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Abstract

We consider digraph colouring games where two players, Alice and Bob,
alternately colour vertices of a given digraph D with a colour from a given
colour set in a feasible way. The game ends when such move is not possible
any more. Alice wins if every vertex is coloured at the end, otherwise Bob
wins. The smallest size of a colour set such that Alice has a winning strategy
is the game chromatic number of D. The digraph D is game-perfect if,
for every induced subdigraph H of D, the game chromatic number of H
equals the size of the largest symmetric clique of H. In the strong game,
colouring a vertex is feasible if its colour is different from the colours of
its in-neighbours. In the weak game, colouring a vertex is feasible unless
it creates a monochromatic directed cycle. There are six variants for each
game, which specify the player who begins and whether skipping is allowed
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for some player. For all six variants of both games, we characterise the class
of game-perfect semiorientations of forests by a set of forbidden induced
subdigraphs and by an explicit structural description.

Keywords: game chromatic number, game-perfect digraph, forest, dichro-
matic number, game-perfect graph, forbidden induced subdigraph.
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1. Introduction

In this paper, we consider the strong digraph colouring game and the weak digraph
colouring game introduced by Andres [1] and Yang and Zhu [20], respectively.

The strong digraph colouring game was studied in some recent papers [1, 2,
5, 12, 20]. In this game, two players, Alice and Bob, alternately choose a colour c
from a given set and colour an uncoloured vertex v of an initially uncoloured,
simple and finite digraph D, under the constraint that v does not have any in-
neighbour which has been coloured with c. Alice wins if all vertices of D can be
coloured finally; otherwise, Bob wins.

Andres [5] considered six variants of the game. Depending on which one we
play with, Alice or Bob is the first player, and one of them may be allowed to skip
turns. We denote these variants by g = [X,Y ]. The player X ∈ {A,B} takes the
first move and Y ∈ {A,B,−} has the right to skip any number of turns. A,B,−
denote Alice, Bob, and none of the players, respectively. The g-game chromatic
number χg(D) of a digraph D is the smallest t ∈ N such that Alice has a winning
strategy for the strong digraph colouring game with t colours under the g variant.

The concept of game-perfect digraphs was introduced and first studied by
Andres [5]. A symmetric clique is a digraph such that between any two differ-
ent vertices u, v the arcs (u, v) and (v, u) exist. The clique number ω(D) of a
digraph D is the number of vertices of the largest symmetric clique in D. It is
clear that ω(D) ≤ χg(D) for any D and g, since all vertices of a symmetric clique
should have different colours. For each variant g, a digraph D is g-perfect if any
induced subdigraph H of D has ω(H) = χg(H).

A non-game analogue of the game chromatic number is the dichromatic num-
ber of a digraph introduced by Neumann-Lara [18], which is the smallest number
of colours used in a (not necessarily proper) colouring of the vertices of the di-
graph such that the colour classes do not contain monochromatic directed cycles.
A digraph D is perfect if, for any induced subdigraph H of D, the dichromatic
number and clique number of H are equal. Since the dichromatic number is an
obvious lower bound on the game chromatic number, any game-perfect digraph is
also a perfect digraph. Using the Strong Perfect Graph Theorem [13], which con-
cerns a characterisation of perfect undirected graphs, Andres and Hochstättler [7]
characterised perfect digraphs by a set of forbidden induced subdigraphs, which
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generalizes the Strong Perfect Graph Theorem. In this paper, we consider similar
characterisations with respect to games.

By considering undirected graphs as symmetric digraphs, the dichromatic
number generalizes the chromatic number of an undirected graph. In the same
way, the digraph colouring game is a generalization of the well-known graph
colouring game [15] that was made popular by the works of Bodlaender [10] and
Faigle et al. [14]. More references on the general topic of graph colouring games
can be found in the recent survey by Tuza and Zhu [19].

Game-perfect undirected graphs were introduced by Andres [3]. A charac-
terisation of game-perfect undirected graphs by forbidden induced subgraphs and
by explicit structural descriptions was given by Andres [4] for the games [B,B],
[A,B], and [A,−] and by Lock [17] and Andres and Lock [8] for the game [B,−].

To deal with digraphs, a semiorientation of a graph G is a digraph D on the
same vertex set such that every edge vw of G is replaced by either an arc (v, w)
or (w, v) or both. Andres [5] proposed the problem of characterising g-perfect
digraphs D and partially solved it with respect to the clique number of D. The
problem with respect to clique number 1 is trivial and that with respect to clique
number 2 was partially solved: Andres characterised g-perfect semiorientations
of paths, cycles and complete graphs with clique number 2 for all the six variants.

In this paper, we give further results on the characterisation problem with
respect to clique number 2. We characterise game-perfect semiorientations of
forests, which have clique number at most 2, by a set of forbidden induced sub-
digraphs and by an explicit structural description. Since paths are forests, our
results include the result on semiorientations of paths given by Andres [5]. The
two main results of this paper are stated as follows.

Theorem 1. For a semiorientation D of a forest, the following are equivalent.
(i) D is [A,A]-perfect.

(ii) D does not contain any of the following 24 forbidden configurations (depicted
in Figure 2) as an induced subdigraph: the 6 in-chairs, the 6 in-brooms, the

2 in-P5s, F4, F3,1, F3,2, F8, F
(1)
→ , F

(2)
→ , F

(1)
+ , F

(2)
+ , F

(3)
+ , F

(4)
+ .

(iii) D is either empty or D has a component of one of the types E1, . . . , E12

(depicted in Figure 6) and every other component of D is a P4 or a star.

Theorem 2. For a semiorientation D of a forest, the following are equivalent.
(i) D is [A,B]-perfect.

(i’) D is [A,−]-perfect.

(ii) D does not contain any of the following 7 configurations as an induced sub-

digraph: the 3 in-P4s (see Figure 10), F4, F3,1, F3,2, F
(3)
+ .

(iii) D is either empty or D has a component of one of the types EA
1 , . . . , E

A
4

(depicted in Figure 11) and every other component of D is a star.
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For the games that Bob begins, i.e., [B,A], [B,−], and [B,B], which are much
easier to handle, we give similar characterisations in Theorems 36, 37, and 38,
respectively, in Section 5. Thus, we characterise game-perfect directed forests for
all six possible variants of the strong digraph colouring game.

Yang and Zhu [20] proposed a different digraph colouring game: the weak
digraph colouring game. Both games are identical to the undirected graph colour-
ing game when restricted to undirected graphs. A notion of game-perfectness can
be defined also for the weak digraph colouring games (cf. [6]). In Section 6, we
give characterisations for weakly game-perfect semiorientations of forests for any
variant of the weak digraph colouring game.

Here is an outline of the rest of this paper. Terminologies and notations will
be introduced in Section 2. The proofs of Theorem 1 and 2 will be given in Section
3 and 4, respectively. Section 5 is for the three variants of the strong digraph
colouring game that Bob begins. We deal with the weak digraph colouring game
for all the six variants in Section 6. Some open questions on digraph colouring
games will be discussed in Section 7.

2. Preliminaries

2.1. Basic notation and terminology of digraphs

We consider digraphs of the form (V,A), where V is a finite set of vertices and
A ⊆ V × V \ {(v, v) | v ∈ V } is the set of arcs. In particular, this means the
digraphs we consider have neither loops nor multiple arcs.

