ORIENTED CHROMATIC NUMBER OF CARTESIAN PRODUCTS $P_{m} \square P_{n}$ AND $C_{m} \square P_{n}$

Anna Nenca
Institute of Informatics
Faculty of Mathematics, Physics and Informatics
University of Gdańsk, 80-308 Gdańsk, Poland
e-mail: anenca@inf.ug.edu.pl

Abstract

We consider oriented chromatic number of Cartesian products of two paths $P_{m} \square P_{n}$ and of Cartesian products of paths and cycles, $C_{m} \square P_{n}$. We say that the oriented graph \vec{G} is colored by an oriented graph \vec{H} if there is a homomorphism from \vec{G} to \vec{H}. In this paper we show that there exists an oriented tournament \vec{H}_{10} with ten vertices which colors every orientation of $P_{8} \square P_{n}$ and every orientation of $C_{m} \square P_{n}$, for $m=3,4,5,6,7$ and $n \geq 1$. We also show that there exists an oriented graph \vec{T}_{16} with sixteen vertices which colors every orientation of $C_{m} \square P_{n}$.

Keywords: graphs, oriented coloring, oriented chromatic number.
2010 Mathematics Subject Classification: 05C15.

1. Introduction

An oriented graph is a digraph \vec{G} obtained from an undirected graph G by assigning to each edge one of two possible directions. We say that \vec{G} is an orientation of G and G is the underlying graph of \vec{G}. A tournament \vec{T} is an orientation of a complete graph. If there is a homomorphism $\phi: V(\vec{G}) \rightarrow V(\vec{T})$, then we say that \vec{G} is colored by \vec{T} or that \vec{T} colors \vec{G}. We also say that \vec{T} is a coloring graph (tournament). The oriented chromatic number of the oriented graph \vec{G}, denoted by $\vec{\chi}(\vec{G})$, is the smallest integer k such that \vec{G} is colored by a tournament with k colors (vertices). The oriented chromatic number $\vec{\chi}(G)$ of an undirected graph G is the maximal chromatic number over all possible orientations of G. The oriented chromatic number of a family of
graphs is the maximal oriented chromatic number over all possible graphs of the family. The upper oriented chromatic number $\vec{\chi}^{+}(G)$ of an undirected graph G is the minimum order of an oriented graph \vec{H} such that every orientation \vec{G} of G admits a homomorphism to \vec{H}.

It is easy to see that for every undirected graph $G, \chi(G) \leq \vec{\chi}(G) \leq \vec{\chi}^{+}(G)$, see [19]. The Cartesian product $G \square H$ of two undirected graphs G and H is the graph with the vertex set $V(G) \times V(H)$, where two vertices are adjacent if and only if they are equal in one coordinate and adjacent in the other. We use P_{k} to denote the path on k vertices. Sopena [19] considered upper oriented chromatic number of strong, Cartesian and direct products of graphs.

Theorem 1 [19]. If G and H are two undirected graphs, then $\vec{\chi}^{+}(G \square H) \leq$ $\vec{\chi}^{+}(G) \cdot \vec{\chi}^{+}(H) \cdot \min \{\chi(G), \chi(H)\}$.

Oriented coloring has been studied in recent years $[1,2,6,8-10,12,14,16$ 20,22], see [15] for a survey of the main results. Several authors established or bounded chromatic numbers for some families of graphs, such as oriented planar graphs $[12,14]$, outerplanar graphs $[12,17,18]$, graphs with bounded degree three $[10,17,20]$, k-trees [17], Halin graphs [5, 9], graphs with given excess [8] or grids [3, 4, 6, 13, 22].

