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Abstract

We consider oriented chromatic number of Cartesian products of two
paths Pm�Pn and of Cartesian products of paths and cycles, Cm�Pn. We

say that the oriented graph
−→
G is colored by an oriented graph

−→
H if there is

a homomorphism from
−→
G to

−→
H . In this paper we show that there exists an

oriented tournament
−→
H 10 with ten vertices which colors every orientation

of P8�Pn and every orientation of Cm�Pn, for m = 3, 4, 5, 6, 7 and n ≥ 1.

We also show that there exists an oriented graph
−→
T 16 with sixteen vertices

which colors every orientation of Cm�Pn.
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1. Introduction

An oriented graph is a digraph
−→
G obtained from an undirected graph G by

assigning to each edge one of two possible directions. We say that
−→
G is an

orientation of G and G is the underlying graph of
−→
G . A tournament

−→
T is an

orientation of a complete graph. If there is a homomorphism φ : V (
−→
G) → V (

−→
T ),

then we say that
−→
G is colored by

−→
T or that

−→
T colors

−→
G . We also say that

−→
T is a coloring graph (tournament). The oriented chromatic number of the

oriented graph
−→
G , denoted by −→χ (

−→
G), is the smallest integer k such that

−→
G

is colored by a tournament with k colors (vertices). The oriented chromatic

number −→χ (G) of an undirected graph G is the maximal chromatic number over
all possible orientations of G. The oriented chromatic number of a family of
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graphs is the maximal oriented chromatic number over all possible graphs of the
family. The upper oriented chromatic number −→χ +(G) of an undirected graph G

is the minimum order of an oriented graph
−→
H such that every orientation

−→
G of

G admits a homomorphism to
−→
H .

It is easy to see that for every undirected graph G, χ(G) ≤ −→χ (G) ≤ −→χ +(G),
see [19]. The Cartesian product G�H of two undirected graphs G and H is the
graph with the vertex set V (G) × V (H), where two vertices are adjacent if and
only if they are equal in one coordinate and adjacent in the other. We use Pk to
denote the path on k vertices. Sopena [19] considered upper oriented chromatic
number of strong, Cartesian and direct products of graphs.

Theorem 1 [19]. If G and H are two undirected graphs, then −→χ +(G�H) ≤
−→χ +(G) · −→χ +(H) ·min{χ(G), χ(H)}.

Oriented coloring has been studied in recent years [1, 2, 6, 8–10, 12, 14, 16–
20, 22], see [15] for a survey of the main results. Several authors established
or bounded chromatic numbers for some families of graphs, such as oriented
planar graphs [12,14], outerplanar graphs [12,17,18], graphs with bounded degree
three [10, 17, 20], k-trees [17], Halin graphs [5, 9], graphs with given excess [8] or
grids [3, 4, 6, 13, 22].

In this paper we focus on the oriented chromatic number of Cartesian prod-
ucts of two paths, called 2-dimensional grids Gm,n = Pm�Pn, and Cartesian
products of cycles and paths, called stacked prism graphs Ym,n = Cm�Pn.

Theorem 2 [16, 21]. Let G be an undirected graph. Then:

(a) If G is a forest with at least three vertices, then −→χ +(G) = 3.

(b) −→χ +(C5) = 5. Moreover, every orientation of C5 can be colored by
−→
H 2 (see

Figure 1(b)).

(c) For each k ≤ 3, k 6= 5, we have −→χ +(Ck) = 4. Moreover, every orientation

of a cycle Ck with k ≤ 3 and k 6= 5 can be colored by
−→
H 1 (see Figure 1(a)).

