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Abstract

Motivated by Ramsey theory and other rainbow-coloring-related prob-
lems, we consider edge-colorings of complete graphs without rainbow copy
of some fixed subgraphs. Given two graphs G and H, the k-colored Gallai-
Ramsey number grk(G : H) is defined to be the minimum positive integer n
such that every k-coloring of the complete graph on n vertices contains either
a rainbow copy of G or a monochromatic copy of H. Let S+

3 be the graph on
four vertices consisting of a triangle with a pendant edge. In this paper, we
prove that grk(S

+
3 : P5) = k+4 (k ≥ 5), grk(S

+
3 : mP2) = (m− 1)k+m+1

(k ≥ 1), grk(S
+
3 : P3 ∪ P2) = k + 4 (k ≥ 5) and grk(S

+
3 : 2P3) = k + 5

(k ≥ 1).
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1. Introduction

In this paper, we only consider edge-colorings of finite simple graphs. For an
integer k ≥ 1, let c : E(G) → [k] be a k-coloring of a graph G, where [k] :=
{1, 2, . . . , k}. A coloring of a graph is called rainbow if no two edges have the
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same color, and a coloring is called monochromatic if all edges are colored the
same. In 1967, Gallai [12] first investigated the structures of rainbow triangle-
free (i.e., there is no rainbow K3) colorings of complete graphs and proved the
following celebrated result. In the following statement, a coloring of a complete
graph G is said to be Gallai colored if G is rainbow triangle-free in honor of
Gallai’s work.

Theorem 1 [12, 16]. In any Gallai colored complete graph G, V (G) can be

partitioned into nonempty sets H1, H2, . . . , Hl with l ≥ 2 such that there are at

most two colors between the parts, and there is only one color on the edges between

every pair of parts.

In response to Theorem 1, Fujita and Magnant [9] considered the structures
of rainbow S+

3 -free colorings, where S+
3 is the graph on four vertices consisting

of a triangle with a pendant edge, in which the vertex with degree three is said
to be a center of S+

3 .

Theorem 2 [9]. In any rainbow S+
3 -free coloring of a complete graph G, one of

the following holds:

(1) There are three ( differently colored) monochromatic spanning trees, and

moreover, V (G) can be partitioned into nonempty sets H1, H2, . . . , Hl with

l ≥ 6 such that there are exactly three colors on edges between parts, and

there is only one color on the edges between every pair of parts; or

(2) V (G) can be partitioned into nonempty sets H1, H2, . . . , Hl with l ≥ 2 such

that there are at most two colors on the edges between the parts.

Remark 3. In Theorem 2(1), let K be a 3-coloring of Kl obtained by taking one
vertex from each part in the partition of V (G). Since there are three ( differently
colored) monochromatic spanning trees in G, there are three ( differently colored)
monochromatic spanning trees in K, say T1, T2 and T3. Since

(

l
2

)

= |E(K)| ≥
∑3

i=1 |E(Ti)| = 3(l − 1), we have l ≥ 6.

For more results about rainbow triangle-free colorings and rainbow S+
3 -free

colorings of complete graphs, see [5, 7, 15, 16] and [9, 18], respectively.
Given a graph H, the Ramsey number rk(H) is the minimum positive integer

n such that every k-coloring of Kn contains a monochromatic copy of H. Note
that a k-coloring means an edge-coloring using at most k colors. Given two graphs
G and H, the k-colored Gallai-Ramsey number grk(G : H) is defined to be the
minimum positive integer n such that every k-coloring of the complete graph on
n vertices contains either a rainbow copy of G or a monochromatic copy of H.
Note that for any graph H, we have grk(G : H) ≤ rk(H) clearly.

In [7], Fox et al. posed the following conjecture about grk(K3 : H) where H
is a complete graph.
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Conjecture 4 [7]. For integers k ≥ 1 and t ≥ 3,

grk(K3 : Kt) =

{

(r2(Kt)− 1)k/2 + 1, if k is even,

(t− 1)(r2(Kt)− 1)(k−1)/2 + 1, if k is odd.

Conjecture 4 has been studied by Chung and Graham [3] for t = 3, Liu et

al. [19] for t = 4, Magnant and Schiermeyer [20] for t = 5. There are also many
results for rainbow triangle and monochromatic cycles or paths (see [1, 5, 8, 14, 17]
and two surveys [10, 11]). However, there are not much known about Gallai-
Ramsey numbers for other rainbow subgraphs.

In this paper, we consider grk(G : H) for rainbow S+
3 and monochromatic

paths since very few results are known for the case where G = S+
3 and finding

this number for a path is a fundamental work. For any graph H, since any
rainbow K3-free coloring certainly contains no rainbow S+

3 , we have grk(S
+
3 :

H) ≥ grk(K3 : H). And since every 3-coloring contains no rainbow S+
3 , we have

grk(S
+
3 : H) = rk(H) for 1 ≤ k ≤ 3, so we will generally suppose k ≥ 4.

The first result of Gallai-Ramsey numbers for paths was given by Faudree et

al. [5].

Theorem 5 [5]. For integers k ≥ 1 and 4 ≤ n ≤ 6, grk(K3 : Pn) =
⌊

n−2
2

⌋

k +
⌈

n
2

⌉

+ 1.

