ORIENTED CHROMATIC NUMBER OF CARTESIAN PRODUCTS $P_m \Box P_n$ AND $C_m \Box P_n$

Anna Nenca

Institute of Informatics
Faculty of Mathematics, Physics and Informatics
University of Gdańsk, 80–308 Gdańsk, Poland

e-mail: anenca@inf.ug.edu.pl

Abstract

We consider oriented chromatic number of Cartesian products of two paths $P_m \Box P_n$ and of Cartesian products of paths and cycles, $C_m \Box P_n$. We say that the oriented graph \overrightarrow{G} is colored by an oriented graph \overrightarrow{H} if there is a homomorphism from \overrightarrow{G} to \overrightarrow{H} . In this paper we show that there exists an oriented tournament \overrightarrow{H}_{10} with ten vertices which colors every orientation of $P_8\Box P_n$ and every orientation of $C_m\Box P_n$, for m=3,4,5,6,7 and $n\geq 1$. We also show that there exists an oriented graph \overrightarrow{T}_{16} with sixteen vertices which colors every orientation of $C_m\Box P_n$.

Keywords: graphs, oriented coloring, oriented chromatic number.

2010 Mathematics Subject Classification: 05C15.

1. Introduction

An oriented graph is a digraph \overrightarrow{G} obtained from an undirected graph G by assigning to each edge one of two possible directions. We say that \overrightarrow{G} is an orientation of G and G is the underlying graph of \overrightarrow{G} . A tournament \overrightarrow{T} is an orientation of a complete graph. If there is a homomorphism $\phi: V(\overrightarrow{G}) \to V(\overrightarrow{T})$, then we say that \overrightarrow{G} is colored by \overrightarrow{T} or that \overrightarrow{T} colors \overrightarrow{G} . We also say that \overrightarrow{T} is a coloring graph (tournament). The oriented chromatic number of the oriented graph \overrightarrow{G} , denoted by $\overrightarrow{\chi}(\overrightarrow{G})$, is the smallest integer k such that \overrightarrow{G} is colored by a tournament with k colors (vertices). The oriented chromatic number over all possible orientations of G. The oriented chromatic number of a family of

graphs is the maximal oriented chromatic number over all possible graphs of the family. The upper oriented chromatic number $\overrightarrow{\chi}^+(G)$ of an undirected graph G is the minimum order of an oriented graph \overrightarrow{H} such that every orientation \overrightarrow{G} of G admits a homomorphism to \overrightarrow{H} .

It is easy to see that for every undirected graph G, $\chi(G) \leq \overrightarrow{\chi}(G) \leq \overrightarrow{\chi}^+(G)$, see [19]. The Cartesian product $G \square H$ of two undirected graphs G and H is the graph with the vertex set $V(G) \times V(H)$, where two vertices are adjacent if and only if they are equal in one coordinate and adjacent in the other. We use P_k to denote the path on k vertices. Sopena [19] considered upper oriented chromatic number of strong, Cartesian and direct products of graphs.

Theorem 1 [19]. If G and H are two undirected graphs, then $\overrightarrow{\chi}^+(G \square H) \leq \overrightarrow{\chi}^+(G) \cdot \overrightarrow{\chi}^+(H) \cdot \min\{\chi(G), \chi(H)\}.$

Oriented coloring has been studied in recent years [1, 2, 6, 8–10, 12, 14, 16–20, 22], see [15] for a survey of the main results. Several authors established or bounded chromatic numbers for some families of graphs, such as oriented planar graphs [12,14], outerplanar graphs [12,17,18], graphs with bounded degree three [10,17,20], k-trees [17], Halin graphs [5,9], graphs with given excess [8] or grids [3,4,6,13,22].

In this paper we focus on the oriented chromatic number of Cartesian products of two paths, called 2-dimensional grids $G_{m,n} = P_m \Box P_n$, and Cartesian products of cycles and paths, called stacked prism graphs $Y_{m,n} = C_m \Box P_n$.