Theorems 1 and 2 imply that −→χ +(Pm�Pn) ≤ 3 · 3 · 2 = 18. Furthermore, we
know that

• −→χ (Pm�Pn) ≤ 11, for every m,n ≥ 2 [6],

• there exists an orientation of P4�P5 which requires 7 colors for oriented col-
oring [6],

• there exists an orientation of P7�P212 which requires 8 colors for oriented
coloring [3],

• −→χ (P2�P2) = 4, −→χ (P2�P3) = 5 and −→χ (P2�Pn) = 6, for n ≥ 6 [6],

• −→χ (P3�Pn) = 6, for every 3 ≤ n ≤ 6, and −→χ (P3�Pn) = 7, for every n ≥ 7
[6, 22],
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Figure 1. Coloring graphs
−→
H 1 and

−→
H 2.

• −→χ (P4�P4) = 6 and −→χ (P4�Pn) = 7, for every n ≥ 5 [6, 22],

• −→χ (P5�Pn) ≤ 9, for every n ≥ 5 [4].

Since −→χ +(C5) = 5 and −→χ +(Ck) ≤ 4, for k 6= 5, by Theorem 1, we have

• −→χ +(C5�Pn) ≤ 2 · 3 · 5 = 30, for n ≥ 3,

• −→χ +(Cm�Pn) ≤ 2 · 3 · 4 = 24, for m 6= 5, n ≥ 3.

In this paper we show that there exists an oriented tournament
−→
H 10, see Fig-

ure 2, which colors every orientation of every grid P8�Pn and every orientation
of Cm�Pn, with m = 3, 4, 5, 6, 7 and n ≥ 1. We also show that there exists an

oriented graph
−→
T 16 which colors every orientation of Cm�Pn, for m ≥ 8 and

n ≥ 1. These imply that

• −→χ (P8�Pn) ≤
−→χ +(P8�Pn) ≤ 10, for every n,

• −→χ (Cm�Pn) ≤
−→χ +(Cm�Pn) ≤ 10, for m = 3, 4, 5, 6, 7 and n ≥ 1,

• −→χ (Cm�Pn) ≤
−→χ +(Cm�Pn) ≤ 16, for m ≥ 8 and n ≥ 1.

2. Coloring Graphs

2.1. Paley tournament

Let p be a prime number such that p ≡ 3 mod 4, and let Zp = {0, . . . , p− 1} be
the ring of integers modulo p. We denote by QRp = {r : r 6= 0, r = s2, for some
s ∈ Zp} — the set of nonzero quadratic residues of Zp. All arithmetic operation
in this section are made in the ring Zp.

Definition 3. The directed graph
−→
T p with the set of vertices V

(−→
T p

)

= Zp and

the set of arcs A
(−→
T p

)

=
{

(x, y) : x, y ∈ V
(−→
T p

)

and y − x ∈ QRp

}

is called the

Paley tournament of order p. Observe that
−→
T p is a tournament.
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Lemma 4. If a ∈ QRp and b ∈ Zp, then the mapping f :
−→
T p →

−→
T p defined by

f(x) = a · x+ b is an automorphism.

Lemma 5 [7]. The Paley tournament
−→
T p is arc-transitive; i.e., for any two pairs

of arcs (u, v), (x, y) ∈ A
(−→
T p

)

, there exists an automorphism h such that h(u) = x

and h(v) = y.

Lemma 6. The Paley tournament
−→
T p is self-converse; i.e.,

−→
T p and its converse

−→
T R

p are isomorphic.

Proof. Consider the function f :
−→
T R

p →
−→
T p defined by f(x) = −x. Then (x, y)

∈ A
(−→
T R

p

)

if and only if (−x,−y) ∈ A
(−→
T p

)

.

2.2. Coloring graph
−→

H10

Consider the coloring graph
−→
H 10 obtained from the Paley tournament

−→
T 11 by

removing the vertex 0, i.e., V
(−→
H 10

)

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and (u, v) ∈

A
(−→
H 10

)

if (v − u) ∈ {1, 3, 4, 5, 9}, see Figure 2.
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Figure 2. Coloring graph
−→
H 10.
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Lemma 7. (a) For every a ∈ {1, 3, 4, 5, 9}, the function ha(x) = ax (mod 11)

is an automorphism of
−→
H 10.

(b) For every x ∈ {1, 3, 4, 5, 9} there is an automorphism ha such that ha(x) = 1.

