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Abstract

In 1987, Alavi, Boals, Chartrand, Erdős, and Oellermann conjectured
that all graphs have an ascending subgraph decomposition (ASD). In a pre-
vious paper, Wagner showed that all oriented complete balanced tripartite
graphs have an ASD. In this paper, we will show that all orientations of an
oriented graph that can be factored into triangles with a large portion of the
triangles being transitive have an ASD. We will also use the result to obtain
an ASD for any orientation of complete multipartite graphs with 3n partite
classes each containing 2 vertices (a K(2 : 3n)) or 4 vertices (a K(4 : 3n)).
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1. Introduction

In [1], Alavi, Boals, Chartrand, Erdős, and Oellermann defined a type of graph
decomposition called an ascending subgraph decomposition (ASD).

Definition. A graph G with
(

n+1
2

)

+ r edges (0 ≤ r ≤ n) has an ascending
subgraph decomposition if there exists a partition of the edge set of G such that
the graphs G1, G2, . . . , Gn induced by the sets of edges in the partition satisfy
the properties that Gi is isomorphic to a subgraph of Gi+1 for all 1 ≤ i ≤ n− 1
and |E(Gi)| = i for all i = 1, 2, . . . , n− 1 and |E(Gn)| = n+ r.

For digraphs, we can define an ASD of a digraph if we can similarly partition
the directed edges (or arcs).

We will also need the following definition of a 2-factorization of a graph.
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Definition. A graph G on N vertices has a 2-factorization if the edge set of G
can be partitioned into subsets of N edges where all N vertices in the subgraph
induced by each set of edges in the partition have degree 2.

For oriented graphs, we use a similar definition as above, but we refer to arcs
instead of edges and the sum of the indegree and outdegree of each vertex in the
induced subgraphs is 2.

We letK(m : N) denote a complete multipartite graph with N partite classes
containing m vertices each. This paper will only consider the case when m = 2
or 4 and N = 3n.

See [2] for all terms and notation not specifically defined in this paper.

2. Strategy

In [7], we obtained a 2-factorization of a tournament on 6n+3 vertices into only
triangles to construct an ASD. The first terms in the ASD were matchings of
increasing size. The next terms included directed paths of length 2. The last
terms of the ASD included triangles. In satisfying the isomorphic subgraph re-
quirement of the ASD, there was no problem with the arc direction until triangles
are included as there are 2 types of oriented triangles—transitive and cyclic. We
used the following definition of an ascending sequence of specific height and cap
to help build the ASD.

Definition. Let S be a finite multiset {(xi, yi)}
m
i=1 where xi and yi are non-

negative integers for all i = 1, 2, . . . ,m. We say that S has an ascending se-
quence of height h and cap c if there exists a sequence S′ = {(aj , bj)}

h+c−1
j=1 where

h+ c− 1 ≤ m satisfying the following.

1. aj + bj = j for all j = 1, 2, . . . , h,

2. aj + bj = h for all j = h, h+ 1, . . . , h+ c− 1,

3. aj ≤ aj+1 and bj ≤ bj+1 for all j = 1, 2, . . . , h+ c− 2,

4. aj ≤ xj and bj ≤ yj for some ordering of S.

Each ordered pair (xi, yi) corresponds to the 2-factor Fi that contained xi
transitive triangles and yi cyclic triangles. We used the ascending sequence in
our construction of the ASD to ensure that the isomorphic subgraph condition is
satisfied. A similar approach was used in [8] and [9].

In this paper, the main result generalizes the ASD construction given the
ascending sequence of sufficient height corresponding to the 2-factorization.

This result will allow us to avoid a separate specialized construction of the
ASD for similar cases. In this paper, we apply the main result to oriented equipar-
tite graphs K(2 : 3n) for n ≥ 3 and K(4 : 3n) for n ≥ 2. We will use the following
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Oberwolfach result by Liu in [5] to obtain the specific 2-factorization into triangles
(so t = 3). We will apply the main result to that 2-factorization.

Theorem 2.1 (Liu). The complete multipartite graph K(m : n) can be parti-

tioned into 2-factors where each 2-factor consists of cycles of length t ≥ 3 if and

only if t|mn, m(n − 1) is even, t is even when n = 2, and (m,n, t) is none of

(2, 3, 3), (6, 3, 3), (2, 6, 3), (6, 2, 6).

The future goal is to apply the result to the more general case of an oriented
K(m : 3n).

3. Main Result

The following theorem by Fu and Hu in [3] will also be useful for proving our
main result.