In this paper we focus on the oriented chromatic number of Cartesian products of two paths, called 2-dimensional grids $G_{m, n}=P_{m} \square P_{n}$, and Cartesian products of cycles and paths, called stacked prism graphs $Y_{m, n}=C_{m} \square P_{n}$.
Theorem 2 [16,21]. Let G be an undirected graph. Then:
(a) If G is a forest with at least three vertices, then $\vec{\chi}^{+}(G)=3$.
(b) $\vec{\chi}^{+}\left(C_{5}\right)=5$. Moreover, every orientation of C_{5} can be colored by \vec{H}_{2} (see Figure 1(b)).
(c) For each $k \leq 3, k \neq 5$, we have $\vec{\chi}^{+}\left(C_{k}\right)=4$. Moreover, every orientation of a cycle C_{k} with $k \leq 3$ and $k \neq 5$ can be colored by \vec{H}_{1} (see Figure 1(a)).
Theorems 1 and 2 imply that $\vec{\chi}^{+}\left(P_{m} \square P_{n}\right) \leq 3 \cdot 3 \cdot 2=18$. Furthermore, we know that

- $\vec{\chi}\left(P_{m} \square P_{n}\right) \leq 11$, for every $m, n \geq 2[6]$,
- there exists an orientation of $P_{4} \square P_{5}$ which requires 7 colors for oriented coloring [6],
- there exists an orientation of $P_{7} \square P_{212}$ which requires 8 colors for oriented coloring [3],
- $\vec{\chi}\left(P_{2} \square P_{2}\right)=4, \vec{\chi}\left(P_{2} \square P_{3}\right)=5$ and $\vec{\chi}\left(P_{2} \square P_{n}\right)=6$, for $n \geq 6[6]$,
- $\vec{\chi}\left(P_{3} \square P_{n}\right)=6$, for every $3 \leq n \leq 6$, and $\vec{\chi}\left(P_{3} \square P_{n}\right)=7$, for every $n \geq 7$ $[6,22]$,

Figure 1. Coloring graphs \vec{H}_{1} and \vec{H}_{2}.

- $\vec{\chi}\left(P_{4} \square P_{4}\right)=6$ and $\vec{\chi}\left(P_{4} \square P_{n}\right)=7$, for every $n \geq 5[6,22]$,
- $\vec{\chi}\left(P_{5} \square P_{n}\right) \leq 9$, for every $n \geq 5[4]$.

Since $\vec{\chi}^{+}\left(C_{5}\right)=5$ and $\vec{\chi}^{+}\left(C_{k}\right) \leq 4$, for $k \neq 5$, by Theorem 1 , we have

- $\vec{\chi}^{+}\left(C_{5} \square P_{n}\right) \leq 2 \cdot 3 \cdot 5=30$, for $n \geq 3$,
- $\vec{\chi}^{+}\left(C_{m} \square P_{n}\right) \leq 2 \cdot 3 \cdot 4=24$, for $m \neq 5, n \geq 3$.

In this paper we show that there exists an oriented tournament \vec{H}_{10}, see Figure 2 , which colors every orientation of every grid $P_{8} \square P_{n}$ and every orientation of $C_{m} \square P_{n}$, with $m=3,4,5,6,7$ and $n \geq 1$. We also show that there exists an oriented graph \vec{T}_{16} which colors every orientation of $C_{m} \square P_{n}$, for $m \geq 8$ and $n \geq 1$. These imply that

- $\vec{\chi}\left(P_{8} \square P_{n}\right) \leq \vec{\chi}^{+}\left(P_{8} \square P_{n}\right) \leq 10$, for every n,
- $\vec{\chi}\left(C_{m} \square P_{n}\right) \leq \vec{\chi}^{+}\left(C_{m} \square P_{n}\right) \leq 10$, for $m=3,4,5,6,7$ and $n \geq 1$,
- $\vec{\chi}\left(C_{m} \square P_{n}\right) \leq \vec{\chi}^{+}\left(C_{m} \square P_{n}\right) \leq 16$, for $m \geq 8$ and $n \geq 1$.

2. Coloring Graphs

2.1. Paley tournament

Let p be a prime number such that $p \equiv 3 \bmod 4$, and let $\mathbb{Z}_{p}=\{0, \ldots, p-1\}$ be the ring of integers modulo p. We denote by $Q R_{p}=\left\{r: r \neq 0, r=s^{2}\right.$, for some $\left.s \in \mathbb{Z}_{p}\right\}$ - the set of nonzero quadratic residues of \mathbb{Z}_{p}. All arithmetic operation in this section are made in the ring \mathbb{Z}_{p}.

