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Abstract

Let G = (V (G), E(G)) be a graph and S be a subset of vertices of
G. Let us denote by γ[u, v] a geodesic between u and v. Let Γ(S) =
{γ[vi, vj ] | vi, vj ∈ S} be a set of exactly |S|(|S|−1)/2 geodesics, one for each
pair of distinct vertices in S. Let V (Γ(S)) =

⋃
γ[x,y]∈Γ(S) V (γ[x, y]) be the set

of all vertices contained in all the geodesics in Γ(S). If V (Γ(S)) = V (G) for
some Γ(S), then we say that S is a strong geodetic set of G. The cardinality
of a minimum strong geodetic set of a graph is the strong geodetic number of
G. It is known that it is NP-hard to determine the strong geodetic number
of a general graph. In this paper we show that the strong geodetic number
of an outerplanar graph can be computed in polynomial time.
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1. Introduction

Given two vertices u and v of a graph, a geodesic is a shortest path between u
and v. The interval of a pair of vertices u and v of G, denoted by IG[u, v], is
the set of all vertices that lie on some geodesic between u and v [14,16,19]. The
interval of a set of vertices S, IG[S], is the union of the intervals between pairs
of vertices of S, taken over all pairs of vertices in S.

A set S is a geodetic set of G if IG[S] = V (G) [4, 17, 20, 22]. The geodetic
number of a graph is the cardinality of the minimum geodetic set S, and given a
graph G, the problem of deciding if there exists a geodetic set of cardinality less
than an integer k > 1 is the geodetic number problem (GNP). In [3] it has been
proved that the GNP is NP-complete for general graphs.
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In [7] the GNP is solved for Ptolemaic graphs. In [5] it has been proved
that the GNP is NP-complete for chordal or chordal bipartite graphs and is
polynomially solvable for cographs and split graphs. In [6] is proved that the GNP
is NP-complete even for cobipartite graphs; furthermore, a block decomposition
approach to solve the GNP is given and it is used to prove that the GNP is
polynomially solvable in cactus graphs. Bounds on the geodetic number are
given in [5] for triangle-free graphs and for unit interval graphs.

In order to model a problem on social networks, a variant to the GNP has
been introduced in [2] (see also [9, 11–13] and [8] where the state of the art on
the strong geodetic number is summarized). Given a set S of supervisors of a
social network, we suppose that these supervisors can communicate each other by
using a single, fixed shortest path through the network. The maximum number
of possible geodesics of communication among all the supervisors is therefore not
more than |S|(|S| − 1)/2. Denote this set of geodesics as Γ(S) and let V (Γ(S))
be the set of all the vertices contained in all selected fixed geodesics between each
distinct pair of supervisors. If V (Γ(S)) = V (G) for some Γ(S), then we say that
S is a strong geodetic set. The strong geodetic number problem on a graph G is
the problem of finding the minimum number of supervisors S such that S is a
strong geodetic set of G.

This problem is stronger than the GNP and has been shown to be NP-
complete in general graphs but solved for Apollonian graphs [2]. An edge version
of the problem was also introduced in [15].

The problem of computing the geodetic number has been solved for the class
of maximal outerplanar graphs [1]. Furthermore in [18] the solution to the GNP
has been extended to general outerplanar graphs.

In this paper, based on the results of [18], we show the existence of a poly-
nomial time algorithm for computing a minimum strong geodetic set of general
outerplanar graphs.

The paper is organized as follows. In Section 2 we give some definitions
and preliminaries. In Section 3 we give an algorithm for finding a minimum
strong geodetic set in a outerplanar graph, prove its correctness and determine
its complexity.

2. Definitions and Preliminaries

In what follows G will be a finite, connected, undirected and simple graph. Sets
V (G) and E(G) denote the vertex set and the edge set of G, respectively.

We will use standard definition for edges, paths and cycles. Given two vertices
a, b of a path P we will denote with P [a, b] the subpath of P between a and b.

Let u and v be two vertices of G. The distance, dG(u, v), between u and v in
G is the length of a geodesic between u and v in G.
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A subset X of V (G) is geodetic in G if IG[X] = V (G) and is a minimum
geodetic set (MGS) of G if it is geodetic and of minimum cardinality. The car-
dinality of an MGS in a graph G is denoted as gn(G) and is called the geodetic
number of G.

