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Abstract

We prove that any diametrical partial cube of diameter at most 6 is
antipodal. Because any antipodal graph is harmonic, this gives a partial
answer to a question of Fukuda and Handa [Antipodal graphs and oriented
matroids, Discrete Math. 111 (1993) 245–256] whether any diametrical par-
tial cube is harmonic, and improves a previous result of Klavžar and Kovše
[On even and harmonic-even partial cubes, Ars Combin. 93 (2009) 77–86].
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1. Introduction

If x, y are two vertices of a connected graph G, then y is said to be a relative
antipode of x if dG(x, y) ≥ dG(x, z) for every neighbor z of x, where dG denotes
the usual distance in G; and it is said to be an absolute antipode of x if dG(x, y) =
diam(G) (the diameter of G). The graph G is said to be antipodal if every vertex
x of G has exactly one relative antipode x; it is diametrical if every vertex x of
G has exactly one absolute antipode x; and it is harmonic (or automorphically
diametrical [19]) if it is diametrical and the antipodal map x 7→ x, x ∈ V (G), is
an automorphism of G, i.e., xy ∈ E(G) whenever xy ∈ E(G).

Bipartite antipodal graphs were introduced by Kotzig [13] under the name
of S-graphs. Later Glivjak, Kotzig and Plesnik [7] proved in particular that a
graph G is antipodal if and only if for any x ∈ V (G) there is an x ∈ V (G) such
that

(1) dG(x, y) + dG(y, x) = dG(x, x) for all y ∈ V (G),
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where dG denotes the usual distance in G. The definition was extended to the
non-bipartite case by Kotzig and Laufer [14]. Several papers followed.

On the other hand diametrical graphs were introduced by Mulder [16] in the
case of median graphs. They were later studied by Parthasarathy and Nandaku-
mar [17] under the name of self-centered unique eccentric point graphs, then by
Göbel and Veldman [8] under the name of even graphs, by Fukuda and Handa [6]
who proved that the tope graphs of oriented matroids are harmonic partial cubes
(i.e., isometric subgraphs of hypercubes), and finally by Klavžar and Kovše [11]
who gave a partial solution to a problem set in [6]. Partial cubes, which were
introduced by Firsov [5] and characterized by Djoković [4] and Winkler [20], have
been extensively studied, see [11, 12, 15, 18] for recent papers. In [11, 12, 18],
antipodal, diametrical and harmonic partial cubes play a very important role.

Our paper deals with the problem of determining whether any diametrical
partial cube is antipodal. We prove (Theorem 3.2) that this property is true for
all partial cubes of diameter at most 6. It follows, by the fact that the diameter of
a partial cube is always at most equal to its isometric dimension with the equality
if and only if it is antipodal, that if a diametrical partial cube was not antipodal,
then its diameter would be at least 7 and its isometric dimension at least 8.

At the end of their paper [6], Fukuda and Handa asked whether any diamet-
rical partial cube is harmonic. Because any antipodal graph is harmonic (the
converse is also true for partial cubes), Theorem 3.2 is a partial answer to this
question, which improves a result [11, Theorem 4.1] of Klavžar and Kovše. Note
that a bipartite graph of diameter 4 that is not a partial cube may be diametrical
but not harmonic, as is shown by the graph in Figure 1.
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Figure 1. A diametrical bipartite graph that is not harmonic.

2. Preliminaries

The graphs we consider are undirected, without loops or multiple edges, and are
finite and connected. For a set S of vertices of a graph G we denote by G[S]
the subgraph of G induced by S, and G − S = G[V (G) − S]. A path P with
V (P ) = {x0, . . . , xn}, xi 6= xj if i 6= j, and E(P ) = {xixi+1 : 0 ≤ i < n} is
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denoted by 〈x0, . . . , xn〉. If x and y are two vertices of a path P , then we denote
by P [x, y] the subpath of P whose endvertices are x and y. A cycle C with
V (C) = {x1, . . . , xn}, xi 6= xj if i 6= j, and E(C) = {xixi+1 : 1 ≤ i < n}∪{xnx1},
is denoted by 〈x1, . . . , xn, x1〉.

The usual distance between two vertices x and y of a graph G, that is, the
length of any (x, y)-geodesic (= shortest (x, y)-path) in G, is denoted by dG(x, y).
A connected subgraph H of G is isometric in G if dH(x, y) = dG(x, y) for all
vertices x and y of H. The (geodesic) interval IG(x, y) between two vertices x
and y of G consists of the vertices of all (x, y)-geodesics in G.

In the geodesic convexity, that is, the convexity on the vertex set of a graph
G which is induced by the geodesic interval operator IG, a subset C of V (G) is
convex provided that it contains the geodesic interval IG(x, y) for all x, y ∈ C. A
subset H of V (G) is a half-space if H and V (G) \H are convex.

For an edge ab of a graph G, let

Wab = {x ∈ V (G) : dG(a, x) < dG(b, x)},

Uab = {x ∈ Wab : x has a neighbor in Wba}.

Note that the sets Wab and Wba are disjoint and that V (G) = Wab ∪Wab if G is
bipartite.

Two edges xy and uv are in the Djoković-Winkler relation Θ if

dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u).

The relation Θ is clearly reflexive and symmetric.

Remark 2.1. If G is bipartite, then, by [9, Lemma 11.2], the notation can be
chosen so that the edges xy and uv are in relation Θ if and only if

dG(x, u) = dG(y, v) = dG(x, v)− 1 = dG(y, u)− 1,

or equivalently if and only if

y ∈ IG(x, v) and x ∈ IG(y, u).

From now on, we will always use this way of defining the relation Θ. Note that,
in this way, the edges xy and yx are not in relation Θ because y /∈ IG(x, x) and
x /∈ IG(y, y). In other word, each time the relation Θ is used, the notation of an
edge induces an orientation of this edge.

We recall that, by Djoković [4, Theorem 1] and Winkler [20], a connected bi-
partite graph G is a partial cube, that is, an isometric subgraph of some hypercube,
if it has the following equivalent properties.
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(Conv.) For every edge ab of G, the sets Wab and Wba are convex.

(Trans.) The relation Θ is transitive, and thus is an equivalence relation.

It follows in particular that the non-trivial (i.e., distinct from ∅ and V (G))
half-spaces of a partial cube G are the sets Wab, ab ∈ E(G). In the following
lemma we recall two well-known properties of partial cubes that we will need
later.