Definition 3. The directed graph \vec{T}_{p} with the set of vertices $V\left(\vec{T}_{p}\right)=\mathbb{Z}_{p}$ and the set of $\operatorname{arcs} A\left(\vec{T}_{p}\right)=\left\{(x, y): x, y \in V\left(\vec{T}_{p}\right)\right.$ and $\left.y-x \in Q R_{p}\right\}$ is called the Paley tournament of order p. Observe that \vec{T}_{p} is a tournament.

Lemma 4. If $a \in Q R_{p}$ and $b \in \mathbb{Z}_{p}$, then the mapping $f: \vec{T}_{p} \rightarrow \vec{T}_{p}$ defined by $f(x)=a \cdot x+b$ is an automorphism.
Lemma 5 [7]. The Paley tournament \vec{T}_{p} is arc-transitive; i.e., for any two pairs of arcs $(u, v),(x, y) \in A\left(\vec{T}_{p}\right)$, there exists an automorphism h such that $h(u)=x$ and $h(v)=y$.
Lemma 6. The Paley tournament \vec{T}_{p} is self-converse; i.e., \vec{T}_{p} and its converse \vec{T}_{p}^{R} are isomorphic.
Proof. Consider the function $f: \vec{T}_{p}^{R} \rightarrow \vec{T}_{p}$ defined by $f(x)=-x$. Then (x, y) $\in A\left(\vec{T}_{p}^{R}\right)$ if and only if $(-x,-y) \in A\left(\vec{T}_{p}\right)$.

2.2. Coloring graph \vec{H}_{10}

Consider the coloring graph \vec{H}_{10} obtained from the Paley tournament \vec{T}_{11} by removing the vertex 0 , i.e., $V\left(\vec{H}_{10}\right)=\{1,2,3,4,5,6,7,8,9,10\}$ and $(u, v) \in$ $A\left(\vec{H}_{10}\right)$ if $(v-u) \in\{1,3,4,5,9\}$, see Figure 2.

Figure 2. Coloring graph \vec{H}_{10}.

Lemma 7. (a) For every $a \in\{1,3,4,5,9\}$, the function $h_{a}(x)=a x(\bmod 11)$ is an automorphism of \vec{H}_{10}.
(b) For every $x \in\{1,3,4,5,9\}$ there is an automorphism h_{a} such that $h_{a}(x)=1$.
(c) For every $x \in\{2,6,7,8,10\}$ there is an automorphism h_{a} such that $h_{a}(x)=$ 10.

Lemma 8. Let \vec{G} be an orientation of a grid and let v be one of its vertex. Then the following two statements are equivalent.
(a) There exists an oriented coloring (homomorphism) c: $\vec{G} \rightarrow \vec{H}_{10}$.
(b) There exists an oriented coloring (homomorphism) $c^{\prime}: \vec{G} \rightarrow \vec{H}_{10}$ such that $c^{\prime}(v) \in\{1,10\}$.

2.3. Tromp graph

Definition 9. Let \vec{G} be an oriented graph. We build the Tromp graph $\overrightarrow{\operatorname{Tr}}(\vec{G})$ in the following way.

- Let \vec{G}^{\prime} be an isomorphic copy of \vec{G},
- ∞, ∞^{\prime} be two additional vertices.
- Let $t: V(\vec{G}) \cup\{\infty\} \rightarrow V\left(\vec{G}^{\prime}\right) \cup\left\{\infty^{\prime}\right\}$ be an isomorphism with $t(\infty)=\infty^{\prime}$. For every $u \in V(\vec{G}) \cup\{\infty\}$ by u^{\prime} we denote $t(u)$ and for every $u \in V\left(\overrightarrow{G^{\prime}}\right) \cup\left\{\infty^{\prime}\right\}$ by u^{\prime} we denote $t^{-1}(u)$. The pair $\left(u, u^{\prime}\right)$ is called a pair of twin vertices.
- The set of vertices $V(\overrightarrow{\operatorname{Tr}}(\vec{G}))=V(\vec{G}) \cup V\left(\vec{G}^{\prime}\right) \cup\left\{\infty, \infty^{\prime}\right\}$.
- The set of arcs is defined by

$$
\begin{aligned}
& \forall_{u \in V(\vec{G})}(u, \infty),\left(\infty, u^{\prime}\right),\left(u^{\prime}, \infty^{\prime}\right),\left(\infty^{\prime}, u\right) \in A(\overrightarrow{\operatorname{Tr}}(\vec{G})), \\
& \forall_{u, v \in V(\vec{G}),(u, v) \in A(\vec{G})}(u, v),\left(u^{\prime}, v^{\prime}\right),\left(v, u^{\prime}\right),\left(v^{\prime}, u\right) \in A(\overrightarrow{\operatorname{Tr}}(\vec{G})) .
\end{aligned}
$$