Let us denote by γ[u, v] a geodesic between u and v. Given a subset S of
vertices of G, let

(
S
2

)
= {{u, v} |u ∈ S and v ∈ S and u 6= v} be the set of all

two-elements subsets of S. By Γ(S) =
{
γ[vi, vj ] | {vi, vj} ∈

(
S
2

)}
we denote a set

of exactly |S|(|S| − 1)/2 geodesics, one for each pair of distinct vertices in S. Let
V (Γ(S)) =

⋃
γ∈Γ(S) V (γ) be the set of vertices of G contained in all the geodesics

in Γ(S). If V (Γ(S)) = V (G) for some Γ(S), then we say that S is a strong geodetic
set of G. A strong geodetic set of a graph with minimum cardinality is called a
minimum strong geodetic set (MSGS), and its cardinality is the strong geodetic
number of G, denoted as sgn(G).

Since a strong geodetic set is a geodetic set we have the following.

Fact 1. In a graph G we have that gn(G) ≤ sgn(G).

Therefore we have the following conclusion.

Corollary 1. If S is a minimum geodetic set and there is a set Γ(S) such that
V (Γ(S)) = V (G), then S is a minimum strong geodetic set.

A chord of a cycle C (or path) is an edge uv of G such that {u, v} ⊆ V (C)
and uv /∈ E(C). A cycle (path) is chordless or induced if no edge of the graph is
a chord of the cycle (path).

A vertex v of G is a cutpoint of G if v is a separator of G. A biconnected
component of a graph G is a maximal subgraph of G having no cutpoints.

An edge subdivision is an operation that substitutes in a graph G an edge uv
with the two edges uw and wv, where w /∈ V (G). Two graphs are homeomorphic
if both can be obtained from the same graph by a sequence of subdivisions of
edges [10].

A graph is planar if it can be embedded in the plane in such a way that its
edges intersect only at their endpoints. Such a drawing subdivides the plane into
regions called faces and the unbounded region is called the outer face. A planar
graph is outerplanar if it can be embedded in the plane so that all its vertices lie
on the outer face [10].

Lemma 2 [10]. A graph is outerplanar if and only if has no subgraph homeo-
morphic to K4 or homeomorphic to K2,3, except the graph obtained by removing
one edge from K4.

Lemma 3 [23]. A biconnected outerplanar graph has the unique Hamiltonian
cycle.



594 M. Mezzini

In the following, we always assume that a biconnected outerplanar graph G
is not a single edge and is not a chordless cycle because in these cases the problem
of computing an MSGS of G is trivial.

If G is a biconnected outerplanar graph, we denote by CH the Hamiltonian
cycle of G.

Let G be a biconnected outerplanar graph and CH its Hamiltonian cycle.
A leaf of G is a chordless cycle C such that E(C) contains only one chord of
CH . If C is a leaf and x1x2 is the only chord of CH in E(C), then we call x1x2

the chord of C; furthermore we denote by ex(C) the set of those vertices in
V (C) such that v ∈ ex(C) if either dC(v, x1) = max{dC(x1, u) |u ∈ V (C)} or
dC(v, x2) = max{dC(x2, u) |u ∈ V (C)}. Note that if C is odd, then |ex(C)| = 1
and if C is even, then |ex(C)| = 2. For example, with reference to the graph
of Figure 1, we have that C0 = (0, 1, 12, 13) is a leaf with chord {1, 12} and
ex(C0) = {0, 13}.

Let CH = (v0, . . . , v|V (G)|−1) be the Hamiltonian cycle of G. Given an edge
uv of CH we say that u ≺ v if we encounter u before v in a clockwise traverse
of CH starting from v0. We define Arc(u, v) to be the set of internal vertices
of the path in CH between u and v that starts at u and traverses around CH
clockwise, while Arc[u, v] denotes Arc(u, v) ∪ {u, v}. Note that if uv ∈ E(CH),
then either Arc(u, v) = ∅ or Arc(v, u) = ∅. For example in the graph of Figure
1, Arc(2, 8) = {3, 4, 5, 6, 7}.

For convenience we borrow the notation of [1, 18] and denote by L(u, v) =
Arc(u, v)\IG[u, v]. For example, in the graph of Figure 1, we have that L(0, 8) =
{2, 3, 4, 5, 6}.

The following two lemmas (see [18]) are needed for the proof of the correctness
of the algorithm.