Lemma 2.2. Let G be a partial cube. We have the following properties.

(i) Let x, y be two vertices of G, P an (x, y)-geodesic and W an (x, y)-path of
G. Then each edge of P is Θ-equivalent to some edge of W .

(ii) A path P in G is a geodesic if and only if any two distinct edges of P are
not Θ-equivalent.

3. Diametrical Versus Antipodal Partial Cubes

If A is a set of vertices of an antipodal graph G, we write

A = {x̄ : x ∈ A}.

Note that, by (1), a graph G is antipodal if and only if

(2) IG(x, x) = V (G) for all x ∈ V (G).

Clearly any antipodal graph is harmonic. The following result, which is
an implicit consequence of two results [6, Proposition 4.1 and Theorem 4.2] of
Fukuda and Handa (see also [18, Theorem 4.1] for a direct proof), shows that the
converse is also true for partial cubes.

Proposition 3.1. Any harmonic partial cube is antipodal.

In this section we consider the question of Fukuda and Handa [6]. We re-
call that they asked whether any diametrical partial cube is harmonic, and thus
antipodal by the proposition above. Klavžar and Kovše gave a first answer [11,
Theorem 4.1] to this question by proving that all diametrical partial cubes of
isometric dimension at most 6 are harmonic. Our main result is the following
theorem.

Theorem 3.2. Any diametrical partial cube of diameter at most 6 is antipodal.

We need several lemmas to prove this theorem. Recall that the isometric
dimension of a finite partial cube G, i.e.,the least non-negative integer n such
that G is an isometric subgraph of an n-cube, coincides with the number of
Θ-classes of E(G). We denote it by idim(G). By Lemma 2.2 we clearly have

diam(G) ≤ idim(G).
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Lemma 3.3 (Polat [18, Lemma 3.2]). Let G be a diametrical partial cube. Then
G is antipodal if and only if diam(G) = idim(G).

Corollary 3.4. Let d be a non-negative integer. If any diametrical partial cube
whose diameter is at most d is antipodal, then any diametrical partial cube whose
isometric dimension is at most d+ 1 is antipodal.

Proof. Let G be a diametrical partial cube with idim(G) ≤ d + 1. Then
diam(G) ≤ d+1 because diam(G) ≤ idim(G). We are done if diam(G) ≤ d by as-
sumption. If diam(G) = d+1, then we have d+1 = diam(G) ≤ idim(G) ≤ d+1,
and thus diam(G) = idim(G). Therefore G is antipodal by Lemma 3.3.

As an immediate consequence of Theorem 3.2 and Corollary 3.4, we have the
following result.

Corollary 3.5. Any diametrical partial cube whose isometric dimension is at
most 7 is antipodal.

This corollary is then an improvement of the above result of Klavžar and
Kovše.

Lemma 3.6. A diametrical partial cube G is antipodal if and only if, for any
edge ab of G, the antipode of each vertex in Wab (respectively, in Wba) belongs to
Wba (respectively, Wab), i.e., Wab = Wba.

Proof. G is antipodal if and only if idim(G) = diam(G) by Lemma 3.3. Hence
if and only if each edge of G is Θ-equivalent to exactly one edge of each (x, x)-
geodesic for any x ∈ V (G), and thus if and only if Wab = Wba for any edge ab
of G.

We first give a consequence of this lemma. Recall that a graph G is said to
be self-centered if any of its vertices is central, i.e., if rad(G) = diam(G), or in
other words, if each vertex of G has at least one absolute antipode. Diametrical
graphs are special self-centered graphs.

Corollary 3.7. A self-centered partial cube G is antipodal if and only if, for each
edge ab of G, all absolute antipodes of any vertex in Wab belong to Wba.

Proof. The necessity is a consequence of [18, Lemma 4.4] stating that if G is
an antipodal partial cube, then Wab = Wba for every edge ab of G. Conversely,
assume that, for each edge ab of G, all absolute antipodes of any vertex in Wab

belong to Wba. By the fact that any partial cube has the Separation Property
S2, i.e., any two vertices can be separated by a half-space, it follows that, if some
vertex x of G has two absolute antipodes y and z, then y ∈ Wab and z ∈ Wba for
some ab ∈ E(G), contrary to the assumption. Therefore G is diametrical, and
thus antipodal by Lemma 3.6.
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We sum up some of the results above as follows.

Theorem 3.8. For a diametrical partial cube G, the following assertions are
equivalent.

(i) G is antipodal.

(ii) G is harmonic.

(iii) diam(G) = idim(G).

(iv) Wab = Wba for any edge ab of G.

(v) The antipodal map of G is an isomorphism of G[Wab] onto G[Wba] for any
edge ab of G.

Proof. It remains to prove the equivalence of (v) with the other assertions.
We recall that the antipodal map of a diametrical graph is the function which
maps every vertex of this graph to its antipode. If G satisfies (v), then the
antipodal map α of G is obviously an automorphism of G, and thus G is harmonic.
Conversely, assume that G is harmonic, and thus satisfies (iv). Then, on the one
hand, α is an automorphism of G, and on the other hand, if ab is any edge of G,
then α(x) ∈ Wba for all x ∈ Wab. Therefore α is an isomorphism of G[Wab] onto
G[Wba].

From now on we use the following notation. If G is a partial cube, ab an edge
of G, and n a positive integer, then

Un
ab =

{

x ∈ Wab : dG(x,Wba) = n
}

.

In particular U1
ab = Uab. The set Un

ba is defined analogously.
We now state a lemma which is essential to prove the main result of this

paper. Its proof, which is rather long, is the subject of next section.

Lemma 3.9. Let G be a diametrical partial cube of diameter d ≥ 1, and ab an
edge of G. Then we have the following properties.

(i) u ∈ Wba if u ∈ U1
ab ∪ U2

ab.

(ii) If d ≥ 4, then Ud−1

ab = ∅ (and a fortiori Ud
ab = ∅).

(iii) If d ≤ 6, then u ∈ Wba for every u ∈ Wab.

Proof of Theorem 3.2. Let ab be an edge of some diametrical partial cube G
of diameter d ≤ 6. Then Wab = Wba by Lemma 3.9(iii). Therefore G is antipodal
by Lemma 3.6.