Let $\vec{T}_{16}=\overrightarrow{\operatorname{Tr}}\left(\vec{T}_{7}\right)$ be the Tromp graph on sixteen vertices obtained from the Paley tournament \vec{T}_{7}, see Figure 3 .

Suppose that i and j are integers such that $i \geq 1$ and $j \geq 1$. Consider the star $K_{1, i}$ with the set of vertices $V\left(K_{1, i}\right)=\left\{x, v_{1}, v_{2}, \ldots, v_{i}\right\}$ and edges of the form $\left\{x, v_{k}\right\}$ for $1 \leq k \leq i$; and a Tromp graph $\overrightarrow{\operatorname{Tr}}(\vec{G})$. Let \vec{K} be an orientation of the star $K_{1, i}$ and $c: \vec{K} \rightarrow \overrightarrow{\operatorname{Tr}}(\vec{G})$ be a homomorphism. We say that the sequence of colors $\left(c\left(v_{1}\right), c\left(v_{2}\right), \ldots, c\left(v_{i}\right)\right)$ chosen for leaves of the star is compatible with orientation \vec{K} if for every pair of vertices v_{k}, v_{l} it holds:

- $c\left(v_{k}\right) \neq c\left(v_{l}\right)$ if $\left(v_{k}, x\right)$ and $\left(x, v_{l}\right) \in \vec{K}$ or if $\left(v_{l}, x\right)$ and $\left(x, v_{k}\right) \in \vec{K}$, and
- $c\left(v_{k}\right) \neq c\left(v_{l}\right)^{\prime}$ if $\left(v_{k}, x\right)$ and $\left(v_{l}, x\right) \in \vec{K}$ or if $\left(x, v_{l}\right)$ and $\left(x, v_{k}\right) \in \vec{K}$.

Figure 3. Coloring graph $\vec{T}_{16}=\overrightarrow{T r}\left(\vec{T}_{7}\right)$.

Definition 10. We say that the Tromp graph \vec{T} has the property $P_{c}(i, j)$ if $|V(\vec{T})| \geq i$ and for every orientation \vec{K} of the star $K_{1, i}$ and every sequence of colors $\left(c\left(v_{1}\right), c\left(v_{2}\right), \ldots, c\left(v_{k}\right)\right)$ chosen for leaves compatible with \vec{K} we can choose j different ways to color x, the central vertex of the star.
Lemma 11 [11]. The Tromp graph \vec{T}_{16} has the properties $P_{c}(1,7), P_{c}(2,3)$ and $P_{c}(3,1)$.

3. \quad GRIDS $G_{8, n}=P_{8} \square P_{n}$

Definition 12. The comb R_{8} is an undirected graph with the set of vertices $V\left(R_{8}\right)=\{(1,1), \ldots,(8,1),(1,2), \ldots,(8,2)\}$ and edges of the form $\{(i, 1),(i, 2)\}$ for $1 \leq i \leq 8$, or $\{(i, 2),(i+1,2)\}$ for $1 \leq i<8$; see Figure 4. The vertices $(1,1), \ldots,(8,1)$ form the first column of the comb R_{8}, while $(1,2), \ldots,(8,2)$ form the second column.
Definition 13. A set $S \subseteq\left(V\left(\vec{H}_{10}\right)\right)^{8}$ is closed under extension if

Figure 4. Comb R_{8}.
(a) for every orientation \vec{P} of the path $P_{8}=\left(v_{1}, \ldots, v_{8}\right)$, there exists a coloring $c: \vec{P} \rightarrow \vec{H}_{10}$ such that $\left(c\left(v_{1}\right), \ldots, c\left(v_{8}\right)\right) \in S$,
(b) for every orientation \vec{R} of the comb R_{8} and for every sequence $\left(c_{1}, \ldots, c_{8}\right) \in$ S, there exists a coloring $c: \vec{R} \rightarrow \vec{H}_{10}$ and an automorphism h_{a} of \vec{H}_{10} such that
(1) $(c(1,1), \ldots, c(8,1))=\left(c_{1}, \ldots, c_{8}\right)$, and
(2) $h_{a}(c(1,2), \ldots, c(8,2)) \in S$.

