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Abstract

A set S ⊆ V (G) is a vertex k-cut in a graph G = (V (G), E(G)) if G− S
has at least k connected components. The k-connectivity of G, denoted as
κk(G), is the minimum cardinality of a vertex k-cut in G. We give several
constructions of a set S such that (G2H)− S has at least three connected
components. Then we prove that for any 2-connected graphs G and H, of
order at least six, one of the defined sets S is a minimum vertex 3-cut in
G2H. This yields a formula for κ3(G2H).
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1. Introduction

Graph connectivity is one of the most foundamental concepts in graph theory.
It has been studied for several classes of graphs, including graph products. The
objective of this study is to express connectivity of the product in terms of con-
nectivites and other invariants of factors.

The study of connectivity of graph products started with Sabidussi who
proved in [7] that vertex connectivity of G2H is bounded by the sum of con-
nectivities of G and H, expressed by this inequality

κ(G2H) ≥ κ(G) + κ(H).

1The author is supported by research grants P1-0297, J1-9109 of Ministry of Education of

Slovenia.
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Eventually the vertex connectivity of Cartesian products was settled by the fol-
lowing equation

κ(G2H) = min{κ(G)|V (H)|, κ(H)|V (G)|, δ(G) + δ(H)},

which was first proved in [11]. An alternative proof of the above result was later
given in [5, 12] and [13], where a generalization to digraphs is obtained. A char-
acterization of super-connected Cartesian products is also given in [12] (a graph
G is super-connected if every minimum separating set in G is the neighborhood
of a vertex in G).

Since vertex connectivity κ(G) does not provide any information about the
number of connected components that may occure after removing κ(G) vertices,
another generalization of classical notion of connectivity was proposed in [2]. In
this generalization we ask for the number of vertices that need to be deleted to
obtain a graph with k connected components. A set S ⊆ V (G) is a vertex k-cut
in G if G − S (the graph obtained from G by removing vertices in S) has at
least k connected components. Note that a vertex k-cut in G exists if and only if
k ≤ α(G), where α(G) denotes the independence number of G. For k ≤ α(G), the
k-connectivity, denoted as κk(G), is the minimum size of a vertex k-cut in G. For
k > α(G) we define κk(G) to be the minimum size of a set S such that G−S has
less than k vertices, that is κk(G) = |V (G)| − k+ 1 (this part of the definition is
only a formality, and is not of particular interest). A graph G is (n, k)-connected
if κk(G) ≥ n. The parameter κk(G) is closely related to toughness of a graph
τ(G), defined as

τ(G) = min

{

κk(G)

k
; 2 ≤ k ≤ α(G)

}

,

since knowing κk(G) for all k ≤ α(G) immediately gives τ(G). The toughness of
a graph (and hence also the k-connectivity) plays the central role in many results
and conjectures, such as the following famous conjecture of Chvátal (see [3] and
[1]).

Conjecture 1. There exists a k ∈ R, such that every graph G with τ(G) > k is

Hamiltonian.

The k-connectivity of graphs was studied in articles [2, 4, 6, 8, 9, 10]. In [2]
and [6] the authors give sufficient conditions for a graph to be (n, k)-connected.
It is proved in [2] that every graph with sufficiently large minimum degree is
(n, k)-connected. This result is improved in [6], where it is shown that a graph
is (n, k)-connected if its vertices satisfy some special degree conditions. In [10]
graphs satisfying κk(G) = t are studied, and the maximum and minimum sizes
of such graphs are determined, where the sizes are given in terms of n (the order
of the graph), k and t.
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The 3-connectivity of Cartesian products of graphs was addressed in [8] where
several upper bounds for κ3(G2H) are given. These bounds are obtained by con-
structions of various vertex 3-cuts in the product. Also, exact values of κ3(G2H)
for products of several classes of graphs are determined — for products of com-
plete graphs, products of paths with cycles, and products of complete graphs
with trees.

In this article we give a characterization of 3-connectivity of Cartesian prod-
ucts of graphs. First, in Section 3, we describe several types of vertex 3-cuts in
the product (they are shown in Figure 2). Then, in Section 4, we prove Theorem
10, which asserts that a minimum vertex 3-cut in G2H can always be obtained by
one of the constructions described in Section 3. This gives a formula for κ3(G2H)
for products of any graphs G and H, except in some special cases when one of
the factors is a complete graph, or it has a cut-vertex.

2. Notation

For an x ∈ V (G) the set

NG(x) = {y ∈ V (G); xy ∈ E(G)}

is the neighborhood of x in G, and NG [x] = N(x)∪{x} is the closed neighbourhood

of x in G. We write N(x) instead of NG(x), when G is clear from the context.
For X ⊆ V (G) we define the open neighbourhood of X as

NG(X) =
⋃

x∈X

NG(x) \X.

A set S ⊆ V (G) is a separating set or a vertex cut in G, if G− S (the graph
obtained from G by deleting all vertices in S) is not connected. For a graph G
the vertex connectivity of G, denoted as κ(G), is the minimum cardinality of a set
S ⊆ V (G) such that G−S is not connected or has only one vertex. A separating
set S is a vertex 3-cut in G if G − S has at least 3 connected components. The
3-connectivity of a graph G, denoted as κ3(G), is the size of a smallest vertex
3-cut in G, if a 3-cut in G exists, otherwise κ3(G) = |V (G)| − 2. Note that
κ3(G) ≥ κ(G).

Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs. The Cartesian

product of G and H is the graph G2H defined by V (G2H) = V (G) × V (H),
where (x1, y1)(x2, y2) is an edge in G2H if x1 = x2 and y1y2 ∈ E(H), or x1x2 ∈
E(G) and y1 = y2. For an y ∈ V (H) the G-layer Gy is the set

Gy = {(x, y); x ∈ V (G)} .
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Analogously, for an x ∈ V (G) the H-layer Hx is the set

Hx = {(x, y); y ∈ V (H)} .

For y1, y2 ∈ V (H) we say thatGy1 andGy2 are adjacent layers if y1y2 ∈ E(H).
We denote by pG : V (G2H) → V (G) the projection of V (G2H) to V (G). The
projection is given by pG(x, y) = x. Similarly pH(x, y) = y is the projection of
V (G2H) to V (H). For (x, y) ∈ V (G2H) we define the G-neighbourhood and
the H-neighbourhood of (x, y) in G2H as

NG(x, y) = N(x)× {y} and NH(x, y) = {x} ×N(y).

For S ⊆ V (G2H) let

NG(S) =
⋃

(x,y)∈S

NG(x, y) \ S and NH(S) =
⋃

(x,y)∈S

NH(x, y) \ S.

Let S be a vertex 3-cut in G2H, and let C ′
1, . . . , C

′
n be connected components

of (G2H)− S. We define

(1) C1 = C ′
1, C2 = C ′

2 and C3 =
n
⋃

k=3

C ′
k,

and we use this notation throughout the rest of this article. For an x ∈ V (G)
and y ∈ V (H), we define

Sx = S ∩Hx and Sy = S ∩Gy.

We say that layer Gy is of type (1, 2, 3) if Ci ∩Gy 6= ∅ for all i ∈ [3]. We say,
for example, that Gy is of type (1, 3) if C1∩Gy 6= ∅, C3∩Gy 6= ∅ and C2∩Gy = ∅.
Similar terminology is used for all types of layers, where the type of the layer is
determined by components Ci that intersect this layer. Layers Gy1 and Gy2 are

of different types, if the type of Gy1 is not equal to the type of Gy2 .

Gy1

Gy2 C1 C2 C3

C1 C2 C3

Sy2

Sy1

Figure 1. Compatible layers Gy1
and Gy2

.

We say that layers Gy1 and Gy2 are compatible if

pG(Ci ∩Gy1) ∩ pG(Cj ∩Gy2) = ∅

for all i, j ∈ [3], i 6= j (see Figure 1). Note that any two adjacent layers in
(G2H)− S are compatible. If Gy1 is compatible with Gy2 we write Gy1 ∼ Gy2 .
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3. Constructions of Vertex 3-Cuts

There are several natural ways to remove some vertices of the product G2H to
get (at least) three connected components. We shall describe them in this section.

If S ⊆ V (G) is a vertex 3-cut with |S| = κ3(G), then S × V (H) is a vertex
3-cut in G2H. Since |S × V (H)| = κ3(G) |V (H)| we find that κ3(G2H) ≤
κ3(G) |V (H)|, if G has a vertex 3-cut. If there is no vertex 3-cut in G, then
κ3(G) = |V (G)| − 2. If also |V (G)| ≥ 6 and V (H) ≥ 3, then let

C = {(x1, y1), (x2, y1), (x3, y2), (x4, y2)} ∪ ({x5, x6} × (V (H) \ {y1, y2})),

where x1, . . . , x6 ∈ V (G), and y1, y2 ∈ V (H) are arbitrary vertices. Since the
graph induced by C has at least three connected components, we find that S =
V (G2H) − C is a vertex 3-cut in G2H. Clearly, |S| = κ3(G) |V (H)|. Hence, if
G and H both have at least 6 vertices, then κ3(G2H) ≤ κ3(G) |V (H)|.

Analogously we argue that κ3(G2H) ≤ κ3(H) |V (G)| if G and H have at
least 6 vertices. A vertex 3-cut of the form S × V (H) or V (G) × S is called a
type 1, respectively, type 2 vertex 3-cut (see Figure 2).

Type 1 Type 2

Type 3 Type 4 Type 5

Type 6

y1

NH [y1]

Y

Type 7

Figure 2. Graph G is the horizontal axis, and H is the vertical axis. In each type the
vertex 3-cut S is denoted by dark color. Dots denote isolated vertices of (G2H)− S.
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When we isolate two nonadjacent vertices of G2H we obtain a graph with
three connected components, as noted in the remark below.

Remark 2. Let G and H be graphs such that |V (G)|, |V (H)| ≥ 3, and let
(x1, y1), (x2, y2) ∈ V (G2H). If x1x2 /∈ E(G) and y1 = y2, or y1y2 /∈ E(G) and
x1 = x2, or x1 6= x2 and y1 6= y2, then

S = NG2H(x1, y1) ∪NG2H(x2, y2)

is a vertex 3-cut in G2H.

We now discuss the minimum size of NG2H(x1, y1) ∪ NG2H(x2, y2) and de-
scribe it in terms of invariants of factors. For a graph G which is not complete
let

δ2(G) = min {|N(x1) ∪N(x2)|; x1, x2 ∈ V (G), x1x2 /∈ E(G)} .