(c) For every x ∈ {2, 6, 7, 8, 10} there is an automorphism ha such that ha(x) =
10.

Lemma 8. Let
−→
G be an orientation of a grid and let v be one of its vertex. Then

the following two statements are equivalent.

(a) There exists an oriented coloring (homomorphism) c :
−→
G →

−→
H 10.

(b) There exists an oriented coloring (homomorphism) c′ :
−→
G →

−→
H 10 such that

c′(v) ∈ {1, 10}.

2.3. Tromp graph

Definition 9. Let
−→
G be an oriented graph. We build the Tromp graph

−→
Tr(

−→
G)

in the following way.

• Let
−→
G ′ be an isomorphic copy of

−→
G ,

• ∞,∞′ be two additional vertices.

• Let t : V (
−→
G)∪{∞} → V (

−→
G ′)∪{∞′} be an isomorphism with t(∞) = ∞′. For

every u ∈ V (
−→
G)∪ {∞} by u′ we denote t(u) and for every u ∈ V (

−→
G ′)∪ {∞′}

by u′ we denote t−1(u). The pair (u, u′) is called a pair of twin vertices.

• The set of vertices V (
−→
Tr(

−→
G)) = V (

−→
G) ∪ V (

−→
G ′) ∪ {∞,∞′}.

• The set of arcs is defined by

∀
u∈V (

−→
G)

(u,∞), (∞, u′), (u′,∞′), (∞′, u) ∈ A(
−→
Tr(

−→
G)),

∀
u,v∈V (

−→
G), (u,v)∈A(

−→
G)

(u, v), (u′, v′), (v, u′), (v′, u) ∈ A(
−→
Tr(

−→
G)).

Let
−→
T 16 =

−→
Tr

(−→
T 7

)

be the Tromp graph on sixteen vertices obtained from

the Paley tournament
−→
T 7, see Figure 3.

Suppose that i and j are integers such that i ≥ 1 and j ≥ 1. Consider the star
K1,i with the set of vertices V (K1,i) = {x, v1, v2, . . . , vi} and edges of the form

{x, vk} for 1 ≤ k ≤ i; and a Tromp graph
−→
Tr(

−→
G). Let

−→
K be an orientation of the

star K1,i and c :
−→
K →

−→
Tr(

−→
G) be a homomorphism. We say that the sequence

of colors (c(v1), c(v2), . . . , c(vi)) chosen for leaves of the star is compatible with

orientation
−→
K if for every pair of vertices vk, vl it holds:

• c(vk) 6= c(vl) if (vk, x) and (x, vl) ∈
−→
K or if (vl, x) and (x, vk) ∈

−→
K , and

• c(vk) 6= c(vl)
′ if (vk, x) and (vl, x) ∈

−→
K or if (x, vl) and (x, vk) ∈

−→
K .
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Figure 3. Coloring graph
−→
T 16 =

−→
Tr(

−→
T 7).

Definition 10. We say that the Tromp graph
−→
T has the property Pc(i, j) if

|V (
−→
T )| ≥ i and for every orientation

−→
K of the star K1,i and every sequence of

colors (c(v1), c(v2), . . . , c(vk)) chosen for leaves compatible with
−→
K we can choose

j different ways to color x, the central vertex of the star.

Lemma 11 [11]. The Tromp graph
−→
T 16 has the properties Pc(1, 7), Pc(2, 3) and

Pc(3, 1).

3. Grids G8,n = P8�Pn

Definition 12. The comb R8 is an undirected graph with the set of vertices
V (R8) = {(1, 1), . . . , (8, 1), (1, 2), . . . , (8, 2)} and edges of the form {(i, 1), (i, 2)}
for 1 ≤ i ≤ 8, or {(i, 2), (i + 1, 2)} for 1 ≤ i < 8; see Figure 4. The vertices
(1, 1), . . . , (8, 1) form the first column of the comb R8, while (1, 2), . . . , (8, 2) form
the second column.