Theorem 3.1 (Fu and Hu). Let G be a graph with
(

n+1
2

)

edges and E(G) be the

disjoint union of matchings M1,M2, . . . ,Mk such that all but at most one have

at least n edges. Then G has an ASD with each subgraph a matching.

Note that digraphs of even order 3N that have a 2-factorization into triangles
but that have smaller size, can be shown to have an ASD. If the last term of
the ASD would be DN or a lower subscript, we can apply Theorem 3.1 since
matchings of size at most N would suffice. If the last term of the ASD would be
DN+i where 1 ≤ i ≤ N , then matchings would not suffice and directed paths of
length 2 (which exist as a subgraph of either orientation of a triangle) along with
matchings would be used to complete the ASD. However, the focus of this paper
is more dense digraphs.

In the following theorm, we will assume that a digraph of order 3N (N
even) and size at most

(

3N
2

)

has a 2-factorization into only triangles. We will
prove that if the multiset of ordered pairs associated with the triangles in 2-
factorization leads to an ascending sequence of sufficient height and cap 1, we
may find an ASD for the digraph. By sufficient height, we mean that the height
is the smallest positive integer h such that the size of the digraph is no more than
(

h+2N+2
2

)

. To ensure that h ≥ 1, we require a size at least
(

2N+2
2

)

. As such, in

the statement of the following theorem, we require m ≥ 2N2+1
3N +1 = 2N

3 + 1
3N +1

for a digraph of size 3Nm. The theorem is written for a more general case so it
may be applied to other cases beyond orientations of K(2 : 3n) and K(4 : 3n).

Theorem 3.2. Let N be an even positive integer and m be an integer where
2N
3 + 1

3N +1 ≤ m ≤ 3N
2 −1. Let D be a digraph of order 3N and size 3Nm having

a 2-factorization where the ith 2-factor Fi consists of xi transitive triangles and
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yi cyclic triangles and xi + yi = N for i = 1, 2, . . . ,m. Let the positive integer

h be such that 3Nm =
(

h+2N+1
2

)

+ r where 0 ≤ r ≤ h + 2N . If the sequence

S = {(xi, yi)}
m
i=1 has an ascending sequence of height h and cap 1, then the

digraph D has an ascending subgraph decomposition.

Proof. Consider such a 2-factorization with factors F1, F2, . . . , Fm. Without loss
of generality, suppose that the ascending sequence of height h and cap 1 is

(am−h+1, bm−h+1), (am−h+2, bm−h+2), . . . , (am−1, bm−1), (am, bm).

So, ai + bi = i− (m− h) for i = m− h+ 1,m− h+ 2, . . . ,m.

First, we will construct the terms DN , DN+1, . . . , D2N−1, D2N using the fac-
tors F1, F2, . . . , FN

2

, FN

2
+1. Notice that each triangle can be decomposed into a

directed path of length 2 and a single arc. For each factor Fi where 1 ≤ i ≤ N
2 ,

we form D2N−i+1 and DN+i−1. The term D2N−i+1 consists of N − i+ 1 disjoint
directed paths of length 2 and a matching of size i−1. The term DN+i−1 consists
of i− 1 disjoint directed paths of length 2 and a matching of size N − i+ 1. For
D 3N

2

, take from FN

2
+1,

N
2 directed paths of length 2 and a matching of size N

2 .

The remaining arcs in factor FN

2
+1 can be decomposed into two matchings M0

of size N and M ′ of size N
2 .

We shall now construct the terms D2N+1, D2N+2, . . . , D2N+h and the terms
DN−h, DN−h+1, . . . , DN−1 from the factors Fm−h+1, Fm−h+2, . . . , Fm. We will use
the ascending sequence to construct these digraphs. For 1 ≤ j ≤ h, we will con-
struct the terms D2N+j and DN−j using the factor Fm−h+j . From factor Fm−h+j

take am−h+j transitive triangles and bm−h+j cyclic triangles (for a total of j trian-
gles), which are guaranteed by the ascending sequence, along with N − j disjoint
directed paths of length 2. These arcs form the term D2N+j . The remaining
unused arcs of factor Fm−h+j is a matching of size N−j which is the term DN−j .
Thus, we have used the arcs in factors Fm−h+1, Fm−h+2, . . . , Fm to construct the
terms D2N+1, D2N+2, . . . , D2N+h and the terms DN−h, DN−h+1, . . . , DN−1.