An in-arc of a vertex v is (u, v) for some vertex u, an out-arc of vertex v is
(v, w) for some vertex w. A single arc is an arc (u, v) such that (v, u) does not
exist. If both (u, v) and (v, u) exist, uv = {(u, v), (v, u)} is called an edge, and u
is called a symmetric neighbour of v. An arc is either a single arc or an element
of an edge.

A directed component of a digraph is a component containing at least one
single arc. A symmetric digraph is a digraph without single arcs. Therefore,
a symmetric digraph can be interpreted as and also called an undirected graph
by interpreting the two arcs of every edge as an edge in the context of undi-
rected graphs. The underlying graph G(D) of a digraph D is the undirected
graph obtained by replacing all single arcs (v, u) in D by the edge vu, which
makes D symmetric. A semiorientation D of an undirected graph G is any di-
graph D such that G(D) = G. There is no common terminology for the concept of
semiorientation. For example, semiorientations are also called biorientations (by
Bang-Jensen and Gutin [9]) and superorientations (by Boros and Gurvich [11]).
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For short, in the rest of this paper, we will call any semiorientation of a tree,
a forest, or a path simply a tree, a forest, or a path, respectively. Also, a connected
induced subdigraph of a semiorientation of a tree will be simply called a subtree.

The symmetric part S(D) of a digraph D = (V,A) is the digraph (V,E),
where E is the union of all edges. In other words, S(D) is the maximal symmetric
subdigraph ofD. Recall that a symmetric clique is a symmetric complete digraph.
The clique number ω(D) of a digraph D is the number of vertices of the largest
symmetric clique in D.

If (u, v) exists, regardless of the existence of (v, u), u is called an in-neighbour
of v and v is called an out-neighbour of u. The degree of a vertex v in a digraph D
is the degree of v in G(D).

The distance between two arcs (u, v) and (u′, v′) in a semiorientation of a
tree D, where {u, v} 6= {u′, v′}, is denoted by dist((u, v), (u′, v′)) and defined as
follows. In the undirected tree G(D), there is a unique path with its starting
and ending edges being uv and u′v′. This path P has length 2 if uv and u′v′

are adjacent; otherwise, it has length at least 3. The distance between (u, v) and
(u′, v′) in D is then defined as `− 2 where ` is the length of P .

We refer to the monography of Bang-Jensen and Gutin [9] for undefined terms
or notation in this paper. For example, d+(v) and d−(v) denote the out-degree
and the in-degree of a vertex v, respectively.

2.2. Terminology of strong digraph colouring games

The following definitions in this Section 2.2 and the definitions in Section 2.3 refer
to strong digraph colouring games. Definitions for weak digraph colouring games
will be given in Section 6 when they are needed. A partial colouring of a digraph
is an assignment of colours to some of the vertices. For a strong digraph colouring
game g, an uncoloured or a partially coloured digraph D is k-g-permitted if Alice
has a winning strategy for g played with k colours on D and k-g-unpermitted
otherwise. An uncoloured digraph D is g-nice if ω(D) = χg(D). Thus, D is g-
perfect if and only if every of its induced subdigraphs is g-nice. By definition, a
g-nice digraph with clique number k is k-g-permitted.

During a game, colouring a vertex v with colour c is a Bob-winning move
if v is uncoloured, c is available for v, and colouring v with c makes some out-
neighbour of v uncolourable. Two or more Bob-winning moves that exist at the
same turn are called independent if colouring any single vertex at this turn can
eliminate at most one of them.

Therefore, if it is Alice’s turn and colouring v with c is a Bob-winning move,
Bob can win on his next turn unless Alice colours v or some of its neighbours at
this turn. If there exist at least two independent Bob-winning moves, Bob wins
the game. These observations will be employed in the proof of Theorem 1.
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For any digraph D, the six games are related in the following way (see [5]).

(1) ω(D) ≤ χ(D) ≤ χ[A,A](D) ≤

{
χ[A,−](D) ≤ χ[A,B](D)

χ[B,A](D) ≤ χ[B,−](D)

}
≤ χ[B,B](D).

Consequently, if we denote the set of g-perfect digraphs by GPg for each g,
and the set of perfect digraphs by P, we have

(2) GP [B,B] ⊆

{
GP [A,B] ⊆ GP [A,−]

GP [B,−] ⊆ GP [B,A]

}
⊆ GP [A,A] ⊆ P.

2.3. Threatening out-degree

In this subsection, we will introduce the concept of threatening out-degree. The
motivation of it is to simplify the proof of Theorem 1 (i)=⇒(ii).

In a digraph D, a vertex v is safe if d−(v) < ω(D), otherwise it is unsafe.
We remark that an unsafe vertex might become uncolourable during the game,
whereas a safe vertex can always be coloured. In an uncoloured digraph D, the
threatening out-degree of a vertex v, denoted by d+thr(v), is the number of unsafe
out-neighbours of v.

For example, in the subfigure with caption F7,1 in Figure 5, vertices are at-
tached with their corresponding threatening out-degrees. Safe and unsafe vertices
are represented by unfilled and filled vertices, respectively. In F7,1, v is safe since
v has exactly one in-neighbour and ω(F7,1) = 2. Also, d+thr(v) = 2 since v has
exactly two unsafe out-neighbours. Since the leaf adjacent to u is safe, u has two
neighbours but only one unsafe out-neighbour, which implies d+thr(u) = 1.

Intuitively, the threatening out-degree of a vertex v measures the threat of
colouring v to Alice at the beginning of the game. Therefore, at the beginning of
any variant where Alice takes the first move, Alice may prefer to skip or colour
vertices with threatening out-degree 0. This intuition will be rigorously presented
in the following lemma.

Lemma 3. Let Y ∈ {A,B,−}. Let D be a digraph with ω(D) ≤ 2. For the
[A, Y ]-game played with ω(D) colours on D, if Alice colours a vertex v with
d+thr(v) ≥ 1 in her first move of the digraph colouring game, then Bob will win
the game. Equivalently, in any of Alice’s winning strategies for this game, Alice’s
first move is either colouring a vertex v with d+thr(v) = 0 or skipping.

Proof. If Alice colours a vertex v with d+thr(v) ≥ 1 in her first move, an unsafe
out-neighbour of v, denoted by u, will have no available colours in the game
played with one colour. For the game with two colours, let again u be an unsafe
out-neighbour of v, the vertex Alice has coloured. The vertex u exists, since



Game-Perfect Semiorientations of Forests 507

d+thr(v) ≥ 1. Since u is unsafe and ω(D) = 2, the vertex u has at least two in-
neighbours. Therefore, Bob can colour an in-neighbour w of u with w 6= v with
the other colour so that u has no available colours.

The above lemma will be employed in the proof of Theorem 1 (i)=⇒(ii).

2.4. Notation concerning structures

By Pn, Cn, Kn, and (n− 1)-star we denote the undirected path, cycle, complete
graph and star of n vertices, respectively. The smallest star is the 0-star, which
consists of one vertex. An out-leaf arc is a single arc (u, v), so that u is the unique
neighbour of v, i.e., d−(v) = 1 and d+(v) = 0. A k-in-star is a digraph consisting
of k + 1 vertices and k single arcs which point towards a unique central vertex.

Let v be a vertex in a semiorientation D of a tree. For an integer k ≥ 2 we
define the following types of subdigraphs of D.

• A pending star at v is an undirected k-star such that v is a leaf of the star.

• A Pk at v is an undirected Pk such that v is a leaf of the Pk.