4. Proof of Lemma 3.9

Recall that, in a diametrical partial cube G, the absolute antipode of any vertex
of G is unique, and the degree of any vertex of G is at least 2 if G is distinct from
K1 and K2 (see [8]). We will use these properties in several parts of this proof.
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4.1. Proof of (i)

Let u ∈ Wab. We denote by 〈u0, . . . , un〉 a geodesic with u0 ∈ U1
ba, un = u ∈ Un

ab

and ui ∈ U i
ab for 1 ≤ i ≤ n.

(i.1) Suppose that u ∈ U1
ab, i.e., u = u1, and that u1 ∈ Wab. Because Wab is a

half-space, it follows that u1 ∈ IG(u0, u1), and thus dG(u0, u1) = d+ 1, contrary
to the fact that d = diam(G). Hence u1 ∈ Wba.

(i.2) Suppose that d ≥ 2 and u ∈ U2
ab, i.e., u = u2, and that u2 ∈ Wab.

Because dG(u1, u2) cannot be equal to d + 1, it follows that dG(u1, u2) = d − 1.
Hence, as above, dG(u0, u2) = dG(u1, u2) + 1 = d, contrary to the fact that u2
has exactly one absolute antipode, namely u2. Therefore u2 ∈ Wba.

4.2. Proof of (ii)

Suppose that Ud−1

ab 6= ∅, and let u ∈ Ud−1

ab . Denote by 〈u0, . . . , ud−1〉 a geodesic
such that u0 ∈ U1

ba, ud−1 = u and ui ∈ U i
ab for 1 ≤ i ≤ d − 1. By what

we proved above u1 ∈ Wba. Then, because Wab is a half-space, it follows that
u0 ∈ IG(u1, u1), and that IG(u0, u1) ⊆ Wba. Let 〈x1, . . . , xd〉 be a (u0, u1)-
geodesic with x1 = u0 and xd = u1. Then dG(ud−1, x2) = d, i.e., x2 = ud−1,
since otherwise dG(ud−1, x2) would be equal to d− 2, contrary to the assumption
that dG(ud−1,Wba) = d − 1. It follows that dG(ud−1, x3) = d − 1, and thus that
dG(ud−1, x4) = d−2 by the uniqueness of the absolute antipode of each vertex in
a diametrical graph, once again contrary to the assumption that dG(ud−1,Wba) =
d− 1. Consequently Ud−1

ab = ∅.

4.3. Proof of (iii) for d ≤ 5

The result is clear by (i) and (ii) if d ≤ 4. Assume that d = 5. Suppose that
u ∈ Wab for some u ∈ Wab.

(4.3.1) u, u ∈ U3
ab by (i) and (ii). Hence the distances from u and u to any

element of U1
ab are at least 2.

(4.3.2) U2
ba = ∅. Suppose that Wba 6= Uba. Then there exists a vertex x ∈ U2

ba.
Clearly dG(u, x) < 5 since x 6= u because u ∈ Wab by hypothesis. Let P be a
(u, x)-geodesic, and xu the vertex of Uab that lies on P . Because dG(xu, x) ≥ 2 and
u ∈ U3

ab, it follows that dG(u, xu) = 2 and dG(xu, x) = 2, and thus dG(u, x) = 4.
Put P = 〈x0, x1, x2, x3, x4〉 with x0 = u, x2 = xu, x3 ∈ Uba and x4 = x.

Likely we have dG(u, x) = 4. Because dG(u, x3) cannot be equal to 5, it
follows that dG(u, x3) = 3, and thus dG(u, x2) = 2 since x2 ∈ IG(v, x3) for every
v ∈ Wab. Hence dG(u, u) ≤ dG(u, x2) + dG(u, x2) = 4, contrary to dG(u, u) = 5.

We infer that Wba = Uba.

(4.3.3) By (4.3.2), the map v → v, v ∈ Uab, is a bijection from Uab to Uba, and
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thus Uab = Wba. On the other hand, u has a neighbor w ∈ U2
ab. It follows, by the

uniqueness of the antipode, that w cannot belong to Wba, contrary to (i).
Consequently u ∈ Wba.

4.4. Proof of (iii) for d = 6

Suppose that u ∈ Wab for some u ∈ Wab.

(4.4.1) u, u ∈ U3
ab ∪U4

ab by (i) and (ii). Hence the distances from u and u to any
element of U1

ab are at least 2.

(4.4.2) Suppose that U4
ba 6= ∅, and let x ∈ U4

ba and y ∈ U3
ab. Then dG(x, y) = 6.

Hence U4
ba = {x} and U3

ab = {y}, and moreover U4
ab = ∅ since otherwise dG(x, U

4
ab)

would be equal to 7 contrary to diam(G) = 6. Therefore Wab ⊆ Wba by (i), and
we are done.

Consequently, from now on we assume that U4
ba = ∅.

(4.4.3) u, u ∈ U3
ab. Assume that u ∈ U4

ab. Suppose that U2
ba 6= ∅. Then

dG(u, U
2
ba) = 5 and dG(u, U

3
ba) = 6. Hence U3

ba = ∅ since u ∈ Wab by hypothesis.
Moreover two vertices x, y ∈ U2

ba cannot be adjacent, since otherwise we would
have dG(u, x) = dG(u, y) = 5, contrary to the fact that G is a bipartite graph. It
follows, because any vertex in a diametrical graph distinct from K1 and K2 has
degree at least 2, that any vertex in U2

ba must be adjacent to two vertices in U1
ba.

Hence there exists a path 〈a, b, c, b′, a′〉 such that a, a′ ∈ U1
ab, b, b

′ ∈ U1
ba and

c ∈ U2
ba, and such that dG(u, a) = dG(u, a

′) = 3, dG(u, b) = dG(u, b
′) = 4 and

dG(u, c) = 5. Because dG(b, b
′) = 2, it follows that a and a′ have a common

neighbor d. Note that d and c are not adjacent since c ∈ U2
ba, and thus the 6-

cycle 〈a, b, c, b′, a′, d, a〉 is isometric in G. The distance between u and d is either
2 or 4.

Suppose that dG(u, d) = 2. Because dG(u, u) = 6, it follows that dG(u, d) = 4
or 5.

Case 1. dG(u, d) = 5. Then dG(u, a) = dG(u, a
′) = 4, dG(u, b) = dG(u, b

′) =
5, and thus dG(u, c) = 4 because c is not the antipode of u. Hence there exists a
geodesic 〈e, f, c〉 such that e ∈ U1

ab, f ∈ U1
ba, dG(u, e) = 2 and thus dG(u, f) = 3.