Definition 13. A set S ⊆ (V (
−→
H 10))

8 is closed under extension if
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Figure 4. Comb R8.

(a) for every orientation
−→
P of the path P8 = (v1, . . . , v8), there exists a coloring

c :
−→
P →

−→
H 10 such that (c(v1), . . . , c(v8)) ∈ S,

(b) for every orientation
−→
R of the comb R8 and for every sequence (c1, . . . , c8) ∈

S, there exists a coloring c :
−→
R →

−→
H 10 and an automorphism ha of

−→
H 10

such that

(1) (c(1, 1), . . . , c(8, 1)) = (c1, . . . , c8), and

(2) ha(c(1, 2), . . . , c(8, 2)) ∈ S.

Lemma 14. There exists a set S ⊆ (V (
−→
H 10))

8 which is closed under extension.

Proof. In order to proof the lemma we use a computer. We have designed an
algorithm that finds a proper set S. Let

Smax(P8) =
{

(c1, . . . , c8) : c1 ∈ {1, 10}, and ∀2≤i≤8 ci ∈ V (
−→
H 10), and ci−1 6= ci

}

.

Note, that for every sequence t = (t1, . . . , t8) ∈ Smax(P8), there exists an orien-

tation
−→
P of the path P8 = (v1, . . . , v8) and a coloring c :

−→
P →

−→
H 10 such that

(c(v1), . . . , c(v8)) = t. For a set T , a sequence t = (t1, . . . , t8) ∈ T , and an ori-

entation
−→
R of the comb R8, we say that t can be extended in T on

−→
R if there

exists a coloring c :
−→
R →

−→
H 10 and a homomorphism ha such that

• (c(1, 1), . . . , c(8, 1)) = t, and

• ha(c(1, 2), . . . , c(8, 2)) ∈ T .

The algorithm starts with T = Smax(P8). In the while loop, for each sequence

t ∈ T and for each orientation
−→
R of the comb R8, the algorithm checks if t can

be extended in T on
−→
R . If the sequence t can not be extended, then t is removed

from T . After the while loop, the set T satisfies the condition (b) of Definition
13. It is easy to see that if T is not empty, then it also satisfies the condition (a).
In this case S = T is returned. If T is empty, then the algorithm returns NO.



806 A. Nenca

Algorithm ComputeSetS

OUTPUT: a set S ⊂ (V (
−→
H 10))

8 closed under extension or NO if such a set does
not exist.

1. compute the set Smax(P8)
2. T := Smax(P8)
3. SetIsReady := false

4. while not SetIsReady

5. SetIsReady := true

6. for every sequence t = (t1, . . . , t8) ∈ T

7. color the first column of the comb R8

8. by setting c(i, 1) = ti, for 1 ≤ i ≤ 8
9. SeqCanBeExtended := true

10. for every orientation
−→
R of the comb R8

11. if t cannot be extended on
−→
R

12. SeqCanBeExtended := false

13. if not SeqCanBeExtended

14. T := T − t

15. SetIsReady := false

16. if T = ∅
17. return NO

18. else

19. S := T

20. return the set S

Using Algorithm ComputeSetS we have found a nonempty set S closed under ex-
tension. The set S is posted on the website https://inf.ug.edu.pl/grids/.

Theorem 15. Every orientation of every grid with eight rows can be colored by

the coloring graph
−→
H 10.

Proof. For a given orientation
−→
G of G(8, n) and i ≤ n, by

−→
G(i) we denote the

induced subgraph of
−→
G formed by the first i columns of

−→
G . It is easy to show

by induction that, for every i, there is a coloring c :
−→
G(i) →

−→
H 10 such that

c(ith column) ∈ S.

4. Stacked Prism Graphs Ym,n = Cm�Pn

Theorem 16. Every orientation of Cm�Pn with m ≥ 3 and n ≥ 1 can be colored

by the Tromp graph
−→
T 16.
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Figure 5. Stacked prism graph Ym,n.