As the remaining terms D1, D2, . . . , DN−h−1 will all be matchings, we will
use Theorem 3.1. Note a total of

(

N−h
2

)

+r arcs remain in factors FN

2
+2, . . . , Fm−h

and matchings M0 and M ′. Since the factors can be broken into 3 matchings of
size N each, we have a total of 3(m− h− N

2 − 1) + 2 matchings where all except
one (matching M ′) have size N . We may remove r arcs (and place those extra
arcs in the last term of the ASD D2N+h) in such a way so all but at most one of
the matchings have N ≥ N − h arcs allowing us to apply Theorem 3.1 to obtain
the terms D1, D2, . . . , DN−h−1.

That completes our ASD and the proof.

The next two sections are applications of the main result.
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4. Application of the Main Result to Oriented K(2 : 3n)

We now apply the main result to show that any oriented K(2 : 3n) for n ≥ 1
has an ASD. Note that K(2 : 3) and K(2 : 6) do not have 2-factorizations into
triangles by Theorem 2.1. Showing that any orientation of the tripartite graph
K(2 : 3) has an ASD is an easy exercise (and was proven in [9]). For the case of
oriented K(2 : 6), we will use the following result in [4] by Huang, Kotzig, and
Rosa.

Theorem 4.1 (Huang, Kotzig and Rosa). The complete multipartite graph K(2 :
6) has a 2-factorization where each 2-factor consists of two triangles and one C6.

We now will prove that every orientation of K(2 : 6) has an ASD.

Proposition 4.2. Every orientation of the complete multipartite graph K(2 : 6)
has an ascending subgraph decomposition.

Proof. Consider any orientation of K(2 : 6). Use Theorem 4.1 to obtain a 2-
factorization where each 2-factor consists of two triangles and one C6. There
are 5 such factors; label them F1, . . . , F5. For each i, assign to the factor Fi

the ordered pairs (xi, yi) where xi and yi are the number of transitive and cyclic
triangles in factor Fi, respectively.

By the pigeonhole principle, at least 3 of the ordered pairs are either from the
set {(2, 0), (1, 1)} or the set {(0, 2), (1, 1)}. The argument proceed similarly for
either case, so without loss of generality, suppose there are three ordered pairs
from the set {(2, 0), (1, 1)}. Of those three, at least two are the same ordered
pair. Relabel the factors so that factors F1 and F2 have the same ordered pair
(i.e., we have x1 = x2 and y1 = y2) and factor F3 has the (possibly) different
ordered pair from the set {(2, 0), (1, 1)}.

We will now construct the terms of the ASD, D1, . . . , D10, as follows.

1. Terms D6 and D1 are constructed from factor F5 where D6 consists of a
matching of size 4 and a directed path of length 2, and D1 is a single arc.
Note that the remaining unused arcs will be placed in the last term D10.

2. Terms D7 and D5 are constructed from factor F4 where D7 consists of a
matching of size 3 and two directed paths of length 2, and D5 is a matching
of size 5.

3. Terms D8 and D4 are constructed from factor F3 where D8 consists of a
matching of size 3, a directed path of length 2, and a transitive triangle; and
D4 is a matching of size 4.

4. Terms D9 and D3 are constructed from factor F2 where D9 consists of a
matching of size 3 and two triangles, of which x2 are transitive and y2 are
cyclic, and D3 is a matching of size 3.
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5. Terms D10 and D2 are constructed from factor F1 where D10 consists of a
matching of size 3 and two triangles, of which x1 are transitive and y1 are
cyclic and one more arc from factor F1 (and the 5 unused arcs from factor
F5), and D2 is a matching of size 2. Note that since x1 = x2 and y1 = y2,
D10 contains an isomorphic copy of D9.

Before proving the case for n ≥ 3, we need the following lemmas. The first
of which was proven in [7].

Lemma 4.3. Let n and N be positive integers with n ≤ N . If the multiset S =
{(x1, y1), (x2, y2), . . . , (x2n, y2n)} consisted of ordered pairs of nonnegative inte-

gers with xi + yi = N for all i = 1, 2, . . . , 2n, then S has an ascending sequence

of height n and cap 1.

We need to know the minimum number of transitive triangles in our de-
composition so that from the resulting multiset of ordered pairs, we can find
an ascending sequence of the desired height and cap. We will use the following
lemma from [8], that was proven using a result from [6].

Lemma 4.4. Let T be a tournament of order n ≥ 2 with V (T ) = [n]. Then at

least
3(n−3)
4(n−2) portion of the triangles in T are transitive if n is odd and has at least

3(n−2)
4(n−1) portion of the triangles in T are transitive if n is even.