It follows that dG(u, f) = 4 since dG(u, c) = 5 and f is not the antipode of u,
and thus dG(u, e) = 3. Hence dG(u, u) ≤ dG(u, e) + dG(u, e) = 5, contrary to
dG(u, u) = 6.

Case 2. dG(u, d) = 4. Then, clearly, dG(u, x) = dG(u, x) for all x ∈ {a, b,
c, b′, a′}.

Hence, without loss of generality, we can suppose that dG(u, d) = 4, since
otherwise we would use u instead of u in the following.

Let P be a (u, a)-geodesic and P ′ a (u, a′)-geodesic. Then Q = P ∪〈a, d〉 and
Q′ = P ′ ∪ 〈a′, d〉 are two (u, d)-geodesics. Hence, by Lemma 2.2(i), every edge of
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Q′ is Θ-equivalent to an edge of Q. In particular the edge da′, which cannot be
Θ-equivalent to the edge ad, is Θ-equivalent to some edge xy of P . It follows that
bc, which Θ-equivalent to da′ since the 6-cycle 〈a, b, c, b′, a′, d, a〉 is isometric in
G, is also Θ-equivalent to the edge xy, but this is impossible, by Lemma 2.2(ii),
because P ∪ 〈a, b, c〉 is a geodesic.

We infer that U2
ba = ∅, and thus that Wba = U1

ba. Consequently, the map

v → v, v ∈ U1
ab, is a bijection of U1

ab onto U1
ba, and thus U1

ab = Wba by (i). On
the other hand, because u ∈ U4

ab by assumption, there exists a vertex w ∈ U2
ab. It

follows, by the uniqueness of the antipode, that w cannot belong to Wba, contrary
to (i).

Therefore the assumption is false, and thus u /∈ U4
ab, and similarly u /∈ U4

ab.

(4.4.4) dG(u, U
3
ba) = dG(u, U

3
ba) = 5. This is clear because u, u ∈ U3

ab by (4.4.3).

(4.4.5) Two vertices in U3
ba cannot be adjacent. Suppose that two vertices x, y ∈

U3
ba are adjacent. It follows, by (4.4.4), that dG(u, x) = dG(u, y) = 5, contrary to

the fact that x and y are two adjacent vertices of the bipartite graph G.

(4.4.6) Any element of U3
ba is adjacent to at least two elements of U2

ba. This is a
consequence of (4.4.2), (4.4.5) and of the fact that the degree of any vertex of a
diametrical graph distinct from K1 and K2 is at least 2.

(4.4.7) dG(u, U
2
ba) = dG(u, U

2
ba) = 4. dG(u, U

2
ba) ≥ 4 since u ∈ U3

ab. Suppose
that there exists a vertex v ∈ U2

ba such that dG(u, v) = 5. We have two cases
depending on whether v has one or more than one neighbor in U1

ba. Note that v
has no neighbor w ∈ U3

ab, since otherwise dG(u,w) would be equal to 4, contrary
to (4.4.4).

Case 1. v has at least two neighbors in U1
ba. Because dG(u, Uab ≥ 2 and

dG(u, v) = 5, there exists a path 〈a, b, v, b′, a′〉 such that a, a′ ∈ U1
ab, b, b

′ ∈ U1
ba,

dG(u, a) = dG(u, a
′) = 3 and dG(u, b) = dG(u, b

′) = 4. Then b and b′ cannot
be adjacent since G is bipartite, and thus the path 〈b, v, b′〉 is a geodesic. Hence
dG(a, a

′) = dG(b, b
′) = 2. Let c be a common neighbor of a and a′.This vertex c

belongs to Wab since this set is convex. Moreover c 6= u because u ∈ U3
ab. Then

dG(u, c) = 2 or 4. If dG(u, c) = 2, then dG(u, c) = 4 or 5 because dG(u, u) = 6.
We then have three subcases.

Subcase 1.1. dG(u, c) = 2 and dG(u, c) = 5. Then dG(u, a) = dG(u, a
′) = 4,

dG(u, b) = dG(u, b
′) = 5, and thus dG(u, v) = 4 because u has a unique absolute

antipode u. It follows that there is a path 〈v, d, e〉 such that d ∈ U1
ba and e ∈ U1

ab,
and with dG(u, d) = 3 and dG(u, e) = 2. Because dG(u, v) = 5 by hypothesis, this
implies that dG(u, d) = 4 and dG(u, e) = 3, which is impossible since dG(u, e) = 2
and dG(u, u) = 6.

Subcase 1.2. dG(u, c) = 2 and dG(u, c) = 4. It follows that the distances from
a, b, v, b′, a′ to u are the same that the distances from these vertices to u. Denote
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by P and P ′ a (u, a)-geodesic and a (u, a′)-geodesic, respectively. Then P ∪〈a, c〉
and P ′ ∪ 〈a′, c〉 are two (u, c)-geodesics. By Lemma 2.2(i) and since 〈a, c, a′〉 is a
geodesic, it follows that the edge ca′ is Θ-equivalent to some edge xy of P . On
the other hand ca′ is also Θ-equivalent to bv. Hence bv is Θ-equivalent to xy,
contrary, by Lemma 2.2(ii), to the fact that P ∪ 〈a, b, v〉 is a geodesic.

Subcase 1.3. dG(u, c) = 4. The proof is the same as in Subcase 1.2 by
replacing u by u.

We infer that v cannot have two neighbors in U1
ba.

Case 2. v has exactly one neighbor in U1
ba. Because v cannot have a neighbor

in U3
ba as we saw above, it must have a neighbor w in U2

ba. Then there is a path
〈a, b, v, w, b′, a′〉 such that a, a′ ∈ U1

ab, b, b′ ∈ U1
ba, dG(u, a) = 3, dG(u, b) = 4,

dG(u, v) = 5, dG(u,w) = 4, dG(u, b
′) = 3 and dG(u, a

′) = 2. Obviously dG(a, a
′) =

dG(b, b
′) = 1 or 3. Moreover, because dG(u, u) = 6, we must have dG(u, a

′) = 4,
dG(u, b

′) = 5, dG(u,w) = 4, dG(u, v) = 5, dG(u, b) = 4 and dG(u, a) = 3. We
distinguish two subcases.

Subcase 2.1. dG(a, a
′) = dG(b, b

′) = 3. Let 〈a, c, d, a′〉 be an (a, a′)-geodesic.
We have two cases.