• A broken Pk at v is an undirected Pk such that v is an internal vertex of
the Pk.

Moreover, for vertex v and an integer k ≥ 0, we define, as depicted in Figure 1.

• A star (k-star) at v is an undirected star (undirected k-star) such that v is
the center of the star. (If k ∈ {0, 1}, then an arbitrary vertex of the star can
be considered as center.)

• A 2-gadget at v is a star or P3 at v.

• A P-gadget at v is a star or pending star at v.

• A 4-gadget at v is a star, pending star, P4 or broken P4 at v.

• A 3-gadget at v is a 3-star, P4 or broken P4 at v.

Note that since k can be zero, a star can be a single vertex, i.e., just v exists.
Therefore, a 2-gadget, a P-gadget or a 4-gadget can also be a single vertex.

Let T be a tree and v be one of its vertices. A v-branch of T is the subtree
induced by v and all vertices of a component of T − v. For the v-branch H
of T containing a vertex w 6= v, we define the truncated v-branch containing w,
denoted by Hw, as Hw = H − v.

2.5. Explanation of the figures

In the figures of this paper, single arcs are depicted by arrows and edges are
depicted by lines. Configurations that might be repeated an arbitrary number of
times are indicated by multiple dots. Stars, 2-gadgets, P-gadgets, 4-gadgets and
3-gadgets at a vertex v are depicted by the triangles given in Figure 1.
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v
S

v
2

�
�

v
4

v
3

star at v 2-gadget at v P-gadget at v 4-gadget at v 3-gadget at v

� � � � v

v

� �

v v

v v

Figure 1. The gadgets and the types of graphs they represent.

3. [A,A]-Perfect Forests: Proof of Theorem 1

Our method to prove Theorem 1 is inspired by the methods developed in [4],
which were also used by Lock [17] and Andres and Lock [8]. We start with an
outline of the proof.

Outline of the proof of Theorem 1. In Section 3.1 we will define 24 digraphs,
which we call forbidden digraphs. In Section 3.2 we will prove that Bob has a
winning strategy for the game [A,A] on each of the 24 forbidden digraphs when
the number of colours equals its clique number. This means that the forbidden
digraphs are not [A,A]-perfect, thus (i)=⇒(ii) is proved by contraposition. We
will define the 12 classes E1, . . . , E12 of digraphs, which we call permitted types,
in Section 3.3. Section 3.4 contains a structural characterisation of forests that
do not contain any of the forbidden digraphs as an induced subdigraph. We
will first remark that any component of such a forest is a P4 or a star, except
for at most one special component. Then, by a number of case distinctions, we
will show that if such a special component exists, then the special component
must be of one of the permitted types, which proves the implication (ii)=⇒(iii).
Finally, in Section 3.5 we will prove that, for any permitted type, every digraph
D belonging to this type is [A,A]-nice, by describing an explicit winning strategy
of Alice. Also, we will prove that any subdigraph of D belongs to some permitted
type. The two results together imply that the digraphs of each permitted type
are [A,A]-perfect, establishing the implication (iii)=⇒(i).
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3.1. Forbidden configurations

In Theorem 1, [A,A]-perfect forests are characterised by the thirteen forbidden
types of induced subdigraphs shown in Figure 2. These thirteen types totally
consist of twenty-four forbidden configurations. All the configurations of the types
in-P5, in-chair and in-broom are depicted in Figures 3, 4 and 5, respectively.

F4 F3,1 F3,2

F8 In-P5

uv
3

In-broom In-chair

c

2 1

1

1 11 0 20 0

u a d

F
(1)
→

u

1 2 1 1 1

1

1 1

F
(2)
→

c

2 1

1

2 11 00 0

a db

1

F
(1)
+

c

2 1

1

2 11 0 0

a db

1

F
(2)
+

c

2 1

1

1 11 0 0

a db

1

F
(3)
+

c

2 11 11 0 1

a db

1

1

F
(4)
+

Figure 2. The thirteen types containing twenty-four forbidden configurations for [A,A]-
perfect digraphs. In the last six depictions, unfilled circles denote safe vertices, filled
circles unsafe vertices, and the numbers are the threatening out-degree of each vertex.

3.2. Proof of Theorem 1 (i)=⇒(ii)

It is sufficient to show that every digraph F in the list of forbidden types depicted
in Figure 2 is [A,A]-forbidden, i.e., Bob has a winning strategy for the [A,A]-
colouring game played on F with ω(F ) colours. We will show them one by one.
The case of forests of paths has been already discussed in [5].
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F5,1 F5,2

Figure 3. The two in-P5s.

�

�

� � �

C0,0,0

�

�

� � �

C0,0,1

�

�

� � �

C0,1,0

�

�

� � �

C0,1,1

�

�

� � �

C1,1,0

�

�

� � �

C1,1,1

Figure 4. The six in-chairs. In the depictions, unfilled circles denote safe vertices, filled
circles unsafe vertices, and the numbers are the threatening out-degree of each vertex.

Proposition 4 [5]. The F4 and the paths F3,1, F3,2, F8 and the two in-P5s are
[A,A]-forbidden.

Note that all in-chairs, all in-brooms, F
(i)
→ (1 ≤ i ≤ 2) and F

(i)
+ (1 ≤ i ≤ 4)

have clique number 2. Therefore, in the proofs of the following propositions, we
will describe winning strategies of Bob for the [A,A]-colouring game with two
colours played on these digraphs.

Proposition 5. The six in-chairs and the six in-brooms are [A,A]-forbidden.

Proof. For all the six in-chairs, let v be the vertex with degree 3 and u be the
leaf that is not adjacent to v. For all the six in-brooms, by v and u we denote
the corresponding vertices depicted in Figure 5.

Note that every vertex in any in-chair, respectively in any in-broom has
threatening out-degree at least 1 (see Figures 4 and 5). Therefore, by Lemma 3,
Alice’s first move in any of her winning strategies on an in-chair or in-broom is
skipping.

Then, in case of an in-broom that contains a P4 or a broken P4 at v, Bob can
win by colouring v in his first move to generate two independent Bob-winning
moves.

Otherwise, i.e., in case of an in-chair or an in-broom that contains a 3-star
at v, Bob may colour a leaf adjacent to v with colour 1. Since colouring anyone
of the remaining one or two leaves adjacent to v with colour 2 is a Bob-winning
move, Alice must colour v with colour 2 in her second turn or, in case of an
in-chair, colour the unique uncoloured leaf adjacent to v with colour 1. Then,
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v �

2 � � ����

F7,1

v �

2 � � ����

F7,2

v u

2 1 1 111

1

Broken F7,1

v u

2 1 1 111

1

Broken F7,2

v u

1 1 111

1

1

F
(1)
−

v u

1 1 111

1

1

F
(2)
−

Figure 5. The six in-brooms. In the depictions, unfilled circles denote safe vertices, filled
circles unsafe vertices, and the numbers are the threatening out-degree of each vertex.

in both cases, Bob will win after he colours u with 1. Therefore, Alice has no
winning strategy.

Proposition 6. F
(1)
→ and F

(2)
→ are [A,A]-forbidden.

Proof. Suppose Alice has a winning strategy for F
(1)
→ . Since only u and d have

threatening out-degree 0, in her first move, by Lemma 3, she colours u, d or
skips. If she colours u, Bob may colour c with the same colour to generate two
independent Bob-winning moves. For the remaining two choices of her first move,
Bob may colour a to generate two independent Bob-winning moves.