Theorem 2 [16,21]. Let G be an undirected graph. Then:

- (a) If G is a forest with at least three vertices, then $\overrightarrow{\chi}^+(G) = 3$.
- (b) $\overrightarrow{\chi}^+(C_5) = 5$. Moreover, every orientation of C_5 can be colored by \overrightarrow{H}_2 (see Figure 1(b)).
- (c) For each $k \leq 3$, $k \neq 5$, we have $\overrightarrow{\chi}^+(C_k) = 4$. Moreover, every orientation of a cycle C_k with $k \leq 3$ and $k \neq 5$ can be colored by \overrightarrow{H}_1 (see Figure 1(a)).

Theorems 1 and 2 imply that $\overrightarrow{\chi}^+(P_m\Box P_n) \leq 3\cdot 3\cdot 2 = 18$. Furthermore, we know that

- $\overrightarrow{\chi}(P_m \Box P_n) \leq 11$, for every $m, n \geq 2$ [6],
- there exists an orientation of $P_4 \square P_5$ which requires 7 colors for oriented coloring [6],
- there exists an orientation of $P_7 \square P_{212}$ which requires 8 colors for oriented coloring [3],
- $\overrightarrow{\chi}(P_2 \square P_2) = 4$, $\overrightarrow{\chi}(P_2 \square P_3) = 5$ and $\overrightarrow{\chi}(P_2 \square P_n) = 6$, for $n \ge 6$ [6],
- $\overrightarrow{\chi}(P_3 \square P_n) = 6$, for every $3 \le n \le 6$, and $\overrightarrow{\chi}(P_3 \square P_n) = 7$, for every $n \ge 7$ [6, 22],

Figure 1. Coloring graphs \overrightarrow{H}_1 and \overrightarrow{H}_2 .

- $\overrightarrow{\chi}(P_4 \square P_4) = 6$ and $\overrightarrow{\chi}(P_4 \square P_n) = 7$, for every $n \ge 5$ [6,22],
- $\overrightarrow{\chi}(P_5 \square P_n) \leq 9$, for every $n \geq 5$ [4].

Since $\overrightarrow{\chi}^+(C_5) = 5$ and $\overrightarrow{\chi}^+(C_k) \le 4$, for $k \ne 5$, by Theorem 1, we have

- $\overrightarrow{\chi}^+(C_5\square P_n) \le 2 \cdot 3 \cdot 5 = 30$, for $n \ge 3$,
- $\overrightarrow{\chi}^+(C_m \square P_n) \le 2 \cdot 3 \cdot 4 = 24$, for $m \ne 5$, $n \ge 3$.

In this paper we show that there exists an oriented tournament \overrightarrow{H}_{10} , see Figure 2, which colors every orientation of every grid $P_8 \square P_n$ and every orientation of $C_m \square P_n$, with m=3,4,5,6,7 and $n\geq 1$. We also show that there exists an oriented graph \overrightarrow{T}_{16} which colors every orientation of $C_m \square P_n$, for $m\geq 8$ and $n\geq 1$. These imply that

- $\overrightarrow{\chi}(P_8 \square P_n) \leq \overrightarrow{\chi}^+(P_8 \square P_n) \leq 10$, for every n,
- $\overrightarrow{\chi}(C_m \Box P_n) \leq \overrightarrow{\chi}^+(C_m \Box P_n) \leq 10$, for m = 3, 4, 5, 6, 7 and $n \geq 1$,
- $\overrightarrow{\chi}(C_m \Box P_n) \leq \overrightarrow{\chi}^+(C_m \Box P_n) \leq 16$, for $m \geq 8$ and $n \geq 1$.

2. Coloring Graphs

2.1. Paley tournament

Let p be a prime number such that $p \equiv 3 \mod 4$, and let $\mathbb{Z}_p = \{0, \dots, p-1\}$ be the ring of integers modulo p. We denote by $QR_p = \{r : r \neq 0, r = s^2, \text{ for some } s \in \mathbb{Z}_p\}$ — the set of nonzero quadratic residues of \mathbb{Z}_p . All arithmetic operation in this section are made in the ring \mathbb{Z}_p .