Faudree et al. [5] provided a lower bound and Hall et al. [17] provided an
upper bound for grk(K3 : Pn), respectively.

Theorem 6 [5, 17]. For integers k ≥ 1 and n ≥ 3,
⌊

n− 2

2

⌋

k +
⌈n

2

⌉

+ 1 ≤ grk(K3 : Pn) ≤

⌊

n− 2

2

⌋

k + 3
⌊n

2

⌋

.

In [14], the exact values of grk(K3 : P7) for all integers k ≥ 1 were determined.

Theorem 7 [14]. For any integer k ≥ 1, grk(K3 : P7) = 2k + 5.

In [9], Fujita and Magnant considered the Gallai-Ramsey numbers for rain-
bow S+

3 .

Theorem 8 [9]. For any integer k ≥ 4, grk(S
+
3 : P4) = k + 3.

In this paper, we continue to study the Gallai-Ramsey numbers for rainbow
S+
3 and monochromatic paths. We prove the following main result.

Theorem 9. For any integer k ≥ 5, grk(S
+
3 : P5) = k + 4.

Moreover, for two disjoint graphs G and H, let G ∪ H denote the union of
G and H, and nG denote the union of n disjoint copies of G. In [14], Gregory
obtained the following result.
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Theorem 10 [14]. For any integer k ≥ 1, grk(K3 : 2P3) = k + 5.

In this work, we prove the following result concerning monochromatic 2P3.

Theorem 11. For any integer k ≥ 1, grk(S
+
3 : 2P3) = k + 5.

Furthermore, by Theorem 8, we can deduce that grk(S
+
3 : 2P2) = k + 3 for

k ≥ 4. In fact, for a matching mP2 with m edges, we can show that the Gallai-
Ramsey number grk(S

+
3 : mP2) is exactly the same as the Ramsey number

rk(mP2) (proven in [4]) since grk(S
+
3 : mP2) ≤ rk(mP2) and the sharpness ex-

ample for rk(mP2) (see [4]) contains no rainbow S+
3 . Therefore, we have the

following result.

Theorem 12. For integers m ≥ 1 and k ≥ 1, grk(S
+
3 : mP2) = (m−1)k+m+1.

Finally, since P3 ∪ P2 is a subgraph of P5, we have grk(S
+
3 : P3 ∪ P2) ≤

grk(S
+
3 : P5). From the proof of Theorem 9 (see Section 3), we can show that

grk(S
+
3 : P3 ∪ P2) ≥ grk(S

+
3 : P5) since the sharpness example for grk(S

+
3 : P5)

contains no monochromatic P3 ∪P2. Therefore, we have the following immediate
corollary.

Corollary 13. For any integer k ≥ 5, grk(S
+
3 : P3 ∪ P2) = k + 4.

The remainder of this paper is organized as follows. In Section 2, we provide
several terminologies and lemmas which will be used in the proofs of our main
results. In Section 3, we give the proof of Theorem 9. In Section 4, we give the
proof of Theorem 11.

2. Preliminaries

We first state some known classical Ramsey numbers which will be used in the
proofs of Theorems 9 and 11.

Theorem 14 [13, 22]. r2(P5) = 6, r3(P5) = 9.

Theorem 15 [2, 21]. r2(2P3) = 7, r3(2P3) = 8.

We will commonly use the following definition L(n, k) in our construction of
sharpness examples. For k ≤ n, L(n, k) is a k-coloring of Kn with vertex set
{u1, u2, . . . , un} such that for all 1 ≤ i ≤ k and i < j ≤ n, the edge uiuj has
color i, and all the remaining edges have color k. It is easy to check that L(n, k)
contains no rainbow copy of K3.

Moreover, we give some terminologies and lemmas which will be used later.
Given a colored graph G and an edge uv, let c(uv) denote the color used on
uv and C(G) be the set of colors used in G. For two disjoint vertex sets U ,
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V ⊆ V (G), let E(U, V ) denote the set of edges between U and V , and C(U, V )
denote the set of colors used on the edges in E(U, V ). In the case that all the
edges in E(U, V ) have a single color, we will use c(U, V ) to denote this color.
If |U | = 1, say U = {u}, then we simply write E(u, V ), C(u, V ) and c(u, V )
for E({u}, V ), C({u}, V ) and c({u}, V ), respectively. For U ⊆ V (G), let G[U ]
denote the subgraph of G induced by U , and C(U) denote the set of colors used
on the edges of G[U ].

Lemma 16. Let G be a rainbow S+
3 -free coloring of Kn (n ≥ 4) and c1, c2 be

two distinct colors. Then the following holds:

(1) Let v1v2 and v3v4 be two non-adjacent edges with c(v1v2) = c1 and c(v3v4) =
c2. If C({v1, v2}, {v3, v4}) ∩ {c1, c2} = ∅, then |C({v1, v2}, {v3, v4})| = 1.

(2) Let v1v2 and v2v3 be two adjacent edges with c(v1v2) = c1 and c(v2v3) = c2.
For any v ∈ V (G) \ {v1, v2, v3}, if C(v, {v1, v2, v3}) ∩ {c1, c2} = ∅, then

|C(v, {v1, v2, v3})| = 1.