Subsubcase 2.1.1. u and d are not adjacent. Then dG(u, d) = 3, whereas
dG(u, c) may be 2 or 4. Denote by P and P ′ a (u, a)-geodesic and a (u, a′)-
geodesic, respectively. The path P ′ ∪ 〈a′, d〉 is a geodesic. According to whether
dG(u, c) is 2 or 4, i.e., according to whether c lies or does not lie on P , P [u, c]∪〈c, d〉
is a geodesic, or P ∪ 〈a, c〉 and P ′ ∪ 〈a′, d, c〉 are geodesics. In both cases, by
Lemma 2.2(i) and since 〈a, c, d, a′〉 is a geodesic, it follows that the edge da′ is
Θ-equivalent to some edge xy of P distinct from ac. On the other hand da′ is also
Θ-equivalent to bv, because the cycle 〈a, b, v, w, b′, a′, d, c, a〉 is clearly isometric
in G. Hence bv is Θ-equivalent to xy, contrary, by Lemma 2.2(ii), to the fact
that P ∪ 〈a, b, v〉 is a geodesic. Consequently u and d are adjacent.

Subsubcase 2.1.2. u and d are adjacent. Because dG(u, d) = 1, and since
dG(u, u) = 6, it follows that dG(u, d) = 5, and thus dG(u, c) = 4 since dG(u, a) =
3. Denote by P and P ′ a (u, a)-geodesic and a (u, a′)-geodesic, respectively.
Then P ∪〈a, c, d〉 and P ′∪〈a′, d〉 are geodesics. As above, the edge da′, which Θ-
equivalent to bv, is Θ-equivalent to some edge xy of P . Hence bv is Θ-equivalent
to xy, contrary to the fact that P ∪ 〈a, b, v〉 is a geodesic. Consequently, u and d
cannot be adjacent.

Subcase 2.2. dG(a, a
′) = dG(b, b

′) = 1. Because dG(u, b
′) = dG(u, v) = 5 and

dG(u,w) = 4 as we saw above, it follows that there exists a geodesic 〈a′′, b′′, w〉
with a′′ ∈ U1

ab, b
′′ ∈ U1

ba, dG(u, b
′′) = 3 and dG(u, a

′′) = 2. Moreover, a′ and a′′

have a common neighbor e since dG(a
′, a′′) = dG(b

′, b′′) = 2. Then dG(u, e) = 3
since dG(u, a

′) = 4 and dG(u, a
′′) = 2.
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Suppose that a and a′′ are adjacent, and then that so are b and b′′. Then
the edge a′′e is Θ-equivalent to both the edges aa′ and wb′. Because aa′ is Θ-
equivalent to bb′, it follows that wb′ and bb′ are also Θ-equivalent, contrary to the
fact that these edges are adjacent. Therefore a and a′′ are not adjacent.

Let P and P ′ be a (u, a)-geodesic and a (u, a′′)-geodesic, respectively. Then
P∪〈a, a′〉 and P ′∪〈a′′, e, a′〉 are (u, a′)-geodesics. Because 〈a, a′, e, a′′〉 is a geodesic
since a and a′′ are not adjacent, it follows, by Lemma 2.2(i), that a′′e is Θ-
equivalent to some edge xy of P . On the other hand, a′′e is Θ-equivalent to wb′,
and thus to vb. Hence vb is also Θ-equivalent to xy, contrary, by Lemma 2.2(ii),
to the fact that P ∪ 〈a, b, v〉 is a geodesic.

We infer that there exists no vertex v ∈ U2
ba such that dG(u, v) = 5, and

analogously such that dG(u, v) = 5.

(4.4.8) Two vertices in U2
ba cannot be adjacent. By (4.4.7), two adjacent vertices

of U2
ba should be at distance 4 from u. This is impossible because G is bipartite.

(4.4.9) Two elements of U1
ba can have at most one common neighbor in U2

ba.
Suppose that two vertices y, y′ ∈ U1

ba have two common neighbors z, z′ ∈ U2
ba.

Denote by x and x′ the neighbors in U1
ab of y and y′, respectively. Then dG(x, x

′) =
dG(y, y

′) = 2. Denote by x′′ a common neighbors of x and x′. Then x′′ is not
adjacent to z and z′ because z, z′ ∈ U2

ba. Hence the edge x′′x′ is Θ-equivalent
to both yz and yz′. It follows that yz and yz′ are also Θ-equivalent, which is
impossible since they are adjacent.
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Figure 2. The graph F .

(4.4.10) U3
ba = ∅. Suppose that there exists a vertex v ∈ U3

ba. By (4.4.4),
dG(u, v) = dG(u, v) = 5, and by (4.4.6), v has at least two neighbors f, f ′ ∈ U2

ba.
Then the distances of f and f ′ to u and u are equal to 4, and thus f and f ′ are



1138 N. Polat

linked to u and u by geodesics of length 4. Hence there exists a subgraph F of
G (see Figure 2) where the following properties are satisfied.

– u, u ∈ U3
ab, c, c

′, j, j′ ∈ U2
ab, i, i

′ ∈ U1
ab ∪ U2

ab, d, d
′, h, h′ ∈ U1

ab, e, e
′, g, g′ ∈ U1

ba,
f, f ′ ∈ U2

ba, v ∈ U3
ba;

– all paths below are geodesics:

P = 〈u, c, d, i, h, j, u〉 and P ′ = 〈u, c′, d′, i′, h′, j′, u〉,

Q = 〈u, c, d, e, f, v〉 and Q′ = 〈u′, c′, d′, e′, f ′, v〉,

R = 〈u, j, h, g, f, v〉 and R′ = 〈u, j′, h′, g′, f ′, v〉,

L = 〈u, c, d, e, f, g〉 and L′ = 〈u, c′, d′, e′, f ′, g′〉,

M = 〈u, j, h, g, f, e〉 and M ′ = 〈u, j′, h′, g′, f ′, e′〉;

– several of the vertices of F may coincide according to the possible cases that
are listed below:

(0) no vertices coincide and the cycles Cu = 〈u, c, d, e, f, v, f ′, e′, d′, c′, u〉 and
Cu = 〈u, j, h, g, f, v, f ′, g′, h′, j′, u〉 are isometric in G;

(1) c = c′;

(2) j = j′;

(3) c = c′, j = j′;

(4) j = j′, h = h′, g = g′ and the cycle Cu is isometric in G;

(5) c = c′, d = d′, e = e′ and the cycle Cu is isometric in G;

(6) c = c′, j = j′, h = h′ and g = g′;

(7) j = j′, c = c′, d = d′ and e = e′;

(8) c = c′, j = j′, d = d′, e = e′, h = h′ and g = g′.