Definition 3. The directed graph \overrightarrow{T}_p with the set of vertices $V(\overrightarrow{T}_p) = \mathbb{Z}_p$ and the set of arcs $A(\overrightarrow{T}_p) = \{(x,y) : x,y \in V(\overrightarrow{T}_p) \text{ and } y - x \in QR_p\}$ is called the *Paley tournament* of order p. Observe that \overrightarrow{T}_p is a tournament.

Lemma 4. If $a \in QR_p$ and $b \in \mathbb{Z}_p$, then the mapping $f : \overrightarrow{T}_p \to \overrightarrow{T}_p$ defined by $f(x) = a \cdot x + b$ is an automorphism.

Lemma 5 [7]. The Paley tournament \overrightarrow{T}_p is arc-transitive; i.e., for any two pairs of arcs (u, v), $(x, y) \in A(\overrightarrow{T}_p)$, there exists an automorphism h such that h(u) = x and h(v) = y.

Lemma 6. The Paley tournament \overrightarrow{T}_p is self-converse; i.e., \overrightarrow{T}_p and its converse \overrightarrow{T}_p^R are isomorphic.

Proof. Consider the function $f: \overrightarrow{T}_p^R \to \overrightarrow{T}_p$ defined by f(x) = -x. Then $(x, y) \in A(\overrightarrow{T}_p^R)$ if and only if $(-x, -y) \in A(\overrightarrow{T}_p)$.

2.2. Coloring graph \overrightarrow{H}_{10}

Consider the coloring graph \overrightarrow{H}_{10} obtained from the Paley tournament \overrightarrow{T}_{11} by removing the vertex 0, i.e., $V(\overrightarrow{H}_{10}) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $(u, v) \in A(\overrightarrow{H}_{10})$ if $(v - u) \in \{1, 3, 4, 5, 9\}$, see Figure 2.

Figure 2. Coloring graph \overrightarrow{H}_{10} .

Lemma 7. (a) For every $a \in \{1, 3, 4, 5, 9\}$, the function $h_a(x) = ax \pmod{11}$ is an automorphism of \overrightarrow{H}_{10} .

- (b) For every $x \in \{1, 3, 4, 5, 9\}$ there is an automorphism h_a such that $h_a(x) = 1$.
- (c) For every $x \in \{2, 6, 7, 8, 10\}$ there is an automorphism h_a such that $h_a(x) = 10$

Lemma 8. Let \overrightarrow{G} be an orientation of a grid and let v be one of its vertex. Then the following two statements are equivalent.

- (a) There exists an oriented coloring (homomorphism) $c: \overrightarrow{G} \to \overrightarrow{H}_{10}$.
- (b) There exists an oriented coloring (homomorphism) $c': \overrightarrow{G} \to \overrightarrow{H}_{10}$ such that $c'(v) \in \{1, 10\}.$

2.3. Tromp graph

Definition 9. Let \overrightarrow{G} be an oriented graph. We build the Tromp graph $\overrightarrow{Tr}(\overrightarrow{G})$ in the following way.

- Let \overrightarrow{G}' be an isomorphic copy of \overrightarrow{G} ,
- ∞, ∞' be two additional vertices.
- Let $t: V(\overrightarrow{G}) \cup \{\infty\} \to V(\overrightarrow{G}') \cup \{\infty'\}$ be an isomorphism with $t(\infty) = \infty'$. For every $u \in V(\overrightarrow{G}') \cup \{\infty\}$ by u' we denote t(u) and for every $u \in V(\overrightarrow{G}') \cup \{\infty'\}$ by u' we denote $t^{-1}(u)$. The pair (u, u') is called a pair of twin vertices.
- The set of vertices $V(\overrightarrow{Tr}(\overrightarrow{G})) = V(\overrightarrow{G}) \cup V(\overrightarrow{G}') \cup \{\infty, \infty'\}.$
- The set of arcs is defined by

$$\forall_{u \in V(\overrightarrow{G})}(u, \infty), (\infty, u'), (u', \infty'), (\infty', u) \in A(\overrightarrow{Tr}(\overrightarrow{G})),$$

$$\forall_{u,v \in V(\overrightarrow{G}),\; (u,v) \in A(\overrightarrow{G})}(u,v), (u',v'), (v,u'), (v',u) \in A(\overrightarrow{Tr}(\overrightarrow{G})).$$

Let $\overrightarrow{T}_{16} = \overrightarrow{Tr}(\overrightarrow{T}_7)$ be the Tromp graph on sixteen vertices obtained from the Paley tournament \overrightarrow{T}_7 , see Figure 3.