Proof. For (1), without loss of generality, let c(v1v3) = c3, where c3 /∈ {c1, c2}.
Since G is rainbow S+

3 -free, we have c(v1v4) = c(v2v3) = c3, and then c(v2v4) =
c3. Hence, (1) is proved. For (2), without loss of generality, let c(vv2) = c3. Since
G is rainbow S+

3 -free, we have c(vv1) = c(vv3) = c3. Hence, (2) is proved.

Lemma 17. Let G be a rainbow S+
3 -free coloring of K8 using exactly four colors.

If V (G) can be partitioned into two subsets U and V with |U | = |V | = 4 such

that |C(U, V )| ≤ 2, then G contains a monochromatic P5.

Proof. Suppose G contains no monochromatic P5. Let U = {u1, u2, u3, u4},
V = {v1, v2, v3, v4}, C(U, V ) ⊆ {1, 2}, c(e1) = 3 and c(e2) = 4. If e1 and e2 are
two adjacent edges, say e1 = u1u2 and e2 = u2u3, then by Lemma 16(2) and the
pigeonhole principle we may assume that c({v1, v2}, {u1, u2, u3}) = 1, resulting
in a monochromatic P5, a contradiction. If e1 and e2 are two non-adjacent edges
in a same part, say e1 = u1u2 and e2 = u3u4, then by the above discussion and
Lemma 16(1) we may assume that c({u1, u2}, {u3, u4}) = 1. In order to avoid
a P5 in color 1, we have c(U, V ) = 2, resulting in a monochromatic P5 in color
2, a contradiction. If e1 ∈ E(G[U ]) and e2 ∈ E(G[V ]), say e1 = u1u2 and e2 =
v1v2, then by Lemma 16(1) we may assume that c({u1, u2}, {v1, v2}) = 1. Then
c({u3, u4}, {v1, v2}) = 2 for avoiding a monochromatic P5 in color 1. In order to
avoid a rainbow S+

3 and a monochromatic P5, we have that c(u2u3) /∈ {1, 2, 3, 4},
a contradiction.

Lemma 18 [6]. In any 2-coloring of K3,5, there is a monochromatic P5.

Lemma 19 [21]. In any 2-coloring of K4,4, there is a monochromatic 2P3.
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Lemma 20. In any 2-coloring of K3,5, there is a monochromatic 2P3. Moreover,

there exists a 2-coloring of K3,4 without monochromatic 2P3.

Proof. Let G be a 2-coloring of K3,5 with bipartition (U, V ), where U = {u1, u2,
u3} and V = {v1, v2, v3, v4, v5}. Suppose G contains no monochromatic 2P3.
By the pigeonhole principle, we may assume that c(u1, {v1, v2, v3}) = 1. If 1 /∈
C({v4, v5}, {u2, u3}), i.e., c({v4, v5}, {u2, u3}) = 2, then we consider C(v1, {u2,
u3}). Since G is monochromatic 2P3-free, at most one of v1u2 and v1u3 is colored
by 1. Thus we may assume that c(v1u2) = 2. Then c(v3u2) 6= 2, c(v3u3) 6= 2,
i.e., c(v3, {u2, u3}) = 1, which implies that {v1u1v2, u2v3u3} forms a monochro-
matic 2P3, a contradiction. Thus 1 ∈ C({v4, v5}, {u2, u3}), say c(v4u2) = 1.
Then c(v4u3) = c(u2, {v1, v2, v3, v5}) = 2, and hence 2 /∈ C(u3, {v1, v2, v3, v5}),
which implies that {v1u1v2, v3u3v5} forms a monochromatic 2P3 in color 1, a
contradiction.

For the moreover part, consider a 2-coloring G′ of K3,4 with bipartition
(U ′, V ′), where U ′ = {u′1, u

′

2, u
′

3} and V ′ = {v′1, v
′

2, v
′

3, v
′

4}. We color the edges
such that c({v′1, v

′

2}, U
′) = 1 and c({v′3, v

′

4}, U
′) = 2. Then G′ contains no

monochromatic 2P3.

3. Proof of Theorem 9

We will deduce Theorem 9 from the following statement.

Theorem 21. For any integer k ≥ 4, there is a monochromatic P5 in every

rainbow S+
3 -free coloring (using all k colors) of Kk+4.

Proof of Theorem 9 (assuming Theorem 21). For the lower bound, con-
sider L(k + 3, k), which contains no rainbow S+

3 and no monochromatic P5. For
the upper bound, let G be a k-coloring of Kk+4 (k ≥ 5) without rainbow S+

3 .
Suppose that G contains no monochromatic P5. We say a coloring is bad if
it contains neither a rainbow S+

3 nor a monochromatic P5. Among all bad k-
colorings of Kk+4, we choose G (using exactly k′ colors, k′ ≤ k) such that k is
minimum. If k′ ≤ 3, then since |V (G)| = k + 4 ≥ 9, there is a monochromatic
P5 by Theorem 14. If k′ = 4, then since |V (G)| = k + 4 ≥ 9, there exists a set V
of eight vertices such that G[V ] contains all the four colors (since we can choose
four edges with distinct colors which incident to at most eight vertices), so there
is a monochromatic P5 by Theorem 21. If k′ = k, then there is a monochromatic
P5 by Theorem 21. Thus 5 ≤ k′ ≤ k − 1. For any V ′ ⊆ V (G) with |V ′| = k′ + 4,
we have |C(V ′)| ≤ k′, i.e., G[V ′] is a k′-coloring of Kk′+4. Since k is minimum,
there is a rainbow S+

3 or a monochromatic P5 in G[V ′], a contradiction.