Observe that δ2(G) is the minimum number of vertices whose removal isolates
two vertices of G, and note that κ3(G) ≤ δ2(G) ≤ |V (G)| − 2. This can also be
applied to products, hence κ3(G2H) ≤ δ2(G2H).

If we choose x1 and x2 in remark 2 so that |NG(x1) ∪NG(x2)| = δ2(G), and
y1, y2 so that y1 = y2 and deg(y1) = δ(H), then we find that |S| = δ2(G) +
2δ(H). Hence, κ3(G2H) ≤ δ2(G2H) ≤ δ2(G) + 2δ(H). Analogously we have
κ3(G2H) ≤ δ2(H) + 2δ(G). It follows that

κ3(G2H) ≤ δ2(G2H) ≤ min{δ2(G) + 2δ(H), δ2(H) + 2δ(G)},

if G and H are not complete graphs.
A vertex 3-cut that isolates two vertices of G2H is called a type 3 or type 4

or type 5 vertex 3-cut (see Figure 2 where isolated vertices are denoted by black
dots).

The 5 types of vertex 3-cuts we described so far are in one way or another
obtained from a vertex 3-cut of a factor. It turns out that for some pairs of graphs
G and H, no minimum vertex 3-cut in G2H is obtained from a factor, or at least
its size cannot be straightforwardly described in terms of invariants of factors.
These types of vertex 3-cuts are type 6 and type 7 vertex 3-cuts, described below.
Let ω(G,H) be the minimum size of a vertex 3-cut S of the form

(2) S = (S1 × {y1}) ∪ (S2 ×NH(y1)) ∪ (S3 × Y ),

where S1, S2, S3 ⊆ V (G), y1 ∈ V (H), and Y ⊆ NH [y1] (see type 6 in Figure 2).
If for nonadjacent vertices x1 and x2 in G we choose S1 = V (G) \ {x1, x2} and
S2 = S3 = {x1, x2}, we get a vertex 3-cut of the form (2). So if follows, that
ω(G,H) is well defined, if G is not complete. We define

D(G,H) = min{ω(G,H), ω(H,G)}.
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It follows straightforward from the definition of D(G,H) that κ3(G2H) ≤
D(G,H), if G and H are not complete. We will call a vertex 3-cut of the form
(2) a vertex 3-cut of type 6. Note that a special case of a vertex 3-cut of the form
(2) is the case when S2 = S3.

A B C
x0

F

E

D

y0

Figure 3. An example of a minimum vertex 3-cut of type 6.

We give an example of a minimum vertex 3-cut S of type 6, where sets S2

and S3 are not equal. Let A = K1000, B = K100, C = K3, and x0 ∈ C. Let G be
the graph with vertex set A ∪ B ∪ C, such that every vertex in B is adjacent to
every vertex in A ∪ C \ {x0}. Furthermore, let D = K1000, E = K100, F = K6,
and y0 ∈ F . Let H be the graph with vertex set D ∪ E ∪ F , such that every
vertex in E is adjacent to every vertex in D ∪ F \ {y0} (see Figure 3). The set

S = ((B ∪ {x0})× {y0}) ∪ (C \ {x0} × F \ {y0}) ∪ ({x0} × E)

is a vertex 3-cut of type 6. It is a minimum vertex 3-cut in G2H, and |S| = 211
(note that δ2(G2H) > 211, κ3(G)|V (H)| > 211, and κ3(H)|V (G)| > 211).

4. The Proof of Optimality

We prove that one of the 7 types of vertex 3-cuts described in the previous section
is a minimum vertex 3-cut in G2H, provided that G and H are 2-connected
graphs on at least 6 vertices, and that G and H are not complete graphs. So
assume from now on that both G and H are 2-connected of order at least 6.

Lemma 3. Let G = (V (G), E(G)) be a 2-connected graph. If X∪Y is a partition

of V (G) such that |X| ≥ 2 and |Y | ≥ 2, then there exist edges x1y1 and x2y2 such

that x1, x2 ∈ X, y1, y2 ∈ Y and x1 6= x2, y1 6= y2.
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Proof. Suppose on the contrary. Then all edges with one endvertex in X and
the other in Y are incident to a single vertex u ∈ V (G). It follows that u is a
cutvertex in G, a contradiction.

Lemma 4. Let S be a vertex 3-cut in G2H and let Gy1 and Gy2 be adjacent layers

of different types (there exists i ∈ [3], such that Ci∩Gy1 6= ∅ and Ci∩Gy2 = ∅). For
sets S′

y1
= NG

(

Ci∩Gy1

)

, and S′
y2

= pG
(

Ci∩Gy1

)

×{y2} and any x ∈ pG
(

Ci∩Gy1

)

we have
∣

∣S′
y1

∣

∣+
∣

∣S′
y2

∣

∣ ≥ degG(x) + 1, and pG
(

S′
y1

)

∩ pG
(

S′
y2

)

= ∅,

and S′
yi
⊆ Syi , for i = 1, 2.

Gy1

Gy2

Ci S′
y1

S′
y2

Figure 4. Adjacent layers in Lemma 4.