The distances between u and u and the other vertices of this graph are then
perfectly defined by the geodesics above. Also note that F is not isometric in
G, for example the distances between c and j′, c′ and j, d and h′ and d′ and h
cannot be equal to 6, because the antipode of each of these vertices belongs to
Wba by (i).

We easily see that if the cycle Cu is not isometric in G, then we have a
subgraph of F that is isomorphic to the graph F that fulfills the conditions of
case (1), (5), (6), (7) or (8); and likely if the cycles Cu is not isometric in G.

We now show that G cannot contain such a subgraph F . By the remark
above, it suffices to consider each case.

(0) Because P and P ′ are (u, u)-geodesics, it follows, by Lemma 2.2(i), that
the edge uc′ is Θ-equivalent to some edge of P , and more precisely because Cu

is an isometric cycle of G, to some edge xy of P [d, u]. On the other hand, uc′ is
Θ-equivalent to fv, since Cu is isometric in G.
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If xy is di or ih, then, by the transitivity of the relation Θ, and because the
6-cycle 〈d, e, f, g, h, i〉 is clearly isometric in G, uc′ is Θ-equivalent to the edges
ef or fg, but none of these edges is Θ-equivalent to fv since fv is adjacent to
both of them, contrary to the transitivity of Θ.

If xy is hj or ju, then, by Lemma 2.2(ii), fv cannot be Θ-equivalent to xy
since these edges are edges of the geodesic R, contrary to the transitivity of Θ.

We infer that case (0) is impossible.

(1) c = c′. Then dG(e, e
′) = dG(d, d

′) = 2. Let w be a common neighbor of e
and e′. We will show below that w is adjacent to v, but it cannot be adjacent to
c because c ∈ U2

ab and w ∈ U1
ba∪U2

ba. It follows that the cycle 〈c, d, e, w, e
′, d′, c〉 is

isometric in G. Hence cd′ is Θ-equivalent to ew. Moreover cd′ is also Θ-equivalent
to fv if dG(d

′, f) = 4, or to ef if dG(d
′, f) = 2. Because ew is not Θ-equivalent to

ef since these edges are adjacent, it follows that cd′ is Θ-equivalent to fv, which
entails that w and v are adjacent.

On the other hand, because P [c, u] and P ′[c, u] are (c, u)-geodesics, it follows,
by Lemma 2.2(i), that cd′ is Θ-equivalent to some edge xy of P [d, u]. Hence, if
xy = di or ih, then xy is Θ-equivalent to fg or ef , respectively, and thus cannot
be Θ-equivalent to fv since these edges are adjacent. If xy = hj or ju, then, by
Lemma 2.2(ii), xy cannot be Θ-equivalent to fv because these edges are edges of
the geodesic R.

Therefore case (1) is also impossible.

(2) j = j′. This case is analogous to case (1), and thus is impossible.

(3) c = c′ and j = j′. This case is a combination of cases (1) and (2), and
thus we can easily show that it is impossible.

(4) j = j′, h = h′, g = g′ and Cu is isometric in G. Following what we did
in case (0), we can show that uc′ is Θ-equivalent to di or ih. On the other hand,
uc′ is Θ-equivalent to fv since Cu is isometric in G. Hence, if xy = di or ih, then
xy is Θ-equivalent to fg or ef , respectively, and thus cannot be Θ-equivalent to
fv since these edges are adjacent. Therefore case (4) is also impossible.

(5) c = c′, d = d′, e = e′ and Cu is isometric in G. This case is analogous to
case (4), and thus is impossible.

(6) c = c′, j = j′, h = h′ and g = g′. This case is a combination of cases (1)
and (4), and thus we can easily show that it is impossible.

(7) j = j′, c = c′, d = d′ and e = e′. This case is a combination of cases (2)
and (5), and it is analogous to case (6), and thus is impossible.

(8) c = c′, j = j′, d = d′, e = e′, h = h′ and g = g′. Then di is Θ-equivalent
to both fg and f ′g, but these two edges cannot be Θ-equivalent since they are
adjacent. Hence case (6) is impossible.

Therefore we can infer that U3
ba = ∅.
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(4.4.11) Any element of U2
ba is adjacent to at least two elements of U1

ba. This is
a consequence of (4.4.8), (4.4.10) and of the fact that the degree of any vertex of
a diametrical graph of diameter greater than 1 is at least 2.

(4.4.12) If a vertex x ∈ U2
ba has exactly two neighbors y, z ∈ U1

ba, then x is the
only common neighbor of y and z. Suppose that y and z have another common
neighbor v. Then dG(v, y) = dG(v, z) = 5, and thus dG(v, x) = 6 since, by
(4.4.10), y and z are the only neighbors of x. This is impossible because x 6= v
by hypothesis.

Note that, by this property, the neighbors in U1
ab of y and z have a common

neighbor in U2
ab.

(4.4.13) If two vertices x, y ∈ U1
ba have a common neighbor v ∈ U2

ba, then the
neighbors of x and y in U1

ab have exactly one common neighbor.
Let x′ and y′ be the neighbors in U1

ab of x and y, respectively. It follows that
dG(x

′, y′) = 2, and thus x′ and y′ have at least a common neighbor. Suppose that
x′ and y′ have two common neighbors w and w′. Then vy is Θ-equivalent to both
x′w and x′w′, but x′w and x′w′ are not Θ-equivalent since they are adjacent,
contrary to the transitivity of the relation Θ.

(4.4.14) Forbidden isometric subgraphs of partial cubes. We present three bi-
partite graphs that are not partial cubes, and thus that cannot be isomet-
ric subgraphs of a partial cube. It is well-known that K2,3 is not a partial
cube. More generally, if K2,3 = 〈a, c, b〉 ∪ 〈a, d, b〉 ∪ 〈a, e, b〉, then the graph
L1 = 〈a, ca, c, cb, b〉 ∪ 〈a, d, b〉 ∪ 〈a, e, b〉 obtained by subdividing the edges ca and
cb of K2,3, is also an expansion of this graph (see [2] or [18]), and thus is not
a partial cube. Likely the graph L2 = 〈a, ca, c, cb, b〉 ∪ 〈a, da, d, db, b〉 ∪ 〈a, e, b〉
obtained by subdividing the edges da and db of L1, is also an expansion of this
graph, and thus is not a partial cube.