Lemma 14. There exists a set $S \subseteq\left(V\left(\vec{H}_{10}\right)\right)^{8}$ which is closed under extension.
Proof. In order to proof the lemma we use a computer. We have designed an algorithm that finds a proper set S. Let
$S_{\max }\left(P_{8}\right)=\left\{\left(c_{1}, \ldots, c_{8}\right): c_{1} \in\{1,10\}\right.$, and $\forall_{2 \leq i \leq 8} c_{i} \in V\left(\vec{H}_{10}\right)$, and $\left.c_{i-1} \neq c_{i}\right\}$.
Note, that for every sequence $t=\left(t_{1}, \ldots, t_{8}\right) \in S_{\max }\left(P_{8}\right)$, there exists an orientation \vec{P} of the path $P_{8}=\left(v_{1}, \ldots, v_{8}\right)$ and a coloring $c: \vec{P} \rightarrow \vec{H}_{10}$ such that $\left(c\left(v_{1}\right), \ldots, c\left(v_{8}\right)\right)=t$. For a set T, a sequence $t=\left(t_{1}, \ldots, t_{8}\right) \in T$, and an orientation \vec{R} of the comb R_{8}, we say that t can be extended in T on \vec{R} if there exists a coloring $c: \vec{R} \rightarrow \vec{H}_{10}$ and a homomorphism h_{a} such that

- $(c(1,1), \ldots, c(8,1))=t$, and
- $h_{a}(c(1,2), \ldots, c(8,2)) \in T$.

The algorithm starts with $T=S_{\max }\left(P_{8}\right)$. In the while loop, for each sequence $t \in T$ and for each orientation \vec{R} of the comb R_{8}, the algorithm checks if t can be extended in T on \vec{R}. If the sequence t can not be extended, then t is removed from T. After the while loop, the set T satisfies the condition (b) of Definition 13. It is easy to see that if T is not empty, then it also satisfies the condition (a). In this case $S=T$ is returned. If T is empty, then the algorithm returns NO.

Algorithm ComputeSet S

OUTPUT: a set $S \subset\left(V\left(\vec{H}_{10}\right)\right)^{8}$ closed under extension or NO if such a set does not exist.

```
compute the set Smax (P8)
T:= S Smax (P)
SetIsReady := false
while not SetIsReady
    SetIsReady := true
    for every sequence t=(t, ,., t, t ) \inT
        color the first column of the comb R8
                by setting c(i,1)=ti, for 1\leqi\leq8
            SeqCanBeExtended := true
            for every orientation }\vec{R}\mathrm{ of the comb }\mp@subsup{R}{8}{
                        if t cannot be extended on }\vec{R
                    SeqCanBeExtended := false
            if not SeqCanBeExtended
                        T:= T-t
                        SetIsReady := false
    if T=\emptyset
    return NO
    else
    S := T
    return the set S
```

Using Algorithm ComputeSet S we have found a nonempty set S closed under extension. The set S is posted on the website https://inf.ug.edu.pl/grids/.

Theorem 15. Every orientation of every grid with eight rows can be colored by the coloring graph \vec{H}_{10}.

Proof. For a given orientation \vec{G} of $G(8, n)$ and $i \leq n$, by $\vec{G}(i)$ we denote the induced subgraph of \vec{G} formed by the first i columns of \vec{G}. It is easy to show by induction that, for every i, there is a coloring $c: \vec{G}(i) \rightarrow \vec{H}_{10}$ such that $c(i$ th column $) \in S$.

4. Stacked Prism Graphs $Y_{m, n}=C_{m} \square P_{n}$

Theorem 16. Every orientation of $C_{m} \square P_{n}$ with $m \geq 3$ and $n \geq 1$ can be colored by the Tromp graph \vec{T}_{16}.