Proof. Let x ∈ pG
(

Ci ∩ Gy1

)

. Since all G-neighbors of (x, y1) are contained in
Gy1 ∩ Ci or S′

y1
we find that

∣

∣S′
y1

∣

∣ +
∣

∣S′
y2

∣

∣ ≥ degG(x) + 1. Clearly, pG
(

S′
y1

)

∩
pG

(

S′
y2

)

= ∅ follows from the definition of sets S′
y1

and S′
y2
.

Corollary 5. Let S be a vertex 3-cut in G2H. If Gy1 and Gy2 are adjacent layers

such that Ci ∩Gy1 6= ∅ and Ci ∩Gy2 = ∅, then for sets S′
y1

= NG
(

Ci ∩Gy1

)

, and

S′
y2

= pG
(

Ci ∩Gy1

)

× {y2} we have
∣

∣S′
y1

∣

∣+
∣

∣S′
y2

∣

∣ ≥ δ(G) + 1 and pG
(

S′
y1

)

∩ pG
(

S′
y2

)

= ∅,

and S′
yi
⊆ Syi , for i = 1, 2.

Lemma 6. Let S be a vertex 3-cut in G2H. If Gy1 and Gy2 are adjacent layers

such that (Ci ∪ Cj) ∩ Gy1 6= ∅, and Ci ∩ Gy2 = Cj ∩ Gy2 = ∅ for some i, j ∈ [3],
i 6= j, then there exist sets S′

y1
⊆ Sy1 and S′

y2
⊆ Sy2 such that

∣

∣S′
y1

∣

∣+
∣

∣S′
y2

∣

∣ ≥ δ2(G) + 2, and pG
(

S′
y1

)

∩ pG
(

S′
y2

)

= ∅.

Proof. Let x1 ∈ pG
(

Ci ∩Gy1

)

and x2 ∈ pG
(

Cj ∩Gy1

)

, and note that x1 and x2
are not adjacent in G. Let us define S′

y1
= NG({(x1, y1), (x2, y1)}) \ (Ci ∪ Cj)

and S′
y2

= pG
(

(Ci ∪ Cj) ∩ Gy1

)

× {y2} (see Figure 5). Clearly,
∣

∣S′
y1

∣

∣ +
∣

∣S′
y2

∣

∣ ≥
|NG({x1, x2})| + 2 ≥ δ2(G) + 2, and pG

(

S′
y1

)

∩ pG
(

S′
y2

)

= ∅. Since Ci ∩ Gy2 =
Cj ∩Gy2 = ∅ we have S′

y2
⊆ Sy2 , and S′

y1
⊆ Sy1 follows from the definition of S′

y1
.
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Gy1

Gy2

CjCi S′
y1

S′
y2

Figure 5. Adjacent layers in Lemma 6.

Lemma 7. Let S be a vertex 3-cut in G2H and suppose that there is a y ∈ V (H)
such that Gy ⊆ C1. If x1x2 /∈ E(G) and (x1, y1) /∈ C1, (x2, y2) /∈ C1 for some

(possibly equal) y1, y2 ∈ V (H), then there exists a set S′ ⊆ S such that |S′| ≥
δ2(G) + 2 and |S′ ∩Hx| ≤ 1 for every x ∈ V (G).

Proof. Assume that (x1, y1) ∈ Ci and (x2, y2) ∈ Cj where i, j 6= 1 (here we alow
the possibility that i = j, as well as the possibility y1 = y2). Let A1, A2 ⊆ V (G)
be the following sets

A1 = pG(Gy1 ∩ Ci) and A2 = pG(Gy2 ∩ Cj).

Since Gy ⊆ C1 for some y ∈ V (H) and H is connected, we find that for every
x ∈ A1 ∪ A2 the layer Hx contains at least one vertex of S. We construct S′ so
that for every x ∈ A1 ∪ A2 we choose a vertex of S ∩ Hx and give it in S′. If
x ∈ NG(A1 ∪A2), then (x, y1) ∈ S or (x, y2) ∈ S, so for every x ∈ N(A1 ∪A2) we
choose either (x, y1) or (x, y2) and give it in S′. Since |A1∪A2|+ |NG(A1∪A2)| ≥
δ2(G) + 2, this construction of S′ has all properties claimed in the lemma.

Lemma 8. Let S be a vertex 3-cut in G2H and |V (H)| ≥ 4, κ(H) ≥ 2. If there

are at least three different types of G-layers in (G2H)−S, then there exist edges

u1v1, u2v2 ∈ E(H), such that u1, v1, u2, v2 are pairwise distinct, and Gui
is of

different type than Gvi for i = 1, 2.

Proof. Observe the graph H ′ obtained from H by deleting all edges uv such
that Gu and Gv are of equal type. If H ′ has at least two nontrivial connected
components, then we choose two edges in different connected components, and
the endvertices of these two edges are the desired vertices u1, v1, u2, v2. Otherwise
H ′ has exactly one nontrivial connected component. If this component contains
a path on four vertices, we may choose first two vertices as u1 and v1, and the
second two as u2 and v2. It remains that H ′ is a disjoint union of a star and some
isolated vertices, or H ′ is a subgraph of a triangle and some isolated vertices. In
the former case the center of the star of H ′ is a cut-vertex in H (when we remove
the center of the star, there are no edges that connect layers of different types),
and in the latter case one of the three vertices of the triangle is a cut-vertex in H
(because |V (H)| ≥ 4 and there are three types of G-layers), a contradiction.
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Lemma 9. Suppose that Gy1 and Gyn are non-compatible layers, and let y1, y2,
. . . , yn be a path in H such that Gy1 and Gyn are compatible with Gyk for every

k ∈ [n], k /∈ {1, n}. Then for every k ∈ [n], k /∈ {1, n}, we have

∣

∣Sy1 ∪ Syk ∪ Syn

∣

∣ ≥ δ(G) + 1.