Consider F
(2)
→ . Since all the vertices have non-zero threatening out-degree,

by Lemma 3, Alice’s first move in any of her winning strategies is skipping.
Then, Bob can win by colouring u in his first move to generate two independent
Bob-winning moves.

Proposition 7. F
(1)
+ , F

(2)
+ , F

(3)
+ , F

(4)
+ are [A,A]-forbidden.

Proof. We have d+thr(a) = 0 for all the 4 digraphs and d+thr(d) = 0 for F
(1)
+ , F

(2)
+ ,

F
(3)
+ and all other vertices have nonzero threatening out-degree. Therefore, in

Alice’s first move of any of her winning strategies for F
(1)
+ , F

(2)
+ , F

(3)
+ , she colours

a, d or skips. Her first move of her winning strategy for F
(4)
+ is either colouring

a or skipping.

For all the 4 digraphs, if Alice colours a or skips in her first move, Bob may
colour c to generate two independent Bob-winning moves.
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If Alice colours d in her first move on the digraphs F
(1)
+ and F

(2)
+ , Bob may

colour b to generate two independent Bob-winning moves.

If Alice colours d in her first move on F
(3)
+ , Bob colours c. To avoid the two

threats of b given by the leaf neighbours of b, Alice must colour b. Then Bob
colours the leaf adjacent to a with the other colour and wins.

v
2

S

4

4

x z

y1

yk

multiple in-star
E1

v
S

a c d

f

b

E2

d
S

a b c

fg

h

E3

a
S

2

b

c d

E4

S
2

c

ba d

E5

S
db c

f

a

g

E6

S dba

c

zy

E7

S�
db� c

f

E8

a
22

b c d

E9

�
db� c v

g

h

E10

dh ba

g

c v

f

E11

h a b c f

g

E12

Figure 6. The permitted types. In E1, every vertex could be optional, under the constraint
that E1 is an induced connected subdigraph of the configuration depicted above.

3.3. Permitted structures

The main permitted type of digraphs for [A,A]-perfect digraphs is type E1. We
say a digraph is of type E1 if it is a connected induced subdigraph of a multiple
in-star, which is a digraph built from an edge vx by adding a (non-symmetric)
out-neighbour z to x, and by adding a 2-gadget at z, some leaf edges incident
to v and some (non-symmetric) in-neighbours y1, . . . , yk to v with a 4-gadget at
each of them. Note that, by definition, in a digraph of type E1 the vertices v, x
or z need not exist and the number k of vertices yi may be zero. Furthermore,
recall that the 2-, 4- and star-gadgets may be a single vertex.
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The other types E2, . . . , E12 are more special types not fitting to the definition
of a multiple in-star. The permitted types of [A,A]-perfect digraphs are depicted
in Figure 6. In this figure, unfilled circles indicate optional vertices, whereas filled
circles indicate the vertices compulsory for a digraph to be of the type considered.

3.4. Proof of Theorem 1 (ii)=⇒(iii)

3.4.1. Preliminary lemmas

The proofs of the next two lemmas are obvious.

Lemma 8. If in a tree that contains no induced F4 there is a single arc ~e1 and
an arc ~e2 with dist(~e1, ~e2) ≥ 2, then ~e2 is part of an edge.

Lemma 9. In any tree that does not contain F3,2 every vertex is incident with
at most one single out-arc.

Lemma 10. An undirected tree T that does neither contain P5 nor the chair is
either the P4 or a star.

Proof. Since P5 is not contained in T , the diameter of T is at most 3. Since no
in-chair is contained in T , the tree T is a path when its diameter is 3. Therefore,
T is either a P4 or a star.

Lemma 11 (Out-Arc-4-Gadget Lemma). Let (v, w) be a single arc in a tree for
which (ii) holds. Assume that the truncated w-branch Hv containing v does not
contain a single arc. Then Hv is a 4-gadget at v.

Proof. Since (ii) is true, Hv does not contain a P5 nor a chair. By Lemma 10,
Hv is a star or P4, thus Hv is either a star, pending star, P4 or broken P4 at v.

Lemma 12 (In-Arc-2-Gadget Lemma). Let (v, w) be a single arc in a tree for
which (ii) holds. Assume that the truncated v-branch Hw containing w does not
contain a single arc. Then Hw is a 2-gadget at w.

Proof. As in the proof of Lemma 11, since (ii) is true and by Lemma 10, Hw is
a star, pending star, P4 or broken P4 at w. Since the in-P5 is forbidden, Hw is
not a P4 at w. Since the in-chair is forbidden, Hw is neither a broken P4 nor a
pending k-star at w with k ≥ 3. If it is a pending 2-star at w, it is a P3 at w.
Thus, Hw is either a star or a P3 at w.

3.4.2. Proof of Theorem 1 (ii)=⇒(iii): Case analysis

Proof of Theorem 1 (ii)=⇒(iii). Let D be a semiorientation of a forest that
does not contain any of the 24 forbidden configurations from (ii) as induced
subdigraph. Since F4 is forbidden in D, at most one component of D contains a
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single arc. By Lemma 10, every other component is a star or a P4. If D contains
no single arc, the proof is complete. Otherwise let T be the component of D
containing a single arc.

By a case distinction we prove that T is of one of the types E1, . . . , E12.

Lemma 13. Either T contains a vertex with at least two single in-arcs or T has
at most two single arcs, and if there are two, then they have distance 1.

Proof. Since F4 is forbidden in T , any pair of single arcs has distance 1 or is
adjacent. Since F3,1 and F3,2 are forbidden in T , two adjacent single arcs are two
in-arcs of the same vertex. In a tree it is not possible to have three single arcs
which are pairwise at distance 1.

By Lemma 13, we consider the five cases shown in Figure 7.

vy1 y2

Case 1

ba c d

Case 2

ba c d

Case 3

ba c d

Case 4

ba

Case 5

Figure 7. The five cases: T contains a vertex with at least two single in-arcs in Case 1,
but not in Cases 2–5. In Cases 2–4, T contains exactly two single arcs; in Case 5, T
contains exactly one single arc.

We now describe our approach for showing that T , in each case, is of one of
the types Ei. In each case, we first employ the preliminary lemmas to restrict
the possible configurations of T ; then, we eliminate some of these configurations
by using the assumption (ii) that T does not contain any forbidden type. After
that we point out that all remaining configurations have some structure Ei.

Case 1. The tree T has a vertex v incident with at least two single in-arcs.
We aim to show that T , in this case, is of type E1. Assume v has k single in-arcs,
say (y1, v), . . . , (yk, v), and k ≥ 2. For each one of them, say (y, v), the truncated
v-branch Hy containing y does not contain any single arc, since otherwise the
existence of such a single arc (a, b) would imply that T contains F3,1 or F3,2

(induced by the vertices a, b, v) or F4 (induced by the vertices a, b, v, yi for some
i with yi 6= y). Thus, Hy is a 4-gadget by Lemma 11. Observe the following.

• v has no single out-arc, since otherwise the existence of such an out-arc, say
(v, z), would imply that T contains F3,1 (induced by the vertices y1, v, z).

• No symmetric neighbour x of v is incident to a single in-arc or another edge
than vx, since otherwise the existence of such an edge, say xz, or such a
single in-arc, say (z, x), would imply that T contains an in-chair (induced by
the vertices y1, y2, v, x, z).