Proof of Theorem 21. For a contradiction, suppose that G is a rainbow S+
3 -

free coloring (using all k colors) of Kk+4 without monochromatic P5 and V (G) =
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{v1, v2, . . . , vk+4}. By Theorem 2, we divide the proof into two cases.

Case 1. Theorem 2(1) holds. In this case, we may assume that the three
colors used between the parts are 1, 2 and 3. Let H1, H2, . . . , Hl be the parts
with |H1| ≤ |H2| ≤ · · · ≤ |Hl| and l ≥ 6. We first claim that |Hl| = 2. In fact,
since there are k ≥ 4 colors used in G, we have |Hl| ≥ 2. Suppose |Hl| ≥ 3.
Since l ≥ 6, there are at least two parts with a single color to Hl. Thus there is
a monochromatic K2,3, which contains a P5, a contradiction.

Without loss of generality, we may assume thatHl = {v1, v2} and c(v1v2) = 4.
Since |V (G) \ Hl| = k + 2 ≥ 6, we may further assume that c(Hl, {v3, v4}) = 1
and c(Hl, {v5, v6}) = 2. Note that v3 and v5 must be contained in different parts
since c(Hl, v3) 6= c(Hl, v5). Thus c(v3v5) ∈ {1, 2, 3}. If c(v3v5) ∈ {1, 2}, then
there is a monochromatic P5, and if c(v3v5) = 3, then there is a rainbow S+

3 , a
contradiction.

Case 2. Theorem 2(2) holds. In this case, note that there exists a bipartition
of V (G) with at most two colors, say colors 1 and 2, on the edges between parts.
We choose such a bipartition (H1, H2) with |H1| ≤ |H2| and |H1| is minimum.
Since k + 4 ≥ 8 and by Lemmas 17 and 18, we have |H1| ≤ 2. If |H1| = 2,
say H1 = {v1, v2}, then we have c(v1v2) /∈ {1, 2} by the choice of (H1, H2). So
we may assume that c(v1v2) = 3 and c(v3v4) = 4. By Lemma 16(1), we may
let c({v1, v2}, {v3, v4}) = 1. Since G contains no monochromatic P5, we have
1 /∈ C({v1, v2}, {v5, v6, . . . , vk+4}). Thus c({v1, v2}, {v5, v6, . . . , vk+4}) = 2, also
resulting in a monochromatic P5. Thus we have |H1| = 1 and |H2| = k + 3. Let
H1 = {v1} and H2 = {v2, v3, . . . , vk+4}.

Claim 22. There is no rainbow triangle C satisfying |C(C)∩{1, 2}| = 1 in G[H2].

Proof. For a contradiction, suppose that c(v2v3) = 3, c(v3v4) = 4 and c(v2v4) =
1. Since G contains no rainbow S+

3 , we have c(v1, {v2, v3, v4}) = 1. In order to
avoid a rainbow S+

3 and a monochromatic P5, we have C({v2, v3, v4}, {v5, v6, . . . ,
vk+4}) ⊆ {3, 4}. If c(v1vi) = 2 for some i ∈ {5, 6, . . . , k + 4}, then c(v3vi) /∈
{1, 2, . . . , k}, a contradiction. Thus c(H1, H2) = 1. Since all the k colors are
used in G, we may assume that c(v5v6) = 2 and without loss of generality let
c(v3v5) = 3. Then c(v3v6) = 3. If c(v4v5) = 3, then c(v4v6) /∈ {1, 2, . . . , k}. Thus
c(v4v5) = 4, so c(v2v5) = c(v4v6) = 4. But then c(v2v6) /∈ {1, 2, . . . , k}.

Claim 23. There is no rainbow triangle C satisfying |C(C)∩{1, 2}| = 2 in G[H2].
Moreover, there is no rainbow triangle in G[H2].

Proof. For a contradiction, suppose that c(v2v3) = 1, c(v3v4) = 2 and c(v2v4) =
3. In order to avoid a rainbow S+

3 , we have C({v2, v3, v4}, V (G) \ {v2, v3, v4}) ⊆
{1, 2, 3}. Without loss of generality, let c(v1v3) = 1. Since all the k (≥ 4) colors
are used in G, we may assume that c(v5v6) = 4. If 3 /∈ C({v2, v4}, {v5, v6}), then
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c({v2, v4}, {v5, v6}) = 1 or 2 by Lemma 16(1), resulting in a monochromatic P5.
Thus 3 ∈ C({v2, v4}, {v5, v6}).