Suppose that i and j are integers such that $i \geq 1$ and $j \geq 1$. Consider the star $K_{1,i}$ with the set of vertices $V(K_{1,i}) = \{x, v_1, v_2, \dots, v_i\}$ and edges of the form $\{x, v_k\}$ for $1 \leq k \leq i$; and a Tromp graph $\overrightarrow{Tr}(\overrightarrow{G})$. Let \overrightarrow{K} be an orientation of the star $K_{1,i}$ and $c : \overrightarrow{K} \to \overrightarrow{Tr}(\overrightarrow{G})$ be a homomorphism. We say that the sequence of colors $(c(v_1), c(v_2), \dots, c(v_i))$ chosen for leaves of the star is compatible with orientation \overrightarrow{K} if for every pair of vertices v_k, v_l it holds:

- $c(v_k) \neq c(v_l)$ if (v_k, x) and $(x, v_l) \in \overrightarrow{K}$ or if (v_l, x) and $(x, v_k) \in \overrightarrow{K}$, and
- $c(v_k) \neq c(v_l)'$ if (v_k, x) and $(v_l, x) \in \overrightarrow{K}$ or if (x, v_l) and $(x, v_k) \in \overrightarrow{K}$.

Figure 3. Coloring graph $\overrightarrow{T}_{16} = \overrightarrow{Tr}(\overrightarrow{T}_7)$.

Definition 10. We say that the Tromp graph \overrightarrow{T} has the property $P_c(i,j)$ if $|V(\overrightarrow{T})| \geq i$ and for every orientation \overrightarrow{K} of the star $K_{1,i}$ and every sequence of colors $(c(v_1), c(v_2), \ldots, c(v_k))$ chosen for leaves compatible with \overrightarrow{K} we can choose j different ways to color x, the central vertex of the star.

Lemma 11 [11]. The Tromp graph \overrightarrow{T}_{16} has the properties $P_c(1,7)$, $P_c(2,3)$ and $P_c(3,1)$.

3. Grids
$$G_{8,n} = P_8 \square P_n$$

Definition 12. The *comb* R_8 is an undirected graph with the set of vertices $V(R_8) = \{(1,1),\ldots,(8,1),(1,2),\ldots,(8,2)\}$ and edges of the form $\{(i,1),(i,2)\}$ for $1 \le i \le 8$, or $\{(i,2),(i+1,2)\}$ for $1 \le i < 8$; see Figure 4. The vertices $(1,1),\ldots,(8,1)$ form the first column of the comb R_8 , while $(1,2),\ldots,(8,2)$ form the second column.

Definition 13. A set $S \subseteq (V(\overrightarrow{H}_{10}))^8$ is closed under extension if

Oriented Chromatic Number of Cartesian Products $P_m \square P_n$ and ...805

Figure 4. Comb R_8 .

- (a) for every orientation \overrightarrow{P} of the path $P_8 = (v_1, \ldots, v_8)$, there exists a coloring $c: \overrightarrow{P} \to \overrightarrow{H}_{10}$ such that $(c(v_1), \ldots, c(v_8)) \in S$,
- (b) for every orientation \overrightarrow{R} of the comb R_8 and for every sequence $(c_1, \ldots, c_8) \in S$, there exists a coloring $c: \overrightarrow{R} \to \overrightarrow{H}_{10}$ and an automorphism h_a of \overrightarrow{H}_{10} such that
 - (1) $(c(1,1),\ldots,c(8,1))=(c_1,\ldots,c_8)$, and
 - (2) $h_a(c(1,2),\ldots,c(8,2)) \in S$.