Lemma 4 [18]. Let G be a biconnected outerplanar graph and let u, v ∈ V (G). If
z ∈ IG[u, v] ∩ Arc(u, v), then for every x ∈ Arc[u, z] and for every y ∈ Arc[z, v]
we have that z ∈ IG[x, y].

By the above lemma we have the following.

Corollary 5. Let G be a biconnected outerplanar graph and let u, v ∈ V (G).
If L(u, v) = ∅, then for every z ∈ Arc[u, v], for every x ∈ Arc[u, z] and every
y ∈ Arc[z, v], we have that L(x, y) = ∅.

Lemma 6 [18]. Let G be a biconnected outerplanar graph. Let X be a geodetic set
of G. Let C be a leaf of G and xy be the chord of C. Then |X∩(V (C)\{x, y})| ≥ 1.
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Figure 1. A biconnected outerplanar graph having two leaves C0 and C1.

3. The Algorithm

Based on the work in [18] we will show in this section an algorithm for finding an
MSGS in polynomial time. We limit our discussion to biconnected outerplanar
graphs, being the generalizations to non-biconnected outerplanar graphs very
similar and easy to make by using results from [18].

First we report here a simplified version of the algorithm presented in [18]
for computing in polynomial time an MGS of a biconnected outerplanar graph
(see Algorithm 1). Then we show how to compute an MSGS of G based on the
output of the algorithm.

Algorithm 1 Computing an MGS of a biconnected outerplanar graph

Input: A biconnected outerplanar graph G and a vertex v0 of an MGS of G
Output: An MGS of G
1: procedure simpleMGS(G)
2: Let V (G) = {v0, v1, . . . , vn−1} such that vi ≺ vi+1, i = 0, . . . , n− 2
3: X ← {v0}
4: p = v0

5: for i = 1, . . . , n− 1 do
6: if L(p, vi) 6= ∅ then
7: X ← X ∪ {vi−1}
8: p← vi−1

9: if IG[X] = V (G) then exit and return X
10: end if
11: if IG[X ∪ {vi}] = V (G) then
12: X ← X ∪ {vi}
13: exit and return X
14: end if
15: end for
16: end procedure
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Theorem 7 [18]. The procedure simpleMGS (Algorithm 1), given a biconnected
outerplanar graph G and a vertex v0 belonging to an MGS of G, produces as output
an MGS of G.

Proof. The first 14 lines in the procedure MGS reported in [18] consist in an
algorithm for finding a vertex v0 which belongs to an MGS. After, beginning
from line 15, there is a greedy algorithm which, starting with v0, builds an MGS
X. The procedure simpleMGS consists in exactly the lines of procedure MGS
reported in [18] from lines 15 to 29. So, the proof of correctness of procedure
simpleMGS is exactly the same as reported in Theorem 22 of [18], if we assume
that v0 is a vertex in an MGS of G.

Furthermore in [18] it has been proved the following.

Lemma 8 ([18], Lemma 12). Let G be a biconnected outerplanar graph and C be
a leaf of G. There exists an MGS X of G such that if C is odd, then X contains
ex(C), and if C is even, then X ∩ V (C) ⊆ ex(C).

Based on Lemma 8, we can build an “oracle” which, at the cost of running
the Algorithm 1 at most two times, finds a vertex v that is in an MGS of G which
is a requirement of input of Algorithm 1. The oracle searches this vertex in an
arbitrary leaf of G. If C is an odd leaf, then, by Lemma 8, there exists an MGS
X such that ex(C) ⊂ X. In this case the oracle will output the vertex in ex(C).
If C is even, then ex(C) = {u1, u2}. By Lemma 8, there exists an MGS X such
that either u1 or u2 is in X. We run the algorithm starting at ui obtaining as a
output a set Xi, i = 1, 2. By Theorem 7, at least one of X1 or X2 should be an
MGS of G and we can recognize it by taking the set with minimum cardinality.

For example consider the graph G of Figure 1. If we start the algorithm from
vertex u0 = 0, we obtain that L(0, 7) 6= ∅. Thus we insert the vertex u1 = 6 in
X. Then we find that L(6, 8) = ∅ and that IG[X ∪ {8}] = V (G), and then the
algorithm stops here outputting the set X = {0, 6, 8}. As another example we
may start the algorithm at vertex u0 = 13. In this case we find that L(13, 4) 6= ∅
and thus we insert in X the vertex u1 = 3. Then, since L(3, 8) = ∅ and since
IG[X ∪ {8}] = V (G), the algorithm stops here outputting the set X = {13, 3, 8}.
In both case |X| = 3, thus both the vertices 0 and 13 are contained in an MGS
of G.