For our result, we will only use the lesser lower bound of 3(n−3)
4(n−2) which applies

for all tournaments of order n.

In the general case, the terms in our ASD contain mostly transitive triangles.
The following lemma gives a lower bound on the portion of transitive triangles
in K(m : 3n).

Lemma 4.5. Any orientation of K(m : 3n) has at least
3(3n−3)
4(3n−2) portion of the

triangles being transitive.

Proof. Consider any orientation of K(m : 3n). If a single vertex is chosen
from each of the 3n partite classes, a tournament on 3n vertices results. By
Lemma 4.4, the resulting tournament has at least 3(3n−3)

4(3n−2) portion of the triangles
being transitive. Note that since each partite class contains the same number
of the vertices, each different triangle in K(m : 3n) is contained in m3n−3 such
tournaments. Therefore, the portion of triangles being transitive in K(m : 3n)

must also be at least 3(3n−3)
4(3n−2) .

The following technical lemma will be used to obtain required ascending
sequence of the ordered pairs representing the number each type of triangle in
each 2-factor.
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Lemma 4.6. Let n ≥ 2 be an integer. Let S be a multiset of ordered pairs

{(xi, yi)}
3n−1
i=1 where xi and yi are nonnegative integers with the following proper-

ties.

1. xi + yi = 2n for all i = 1, 2, . . . , 3n− 1.

2.
3n−1
∑

i=1

xi ≥
9n(n− 1)(3n− 1)

6n− 4
=: f(n).

Then S contains an ascending sequence of height 2n− 1 and cap 1.

Proof. First, order the multiset so that xi ≥ xi+1 for all i.

We will consider two cases.

Case I. Suppose x3n−4 ≥ n. Then, x1 ≥ x2 ≥ · · · ≥ x2n−2 ≥ n. Let S′ be the
ordered multiset {(xi−n, yi)}

2n−2
i=1 . By Lemma 4.3, S′ has an ascending sequence

of height n − 1 and cap 1. Without loss of generality, suppose the sequence is
(a1, b1), . . . , (an−1, bn−1). But then,

(1, 0), (2, 0), . . . , (n, 0), (a1 + n, b1), . . . , (an−1 + n, bn−1)

is our ascending sequence of height 2n− 1 and cap 1 in S.

Case II. Suppose x3n−4 ≤ n − 1. For this second case, we will prove, by
induction on n, that we can construct the ascending sequence of height 2n − 1
and cap 1 using the first 2n− 1 elements in the ordered multiset S.

If n = 1, our ascending sequence of height 2n− 1 and cap 1 is (1, 0) if x1 6= 0
or (0, 1) if x1 = 0.

Now let n ≥ 2 and suppose that we can find an ascending sequence of height
2(n−1)−1 and cap 1 using the first 2(n−1)−1 elements of any ordered multiset
S of 3(n − 1) − 1 elements with xi ≥ xi+1 for all values of i that satisfies the
conditions of the lemma. Now consider an ordered multiset S with 3n−1 elements
that satisfies the conditions of the lemma. We will now prove the following claim.

Claim. The value of x2n−1 ≥ 2.

Proof. Suppose instead that x2n−1 ≤ 1. Since

xi ≤

{

2n if i ≤ 2n− 2,
1 if i ≥ 2n− 1,

we have that

3n−1
∑

i=1

xi ≤ 2n(2n− 2) + (n+ 1) = 4n2 − 3n+ 1.
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So, by Property 2 of the lemma,

4n2 − 3n+ 1 ≥

3n−1
∑

i=1

xi ≥
9n(n− 1)(3n− 1)

6n− 4
.

But for n ≥ 2,

9n(n− 1)(3n− 1)

6n− 4
> 4n2 − 3n+ 1,

which is a contradiction. Therefore, x2n−1 ≥ 2.

We will now consider a new ordered multiset S′′ = {(x′i, y
′

i)}
3n−4
i=1 formed from

S as follows. If xi ≥ 2, then x′i = xi − 2 and y′i = yi. If xi = 1, then x′i = 0 and
y′i = yi − 1. If xi = 0, then x′i = 0 and y′i = yi − 2. Clearly, S′′ satisfies Property
1 of the lemma. Property 2 is proven in the following claim.

Claim. The ordered multiset S′ satisfies

3n−4
∑

i=1

x′i ≥
9(n− 1)(n− 2)(3n− 4)

6n− 10
= f(n− 1).