Proof. Since Gy1 and Gyn are non-compatible there is an x ∈ V (G) such that
(x, y1) ∈ Ci and (x, yn) ∈ Cj for some i, j ∈ [3], i 6= j. Observe that for every
x′ ∈ N [x] we have either (x′, y1) ∈ Ci and (x′, yn) ∈ Cj , or at least one of (x′, y1)
and (x′, yn) is in S. In the first case (x′, yk) ∈ S, because both Gy1 and Gyn are
compatible with Gyk for every k ∈ [n], k 6= 1, n.

Theorem 10 given below is the main result of this article. Note that in
the previous section we exhibited an example of a product G2H, such that
D(G,H) is strictly smaller than the other three terms κ3(G)|V (H)|, κ3(H)|V (G)|
and δ2(G2H). We also give examples of products, such that each of the other
three terms is the smallest of the four terms. Clearly, δ2(Cm2Cn) = 6 for m,n ≥
4, and in this case δ2(G2H) is the smallest term. To find an example, where
κ3(G)|V (H)| is the smallest term, let H be the graph obtained from K10 by
deleting an edge. Moreover let G be obtained from three copies of K10 and two
additional vertices x and y, by identifying two vertices in each copy with x and
y. In this case we have κ3(G)|V (H)| = 20, and all other three terms are strictly
greater than 20. It follows that all four terms that appear in the theorem below
are needed.

Theorem 10. Let G and H be 2-connected graphs of order at least six. If G and

H are not complete graphs, then

κ3(G2H) = min
{

κ3(G) |V (H)| , κ3(H) |V (G)| , δ2(G2H), D(G,H)
}

.

Proof. It follows from the discussion in Section 3 that

κ3(G2H) ≤ min
{

κ3(G) |V (H)| , κ3(H) |V (G)| , δ2(G2H), D(G,H)
}

.

To prove ≥ inequality let S be a vertex 3-cut in G2H, and C1, C2 and C3

(unions of) connected components of (G2H) − S defined by (1) in Section 2.
We call C1, C2 and C3 components (although C3 might be a union of several
connected components).

If Gy ∩Ci 6= ∅ for all i ∈ [3] and for all y ∈ V (H), we get |S| ≥ κ3(G) |V (H)|.
Similarly we get |S| ≥ κ3(H) |V (G)|, if Hx ∩ Ci 6= ∅ for all i ∈ [3] and for all
x ∈ V (G). So we can assume that there is a y ∈ V (H) so that Gy is not of type
(1, 2, 3) and that there is an x ∈ V (G) so that Hx is not of type (1, 2, 3).
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Case A. There is exactly one G-layer which is not of type (1, 2, 3) (or there

is exactly one H-layer which is not of type (1, 2, 3), in which case the proof is

analogous).
LetGy0 beG-layer that is not of type (1, 2, 3), and letGy1 andGy2 be adjacent

to Gy0 (recall that H is 2-connected and so δ(H) ≥ 2). We have |Sy1 | > |Sy0 |
for otherwise |S| ≥ κ3(G) |V (H)|. Similarly, |Sy2 | > |Sy0 |. By Corollary 5 we get
|Sy0 |+ |Sy1 | ≥ δ(G)+1 and |Sy0 |+ |Sy2 | ≥ δ(G)+1. Thus 2 |Sy0 |+ |Sy1 |+ |Sy2 | ≥
2δ(G)+ 2. So we find that 2 |Sy1 |+2 |Sy2 | ≥ |Sy1 |+ |Sy2 |+ |Sy0 |+1+ |Sy0 |+1 ≥
2δ(G) + 4, and therefore |Sy1 |+ |Sy2 | ≥ δ(G) + 2.

Now let ym ∈ V (H), ym 6= y0 be such that |Sym | = min{|Sy|; y 6= y0}. If
|Sym | ≤

1
2 |Sy1 |, then

|S| = |Sy0 |+ |Sy1 |+
∑

y 6=y0,y1

|Sy| ≥ |Sym | · |V (H)| ≥ κ3(G) |V (H)| .

Therefore |Sym | >
1
2 |Sy1 | and similarly |Sym | >

1
2 |Sy2 |. So we have

4 |Sym | ≥ |Sy1 |+ |Sy2 |+ 2 ≥ δ(G) + 4.

Since G is 2-connected, every G-layer contains at least two vertices of S.
Note that this is also true for Gy0 , because either Gy0 − Sy0 is not connected,
or Gy0 is a type (1) layer (or type (2) or type (3)), which is adjacent to a layer
of type (1, 2, 3), and every layer of type (1) adjacent to a layer of type (1, 2, 3)
contains at least two vertices of S. If κ3(G) = 2, then S ≥ κ3(G) |V (H)|. So we
may assume that κ3(G) ≥ 3. If |V (H)| ≥ 7, then

|S| ≥ |Sy0 |+ |Sy1 |+ |Sy2 |+ 4 |Sym |+ κ3(G) (|V (H)| − 7)

≥ 2 + (δ(G) + 2) + (δ(G) + 4) + 3 (|V (H)| − 7)

= 2δ(G) + |V (H)| − 2 + 2 |V (H)| − 11

≥ 2δ(G) + δ2(H) + 2 |V (H)| − 11

≥ 2δ(G) + δ2(H).