First, suppose c(v4v5) = 3. In order to avoid a rainbow S+
3 and by Claim

22, we have c(v4v6) = 3. If c(v3v5) = 3, then c(v3v6) /∈ {1, 2, . . . , k}. Thus
c(v3v5) = 2, and by symmetry c(v3v6) = 2. In order to avoid a monochromatic
P5 and by Lemma 16(2), we have c(v1, {v4, v5, v6}) = 1. For avoiding a rainbow
S+
3 , we have C(v2, {v5, v6}) ⊆ {1, 2}, and for avoiding a monochromatic P5, we

have 1 /∈ C(v2, {v5, v6}), so c(v2, {v5, v6}) = 2. But then v4v3v5v2v6 is a P5 in
color 2. Therefore, c(v4v5) 6= 3, and by symmetry c(v4v6) 6= 3.

Finally, we may assume that c(v2v5) = 3, so c(v2v6) = 3 by Claim 22 and
for avoiding a rainbow S+

3 . Note that we have C(v3, {v5, v6}) ⊆ {1, 3} and
c(v3v5) = c(v3v6). In order to avoid a monochromatic P5, we have a c(v3v5) =
c(v3v6) = 1. Then we have C(v4, {v5, v6}) ⊆ {1, 2} and c(v4v5) = c(v4v6), so
c(v4v5) = c(v4v6) = 2 for avoiding a monochromatic P5. Furthermore, we have
C(v1, {v5, v6}) ⊆ {1, 2} and c(v1v5) = c(v1v6). But then there is a monochromatic
P5, a contradiction.

Moreover, if there is a rainbow triangle C′ in G[H2], then C(C′) ⊆ {3, 4, . . . , k}
from the above argument and by Claim 22, so there is a rainbow S+

3 in G, a
contradiction.

Since G is monochromatic P5-free, there exists a rainbow triangle in G by
Theorem 5. By Claim 23, there is no rainbow triangle in G[H2], so we may assume
that c(v1v2) = 1, c(v1v3) = 2 and c(v2v3) = 3. Since all the k (≥ 4) colors are used
in G, we may assume that c(v4v5) = 4. Note that C({v2, v3}, {v4, v5, . . . , vk+4}) ⊆
{1, 2, 3}. If 3 /∈ C({v2, v3}, {v4, v5}), then c({v2, v3}, {v4, v5}) = 1 or 2 by Lemma
16(1), resulting in a monochromatic P5. Thus 3 ∈ C({v2, v3}, {v4, v5}), say
c(v3v4) = 3. Since there is no rainbow triangle in G[H2], we have c(v3v5) = 3.
Since c(v1v3) = 2, we have c(v1, {v4, v5}) = 2 by Lemma 16(2). Note that
c(v2v4) = c(v2v5) for avoiding a rainbow triangle in G[H2]. In order to avoid a
rainbow S+

3 and a monochromatic P5, we have c(v2v4) = c(v2v5) = 1.
We first claim that c(v1, {v6, v7, . . . , vk+4}) = 2. In fact, if c(v1vi) = 1 for

some i ≥ 6, then c(vi, {v4, v5}) = 2, resulting in a P5 in color 2. We next claim
that c(v2, {v6, v7, . . . , vk+4}) = 1. In fact, if c(v2vi) = 2 or 3 for some i ≥ 6,
then c(vi, {v4, v5}) = 1 for avoiding a rainbow S+

3 and a monochromatic P5,
resulting in a P5 in color 1. Finally, we claim that c(v3, {v6, v7, . . . , vk+4}) = 3.
Note that C(v3, {v6, v7, . . . , vk+4}) ⊆ {1, 3} for avoiding a rainbow triangle in
G[H2]. If c(v3vi) = 1 for some i ≥ 6, then we have c({v4, v5}, vi) ⊆ {1, 3} and
c(v4vi) = c(v5vi), resulting in a monochromatic P5, a contradiction.

Let A1 = {v2}, A2 = {v1}, A3 = {v3} and A4 = {v4, v5, . . . , vk+4}. Then
A1, A2, A3 and A4 form a partition of V (G) with c(Ai, A4) = i for i ∈ {1, 2, 3}.
If C(A4) ∩ {1, 2, 3} = ∅, then G[A4] is a (k − 3)-coloring of Kk+1. By Claim
23, there is no rainbow triangle in G[A4]. Thus there is monochromatic P5 by
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Theorem 5, a contradiction. Therefore, C(A4) ∩ {1, 2, 3} 6= ∅, say c(uv) = 1
for some u, v ∈ A4. Note that for every i ∈ {1, 2, 3}, there exists at most one
edge with color i in G[A4] for avoiding a monochromatic P5. Moreover, since
there is no rainbow triangle in G[A4], we have c(uw) = c(vw) for every vertex
w ∈ A4 \ {u, v}. Thus, C({u, v}, A4 \ {u, v}) ⊆ {4, . . . , k}, which implies that
|C({u, v}, A4 \ {u, v})| ≤ k − 3. If k = 4, then the edges between {u, v} and
A4 \ {u, v} form a K2,3 (containing a P5) in color 4, a contradiction. If k ≥ 5,
then in order to avoid a monochromatic K2,3 and since |A4 \ {u, v}| = k − 1,
there exist four vertices x, y, z, w ∈ A4 \ {u, v} such that c({u, v}, {x, y}) = c1
and c({u, v}, {z, w}) = c2, where 4 ≤ c1 < c2 ≤ k. If c(xz) ∈ {c1, c2}, then there
is a monochromatic P5, and if c(xz) /∈ {c1, c2}, then there is a rainbow S+

3 . This
contradiction completes the proof of Theorem 21.