Lemma 14. There exists a set $S \subseteq (V(\overrightarrow{H}_{10}))^8$ which is closed under extension.

Proof. In order to proof the lemma we use a computer. We have designed an algorithm that finds a proper set S. Let

$$S_{\max}(P_8) = \{(c_1, \dots, c_8) : c_1 \in \{1, 10\}, \text{ and } \forall_{2 \le i \le 8} \ c_i \in V(\overrightarrow{H}_{10}), \text{ and } c_{i-1} \ne c_i\}.$$

Note, that for every sequence $t=(t_1,\ldots,t_8)\in S_{\max}(P_8)$, there exists an orientation \overrightarrow{P} of the path $P_8=(v_1,\ldots,v_8)$ and a coloring $c:\overrightarrow{P}\to\overrightarrow{H}_{10}$ such that $(c(v_1),\ldots,c(v_8))=t$. For a set T, a sequence $t=(t_1,\ldots,t_8)\in T$, and an orientation \overrightarrow{R} of the comb R_8 , we say that t can be extended in T on \overrightarrow{R} if there exists a coloring $c:\overrightarrow{R}\to\overrightarrow{H}_{10}$ and a homomorphism h_a such that

- $(c(1,1),\ldots,c(8,1))=t$, and
- $h_a(c(1,2),\ldots,c(8,2)) \in T$.

The algorithm starts with $T = S_{\max}(P_8)$. In the while loop, for each sequence $t \in T$ and for each orientation \overrightarrow{R} of the comb R_8 , the algorithm checks if t can be extended in T on \overrightarrow{R} . If the sequence t can not be extended, then t is removed from T. After the while loop, the set T satisfies the condition (b) of Definition 13. It is easy to see that if T is not empty, then it also satisfies the condition (a). In this case S = T is returned. If T is empty, then the algorithm returns NO.

Algorithm Compute $\mathbf{Set}S$

OUTPUT: a set $S \subset (V(\overrightarrow{H}_{10}))^8$ closed under extension or NO if such a set does not exist.

```
compute the set S_{\max}(P_8)
     T := S_{\max}(P_8)
     SetIsReady := false
     while not SetIsReady
5.
       SetIsReady := true
       for every sequence t = (t_1, \ldots, t_8) \in T
6.
7.
          color the first column of the comb {\it R}_{\it 8}
                   by setting c(i,1)=t_i, for 1\leq i\leq 8
8.
9.
         SeqCanBeExtended := true
         for every orientation \overrightarrow{R} of the comb R_8
10.
            if t cannot be extended on \overrightarrow{R}
11.
                SeqCanBeExtended := false
12.
13.
          if not SeqCanBeExtended
14.
            T := T - t
            SetIsReady := false
16.
      if T = \emptyset
17.
       return NO
18.
      else
       S := T
19.
20.
       return the set S
```

Using Algorithm ComputeSetS we have found a nonempty set S closed under extension. The set S is posted on the website $\frac{https:}{inf.ug.edu.pl/grids}$.

Theorem 15. Every orientation of every grid with eight rows can be colored by the coloring graph \overrightarrow{H}_{10} .

Proof. For a given orientation \overrightarrow{G} of G(8,n) and $i \leq n$, by $\overrightarrow{G}(i)$ we denote the induced subgraph of \overrightarrow{G} formed by the first i columns of \overrightarrow{G} . It is easy to show by induction that, for every i, there is a coloring $c:\overrightarrow{G}(i) \to \overrightarrow{H}_{10}$ such that $c(i\text{th column}) \in S$.

4. Stacked Prism Graphs $Y_{m,n} = C_m \square P_n$

Theorem 16. Every orientation of $C_m \square P_n$ with $m \geq 3$ and $n \geq 1$ can be colored by the Tromp graph \overrightarrow{T}_{16} .

Figure 5. Stacked prism graph $Y_{m,n}$.