Figure 5. Stacked prism graph $Y_{m, n}$.
Proof. Let \vec{Y} be any orientation of stacked prism graph $Y_{m, n}=C_{m} \square P_{n}$. We identify each vertex $u \in \vec{Y}$ with the pair of its coordinates $(i, j), 1 \leq i \leq m$, $1 \leq j \leq n$. We shall show that \vec{Y} can be colored by \vec{T}_{16}. We color the vertices of \vec{Y} row by row. For the first row, clearly, it is always possible to color any oriented cycle by homomorphism to \vec{T}_{16}, because \vec{T}_{16} has the properties $P_{c}(2,3)$ and $P_{c}(1,7)$. Now, suppose that $i>1$ and the rows from 1 to $i-1$ are already colored. To color the vertex $(1, i)$ we choose a color which is compatible

- with the color of vertex $(2, i-1)$ in the star $\{(2, i),(1, i),(2, i-1)\}$,
- with the color of vertex $(m, i-1)$ in the star $\{(m, i),(1, i),(m, i-1)\}$,
which is always possible using the property $P_{c}(1,7)$. Using the property $P_{c}(2,3)$ it is always possible to color vertex $(2, i)$ by the color compatible with color of the vertex $(3, i-1)$ in the star $\{(3, i),(2, i),(3, i-1)\}$. Then we continue this method to color vertices $(3, i), \ldots,(m-2, i)$. To color the vertex $(m-1, i)$ we choose a color which is compatible with the colors of vertices $(m, i-1)$ and $(1, i)$ in the star $\{(m, i),(1, i),(m, i-1),(m-1, i)\}$. This is possible, because the colors of vertices $(1, i)$ and $(m, i-1)$ are compatible in the $\operatorname{star}\{(m, i),(1, i),(m, i-1)\}$ Finally we color the vertex (m, i) using the property $P_{c}(3,1)$. Similarly we can color the following rows.

Theorem 17. Every orientation of stacked prism graph $Y_{m, n}=C_{m} \square P_{n}$ with $3 \leq m \leq 7$ can be colored by the coloring graph \vec{H}_{10}.

Proof. The proof of the theorem is similar to the proof of Theorem 15 and follows from Lemma 20.

Definition 18. For $m \geq 3$, the m-sunlet graph $S u n_{m}$ is an undirected graph with the set of vertices $V\left(\right.$ Sun $\left._{m}\right)=\{(1,1), \ldots,(m, 1),(1,2), \ldots,(m, 2)\}$ and edges of the form $\{(i, 1),(i, 2)\}$ for $1 \leq i \leq m$, or $\{(i, 2),(i+1,2)\}$ for $1 \leq i<m$, or $\{(m, 2),(1,2)\}$; see Figure 6.

Figure 6. m-sunlet graph.

Definition 19. A set $S \subseteq\left(V\left(\vec{H}_{10}\right)\right)^{m}$ is cycle-closed under extension if
(a) for every orientation \vec{C} of the cycle $C_{m}=\left(v_{1}, \ldots, v_{m}\right)$, there exists a coloring $c: \vec{C} \rightarrow \vec{H}_{10}$ such that $\left(c\left(v_{1}\right), \ldots, c\left(v_{m}\right)\right) \in S$,
(b) for every orientation $\overrightarrow{S u n}$ of the m-sunlet graph $S u n_{m}$ and for every sequence $\left(c_{1}, \ldots, c_{m}\right) \in S$, there exists a coloring $c: \overrightarrow{\text { Sun }} \rightarrow \vec{H}_{10}$ and an automorphism h_{a} of \vec{H}_{10} such that
(1) $(c(1,1), \ldots, c(m, 1))=\left(c_{1}, \ldots, c_{m}\right)$, and
(2) $h_{a}(c(1,2), \ldots, c(m, 2)) \in S$.

Lemma 20. For each $m=3,4,5,6,7$, there exists a nonempty set $S_{m} \subseteq$ $\left(V\left(\vec{H}_{10}\right)\right)^{m}$, which is cycle-closed under extension.

Proof. In order to proof the lemma we use a computer. We have designed an algorithm, similar to the Algorithm ComputeSetS, that finds a set cycle-closed under extension. The algorithm, for a given m, uses the m-sunlet $S u n_{m}$ instead of a comb R_{8}. Using the algorithm we have found that for each $m=3, \ldots, 7$, there exists a nonempty set cycle-closed under extension.