Proof. Let
−→
Y be any orientation of stacked prism graph Ym,n = Cm�Pn. We

identify each vertex u ∈
−→
Y with the pair of its coordinates (i, j), 1 ≤ i ≤ m,

1 ≤ j ≤ n. We shall show that
−→
Y can be colored by

−→
T 16. We color the vertices

of
−→
Y row by row. For the first row, clearly, it is always possible to color any

oriented cycle by homomorphism to
−→
T 16, because

−→
T 16 has the properties Pc(2, 3)

and Pc(1, 7). Now, suppose that i > 1 and the rows from 1 to i − 1 are already
colored. To color the vertex (1, i) we choose a color which is compatible

• with the color of vertex (2, i− 1) in the star {(2, i), (1, i), (2, i− 1)},

• with the color of vertex (m, i− 1) in the star {(m, i), (1, i), (m, i− 1)},

which is always possible using the property Pc(1, 7). Using the property Pc(2, 3)
it is always possible to color vertex (2, i) by the color compatible with color of
the vertex (3, i − 1) in the star {(3, i), (2, i), (3, i − 1)}. Then we continue this
method to color vertices (3, i), . . . , (m − 2, i). To color the vertex (m − 1, i) we
choose a color which is compatible with the colors of vertices (m, i− 1) and (1, i)
in the star {(m, i), (1, i), (m, i−1), (m−1, i)}. This is possible, because the colors
of vertices (1, i) and (m, i−1) are compatible in the star {(m, i), (1, i), (m, i−1)}
Finally we color the vertex (m, i) using the property Pc(3, 1). Similarly we can
color the following rows.

Theorem 17. Every orientation of stacked prism graph Ym,n = Cm�Pn with

3 ≤ m ≤ 7 can be colored by the coloring graph
−→
H 10.
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Proof. The proof of the theorem is similar to the proof of Theorem 15 and
follows from Lemma 20.

Definition 18. For m ≥ 3, the m-sunlet graph Sunm is an undirected graph with
the set of vertices V (Sunm) = {(1, 1), . . . , (m, 1), (1, 2), . . . , (m, 2)} and edges of
the form {(i, 1), (i, 2)} for 1 ≤ i ≤ m, or {(i, 2), (i + 1, 2)} for 1 ≤ i < m, or
{(m, 2), (1, 2)}; see Figure 6.

(m, 2)

(1, 2)(2, 2)

(3, 2)

(4, 2)

(m, 1)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

Figure 6. m-sunlet graph.

Definition 19. A set S ⊆ (V (
−→
H 10))

m is cycle-closed under extension if

(a) for every orientation
−→
C of the cycle Cm = (v1, . . . , vm), there exists a coloring

c :
−→
C →

−→
H 10 such that (c(v1), . . . , c(vm)) ∈ S,

(b) for every orientation
−−→
Sun of the m-sunlet graph Sunm and for every se-

quence (c1, . . . , cm) ∈ S, there exists a coloring c :
−−→
Sun →

−→
H 10 and an

automorphism ha of
−→
H 10 such that

(1) (c(1, 1), . . . , c(m, 1)) = (c1, . . . , cm), and

(2) ha(c(1, 2), . . . , c(m, 2)) ∈ S.

Lemma 20. For each m = 3, 4, 5, 6,7, there exists a nonempty set Sm ⊆

(V (
−→
H 10))

m, which is cycle-closed under extension.

Proof. In order to proof the lemma we use a computer. We have designed an
algorithm, similar to the Algorithm ComputeSetS, that finds a set cycle-closed
under extension. The algorithm, for a given m, uses the m-sunlet Sunm instead
of a comb R8. Using the algorithm we have found that for each m = 3, . . . , 7,
there exists a nonempty set cycle-closed under extension.
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[14] A. Raspaud and É. Sopena, Good and semi-strong colorings of oriented planar

graphs , Inform. Process. Lett. 51 (1994) 171–174.
https://doi.org/10.1016/0020-0190(94)00088-3
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