Proof. By the definition of x′i and the fact that x3n−1 ≤ x3n−2 ≤ x3n−3 ≤
x3n−4 ≤ n− 1, we have

3n−4
∑

i=1

x′i ≥
3n−4
∑

i=1

(xi − 2) ≥ f(n)− 2(3n− 4)− 3(n− 1).

Let g(n) = f(n) − 2(3n − 4) − 3(n − 1) − f(n − 1) = 63n2
−147n+76

2(3n−5)(3n−2) . Since

g(n) > 0 for all integers n ≥ 2, we have

3n−4
∑

i=1

x′i ≥
9(n− 1)(n− 2)(3n− 4)

6n− 10
.

Thus, S′′ satisfies Property 2 of the lemma. By induction, we can find an
ascending sequence of height 2(n− 1)− 1 and cap 1 using the first 2(n− 1)− 1
elements of S′′. Suppose this sequence is (ak1 , bk1), (ak2 , bk2), . . . , (ak2n−3

, bk2n−3
)

where ki ∈ [2n − 3], aki ≤ x′ki = xki − 2, and bki ≤ y′ki = yki for all i. Since
x2n−2 ≥ x2n−1 ≥ 2, we have

(1, 0), (2, 0), (ak1 + 2, bk1), (ak2 + 2, bk2), . . . , (ak2n−3
+ 2, bk2n−3

)

as our ascending sequence of height 2n− 1 and cap 1 in S.
This completes the proof.
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Theorem 4.7. Any orientation of K(2 : 3n) for n ≥ 3 has an ascending subgraph

decomposition.

Proof. Consider any orientation of K(2 : 3n) where n ≥ 3. Obtain a 2-

factorization into triangles by applying Theorem 2.1. Since at least 3(3n−3)
4(3n−2) por-

tion of the triangles in the oriented K(2 : 3n) are transitive by Lemma 4.5, we

know that at least one of the 2-factorizations has at least 3(3n−3)
4(3n−2) portion of the

triangles being transitive. Thus, we choose such a factorization that has at least
that portion of transitive triangles. Apply Lemma 4.6 to obtain an ascending
sequence of height 2n− 1 and cap 1. Apply Theorem 3.2 to obtain the ascending
subgraph decomposition.

5. Application of the Main Result to Oriented K(4 : 3n)

We now apply the main result to show that any oriented K(4 : 3n) for n ≥ 1
has an ASD. Again, the case when n = 1 is an easy exercise. For the case when
n ≥ 2, we use a lemma similar to Lemma 4.6 to obtain a ascending sequence of
height 4n− 3 and cap 1.

Lemma 5.1. Let n ≥ 2 be an integer. Let S be a multiset of ordered pairs

{(xi, yi)}
6n−2
i=1 where xi and yi are nonnegative integers with the following proper-

ties.

1. xi + yi = 4n for all i = 1, 2, . . . , 6n− 2.

2.
6n−2
∑

i=1

xi ≥
18n(n− 1)(3n− 1)

3n− 2
=: f(n).

Then S contains an ascending sequence of height 4n− 3 and cap 1.

Proof. First order the multiset so that that xi ≥ xi+1 for all i.

We will consider two cases.

Case I. Suppose x6n−8 ≥ 2n. Then, x1 ≥ x2 ≥ · · · ≥ x4n−6 ≥ 2n. Let S′

be the ordered multiset {(xi − 2n, yi)}
4n−6
i=1 . By Lemma 4.3, S′ has an ascending

sequence of height 2n − 3 and cap 1. Without loss of generality, suppose the
sequence is (a1, b1), . . . , (an, bn). But then,

(1, 0), (2, 0), . . . , (2n, 0), (a1 + 2n, b1), . . . , (a2n−3 + 2n, b2n−3)

is our ascending sequence of height 4n− 3 and cap 1 in S.

Case II. Suppose x6n−8 ≤ 2n − 1. For this second case, we will prove, by
induction on n, that we can construct the ascending sequence of height 4n − 3
and cap 1 using the first 4n− 3 elements in the ordered multiset S.
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If n = 2, Property 2 of the lemma gives that
∑10

i=1 xi ≥ 45. From the
assumption of Case II, x4 ≤ 3 and likewise xi ≤ 3 for i ≥ 5. These together imply
that x1 = x2 = x3 = 8 and also x4 = x5 = x6 = x7 = x8 = x9 = x10 = 3 our
ascending sequence of height 5 and cap 1 can be (1, 0), (2, 0), (3, 0), (4, 0), (5, 0).