Proof. Let \overrightarrow{Y} be any orientation of stacked prism graph $Y_{m,n} = C_m \square P_n$. We identify each vertex $u \in \overrightarrow{Y}$ with the pair of its coordinates (i,j), $1 \le i \le m$, $1 \le j \le n$. We shall show that \overrightarrow{Y} can be colored by \overrightarrow{T}_{16} . We color the vertices of \overrightarrow{Y} row by row. For the first row, clearly, it is always possible to color any oriented cycle by homomorphism to \overrightarrow{T}_{16} , because \overrightarrow{T}_{16} has the properties $P_c(2,3)$ and $P_c(1,7)$. Now, suppose that i > 1 and the rows from 1 to i - 1 are already colored. To color the vertex (1,i) we choose a color which is compatible

- with the color of vertex (2, i 1) in the star $\{(2, i), (1, i), (2, i 1)\}$,
- with the color of vertex (m, i-1) in the star $\{(m, i), (1, i), (m, i-1)\}$,

which is always possible using the property $P_c(1,7)$. Using the property $P_c(2,3)$ it is always possible to color vertex (2,i) by the color compatible with color of the vertex (3,i-1) in the star $\{(3,i),(2,i),(3,i-1)\}$. Then we continue this method to color vertices $(3,i),\ldots,(m-2,i)$. To color the vertex (m-1,i) we choose a color which is compatible with the colors of vertices (m,i-1) and (1,i) in the star $\{(m,i),(1,i),(m,i-1),(m-1,i)\}$. This is possible, because the colors of vertices (1,i) and (m,i-1) are compatible in the star $\{(m,i),(1,i),(m,i-1)\}$ Finally we color the vertex (m,i) using the property $P_c(3,1)$. Similarly we can color the following rows.

Theorem 17. Every orientation of stacked prism graph $Y_{m,n} = C_m \square P_n$ with $3 \le m \le 7$ can be colored by the coloring graph \overrightarrow{H}_{10} .

Proof. The proof of the theorem is similar to the proof of Theorem 15 and follows from Lemma 20.

Definition 18. For $m \geq 3$, the m-sunlet $graph \ Sun_m$ is an undirected graph with the set of vertices $V(Sun_m) = \{(1,1),\ldots,(m,1),(1,2),\ldots,(m,2)\}$ and edges of the form $\{(i,1),(i,2)\}$ for $1 \leq i \leq m$, or $\{(i,2),(i+1,2)\}$ for $1 \leq i < m$, or $\{(m,2),(1,2)\}$; see Figure 6.

Figure 6. *m*-sunlet graph.

Definition 19. A set $S \subseteq (V(\overrightarrow{H}_{10}))^m$ is cycle-closed under extension if

- (a) for every orientation \overrightarrow{C} of the cycle $C_m = (v_1, \dots, v_m)$, there exists a coloring $c: \overrightarrow{C} \to \overrightarrow{H}_{10}$ such that $(c(v_1), \dots, c(v_m)) \in S$,
- (b) for every orientation \overrightarrow{Sun} of the *m*-sunlet graph Sun_m and for every sequence $(c_1,\ldots,c_m)\in S$, there exists a coloring $c:\overrightarrow{Sun}\to \overrightarrow{H}_{10}$ and an automorphism h_a of \overrightarrow{H}_{10} such that
 - (1) $(c(1,1),\ldots,c(m,1))=(c_1,\ldots,c_m)$, and
 - (2) $h_a(c(1,2),\ldots,c(m,2)) \in S$.

Lemma 20. For each m=3,4,5,6,7, there exists a nonempty set $S_m\subseteq (V(\overrightarrow{H}_{10}))^m$, which is cycle-closed under extension.

Proof. In order to proof the lemma we use a computer. We have designed an algorithm, similar to the Algorithm ComputeSetS, that finds a set cycle-closed under extension. The algorithm, for a given m, uses the m-sunlet Sun_m instead of a comb R_8 . Using the algorithm we have found that for each $m = 3, \ldots, 7$, there exists a nonempty set cycle-closed under extension.

Acknowledgements

The author would like to thank the anonymous reviewer for pointing out that the Tromp graph \overrightarrow{T}_{16} can be used to color every orientation of every stacked prism graphs.