• No symmetric neighbour x of v is incident to more than one single out-arc,
since otherwise, by Lemma 9, T would contain an induced F3,2.
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• There is at most one symmetric neighbour of v incident to a single out-arc,
since otherwise, by Lemma 8, T would contain an induced F4.

If v has a symmetric neighbour, say x, which has an out-neighbour, say z, then the
truncated x-branch Hz containing z does not contain a single arc, since otherwise
the existence of such a single arc, say (a, b), would imply T contains F4 (induced
by the vertices a, b, v, y1). Thus, by Lemma 12, Hz is a 2-gadget. Therefore, in
Case 1, T is of type E1.

In the following Cases 2–5 we explicitly exclude Case 1, i.e., we assume that
there is no vertex in T incident with two single in-arcs. By Lemma 13, then T
contains at most two single arcs.

Case 2. The tree T has single arcs (a, b) and (c, d) and an edge bc. We aim
to prove that, in this case, T is of type E1, E2 or E3. First observe that, by
Lemmas 11 and 12, the truncated b-branch Ha containing a is a 4-gadget and
the truncated c-branch Hd containing d is a 2-gadget. Moreover, consider T ′, the
component containing a of T − (c, d). Since (ii) is true for T , it is true for T ′,
and so by Lemma 12, the truncated a-branch H ′b containing b of T ′ is a 2-gadget,
i.e., it is either a star at b or a P3 at b. Observe that if H ′b is a star at b, then T
is of type E1. In the following we assume H ′b is a P3 at b, i.e., c has a symmetric
neighbour f other than b.

We make the following observations.

• Ha does not contain a 3-gadget, since otherwise the 3-gadget together with
b, c and f would induce an in-broom. So Ha is either a pending star at a or
a k-star at a for some k ≤ 2.

• If Ha is a pending star at a, then d is a leaf, since otherwise the existence

of a symmetric neighbour g of d would imply that T contains F
(1)
→ (induced

by the vertices b, c, d, f, g and a P3 of Ha containing a). Therefore, T is of
type E2.

• Hd is a star at d, since otherwise it would be a P3 at d, which would imply

that T contains F
(2)
→ (induced by Hd and the vertices a, b, c, f).

• If Ha is a k-star at a, then as said k ≤ 2 and T is of type E3.

Thus, in Case 2 we only get the structures E1, E2 and E3.

Case 3. The tree T has single arcs (b, a) and (c, d) and an edge bc. We aim to
prove that, in this case, T is of type E4, E5, E6, E7, E8 or E9. By Lemma 12, the
truncated b-branch Ha containing a and the truncated c-branch Hd containing d
are both 2-gadgets. We denote by T ′ the component of T − (c, d) containing a
and by T ′′ the component of T −(b, a) containing c. By Lemma 11, the truncated
a-branch containing b in T ′ and the truncated d-branch containing c in T ′′ are
both 4-gadgets.
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Observe that, by definition of a 4-gadget, this is equivalent to say that in T
there are a 2-gadget Hb at b and a 2-gadget Hc at c, and that either one of them
is reduced to a single vertex or both are reduced to a single pending edge. If both
are reduced to a single vertex, then T is of the permitted type E9; we assume in
the following it is not the case.

Moreover, if Ha is a star at a and Hd reduced to a single vertex, then T is
of one of the permitted types E4, E5 or E6. By symmetry, we obtain the same
permitted types if Ha is a single vertex and Hd is a star. We are left to consider
the cases that neither Ha nor Hd is trivial or one of them is a P3 at its vertex.

• If neither Ha nor Hd is trivial, then, since F
(1)
+ , F

(2)
+ and F

(3)
+ are forbidden,

Hb or Hc has to be trivial and the non-trivial one, say Hb, has to be reduced

to a single edge. Since F
(4)
+ is forbidden, Hd cannot be a P3 at d and so T is

of the permitted type E8.

• If otherwise Ha or Hd is a P3 at its vertex, say Ha is a P3 at a and Hd is
trivial, then, since T has no induced in-broom, we conclude the following.

– Hb or Hc has to be trivial (otherwise Hc, Hb and Ha would induce a
broken F7,1).

– Hb cannot be a P3 at b (otherwise c, Hb and Ha would induce again a
broken F7,1).

– Hc cannot be a P3 at c (otherwise Hc, b, and Ha would induce F7,1).

– If Hb is a k-star at b, then k ≤ 1 (otherwise the digraph induced by c, Hb

and Ha would contain an induced F
(1)
− ).

Thus, by what we already stated about Hb and Hc, either Hb is trivial and
Hc is a star or Hb is reduced to an edge and Hc is trivial. In the former, T is
of the permitted type E7. In the latter, T is of the permitted type E8.

Thus, in Case 3 we only get the structures E4, E5, E6, E7, E8 and E9.

Case 4. The tree T has single arcs (a, b) and (d, c) and an edge bc. We aim
to prove that, in this case, T is of type E10 or E11. First we remark that b and
c do not have neighbours outside the set {a, b, c, d}. If b has another symmetric
neighbour than c, say f , then the vertices a, b, c, d, f induce an in-chair, which
contradicts (ii). The same is true if we change the roles of b and c.

By Lemma 11 the truncated b-branch Ha containing a and the truncated c-
branch Hd containing d are both 4-gadgets. Neither of them is a P4 or broken P4

or k-star at their vertex for some k ≥ 3, since otherwise it would imply that T

contains an in-broom (F7,2, a broken F7,2 or F
(2)
− , respectively), contradicting (ii).

Thus they are either k-stars, for k ≤ 2, or pending stars at their vertices.

• If one of them, say Hd, is a pending star, then Ha is not also a pending star,
since otherwise T would contain F8 (induced by the vertices b, c and a P3
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of each of Ha and Hd containing a and d, respectively). Thus T is of the
permitted type E10.

• If both of them are k-stars, k ≤ 2, then T is of the permitted type E11.

Thus, in Case 4 we only get the structures E10 and E11.

Case 5. The tree T has (edges and) only one single arc (a, b). We aim to
prove that, in this case, T is of type E1 or E12. By Lemma 11, the truncated b-
branch Ha containing a is a 4-gadget, and, by Lemma 12, the truncated a-branch
Hb containing b is a 2-gadget. We distinguish two cases.

• If Hb is a star at b, then T is of type E1.

• If Hb is a P3 at b, then Ha is neither a P4 nor a broken P4 nor a k-star at a
for some k ≥ 3, since otherwise, by a similar argument as in Case 4, it would

imply that T contains an in-broom (F7,1, broken F7,1 or F
(1)
− , respectively).

Thus in this case, either Ha is a 2-star at a and T is of permitted type E12,
or Ha is a 1-star or a pending star at a and T is of the permitted type E1.

Thus, in Case 5 we only get the structures E1 and E12.
This completes the proof of (ii)=⇒(iii).

3.5. Proof of Theorem 1 (iii)=⇒(i)

We start with an outline of the proof.

Proof of Theorem 1 (iii)=⇒(i). First, we prove that every digraph for which
(iii) is true is [A,A]-nice (Lemma 14). Then we will prove that (iii) is also true
for every one of its induced subdigraphs (Lemma 15). This implies that D is
[A,A]-perfect.

Lemma 14. For any i, the disjoint union of a digraph of type Ei and any number
of stars and P4s is [A,A]-nice.

Lemma 15. If D is a digraph for which (iii) is true and D′ is a non-empty
induced subdigraph of D, then (iii) is true for D′.