4. Proof of Theorem 11

Proof of Theorem 11. For the lower bound, consider L(k + 4, k), which con-
tains no rainbow S+

3 and no monochromatic 2P3. Thus we have grk(S
+
3 : 2P3) ≥

k + 5.

For the upper bound, the case k = 1 is trivial and the case 2 ≤ k ≤ 3 is
precisely Theorem 15, so we may assume that k ≥ 4 in the following. Suppose
that G is a k-coloring of Kk+5 containing no rainbow S+

3 and no monochromatic
2P3 with V (G) = {v1, v2, . . . , vk+5}. We choose G such that k is minimum. Let
k′ (≤ k) be the number of colors used in G. If k′ < k, then for any V ′ ⊆ V (G)
with |V ′| = k′ + 5, we have |C(V ′)| ≤ k′, i.e., G[V ′] is a k′-coloring of Kk′+5.
Since k is minimum, there is a rainbow S+

3 or a monochromatic 2P3 in G[V ′], a
contradiction. Therefore, all the k colors are used in G. By Theorem 2, we divide
the rest of the proof into two cases.

Case 1. Theorem 2(1) holds. Let H1, H2, . . . , Hl be the parts with 1 ≤ |H1| ≤
|H2| ≤ · · · ≤ |Hl| and l ≥ 6. Let 1, 2 and 3 be the three colors used between the
parts. Since all the k (≥ 4) colors are used in G, we have |Hl| ≥ 2. Since l ≥ 6,
there are at least two parts with a single color to Hl. Thus we have |Hl| ≤ 3 for
avoiding a monochromatic 2P3.

If |Hl| = 3, say Hl = {v1, v2, v3}, then since |V (G)| = k + 5 ≥ 9 and
for avoiding a monochromatic 2P3, we may assume that c({v4, v5}, Hl) = 1,
c({v6, v7}, Hl) = 2 and c({v8, v9}, Hl) = 3. In order to avoid a rainbow S+

3 ,
C({v4, v5}, {v6, v7}) ⊆ {1, 2, 3}, and to avoid a monochromatic 2P3, 1, 2 /∈
C({v4, v5}, {v6, v7}), so c({v4, v5}, {v6, v7}) = 3. But then {v6v4v7, v8v1v9} forms
a 2P3 in color 3. Thus |Hl| = 2, say Hl = {v1, v2}. Since there are k (≥ 4) colors
in total, we may assume that c(v1v2) = 4. Note that there are at least

⌈

k+3
3

⌉

≥ 3
vertices in V (G) \Hl with a single color to Hl, say c(Hl, {v3, v4, v5}) = 1. Then
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C(Hl, {v6, v7, . . . , vk+5}) = {2, 3}. Without loss of generality, let c(Hl, {v6, v7}) =
2. Note that C({v3, v4, v5}, {v6, v7}) ⊆ {1, 2, 3}. If 1 ∈ C({v3, v4, v5}, {v6, v7}),
then there is a monochromatic 2P3, and if 3 ∈ C({v3, v4, v5}, {v6, v7}), then there
is rainbow S+

3 . Thus c({v3, v4, v5}, {v6, v7}) = 2, resulting in a monochromatic
2P3, a contradiction.

Case 2. Theorem 2(2) holds. In this case, there exists a bipartition of V (G)
with at most two colors, say colors 1 and 2, on the edges between parts. We
choose such a bipartition (H1, H2) with |H1| ≤ |H2| and |H1| is minimum. Since
|V (G)| = k + 5 ≥ 9, we have |H1| ≤ 2 by Lemmas 19 and 20.

If |H1| = 2, say H1 = {v1, v2}, then we have c(v1v2) /∈ {1, 2} by the choice
of (H1, H2). Thus we may assume that c(v1v2) = 3 and c(v3v4) = 4. By Lemma
16(1), let c({v1, v2}, {v3, v4}) = 1. Since G has no monochromatic 2P3, there is at
most one edge using color 1 between v1 (respectively, v2) and {v5, v6, . . . , vk+5},
i.e., there are at least three vertices in {v5, v6, . . . , vk+5}, say v5, v6 and v7, with
c({v1, v2}, {v5, v6, v7}) = 2. Then for avoiding a monochromatic 2P3 in color
2, we have 2 /∈ C(v1, {v8, v9, . . . , vk+5}), i.e., c(v1, {v8, v9, . . . , vk+5}) = 1. Now
{v3v2v4, v8v1v9} forms a 2P3 in color 1. Thus |H1| = 1. Let H1 = {v1} and H2 =
{v2, v3, . . . , vk+5}. Since G is monochromatic 2P3-free, there exists a rainbow
triangle C in G by Theorem 10. We may consider three different types of C:
(Type 1) v1 /∈ V (C), |C(C)∩ {1, 2}| = 1; (Type 2) v1 /∈ V (C), |C(C)∩ {1, 2}| = 2;
(Type 3) v1 ∈ V (C).

