ′)

4 .
Using the facts that n(T ′) = n(T )− 2 and s(T ′) = s(T )− 1 we obtain

γtR2(T ) ≤ γtR2(T
′) + 2 <

3n(T ′) + 2s(T ′)

4
+ 2 ≤

3n(T ) + 2s(T )

4
.

Henceforth we assume that any child of v4 is of depth 2. Thus Tv4 is a tree
obtain from a star by subdividing every edge twice. Let wi

1w
i
2w

i
3v4 be paths in T

where wi
3 is a child of v4 for each i ∈ {1, 2, . . . , t} and w1

3 = v3. If t ≥ 3, then any
γtR2(T − Tv4)-function can be extended to a TR2D-function of T by assigning 1
to v1, v2, v3, v4, w

i
2, w

i
1 for i ≥ 2. Now we deduce from the induction hypothesis

on T ′ and the facts n(T ′) = n(T )− 3t− 1 and s(T ′) ≤ s(T )− t+ 1 that

γtR2(T ) ≤ γtR2(T
′) + 2t+ 2 ≤

3(n(T )− 3t− 1) + 2(s(T )− t+ 1)

4

+ 2t+ 2 <
3n(T ) + 2s(T )

4
.

Hence assume that t = 2. If deg(v5) ≥ 3, then let T ′ = T − Tv4 . Then
γtR2(T ) ≤ γtR2(T − Tv4) + 6. By the induction hypothesis on T ′ and the facts
n(T − Tv4) = n(T )− 7 and s(T − Tv4) = s(T )− 2 we obtain

γtR2(T ) ≤ γtR2(T
′) + 6 ≤

3(n(T )− 7) + 2(s(T )− 2)

4
+ 6 <

3n(T ) + 2s(T )

4
.

Thus let deg(v5) = 2 and let T ′ = T−Tv5 . Note that T
′ has order n(T ′) ≥ 2. If

n(T ′) ∈ {2, 3}, then one can check that γtR2(T ) <
3n(T )+2s(T )

4 . Hence we assume
that n(T ′) ≥ 4. Then γtR2(T ) ≤ γtR2(T

′) + 6. It follows from the induction
hypothesis on T − Tv5 and the facts n(T ′) = n(T )− 8 and s(T ′) ≤ s(T )− 1 that

γtR2(T ) ≤ γtR2(T
′) + 6 ≤

3(n(T )− 8) + 2(s(T )− 1)

4
+ 6 <

3n(T ) + 2s(T )

4
.

Subcase 2.3. degT (v3) = deg(v4) = 2. First let degT (v5) ≥ 3. If T ′ = T−

Tv4 = P3, then it is easy to see that γtR2(T ) = 5 < 3n(T )+2s(T )
4 . Hence assume that
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T ′ 6= P3. If v5 is a support vertex, then v5 is assigned a non-zero positive value
under any γtR2(T

′)-set and thus one can easily see that γtR2(T ) ≤ γtR2(T
′) + 3.

Using the induction hypothesis on T ′ and the facts n(T ′) = n(T )−4 and s(T ′) =
s(T )− 1 we obtain

γtR2(T ) ≤
3n(T ′) + 2s(T ′)

4
+ 3 <

3n(T ) + 2s(T )

4
.

If v5 has child w with depth one, then since there is a γtR2(T − Tw)-function
that assigns a non-zero positive value to v5, such a γtR2(T − Tw)-function can be
extended to a TR2D-function of T by assigning a 2 to w and 0 to other vertices
in Tw. By the inductive hypothesis on T − Tw and since T − Tw is not a corona,
γtR2(T −Tw) <

3n(T−Tw)+2s(T−Tw)
4 . Moreover, we have n(T −Tw) ≤ n(T )−2 and

s(T − Tw) = n(T )− 1, and thus

γtR2(T ) ≤ γtR2(T − Tw) + 2 <
3n(T − Tw) + 2s(T − Tw)

4
+ 2

≤
3(n(T )− 2) + 2(s(T )− 1)

4
+ 2 =

3n(T ) + 2s(T )

4
.

Suppose now that v5 has child w with depth two. Let w have t3 leaves, t2
children with depth one and degree at least three and t1 children with depth one
and degree two. Let T ′ = T − Tw. Then any γtR2(T

′)-function can be extended
to a TR2D-function of T by assigning a 2 to every child of w with depth one,
1 + t to w and 0 to other vertices in Tw, where t = 0 if t3 = 0 and t = 1 if
t3 ≥ 1. Clearly by the inductive hypothesis on T ′ and since T ′ is not a corona,

γtR2(T
′) < 3n(T ′)+2s(T ′)

4 . Moreover, we know that n(T ′) ≤ n(T )−3t2−2t1− t3−1
and s(T ′) = s(T )− t1 − t2 − t. Now

• Assume that t2 6= 0 or t3 6= 0. Then we have

γtR2(T ) ≤ γtR2(T
′) + 2t2 + 2t1 + 1 + t <

3n(T ′) + 2s(T ′)

4
+ 2t2 + 2t1 + 1 + t

≤
3(n(T )− 3t2 − 2t1 −t3 −1) + 2(s(T )−t1 −t2 − t)

4
+ 2t2+2t1+1+t

≤
3n(T ) + 2s(T )

4
.

• Assume that t2 = 0 and t3 = 0. Thus t3 ≥ 1. Using the fact that there
is a γtR2(T

′)-function that assigns a non-zero positive value to v5, clearly
then such a γtR2(T

′)-function can be extended to a TR2D-function of T by
assigning a 0 to w and 1 to the remaining vertices of Tw. It follows that

γtR2(T ) ≤ γtR2(T
′) + 2t1 <

3n(T ′) + 2s(T ′)

4
+ 2t1

≤
3(n(T )− 2t1 − 1) + 2(s(T )− t1)

4
+ 2t1 <

3n(T ) + 2s(T )

4
.
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Assume that v5 has child with depth three and let w1w2w3w4v5 be a path in
T where w4 is a child of v5 different from v4. Considering the above cases and
subcases we may assume that deg(wi) = 2 for i ∈ {1, 2, 3, 4}. Clearly T − Tw4

has a γtR2(T − Tw4
)-function f such that f(v5) ≥ 1, and f can be extended to

a TR2D-function of T by assigning a 1 to w3, w2, w1 and 0 to v4. Using the
induction hypothesis on T − Tw4

we obtain

γtR2(T ) ≤ γtR2(T −Tw4
)+3 <

3n(T − Tw4
) + 2s(T − Tw4

)

4
+3 <

3n(T ) + 2s(T )

4
.

Finally, assume that degT (v5) = 2.

Let f be γtR2(T − Tv3)-function such that f(v4) is as large as possible. It is
easy to see that f(v4) ≥ 1 and f can be extended to a TR2D-function of T by
assigning a 1 to v1, v2 and a 0 to v3. Using the induction hypothesis on T − Tv3

we obtain

γtR2(T ) ≤ γtR2(T − Tv3) + 2 ≤
3n(T − Tv3) + 2s(T )

4
+ 2 <

3n(T ) + 2s(T )

4
.

We conclude this section with two open problems.

Problem 1. Is the problem of deciding whether γtR2(G) = 3γ(G) for a given
graph G NP-hard.

Problem 2. Characterize all graphs G such that γtR2(G) = 3γ(G).
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