If |V (H)| = 6 we have δ2(H) ≤ 4 and therefore

|S| ≥ |Sy0 |+ |Sy1 |+ 4 |Sym | ≥ δ(G) + 1 + δ(G) + 4 ≥ 2δ(G) + δ2(H).

Case B. There is more than one G-layer which is not of type (1, 2, 3), and
more than one H-layer which is not of type (1, 2, 3), and suppose that there exist

vertices y ∈ V (H) and x ∈ V (G) such that Sy = ∅ and Sx = ∅.
Without loss of generality we can assume Gy ⊆ C1 and Hx ⊆ C1. Observe

that in this case there are at least two G-layers of type (1), because all layers
adjacent to Gy are type (1) layers, and H is connected.
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We claim that there are at least two G-layers that are not of type (1). If
there would be only one G-layer which is not of type (1), then this layer is of
type (1, 2, 3). Since this layer is adjacent to a layer of type (1), we find that
these two adjacent layers contain at least δ2(G) + 2 vertices of S (see Lemma 6).
Moreover, G2H has exactly three types of H-layers, these are types (1), (1, 2)
and (1, 3). It follows from Lemma 8 and Corolarry 5 that we have at least
2δ(H) + 2 vertices of S in four H-layers. Since we count at most four vertices
in the intersection of these six layers (two G-layers and four H-layers), we have
|S| ≥ δ2(G) + 2 + 2δ(H) + 2− 4 = δ2(G) + 2δ(H). This proves that there are at
least two G-layers that are not of type (1). Since H is 2-connected, there are at
least two pairs of adjacent G-layers (with no layer in both pairs simultaneously),
such that one of them is of type (1), and the other is not of type (1), see Lemma
3. Analogous claim is true for H-layers.

Let A = {x ∈ V (G); Hx ∩ (C2 ∪ C3) 6= ∅} and B = {y ∈ V (H); Gy ∩ (C2 ∪
C3) 6= ∅}. We claim that A and B induce a complete graph. To prove it, assume
on the contrary, that u1, u2 ∈ A and u1u2 /∈ E(G). According to Lemma 7 there
is a set S′ ⊆ S, such that |S′| ≥ δ2(G) + 2 and |S′ ∩Hx| ≤ 1 for every x ∈ V (G).
By Lemma 3 there are edges x1x2 and x3x4, with no common endvertex, such
that x1, x3 ∈ A and x2, x4 /∈ A, and therefore we find, by an application of
Corollary 5, that

∣

∣

∣

∣

∣

S ∩
4
⋃

i=1

Hxi

∣

∣

∣

∣

∣

≥ 2δ(H) + 2.

Define

S′′ = S ∩
4
⋃

i=1

Hxi

and note that |S′ ∩S′′| ≤ 4. It follows that |S| ≥ |S′|+ |S′′| − 4 ≥ δ2(G)+2δ(H).
This proves that A (and similarly also B) induces a complete graph.

Let Ai = {x ∈ V (G); Hx ∩ Ci 6= ∅} and Bi = {y ∈ V (H); Gy ∩ Ci 6= ∅}
for i = 2, 3. Since A induces a complete graph B2 ∩ B3 = ∅ and analogously
A2 ∩ A3 = ∅, because B induces a complete graph. Note also that A2 × B3 ⊆ S
and A3 ×B2 ⊆ S. Define ai = |Ai|, bi = |Bi| for i = 2, 3.

Assume that ai, bi ≥ 2 for i = 2, 3.

Suppose first that |S ∩ ((A2 × B2) ∪ (A3 × B3))| ≥ 2. Fix any (x2, y2) ∈ (A2 ×
B2) ∩ C2 and (x3, y3) ∈ (A3 ×B3) ∩ C3 and observe that

|S| ≥ a2b3 + a3b2 + 2 + |NG2H(x2, y2) ∩ (A×B) |+ |NG2H(x3, y3) ∩ (A×B) |.

Since

|NG2H(x2, y2) ∪NG2H(x3, y3)| = 2(a2 + a3 + b2 + b3 − 2)− 2

+|NG2H(x2, y2) ∩ (A×B) |+ |NG2H(x3, y3) ∩ (A×B) |
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in order to prove that |S| ≥ |NG2H(x2, y2)∪NG2H(x3, y3)| we need to prove that

a2b3 + a3b2 + 2 ≥ 2(a2 + a3 + b2 + b3)− 6.

Since a2, b3 ≥ 2 we have a2b3+4 ≥ 2a2+2b3 and similarly a3b2+4 ≥ 2a3+2b2,
which proves the above inequality and so |S| ≥ |NG2H(x2, y2)∪NG2H(x3, y3)| ≥
δ2(G2H).