References

- [1] H. Bielak, The oriented chromatic number of some grids, Ann. UMCS Inform. AI. 5 (2006) 5–17.
- [2] O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud and É. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999) 77–89. https://doi.org/10.1016/S0012-365X(98)00393-8
- [3] J. Dybizbański and A. Nenca, Oriented chromatic number of grids is greater than 7, Inform. Process. Lett. **112** (2012) 113–117. https://doi.org/10.1016/j.ipl.2011.10.019
- [4] J. Dybizbański and A. Nenca, Oriented chromatic number of Cartesian products and strong products of paths, Discuss. Math. Graph Theory 39 (2019) 211–223. https://doi.org/10.7151/dmgt.2074
- [5] J. Dybizbański and A. Szepietowski, The oriented chromatic number of Halin graphs, Inform. Process. Lett. 114 (2014) 45–49. https://doi.org/10.1016/j.ipl.2013.09.011
- [6] G. Fertin, A. Raspaud and A. Roychowdhury, On the oriented chromatic number of grids, Inform. Process. Lett. 85 (2003) 261–266. https://doi.org/10.1016/S0020-0190(02)00405-2
- [7] E. Fried, On homogeneous tournaments, Combin. Theory Appl. 2 (1970) 467–476.
- [8] M. Hosseini Dolama and É. Sopena, On the oriented chromatic number of graphs with given excess, Discrete Math. 306 (2006) 1342–1350. https://doi.org/10.1016/j.disc.2005.12.023
- [9] M. Hosseini Dolama and É. Sopena, On the oriented chromatic number of Halin graphs, Inform. Process. Lett. 98 (2006) 247–252. https://doi.org/10.1016/j.ipl.2005.03.016
- [10] A.V. Kostochka, É. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331–340. https://doi.org/10.1002/(SICI)1097-0118(199704)24:4;331::AID-JGT5;3.0.CO;2-P
- [11] A. Pinlou, An oriented coloring of planar graphs with girth at least five, Discrete Math. 309 (2009) 2108–2118. https://doi.org/10.1016/j.disc.2008.04.030
- [12] A. Pinlou and É. Sopena, Oriented vertex and arc colorings of outerplanar graphs, Inform. Proc. Letters 100 (2006) 97–104. https://doi.org/10.1016/j.ipl.2006.06.012

[13] T. Rapke, Oriented and injective oriented colourings of grid graphs, J. Combin. Math. Combin. Comput. 89 (2014) 169–196.

- [14] A. Raspaud and É. Sopena, Good and semi-strong colorings of oriented planar graphs, Inform. Process. Lett. 51 (1994) 171–174. https://doi.org/10.1016/0020-0190(94)00088-3
- [15] É. Sopena, Homomorphisms and colourings of oriented graphs: An updated survey, Discrete Math. 339 (2016) 1993–2005. https://doi.org/10.1016/j.disc.2015.03.018
- [16] É. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359–369. https://doi.org/10.1016/S0012-365X(00)00216-8
- [17] É. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191–205. https://doi.org/10.1002/(SICI)1097-0118(199707)25:3i191::AID-JGT3i3.0.CO;2-G
- [18] É. Sopena, There exist oriented planar graphs with oriented chromatic number at least sixteen, Inform. Process. Lett. 81 (2002) 309–312. https://doi.org/10.1016/S0020-0190(01)00246-0
- [19] É. Sopena, Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs, Discuss. Math. Graph Theory 32 (2012) 517–583. https://doi.org/10.7151/dmgt.1624
- [20] É. Sopena and L. Vignal, A Note on the Oriented Chromatic Number of Graphs with Maximum Degree Three, Research Report (Bordeaux I University, 1996).
- [21] A. Szepietowski, Coloring directed cycles. arXiv:1307.5186
- [22] A. Szepietowski and M. Targan, A note on the oriented chromatic number of grids, Inform. Process. Lett. **92** (2004) 65–70. https://doi.org/10.1016/j.ipl.2004.06.014

Received 5 June 2019 Revised 31 January 2020 Accepted 3 February 2020