Claim 24. There is no triangle of Type 1 in G.

Proof. For a contradiction, suppose c(v2v3) = 1, c(v3v4) = 3 and c(v2v4) = 4. In
order to avoid a rainbow S+

3 , we have c(v1, {v2, v3, v4}) = 1. If 2 ∈ C(H1, H2), say
c(v1v5) = 2, then we have c(v4v5) = 1 and c(v1, {v6, v7, . . . , vk+5}) = 1 (otherwise
if c(v1vi) = 2 for some i ≥ 6, then c(v4vi) = 1, resulting in a monochromatic
2P3 in color 1). So c(v2v5) = 4. But then c(v3v5) /∈ {1, 2, . . . , k}. Therefore,
c(H1, H2) = 1. Since all the k colors are used in G, we may assume that c(v5v6) =
2. In order to avoid a monochromatic 2P3 and a rainbow S+

3 , we have 1, 2 /∈
C({v2, v3}, {v5, v6}), so by Lemma 16(1) we have c({v2, v3}, {v5, v6}) = 3 or 4,
say 3. For avoiding a monochromatic 2P3, 1, 3 /∈ C({v2, v3}, {v7, v8, . . . , vk+5}).
Thus we have c({v2, v3}, {v7, v8, . . . , vk+5}) = 4. Then {v4v2v7, v8v3v9} forms a
2P3 in color 4.

Claim 25. There is no triangle of Type 2 in G.

Proof. For a contradiction, suppose c(v2v3) = 1, c(v3v4) = 2 and c(v2v4) = 3. In
order to avoid a rainbow S+

3 , c({v2, v3, v4}, {v5, v6, . . . , vk+5}) ⊆ {1, 2, 3}. With-
out loss of generality, we may assume that c(v1v3) = 1 and c(v5v6)=4. Sup-
pose 3 /∈ C({v2, v4}, {v5, v6}). For avoiding a monochromatic 2P3 and by Lemma
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16(1), we have c({v2, v4}, {v5, v6}) = 2. Then 2 /∈ C(v4, {v7, v8, . . . , vk+5}). More-
over, if c(v4vi) = 1 for some i ≥ 7, then c(v5vi) /∈ {1, 2, . . . , k}. Thus 1 /∈
C(v4, {v7, v8, . . . , vk+5}). Hence, c(v4, {v7, v8, . . . , vk+5}) = 3. Now 2 /∈ C(v5, {v7,
v8, . . . , vk+5}) (otherwise we have a monochromatic 2P3), 4 /∈ C(v5, {v7, v8, . . . ,
vk+5}) (by Claim 24), and to avoid a rainbow S+

3 we have c(v5, {v7, v8, . . . , vk+5})
= 3. Now {v2v4v7, v8v5v9} forms a monochromatic 2P3, a contradiction. Hence
3 ∈ C({v2, v4}, {v5, v6}).

We first suppose c(v4v5) = 3, and then c(v4v6) = 3, c(v3v5) = 2 or 3. If
c(v3v5) = 3, then c(v3v6) = 3, and c(v1, {v4, v5, v6}) = 1 by Lemma 16(2). Now
c({v2, v3}, {v7, v8, . . . , vk+5}) = 2, which implies that {v7v2v8, v4v3v9} forms a
monochromatic 2P3. Thus c(v3v5) = c(v3v6) = 2. By Lemma 16(2), c(v1, {v4, v5,
v6}) = c1, where c1 ∈ {1, 2}. If c1 = 1, then 1 /∈ C(v2, {v7, v8, . . . , vk+5}),
and thus there exist two vertices vi, vj ∈ {v7, v8, . . . , vk+5} such that c(v2vi) =
c(v2vj) = 2 or 3. But in both cases we can find a monochromatic 2P3. Thus
c1 = 2. Then c(v1, {v7, v8, . . . , vk+5}) = 1 for avoiding a monochromatic 2P3. In
this case, 1, 2 /∈ C(v3, {v7, v8, . . . , vk+5}), so c(v3, {v7, v8, . . . , vk+5}) = 3. Then
there is a monochromatic 2P3. Thus c(v4v5) 6= 3 and c(v4v6) 6= 3.

Moreover, we have c(v4v5) 6= 1, otherwise c(v4v6) /∈ {1, 2, . . . , k}. Thus
c(v4v5) = c(v4v6) = 2. Next we suppose c(v2v5) = 3, and then c(v2v6) = 3. In
addition, there exists at most one edge with color 2 in E(v1, {v7, v8, . . . , vk+5}).
Thus we may assume that c(v1, {v7, v8}) = 1. Now c(v3v5) = c(v3v6) = 3. Then
1, 3 /∈ C({v2, v3}, v9), i.e., c({v2, v3}, v9) = 2, which implies {v5v4v6, v2v9v3} forms
a monochromatic 2P3.