Suppose next that |S ∩ ((A2×B2)∪ (A3×B3))| ≤ 1. In this case let v2 ∈ B2

and v3 ∈ B3 be such that A2 × {v2} ⊆ C2 and A3 × {v3} ⊆ C3. Let (x2, y2) ∈ C2

be any vertex with y2 6= v2 and let (x3, y3) ∈ C3 be any vertex with y3 6= v3.
Recall that there are edges u1u2 and u3u4, with no common endvertex, such that
u1, u3 ∈ A and u2, u4 /∈ A and so if, for example, u1 ∈ A2 and u3 ∈ A3 then
(u2, v2), (u4, v3) ∈ S (in any case we get two vertices in S, say if u1, u3 ∈ A2 the
conclusion is similar). It follows that

|S| ≥ |NG2H(x2, y2) ∩ (A×B) |+ |NG2H(x3, y3) ∩ (A×B) |+ a2b3 + a3b2 + 2

where the +2 is because of the vertices (u2, v2), (u4, v3) ∈ S. The rest of the proof
is the same as above and so we have |S| ≥ δ2(G2H).

Assume that not ai, bi ≥ 2 for i = 2, 3.

We may assume, without loss of generality, that a2 = 1. By the definition of
B this implies that A2 × B2 ⊆ C2. Let A2 = {x0} and let (x0, y0) ∈ A2 × B2

and (x1, y1) ∈ (A3 × B3) ∩ C3 be arbitrary vertices. Since G is 2-connected
there is at least one edge with one endvertex in A3 and the other in Ā (for
otherwise x0 is a cut-vertex in G). It follows that for every y ∈ B3 we have
(A3 × {y}) ∩ S 6= ∅ or there is a x′ /∈ A such that (x′, y) ∈ S. Note also that
(N(x0)×B2)∪ ({x0} ×B3) ⊆ S and (N(x0, y0)∪N(x1, y1))∩ (A×B) ⊆ S, and
therefore

(3) |S| ≥ deg(x0)|B2|+ |NH(y0) \B|+ 2|B3|+ |NH(y1) \B|+ |NG(x1) \A| − 1

where−1 comes from the fact that the vertex (x′, y1) might be a vertex ofNG(x1)\
A so we might have counted it twice. We also note that inequality (3) becomes
a strict inequality if (A3 × B3) ∩ S 6= ∅, for in this case we may choose y1 ∈ B3

such that (x1, y1) ∈ C3 and (A3×{y1})∩S 6= ∅ which leads to a strict inequality
in the estimate of |S| above (double counting of (x′, y1) cannot happen).

We claim that |S| ≥ δ2(G2H) unless b2 = 1 or b3 = 1. To prove this, suppose
that b2 ≥ 2 and b3 ≥ 2. Observe that

|N(x0, y0) ∪N(x1, y1)| = |N(x0, y0)|+ |N(x1, y1)| − 2

= 2(a2 + a3 + b2 + b3 − 2) + |(N(x0, y0) ∪N(x1, y1)) ∩ (A×B)| − 2

= 2(a2 + a3 + b2 + b3 − 2) + (deg(x0)− a3) + |NH(y0) \B|+ |NH(y1) \B|

+ |NG(x1) \A| − 2



918 T. Paj Erker and S. Špacapan

and therefore, when combining inequality (3) with the above equality we find
that |S| ≥ |N(x0, y0) ∪N(x1, y1)| holds whenever

(deg(x0)− 2)b2 − 1 ≥ 2a3 + deg(x0)− a3 − 4.

which (taking into account b2 ≥ 2) reduces to

deg(x0)− 1 ≥ a3

which is correct unless deg(x0) = a3 and (3) is an equality rather than a strict
inequality. To finish the proof of the claim we will prove that if deg(x0) = a3 and
b3 ≥ 2 then (3) becomes a strict inequality. To prove this recall that if (3) is an
equality then A3×B3 ⊆ C3 as observed above (so we may assume this, otherwise
we are done). Since b3 ≥ 2 there is y2 ∈ B3, y2 6= y1 such that |(S∩Ā)×{y2}| ≥ 2,
because x0 is not adjacent to any vertex in Ā and so there are at least two vertices
in Ā adjacent to a vertex in A3 (because G is 2-connected). This two additional
vertices make (3) a strict inequality. This completes the proof of the claim.

It remains to prove the theorem in case b2 = 1 or b3 = 1 (under the assump-
tion a2 = 1). If a2 = 1 and b3 = 1, then |S| < δ2(G2H) only if there is an
equality in (3) and deg(x0) = a3.

Now, if this is the case, then

|S| = deg(x0)|B2|+ |NH(y0) \B|+ |B3|+ |NH(y1) \B|+ |NG(x1) \A|.

Since (3) is an equality, A3 × {y1} ⊆ C3 (as noted above). Since a3 =
deg(x0) ≥ 2 this implies that |NH(y1)\B| = 0, for otherwise A3×(NH(y1)\B) ⊆
S, and then (3) becomes a strict inequality. It follows that

S = (A3 ×B2) ∪ ({x0} ×NH(y0) \B) ∪ (A2 ×B3) ∪ (NH(x1) \A× {y1}).

But in this case S is a type 6 vertex 3-cut and so |S| ≥ D(G,H). The case a2 = 1
and b2 = 1 leads to |S| ≥ δ2(G2H) with an easy proof, which is left to the reader.