Now let n ≥ 3 and suppose that we can find an ascending sequence of height
4(n−1)−3 and cap 1 using the first 4(n−1)−3 elements of any ordered multiset
S of 6(n − 1) − 2 elements with xi ≥ xi+1 for all values of i that satisfies the
conditions of the lemma. Now consider an ordered multiset S with 6n−2 elements
that satisfies the conditions of the lemma. We will now prove the following claim.

Claim. The value of x4n−3 ≥ 4.

Proof. Suppose instead that x4n−3 ≤ 3. Since

xi ≤

{

4n if i ≤ 4n− 4,
3 if i ≥ 4n− 3,

we have that

6n−2
∑

i=1

xi ≤ 4n(4n− 4) + 3(2n+ 2) = 16n2 − 10n+ 6.

So, by Property 2 of the lemma,

16n2 − 10n+ 6 ≥
6n−2
∑

i=1

xi ≥
18n(n− 1)(3n− 1)

3n− 2
.

But for n ≥ 3,

18n(n− 1)(3n− 1)

3n− 2
> 16n2 − 10n+ 6,

which is a contradiction. Therefore, x4n−3 ≥ 4.

We will now consider a new ordered multiset S′′ = {(x′i, y
′

i)}
6n−8
i=1 formed from

S as follows.

1. If xi ≥ 4, then x′i = xi − 4 and y′i = yi.

2. If xi = 3, then x′i = 0 and y′i = yi − 1.

3. If xi = 2, then x′i = 0 and y′i = yi − 2.

4. If xi = 1, then x′i = 0 and y′i = yi − 3.

5. If xi = 0, then x′i = 0 and y′i = yi − 4.

Clearly, S′′ satisfies Property 1 of the lemma. Property 2 is proven in the following
claim.
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Claim. The ordered multiset S′ satisfies.

6n−8
∑

i=1

x′i ≥
12(n− 1)(n− 2)(3n− 4)

3n− 5
= f(n− 1).

Proof. By definition of x′i and since x6n−2 ≤ x6n−3 ≤ · · · ≤ x6n−7 ≤ 2n− 1, we
have

6n−8
∑

i=1

x′i ≥
6n−8
∑

i=1

(xi − 4) ≥ f(n)− 4(6n− 8)− 6(2n− 1).

Let g(n) = f(n)− 4(6n− 8)− 6(n− 1)− f(n− 1) or

g(n) =
18n(n− 1)(3n− 1)

3n− 2
−

18(n− 1)(n− 2)(3n− 4)

3n− 5
− 36n+ 38.

Simplifying, for all integers n ≥ 3, we have

g(n) = 4

(

1

3n− 5
−

1

3n− 2
+ 2

)

> 0.

Thus, we have

6n−8
∑

i=1

x′i ≥
18(n− 1)(n− 2)(3n− 4)

3n− 5
= f(n− 1),

which completes the proof of the claim.

Thus, S′′ satisfies Property 2 of the lemma. By induction, we can find an
ascending sequence of height 4(n− 1)− 3 and cap 1 using the first 4(n− 1)− 3
elements of S′′. Suppose this sequence is (ak1 , bk1), (ak2 , bk2), . . . , (ak4n−7

, bk4n−7
)

where ki ∈ [4n − 7], aki ≤ x′ki = xki − 4, and bki ≤ y′ki = yki for all i. Since
x4n−6 ≥ x4n−5 ≥ x4n−4 ≥ x4n−3 ≥ 4, we have

(1, 0), (2, 0), (3, 0), (4, 0), (4 + ak1 , bk1), (4 + ak2 , bk2), . . . , (4 + ak4n−7
, bk4n−7

)

as our ascending sequence of height 4n− 3 and cap 1 in S.
This completes the proof.

Theorem 5.2. Any orientation of K(4 : 3n) for n ≥ 2 has an ascending subgraph

decomposition.

Proof. Consider any orientation of K(4 : 3n) where n ≥ 2. Obtain a 2-

factorization into triangles by applying Theorem 2.1. Since at least 3(3n−3)
4(3n−2) por-

tion of the triangles in the oriented K(4 : 3n) are transitive by Lemma 4.5, we

know that at least one of the 2-factorizations has at least 3(3n−3)
4(3n−2) portion of the
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triangles being transitive. Thus, we choose such a factorization that has at least
that portion of transitive triangles. Apply Lemma 5.1 to obtain an ascending
sequence of height 4n− 3 and cap 1. Apply Theorem 3.2 to obtain the ascending
subgraph decomposition.
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