Theorem 9. Let X be the output of the procedure simpleMGS (Algorithm 1)
with input a biconnected outerplanar graph G and a vertex v0 in an MGS of G.
If |X| = 2, then we have that sgn(G) = 3, otherwise sgn(G) = |X|.

Proof. Let X = {x0, . . . , xk−1} be the output of the algorithm where the vertices
are ordered by the time of insertion into X by the algorithm (from now on all
indexes are taken modulo k if not otherwise specified). We prove that the path
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Pi induced by Arc[xi−1, xi] is a geodesic of G, for i = 1, . . . , k − 1. Suppose, by
contradiction, that there is an i such that Pi is not a geodesic. When we insert xi
in X, we have that L(xi−1, xi) = ∅. This means that Arc[xi−1, xi] ⊆ IG[xi−1, xi].
Since Pi is not a geodesic, every geodesic between xi−1 and xi does not contain
all the vertices in Arc[xi−1, xi].

Let γ be a geodesic between xi−1 and xi such that V (γ) ∩ Arc[xi−1, xi] has
maximum cardinality. By hypothesis, there exist two vertices xa and xb in V (γ)∩
Arc[xi−1, xi] such that Arc(xa, xb) 6= ∅, Arc[xa, xb] ⊆ Arc[xi−1, xi] and the path
Pab induced by Arc[xa, xb] is not a geodesic. Furthermore, by the choice of γ, we
find vertices xa and xb such that V (γ) ∩ Arc[xa, xb] = {xa, xb}. Now we show
that γ1 = γ[xa, xb] is the only geodesic in G between xa and xb. First of all note
that V (γ1) 6= {xa, xb}, for otherwise xaxb would be a chord of Arc[xi−1, xi]. But
then the subgraph of G induced by Arc[xi−1, xi] would contain at least one leaf
C of G with chord xcxd such that Arc(xc, xd) ⊆ Arc(xi−1, xi). By Lemma 6, at
least one vertex of Arc(xc, xd) should be in X contradicting the fact that X is a
geodetic set.

Now suppose, by contradiction, that there exists a geodesic γ2 between xa
and xb, distinct from γ1. By the choice of γ, we have that V (γ2) ∩Arc[xa, xb] =
{xa, xb} and, by the discussion above, we have that V (γ2) 6= {xa, xb}. Further-
more, since γ1 is a geodesic distinct from γ2, there exists a vertex w ∈ γ2 such
that w /∈ γ1. But then the subgraph of G induced by V (Pab) ∪ V (γ1) ∪ V (γ2)
would be homeomorphic to K2,3 contradicting the hypothesis that G is out-
erplanar (Lemma 2). Since γ1 is the only geodesic in G between xa and xb,
we have that IG[xa, xb] = V (γ1) and, therefore, that L(xa, xb) 6= ∅. But since
L(xi−1, xi) = ∅, this contradicts Corollary 5. So we proved that Arc[xi−1, xi] is
a geodesic for i = 0, . . . , k − 1. Now if |X| = 2, we have that Γ(X) can contain
only one geodesic and we could not cover with a single geodesic all the vertices
in G. Thus, if v is any vertex in Arc(x0, x1), it is easy to see that X ∪ {v} is a
strong geodetic set of G. If |X| > 2, since Pi is a geodesic, it is easy to see that⋃k−1
i=0 V (Pi) = V (G), thus X is an SGS of G. The theorem then follows by Fact

1 and Corollary 1.

In the example above, we have already seen that X = {0, 6, 8} is an MGS
of the graph in Figure 1. It is immediate to check that the paths induced by
Arc[0, 6], Arc[6, 8] and Arc[8, 0] are geodesics. So X is also an MSGS of G.

As for the complexity of the algorithm we have the following.

Theorem 10. Let G be a biconnected outerplanar graph, n = |V (G)| and m =
|G|. The Algorithm 1 has O(mn2) time complexity.

Proof. Finding the Hamiltonian cycle of a biconnected outerplanar graph re-
quires linear time [21]. By [22], it requires at most O(nm) for finding the interval
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of a set X. The theorem follows by the fact that the algorithm requires to find
L(p, vi) at most O(n) times, and requires to find the interval of a set X at most
O(n) times.
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