In the following we will prove Lemma 14 and Lemma 15. For the proof of
Lemma 14, we begin with a folklore observation.

Observation 16. Every star, the P4, every star with its center having an addi-
tional in-arc and the P−4 (depicted in Figure 8) are [B,A]-nice and thus [A,A]-
nice.

Lemma 17 (Arc Deletion Rule). Let X ∈ {A,B}. For any tree T with clique
number 2 and an out-leaf arc (u, v), T is [X,A]-nice if and only if T − v is
[X,A]-nice.
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S1−
n P−4

Figure 8. A star S1−
n with its center having an additional in-arc, and the P−4 .

Proof. (⇐): Suppose Alice has a winning strategy for the [X,A]-colouring game
on T − v. During the game on T , if Bob never colours the leaf v, Alice may use
her strategy for T − v; she will win because v has only one in-neighbour, so v
can always be coloured in the game with two colours. If Bob colours v at some
turn, Alice skips her next turn. Because v has no out-neighbours, the colouring
of v will not affect the subsequent colouring of any vertices in T − v. So, after
the skip, Alice can resume her winning strategy for T − v.

(⇒): Suppose Alice has a winning strategy for the [X,A]-colouring game
on T . During the game on T −v, Alice may use her strategy for T . This strategy
fails only if at some Alice’s turn, she chooses to colour the leaf v in her strategy
for T but now v is deleted. In this case, she may skip her turn and resume the
strategy starting from her next turn. Because in the game on T , the colouring
of v does not affect any subsequent colouring of the other vertices, Alice can
successfully resume her strategy and win the game.

Recall that for game g, an uncoloured or partially coloured digraph G is k-g-
permitted if Alice can win g with k colours on G, and k-g-unpermitted otherwise.

Lemma 18 (P5-Lemma). The partially coloured path in Figure 9(a), where the
vertex a is coloured, is 2-[B,A]-permitted and so 2-[A,A]-permitted.

Proof. We present a winning stategy for Alice in game [B,A]. If Bob colours b,
then Alice colours d with the same colour. If Bob colours d, then Alice colours
c with the other colour. If Bob colours c, then Alice colours f with the same
colour, and vice versa. After that Alice wins.

Lemma 19. The digraphs in Figures 9(a), 9(b), 9(c) and 9(d) and the partially
coloured digraph in Figure 9(d) with a coloured are 2-[B,A]-permitted and so
2-[A,A]-permitted.

In particular, Lemma 19 implies that the digraphs in Figures 9(a), 9(b), 9(c)
and 9(d) are [A,A]-nice.

Proof. We denote the cases that the game digraph is defined in Figure 9(a),
Figure 9(b), Figure 9(c) or Figure 9(d) (no matter whether a is coloured or
uncoloured at the beginning) simply as cases (a), (b), (c) or (d), respectively. We
consider all possible first moves of Bob.
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df ba

g

c
1
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Figure 9. Some 2-[A,A]-permitted types. The variable or number inside a rectangle is
the colour that has been put on the vertex.

If Bob colours a, then Alice colours g with the same colour, and vice versa,
in case g exists. If, in case g does not exist, Bob colours a, then Alice skips. After
that, in the cases (a) or (b), Alice may use her winning strategy in the P5-Lemma
(Lemma 18); in the cases (c) or (d), she may ensure that c is coloured after her
next move, so that the remaining vertices must be coloured finally.

If Bob colours b, then Alice colours d (in the cases (a) or (b)) with the same
colour, respectively, c (in the cases (c) or (d)), or vice versa. Then, Alice wins.

If, in the cases (a) or (b), Bob colours c, then Alice colours f with the same
colour, and vice versa. If, in the cases (c) or (d), Bob colours a leaf in the star
gadget, then Alice colours c with the other colour. In the cases (b) or (c), the
generated uncoloured P3 induced by a, b, g is [B,A]-nice. Thus, Alice wins.

Lemma 20. The partially coloured subtree in Figure 9(e) is 2-[B,A]-permitted.

Proof. Alice may respond to Bob’s first move as follows.
If Bob colours a, then she may colour c with the same colour, and vice versa,

so that the remaining uncoloured vertices b and d must have available colours. If
Bob colours b, then she may colour c with the other colour. Thus, the remaining
uncoloured vertices a and d must have available colours. If Bob colours d with 2,
then she may colour b with 2 so that the remaining uncoloured vertices a and c
must have available colours.

Lemma 21. The partially coloured subtree in Figure 9(f) is 2-[B,A]-permitted.

Proof. Alice may respond to Bob’s first move as follows.
If Bob colours f , then she may colour g with the same colour, and vice versa,

to generate the 2-[B,A]-permitted subtree in Figure 9(e). If Bob colours a, then
she may colour c with the same colour, and vice versa, so that the remaining
uncoloured vertices b and d must have available colours. If Bob colours b, then
she may colour c with the other colour. Thus, the remaining uncoloured vertex
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d must have an available colour and a, f, g induce a P3, which is [B,A]-nice. If
Bob colours d with 2, then she may colour b with 2, so that a similar situation
arises as in the previous case.

Proposition 22. Every digraph of type E1 is [A,A]-nice.

Proof. Let H be a digraph of type E1. If ω(H) = 1, then, since H is connected,
H is an r-in-star for some non-negative r. Note that all the r leaves are safe.
Therefore, the winning strategy of Alice for the game on this in-star with one
colour is to colour the sink in her first move.

Now we may assume ω(H) = 2. In the following the vertex names refer to
Figure 6. We first consider the case that the vertex v exists. Then Alice may
colour the vertex v in her first move to generate some uncoloured or partially
coloured subtrees. Observe that any generated subtree must be a P4, a star, a
star with the central vertex coloured or one of the subtrees in Figure 9(a) or 9(d)
with vertex a coloured. By Observation 16, Lemma 18 and Lemma 19, each such
subtree is 2-[B,A]-permitted. Then, Alice will eventually win the game if she
employs the following strategy in the rest of the game. Suppose Bob acted on
some subtree T in his last move. If T is not fully coloured yet, she acts on T
according to her winning strategy for the game [B,A] on T with two colours; if
T is fully coloured, she passes her turn.

Second, consider the case that v does not exist. Since H is connected, H is
either the P4, a star, a star whose center has an additional in-arc (when the
2-gadget is a star), or the P−4 (when the 2-gadget is a P3) which is depicted in
Figure 8. All of them are [A,A]-nice by Observation 16.

Proposition 23. Every digraph of type E2 or E7 is [A,A]-nice.

Proof. With the Arc Deletion Rule (Lemma 17), we may consider the games
on E2 and E7 with their out-leaf arcs deleted. In her first move, Alice may
colour v (for the game on E2) or c (for the game on E7) to generate the path in
Figure 9(a) with a coloured. This subtree is 2-[B,A]-permitted by the P5-Lemma
(Lemma 18).

Proposition 24. Every digraph of type E3 or E8 is [A,A]-nice.

Proof. In her first move, Alice may colour d to generate a star with the central
vertex coloured and either a P−4 (see Figure 8) or the subtree in Figure 9(a), 9(b)
or 9(c). By the same strategy as in the proof of Lemma 18 or by Lemma 19 Alice
wins, respectively.

Proposition 25. Every digraph of type E4, E5 or E6 is [A,A]-nice.
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Proof. With the Arc Deletion Rule (Lemma 17), we may consider the game on
a digraph of type E4, E5 or E6 with its out-leaf arc (c, d) deleted, which is a
digraph of type E1. By Proposition 22, Alice wins.