Case C. There is more than one G-layer which is not of type (1, 2, 3), and
more than one H-layer which is not of type (1, 2, 3), and suppose that for all

y ∈ V (H) we have Sy 6= ∅, or for all x ∈ V (G) we have Sx 6= ∅.
Without loss of generality we can assume that for all y ∈ V (H), Sy 6= ∅.

Suppose that there exist nonadjacent edges v1v
′
1 ∈ E(H) and v2v

′
2 ∈ E(H), such

that Gv1 and Gv′
1
are of different types, and Gv2 and Gv′

2
are of different types.

Since Sy 6= ∅ for every y 6= v1, v
′
1, v2, v

′
2 and since |Svi ∪Sv′

i
| ≥ δ(G)+1 for i = 1, 2

(see Corollary 5), we find that |S| ≥ 2 (δ(G) + 1) + |V (H)| − 4 ≥ 2δ(G) + δ2(H).
It follows from Lemma 8 that there are exactly two different types of G-layers,
for otherwise (if there are three types) two such edges v1v

′
1 and v2v

′
2 would exist.

Moreover, if there are at least two G-layers of each type, we find again that there
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are edges v1v
′
1 and v2v

′
2 with endvertices corresponding to layers of different types

(see Lemma 3). Therefore we can assume that one G-layer is of different type
than all the others (which are all of the same type). Denote by Gy0 the G-layer
which is of different type than all the other G-layers.

If all these G-layers, except Gy0 , are of type (1) (if they are of type (2) or
(3), then the arguments that follow are analogous), then Gy0 is of type (2, 3) or
of type (1, 2, 3). For every (x, y0) ∈ C2∪C3 we have {x}×NH(y0) ⊆ S and hence
|S| ≥ δ2(G) + 2δ(H). Therefore Gy0 is not of type (1) or (2) or (3).

We claim that for every y ∈ NH(y0) and y′ /∈ NH(y0) the layers Gy and
Gy′ are compatible. Suppose this is not true. Then y and y′ are not adjacent.
There is a path between y and y′ that avoids y0 (recall that H is 2-connected).
Moreover, if degH(y0) = 2, then there is a path from y to y′ that intersects N [y0]
only in y, again because H is 2-connected. We may assume that Gy and Gy′ are
compatible with all G-layers Gy′′ where y′′ is an internal vertex of this path (for
otherwise we may redefine y and y′ to be two vertices on this path that fulfil this
condition). It follows from Lemma 9 that |Sy ∪ Sy′ ∪ Sy′′ | ≥ δ(G) + 1, where
y′′ is a vertex between y and y′ on this path. If degH(y0) ≥ 3, then there is a
neighbour y1 of y0, such that y1 6= y, y′′, and then |Sy0 ∪ Sy1 | ≥ δ(G) + 1 (see
Corollary 5). If degH(y0) = 2, also in this case there is a neighbour y1 of y0, such
that y1 6= y, y′′, leading to the same conclusion |Sy0 ∪ Sy1 | ≥ δ(G) + 1. Since G
is 2-connected, and no G-layer is of type (1) or (2) or (3), we find that for all
y 6= y0, |Sy| ≥ 2. All together we find that

|S| ≥ |Sy ∪ Sy′′ ∪ Sy′ |+ |Sy0 ∪ Sy1 |+ 2(|V (H)| − 5) ≥ 2δ(G) + |V (H)| − 2,

because |V (H)| ≥ 6. We conclude that |S| ≥ 2δ(G) + δ2(H), and so the claim is
proved.

Let y1 ∈ NH(y0) be such that |Sy1 | ≤ |Sy| for all y ∈ NH(y0), and let
y2 /∈ NH [y0] be such that |Sy2 | ≤ |Sy| for all y /∈ NH [y0]. We construct the set

S′ = Sy0 ∪ (Sy1 ×NH(y0)) ∪ (Sy2 ×NH [y0]).

Since Gy0 ∼ Gy1 and Gy1 ∼ Gy2 we find that S′ is a vertex 3-cut in G2H,
moreover |S′| ≤ |S|. Observe that S′ is a type 6 vertex 3-cut and therefore
S′ ≥ D(G,H), which concludes the proof of the theorem.
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[11] S. Špacapan, Connectivity of Cartesian products of graphs , Appl. Math. Lett. 21
(2008) 682–685.
https://doi.org/10.1016/j.aml.2007.06.010

[12] J.M. Xu and C. Yang, Connectivity and super-connectivity of Cartesian product

graphs , Ars Combin. 95 (2010) 235–245.

[13] C. Yang and J.M. Xu, Reliability of interconnection networks modeled by Cartesian

product digraphs , Networks 52 (2008) 202–205.
https://doi.org/10.1002/net.20231

Received 17 October 2019
Revised 12 March 2020

Accepted 13 March 2020

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1016/0012-365X\(73\)90138-6
https://doi.org/10.26493/1855-3974.313.e10
https://doi.org/10.1007/BF01788551
https://doi.org/10.4153/CJM-1957-060-7
https://doi.org/10.1007/s10878-015-9956-9
https://doi.org//10.7151/dmgt.1987
https://doi.org/10.7151/dmgt.1941
https://doi.org/10.1016/j.aml.2007.06.010
https://doi.org/10.1002/net.20231
http://www.tcpdf.org