By Claims 24 and 25, there is a triangle of Type 3 in G. Without loss of
generality, let c(v1v2) = 1, c(v1v3) = 2, c(v2v3) = 3 and c(v4v5) = 4. Suppose 3 /∈
C({v2, v3}, {v4, v5}), so we may assume that c({v2, v3}, {v4, v5}) = 1 by Lemma
16(1). In order to avoid a monochromatic 2P3, we have c(v1, {v6, v7, . . . , vk+5}) =
2, 1 /∈ C({v2, v3, v4, v5}, {v6, v7, . . . , vk+5}), and there exists at most one edge
with color 2 in E(v2, {v6, v7, . . . , vk+5}). Thus we may further assume that
c(v2, {v6, v7, . . . , vk+4}) = 3. Then c({v4, v5}, v6) = 3 for avoiding a rainbow S+

3 .
But then {v3v2v7, v4v6v5} forms a monochromatic 2P3. Thus 3 ∈ C({v2, v3}, {v4,
v5}), say c(v3v4) = 3, so c(v3v5) = 3 and by Lemma 16(2) we have c(v1, {v4, v5})
= 2.

Next we consider c(v2v4). In order to avoid a rainbow S+
3 , we have c(v2v4) ∈

{1, 2}. If c(v2v4) = 2, then c(v2v5) = 2. So 2 /∈ C({v1, v2}, {v6, v7, . . . , vk+5}) and
there exists at most one edge with color 3 in E(v2, {v6, v7, . . . , vk+5}). Thus we
have c(v1, {v6, v7, . . . , vk+5}) = 1 and we may assume c(v2, {v6, v7, . . . , vk+4}) = 1,
resulting in a monochromatic 2P3. Therefore, c(v2v4) = 1 and by symmetry
c(v2v5) = 1.

Now there exists at most one edge with color 1 in E(v1, {v6, v7, . . . , vk+5}),
so we may assume that c(v1, {v6, v7, . . . , vk+4}) = 2. Moreover, there exists at
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most one edge with color 2 (respectively, color 3) in E(v2, {v6, v7, . . . , vk+5}).
Thus, there are at least k − 2 (≥ 2) edges in E(v2, {v6, v7, . . . , vk+5}) using color
1, so we may assume c(v2v6) = 1. We claim that c(v1vk+5) = 2, otherwise
if c(v1vk+5) = 1, then c(v4vk+5) = c(v5vk+5) = 2, resulting in a monochromatic
2P3. Now we may assume that c(v2v7) = 1 without loss of generality. In addition,
if c(v2vi) = 2 (or 3) for some i ≥ 8, then c(v6vi) = c(v7vi) = 1, resulting in a
monochromatic 2P3. Thus c(v2, {v8, v9, . . . , vk+5}) = 1. To avoid a triangle of
Type 2, we have 2 /∈ C(v3, {v6, v7, . . . , vk+5}). If c(v3vi) = 1 for some i ≥ 6, then
c(v4vi) = c(v5vi) = 3. And then c(v3, {v6, v7, . . . , vk+5} \ {vi}) = 1, resulting
in a monochromatic 2P3. Thus c(v3, {v6, v7, . . . , vk+5}) = 3. Let A1 = {v2},
A2 = {v1}, A3 = {v3} and A4 = {v4, v5, . . . , vk+5}. Then we have c(Ai, A4) = i
for i ∈ {1, 2, 3}.

Claim 26. 1, 2, 3 /∈ C(A4).

Proof. For a contradiction, suppose c(uv) = 1 for some u, v ∈ A4. Note that for
every i ∈ {1, 2, 3}, if there exists an edge e with color i in G[A4], then every edge
adjacent to e in G[A4] cannot use color i for avoiding a monochromatic 2P3. Thus
2, 3 /∈ C({u, v}, A4\{u, v}) by Claim 25, i.e., C({u, v}, A4\{u, v}) ⊆ {4, 5, . . . , k}.
By Claims 24 and 25, we have c(uvi) = c(vvi) for every vi ∈ A4\{u, v}. Thus each
color appears on at most three edges in E(u,A4\{u, v}) to avoid a monochromatic
2P3. Since |A4\{u, v}| = k and |C({u, v}, A4\{u, v})| ≤ k−3, we have k ≥ 5 and
we may assume that c({u, v}, {vi1 , vi2}) = c1 and c({u, v}, {vi3 , vi4}) = c2, where
vi1 , vi2 , vi3 , vi4 are four distinct vertices in A4 \ {u, v} and 4 ≤ c1 < c2 ≤ k. In
order to avoid a rainbow S+

3 , we have C({vi1 , vi2}, {vi3 , vi4}) ⊆ {c1, c2}. Without
loss of generality, let c(vi1vi3) = c1, then c(vi1vi4) 6= c1, i.e., c(vi1vi4) = c2. But
then we can find a monochromatic 2P3 no matter c(vi2vi4) = c1 or c2.

If G[A4] contains a rainbow triangle C, then C(C) ⊆ {4, . . . , k} by Claims 24
and 25, resulting in a rainbow S+

3 . Thus G[A4] is a rainbow triangle-free coloring
of Kk+2 with k−3 colors by Claim 26. By Theorem 10, there is a monochromatic
2P3, a contradiction.
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