Proposition 26. Every digraph of type E9 is [A,A]-nice.

Proof. Alice may skip her first move and respond to Bob’s first move as follows.
By the structural symmetry of this digraph, it is sufficient to consider the cases
when Bob plays on the left half of the digraph.

If Bob colours b, we distinguish two cases. When the 2-gadget at a is P3,
Alice may colour a symmetric neighbour of a with the same colour so that they
totally generate a partially coloured P2, a partially coloured star with the central
vertex a having an available colour, and the partially coloured subtree in Figure
9(a) or 9(d) with a coloured. When the 2-gadget at a is a star, she colours a, so
that they totally generate a partially coloured star with a coloured central vertex
a, and the partially coloured subtree in Figure 9(a) or 9(d) with a coloured.

In the following we consider the case that Bob colours a vertex in the 2-gadget
at a.

When the gadget is P3 = yza, if Bob colours y (respectively, a), then she may
colour a (respectively, y) with the same colour to generate a partially coloured P3

with the central vertex z having an available colour, and the uncoloured subtree
in Figure 9(a) or 9(d). If Bob colours z, then she may colour a so that they
totally generate a partially coloured P2 and the uncoloured subtree in Figure 9(a)
or 9(d).

When the gadget is a star, if Bob colours a leaf adjacent to a (respectively, a),
then she may colour a (respectively, a leaf adjacent to a) so that they totally
generate a partially coloured star with the central vertex a coloured, and the
uncoloured subtree in Figure 9(a) or 9(d).

In any case, by Lemma 19, Alice wins.

Proposition 27. Every digraph of type E10 is [A,A]-nice.

Proof. We only discuss the case that both optional vertices g and h exist, the
strategies for the other cases are very similar.

Alice may colour v with 1 to generate a star with the central vertex coloured
and the partially coloured subtree in Figure 9(f). By Lemma 21, the latter is
2-[B,A]-permitted.

Proposition 28. Every digraph of type E11 is [A,A]-nice.

Proof. Again, we only discuss the case that all four optional vertices exist, the
strategies for the other cases are very similar.
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Alice may skip her first move and respond to Bob’s first move as follows. By
the structural symmetry of this digraph, we may consider the cases when Bob
plays on the left half of the digraph.

If Bob colours f , then Alice may colour v with the same colour to generate a
partially coloured subtree, denoted by T . After that, the subtree induced by all
the uncoloured vertices (a, b, c, d, h, g) of T is the same as that induced by all the
uncoloured vertices (a, b, c, d, h, g) of the partially coloured subtree in Figure 9(f).
Moreover, any two vertices with the same label in the two induced subtrees have
the same set of available colours. Therefore, the games on T and the partially
coloured subtree in Figure 9(f) are equivalent. Consequently, T is also 2-[B,A]-
permitted.

If Bob colours d, then Alice may colour b with the same colour so that they
totally generate a star with the central vertex d coloured, an uncoloured P3 and
a subtree in which c must have an available colour.

If Bob colours c with 1, then Alice may colour b with 2 so that they totally
generate two uncoloured P3 and a completely coloured P2.

Proposition 29. The digraph of type E12 is [A,A]-nice.

Proof. This was proven in Lemma 19 (case (b)).

Proof of Lemma 14. Alice has the following winning strategy with 2 colours
for the game [A,A] played on the disjoint union of a digraph D0 of type Ei and
stars S1, . . . , Sp and P4s P1, . . . , Pq, where p, q ≥ 0.

By Observation 16, she has a winning strategy for the game [B,A] on each of
S1, . . . , Sp, P1, . . . , Pq. By Propositions 22–29, she has a winning strategy for D0.
Alice combines these strategies in the following way.

In her first move she acts according to her winning stategy for D0 (this act
might be a skip if required by her strategy). After that, whenever Bob plays
on one of the components D0, S1, . . . , Sp, P1, . . . , Pq, Alice acts according to her
winning strategy for this component on this component, unless the component is
fully coloured. In case such a component is fully coloured Alice misses her turn.

Since the colouring of a component does not affect the colouring of any other
component, Alice will win finally.

Proof of Lemma 15. In Table 1, for each digraph H of type Ei and each ver-
tex u, we list the types of the components of H − u. In the left column of the
tables, we give the name of the vertex u or, for inner vertices of the gadgets
which are not shown in Figure 6, the name of the gadget containing u (S means
star-gadget, 2 means 2-gadget, 4 means 4-gadget). In the right column of the
tables, S denotes a star of arbitrary size, K1 an isolated vertex (which is also a
star) and K2 the 1-star, and A/B is either an A or a B. A∪ means a (maybe
empty) disjoint union of some non-negative number of graphs A. In particular
A∪ might be optional.
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Type E1

u comp. of H − u
4 S/K∪1 , E1

yi S/[K2,K1]/K∪1 , E1

v S∪, P∪4 ,K
∪
1 , E1

S E1

x E1, S
z E1,K2/K

∪
1

2 E1,K1

Type E2

u comp. of H − u
S E2

v K∪1 , E3

a S,E1

b S,E1

c E1,K1,K1

d E1

f E1

Type E3

u comp. of H − u
a K1,K1, E1

b S,E1

c E1,K1, S
d E1/E12,K

∪
1

S E3

f E1

g E3 by def.
h E3 by def.

Type E4

u comp. of H − u
S E4

a K1 · · ·K1, E1

b S,K2/K
∪
1 , E1

c E1,K1

d E1

2 K1, E4

Type E5

u comp. of H − u
S E5

a K1 · · ·K1, E1

b S,E1

c E1,K2/K
∪
1 ,K1

d E1

2 E5,K1

Type E6

u comp. of H − u
S E6

a K∪1 , E1

b S,K1, E1

c E1,K1,K1

d E1

f E4

g E5

Type E7

u comp. of H − u
y E5

z K1, E5

a K2, E1

b S,E1

c E1,K1,K1

d E1

f E9

Type E8

u comp. of H − u
2 E8,K1

a E1,K2/K
∪
1

b E1,K1, S
c S,E1

d K∪1 , E1/E12

f E9

S E8

Type E9

u comp. of H − u
2 K1, E9

a K2/K
∪
1 , E1

b S,E1

(use symmetry)

Type E10

u comp. of H − u
a K1,K1, E1

b S,E1

c E1, S
d E1, S
v E9,K

∪
1

S E10

h E10 by def.
g E10 by def.

Type E11

u comp. of H − u
a K1,K1, E1

b S,E1

f E11 by def.
g E11 by def.

(use symmetry)

Type E12

u comp. of H − u
a K1,K1, S
b S,K2

c E1,K1

f E1

g E1

h E1

Table 1. Listing the types of the components of H − u for any digraph H from each
type Ei and any vertex u from H. Not all components must appear, some are optional.
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Since all these types are contained in some Ej and at most one of the com-
ponents is neither a star nor a P4, the table proves that (iii) is true for every
digraph obtained from a digraph of type Ei by deleting a vertex.

Observe that every induced subdigraph of the P4 or a star is the P4 or a
star. Thus, by induction, (iii) is true for every induced subdigraph of a digraph
of type Ei, and, actually, for every induced subdigraph of a digraph for which
(iii) is true.

This completes the proof of (iii)=⇒(i), thus the whole proof of Theorem 1 is
complete.