Acknowledgements

The author would like to thank the anonymous reviewer for pointing out that the Tromp graph \vec{T}_{16} can be used to color every orientation of every stacked prism graphs.

References

[1] H. Bielak, The oriented chromatic number of some grids, Ann. UMCS Inform. AI. 5 (2006) 5-17.
[2] O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud and É. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999) 77-89.
https://doi.org/10.1016/S0012-365X(98)00393-8
[3] J. Dybizbański and A. Nenca, Oriented chromatic number of grids is greater than 7, Inform. Process. Lett. 112 (2012) 113-117.
https://doi.org/10.1016/j.ipl.2011.10.019
[4] J. Dybizbański and A. Nenca, Oriented chromatic number of Cartesian products and strong products of paths, Discuss. Math. Graph Theory 39 (2019) 211-223. https://doi.org/10.7151/dmgt. 2074
[5] J. Dybizbański and A. Szepietowski, The oriented chromatic number of Halin graphs, Inform. Process. Lett. 114 (2014) 45-49. https://doi.org/10.1016/j.ipl.2013.09.011
[6] G. Fertin, A. Raspaud and A. Roychowdhury, On the oriented chromatic number of grids, Inform. Process. Lett. 85 (2003) 261-266. https://doi.org/10.1016/S0020-0190(02)00405-2
[7] E. Fried, On homogeneous tournaments, Combin. Theory Appl. 2 (1970) 467-476.
[8] M. Hosseini Dolama and É. Sopena, On the oriented chromatic number of graphs with given excess, Discrete Math. 306 (2006) 1342-1350. https://doi.org/10.1016/j.disc.2005.12.023
[9] M. Hosseini Dolama and É. Sopena, On the oriented chromatic number of Halin graphs, Inform. Process. Lett. 98 (2006) 247-252. https://doi.org/10.1016/j.ipl.2005.03.016
[10] A.V. Kostochka, É. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331-340. https://doi.org/10.1002/(SICI)1097-0118(199704)24:4;331::AID-JGT5¿3.0.CO;2-P
[11] A. Pinlou, An oriented coloring of planar graphs with girth at least five, Discrete Math. 309 (2009) 2108-2118. https://doi.org/10.1016/j.disc.2008.04.030
[12] A. Pinlou and É. Sopena, Oriented vertex and arc colorings of outerplanar graphs, Inform. Proc. Letters 100 (2006) 97-104. https://doi.org/10.1016/j.ipl.2006.06.012
[13] T. Rapke, Oriented and injective oriented colourings of grid graphs, J. Combin. Math. Combin. Comput. 89 (2014) 169-196.
[14] A. Raspaud and É. Sopena, Good and semi-strong colorings of oriented planar graphs, Inform. Process. Lett. 51 (1994) 171-174. https://doi.org/10.1016/0020-0190(94)00088-3
[15] É. Sopena, Homomorphisms and colourings of oriented graphs: An updated survey, Discrete Math. 339 (2016) 1993-2005. https://doi.org/10.1016/j.disc.2015.03.018
[16] É. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359-369. https://doi.org/10.1016/S0012-365X(00)00216-8
[17] É. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191-205.
https://doi.org/10.1002/(SICI)1097-0118(199707)25:3¡191::AID-JGT3¿3.0.CO;2-G
[18] É. Sopena, There exist oriented planar graphs with oriented chromatic number at least sixteen, Inform. Process. Lett. 81 (2002) 309-312.
https://doi.org/10.1016/S0020-0190(01)00246-0
[19] É. Sopena, Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs, Discuss. Math. Graph Theory 32 (2012) 517-583. https://doi.org/10.7151/dmgt. 1624
[20] É. Sopena and L. Vignal, A Note on the Oriented Chromatic Number of Graphs with Maximum Degree Three, Research Report (Bordeaux I University, 1996).
[21] A. Szepietowski, Coloring directed cycles. arXiv:1307.5186
[22] A. Szepietowski and M. Targan, A note on the oriented chromatic number of grids, Inform. Process. Lett. 92 (2004) 65-70. https://doi.org/10.1016/j.ipl.2004.06.014