It follows that K2,3, L1 and L2 cannot be isometric subgraphs of a partial
cube. We use these properties later.

(4.4.15) For any v ∈ U2
ba, there exists some w ∈ U2

ab that is adjacent to two
vertices in U1

ab whose neighbors in U1
ba are adjacent to v.

Suppose that there is a vertex v ∈ U2
ba that does not satisfy the statement

above. Let b, d ∈ U1
ba be two of its neighbors. Then the neighbors a and c in U1

ab

of b and d, respectively, have a common neighbor e. By the above hypothesis,
e /∈ U2

ab, and thus e ∈ U1
ab, and its neighbor f in U1

ba is adjacent to both b and d.
Because dG(u, v) = 4 by (4.4.7), we can assume without loss of generality that
dG(u, a) = 2. Then dG(u, c) 6= 2, since otherwise we would have some subgraph
isomorphic to the graph L2, which is impossible by (4.4.14).

Clearly dG(f, b) = dG(f, d) = 5 since dG(f, f) = 6. Because dG(f, v) 6= 6
by the uniqueness of the antipode, it follows that v must be adjacent to another
vertex h ∈ U1

ba that is not adjacent to f . Let g be the neighbor of h in U1
ab.
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Then dG(g, a) = dG(g, c) = 2, since h is not adjacent to b and to d by (4.4.8).
Let i and k be the common neighbors of g and a, and of g and c, respectively.
Note that i and k may coincide, but must be distinct from e since otherwise
h would be adjacent to f , contrary to the condition above. By the hypothesis
above, i and k cannot belong to U2

ab, and thus i, k ∈ U1
ab. Denote by j and l the

neighbors in U1
ba of i and k, respectively. We distinguish two cases.

Case 1. i 6= k. As dG(u, c), dG(u, g) is not equal to 2, and thus dG(u, c) =
dG(u, g) = 4. Then, because dG(u, l) cannot be equal to 6, it follows that we must
have dG(u, l) = 4, and thus dG(u, k) = 3. Let Pa = 〈a, w, u〉 and Pk be some
(u, a)-geodesic and (u, k)-geodesic, respectively. By Lemma 2.2(i) and because
〈a, e, c, k〉 is a geodesic since i 6= k by hypothesis, the edge ck is Θ-equivalent
to some edge xy of Pa. On the other hand ck is also Θ-equivalent to dl, and
thus to vh. Hence vh and xy are Θ-equivalent. Therefore dG(h, y) = dG(v, x),
and thus dG(g, y) = dG(v, x) − 1. If xy = aw, then dG(g, w) = 1, and thus
dG(g, u) = 2, contrary to dG(g, u) = 4 as we saw above. If xy = wu, then once
again dG(g, u) = 2 and not 4.

Case 2. i = k, and thus j = l. Then the graph 〈v, b, j〉 ∪ 〈v, h, j〉 ∪ 〈v, d, j〉
is an induced subgraph of G that is isomorphic to K2,3, which is impossible by
(4.4.14).

Consequently the vertex v must satisfy (4.4.15).
From (4.4.9), (4.4.13) and (4.4.15) we infer the following result.

(4.4.16) Any v ∈ U2
ba is the unique common neighbors of at least two of its

neighbors x, y ∈ U1
ba. Moreover the neighbors of x and y in U1

ab have exactly one
common neighbor in U2

ab.

(4.4.17) Let Φ be a map of Wba = U1
ba ∪ U2

ba to Wab defined as follows.

1. If x ∈ U1
ba, then Φ(x) is the unique neighbor of x in U1

ab.

2. If x ∈ U2
ba, then, by (4.4.15), there exists at least a y ∈ U2

ab that is adjacent to
two vertices in U1

ab whose neighbors in U1
ba are adjacent to x. Put Φ(x) = y.

Such a map is not unique, because if a vertex x ∈ U2
ba has exactly two

neighbors in U1
ba, then the choice of Φ(x) is unique, but this is generally not the

case if x has more than two neighbors in U1
ba.

(4.4.18) The map Φ is injective. Suppose that two vertices v1, v2 ∈ U2
ba have the

same image w by Φ. Then there exist four geodesics 〈w, a, b, v1〉, 〈w, a
′, b′, v1〉,

〈w, c, d, v2〉, 〈w, c
′, d′, v2〉, with a, a′, c, c′ ∈ U1

ab and b, b′, d, d′ ∈ U1
ba. Note that

one of the neighbors b, b′ of v1 may coincide with one of the neighbors d, d′ of
v2, for example we may have b′ = d′, and thus a′ = c′. By (4.4.7), dG(u, v1) =
dG(u, v2) = 4. Hence the distances from u to b, b′, d and d′ may be 3 or 5.

Suppose that dG(u, b) = dG(u, b
′) = 5, and thus that dG(u, a) = dG(u, a

′) =
4. Then dG(u,w) = 3 or 5. Because dG(u, v1) = 4, it follows that there exists a
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geodesic 〈g, h, v1〉 such that g ∈ U1
ab, h ∈ U1

ba and dG(u, g) = 2. Then g 6= a and
h 6= b. It follows that dG(g, a) = dG(g, a

′) = 2. Let i be a common neighbor of g
and a, and i′ a common neighbor of g and a′. We can assume that, if g and w
are adjacent, then i = i′ = w. We distinguish two cases.

Case 1. i = i′. Then both the edges v1b and v1b
′ are Θ-equivalent to the

edge gi, but themselves cannot be Θ-equivalent since they are adjacent, contrary
to the transitivity of the relation Θ.

Case 2. i 6= i′. By our assumption, g and w are not adjacent. Then the
graph 〈a, w, a′〉 ∪ 〈a, i, g, i′, a′〉 ∪ 〈a, b, v1, b

′, a′〉 is an isometric subgraph of G that
is isomorphic to the graph L1, which is impossible by (4.4.14).

Therefore dG(u, a) = 2. Likely, at least dG(u, c) or dG(u, c
′) is equal to 2, say

dG(u, c) = 2. Moreover dG(u,w) is then equal to 1 or 3.

Suppose that dG(u,w) = 3. Because dG(b, d) = dG(a, c) = 2, b and d have
a common neighbor j. By (4.4.7), dG(u, j) = 4 if j ∈ U2

ba. If j ∈ U1
ba, and if k

is the neighbor of j in U1
ab, then k is a common neighbor of a and c, and thus

dG(u, k) = 3 because dG(u, a) = dG(u, c) = 2, and since it cannot be 1, because
u ∈ U3

ab. Hence dG(u, j) = 4, as in the case above.

Let Pa and Pc be some (u, a)-geodesic and (u, c)-geodesic, respectively. Pa ∪
〈a, w〉 and Pc∪〈c, w〉 are geodesics. Hence, by Lemma 2.2(i) and because the edges
wc and aw are not Θ-equivalent, the edge wc is Θ-equivalent to some edge xy of
Pa. On the other hand, the 6-cycle 〈a, b, j, d, c, w, a〉 is isometric in G, because w
and j are not adjacent since w ∈ U2

ab. It follows that wc is Θ-equivalent to bj,
but, by Lemma 2.2(ii), bj and xy cannot be Θ-equivalent since they are edges of
the geodesic Pa ∪ 〈a, b, j〉, contrary to the transitivity of the relation Θ.

Therefore, dG(u,w) 6= 3, and thus dG(u,w) = 1, and likely dG(u,w) = 1.
Hence dG(u, u) = 2, contrary to dG(u, u) = 6.

Consequently Φ(v1) 6= Φ(v2), and thus the map Φ is injective.

(4.4.19) The map Φ is not surjective. This is clearly the case, by the definition
of Φ, if some vertex in U2

ab has only one neighbor in U1
ab. Suppose that all vertices

in U2
ab has at least two neighbors in U1

ab, and suppose that Φ is surjective.

u has a neighbor w in U2
ab since u ∈ U3

ab. Because Φ is surjective by hypoth-
esis, w has two neighbors a, c ∈ U1

ab such that, if b and d are the neighbors in U1
ba

of a and c, respectively, then b and d must be adjacent to some v ∈ U2
ba so that

Φ(v) = w.

On the other hand, because dG(u, u) = 6 and dG(u,w) = 1, we must have
dG(u,w) = 5, dG(u, a) = dG(u, c) = 4, and thus dG(u, b) = dG(u, d) = 5. More-
over dG(u, v) = 4 by (4.4.7). It follows that there exist a geodesic 〈e, f, v〉 such
that e ∈ U1

ab, f ∈ U1
ba and dG(u, e) = 2. Then e 6= c and f 6= d. It follows that

dG(e, a) = dG(e, c) = 2. Let i be a common neighbor of e and a, and j a common
neighbor of e and c. We distinguish two cases.
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Case 1. i = j. Then both the edges aw and ai are Θ-equivalent to the edge
vd, but they cannot be Θ-equivalent since they are adjacent.

Case 2. i 6= j. Then the subgraph 〈c, j, e〉 ∪ 〈c, w, a, i, e〉 ∪ 〈c, d, v, f, e〉 is
an isometric subgraph of G which is isomorphic to the graph L2, contrary to
(4.4.14).

As we obtain a contradiction in both cases, we deduce that the map Φ is not
surjective.

(4.4.20) Because the map Φ : Wba → U1
ab ∪ U2

ab is injective but not surjective, it
follows that the antipode of some element of U1

ab ∪ U2
ab does not belong to Wba,

contrary to condition (i) of Lemma 3.9.

Therefore the hypothesis we made at the beginning of the proof, i.e., that u
does not belong to Wba, is false, and thus u ∈ Wba. This completes the proof of
the lemma.

5. Concluding Remarks

The process used in the proof of Lemma 3.9 seems difficult to extend to a di-
ametrical partial cube of diameter greater than 6. However such an extension
may not be impossible, at least for partial cubes of very small diameter. Note
that the length of the proofs between the cases d < 5, d = 5 and d = 6 increases
considerably, and this also seems true between d = 6 and d = 7, provided that
any diametrical partial cube of diameter 7 is antipodal, which we still do not
know. By analogy with other results with similar increase of difficulty, this may
suggest the existence of a counterexample, that is, of a non-antipodal diametrical
partial cube of diameter d ≥ 7.

On the other hand, note that the self-centered (actually diametrical) partial
cubes that can be obtained from K1 by a sequence of the so-called diametrical ex-
pansions (see [1, Section 3]) are the antipodal partial cubes by [18, Theorem 4.9],
since the diametrical expansions of [1] correspond to the antipodality-respectful
expansions of [18]. Hence we do not obtain a non-antipodal diametrical partial
cube by this process.

These two remarks bring us to ask the following question.

Question 5.1. Does there exists a non-antipodal diametrical (or even a non-
antipodal self-centered) partial cube ?

We state a metaresult concerning the possible existence of non-antipodal
diametrical partial cubes. First recall that Göbel and Veldman [8, Proposition 19]
(see also Kotzig and Laufer [14, Theorem 2] for antipodal graphs only) proved that
the Cartesian product G�H of two graphs G and H is diametrical (respectively,
antipodal) if and only if both G and H are diametrical (respectively, antipodal).
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Because K2 is antipodal, we infer that the prism G�K2 over a diametrical graph
G is a diametrical graph that is antipodal if and only if so is G. We then have
the following consequence.

Proposition 5.2. If there exists a non-antipodal diametrical partial cube of di-
ameter d for some d ≥ 7, then there exists a non-antipodal diametrical partial
cube of diameter d′ for every d′ ≥ d.

We complete this section with a side result. Recall that a graph G is said
to be distance-balanced if |Wab| = |Wba| for every edge ab of G. Handa [10],
who introduced this concept, observed that any harmonic graph, and thus any
antipodal graph by Proposition 3.1, is distance-balanced, but that there exist
distance-balanced partial cubes that are not diametrical. We have the following
result.

Proposition 5.3. Let G be diametrical partial cube that is distance-balanced.
Then G is antipodal if and only if Wab ⊆ Wba or Wba ⊆ Wab for any edge ab
of G.

Proof. The necessity is clear by Lemma 3.6. Conversely, let G be a diametrical
partial cube that is distance-balanced, and that satisfies the property of the
statement, and let ab ∈ E(G). Suppose, without loss of generality, that Wab ⊆
Wba. ThenWab = Wba by the uniqueness of the absolute antipode in a diametrical
graph and the fact that G is distance-balanced. Therefore G is antipodal by
Lemma 3.6.

By analogy to Question 5.1 we have the following question.

Question 5.4. Does there exists a distance-balanced diametrical partial cube that
is not antipodal ?
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