4. [A,−]-Perfect Forests: Proof of Theorem 2

Similar to the proof technique in Theorem 1, we will prove the four implications
(i)=⇒(i’)=⇒(ii)=⇒(iii)=⇒(i) of Theorem 2, separately.

In Figure 11 we display the permitted types for the game [A,−]. Note that
in a reduced multiple in-star the vertices v, x and z exist, whereas in a general
digraph of type EA

1 , which is a connected induced subdigraph of a reduced mul-
tiple in-star, the vertices v, x or z need not exist. In Figure 10 we display the
additional forbidden types.

P4 P−4 P=
4

Figure 10. The 3 in-P4s.

v
S

S

P

P

x z

y�

y�

reduced multiple in-star
EA

1

a
S

S

b

c d

EA
2

a
S

Sb

c

d

EA
3

�
��

b c d

f

EA
4

Figure 11. The permitted types for [A,−]-perfect digraphs. In EA
1 , every vertex could

be optional, under the constraint that EA
1 is an induced connected subdigraph of the

configuration depicted above.
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Proof of Theorem 2 (i)=⇒(i’). For any digraph D, we know by (2) that every
[A,B]-perfect digraph is [A,−]-perfect.

Proof of Theorem 2 (i’)=⇒(ii). Let D be [A,−]-perfect. By (2), D is also

[A,A]-perfect. By Theorem 1, D does not contain F4, F3,1, F3,2, or F
(3)
+ as

induced subdigraph. It remains to show that Bob has a winning strategy with
2 colours for the game [A,−] on any of the three in-P4s. This is trivial: Alice
is forced to colour a vertex in her first move. Then Bob can colour a vertex at
distance 2 with the other colour and wins.

Proof of Theorem 2 (ii)=⇒(iii). Note that F4, F3,1, F3,2, and F
(3)
+ are all

included in the twenty-four forbidden types of Theorem 1(ii). Moreover, it can
be easily checked that any of the remaining seventeen forbidden types given in
Theorem 1(ii) contains at least one of the three in-P4s. Therefore, (ii) implies
Theorem 1(ii). Since P4 is forbidden by (ii), all components of D are undirected
stars, except maybe one which is of type Ei for some i ∈ {1, 4, 5, 8, 9} (the other
Eis are excluded since they contain an in-P4).

Since Theorem 1(ii) is true for D, so are Lemma 11 and 12. Moreover, since
the in-P4s are forbidden, we can state stronger versions of these lemmas.

Lemma 30 (Out-Arc-P -Gadget Lemma). Let (v, w) be a single arc in a tree for
which (ii) holds. Assume that the truncated w-branch Hv containing v does not
contain any single arc. Then Hv is a P -gadget at v.

Lemma 31 (In-Arc-Star-Gadget Lemma). Let (v, w) be a single arc in a tree for
which (ii) holds. Assume that the truncated v-branch Hw containing w does not
contain any single arc. Then Hw is a star at w.

By those lemmas, if T is of type E1, then it is of type EA
1 , and if it is of type

E8 or E9, then it is of type EA
4 .

Finally, if T is of type E4 (respectively, E5), then observe that the 2-gadget
at b (respectively, c) cannot be a P3, since it would form a P4 with the edge bc.
Thus this 2-gadget is a star, which implies that T is of type EA

2 (respectively, of
type EA

3 ).

Summarizing, T is of type EA
1 , . . . , E

A
4 .

Proof of Lemma 30. Since Hv is undirected and P4 is forbidden by (ii), Hv has
diameter at most 2. Thus Hv is a star.

Proof of Lemma 31. Since Hw is undirected and P4 is forbidden by (ii), Hw

has diameter at most 2. Thus Hw is a star. Since, by (ii), the v-branch contain-
ing w does not contain any in-P4, Hw does not have a P3 at w. In particular,
Hw does not have a pending star at w.
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Proof of Theorem 2 (iii)=⇒(i). For the proof it is sufficient to first remark
in Observation 32 that the set of permitted digraphs given in (iii) is closed under
taking induced subdigraphs and then to show in Propositions 33 and 34 that
every digraph of type EA

1 , . . . , E
A
4 is [A,B]-nice.

Observation 32. Let H be a digraph of type EA
i (1 ≤ i ≤ 4) and u be one of

its vertices. If H − u is non-empty, one of the components of H − u is of type
EA

1 , . . . , E
A
4 , then every other component of H − u is a star.

Type EA
1

u comp(H − u)
P K∪1 , E

A
1

yi K2/K
∪
1 , E

A
1

v S∪,K∪1 , E
A
1

S EA
1

x EA
1 , S

z EA
1 ,K

∪
1

S EA
1

Type EA
2

u comp(H − u)
S EA

2

a K∪1 , E
A
1

b S,K∪1 , E
A
1

c EA
1 ,K1

d EA
1

S EA
2

Type EA
3

u comp(H − u)
S EA

3

a K∪1 , E
A
1

b S,K∪1 , E
A
1

c EA
1 ,K

∪
1 ,K1

d EA
1

S EA
3

Type EA
4

u comp(H − u)
S EA

4

a EA
1 ,K

∪
1

b EA
1 ,K1, S

c S,EA
1

d K∪1 , E
A
1

S EA
4

f EA
4 by def.

Table 2. The proof of Observation 32: Listing the types of the components of H − u for
any digraph H from each type EA

i and any vertex u from H. Not all components must
appear, some are optional.

Proof. The proof is given in Table 2. The method is similar to the proof of
Lemma 15. In Table 2, P denotes a P-gadget. For the other notation we refer to
the proof of Lemma 15.

Proposition 33. EA
1 is [A,B]-nice.

Proof. Let T be a digraph of type EA
1 . If ω(T ) = 1, then T is an in-star,

on which Alice wins with one colour if she colours the sink in her first move.
Therefore we may assume ω(T ) = 2.

We call U the set of unsafe vertices of T that are different from v. Observe
that every component of T − v (if v does not exist, T − v = T ) contains at
most one vertex of U , and that this vertex is not an out-neighbour of v. The
strategy for Alice is as follows. If v exists, she colours it first; otherwise she
colours an arbitrary vertex of U (in the case there is none, Alice wins trivially
since all vertices are safe). Then, each time Bob colours a vertex w, Alice colours
the vertex of U that is in the same component of T − v as w, if it exists and is
uncoloured; otherwise she colours any other uncoloured vertex of U . When every
vertex of U is coloured, all uncoloured vertices are safe, therefore Alice wins.

Proposition 34. EA
2 , EA

3 and EA
4 are [A,B]-nice.
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Proof. Let T be a digraph of type EA
2 , EA

3 or EA
4 . The following is a winning

strategy of Alice for the game [A,B] with 2 colours on T . In her first move she
colours a. After that, vertex b (or c) is the only possible uncolored unsafe vertex
in EA

2 (or EA
3 , respectively). In EA

4 , only vertices c or d may be unsafe, and both
of them are unsafe if and only if f exists and the star gadget at d is nontrivial. If
there is at most one uncolored unsafe vertex v after Alice’s first move, Alice must
win if she ensures v has been colored after her second move. Therefore, only the
case that both c and d are unsafe in EA

4 is left.
In the remaining case

• if Bob colours c in his first move, then Alice colours d with the other colour,
and vice versa, so that all remaining uncolored vertices are safe,

• if he colours b, then she colours f with the same color, and vice versa, so
that d is the only uncolored unsafe vertex,

• if he colours none of b, c, d, f in his first move, then she colours d, so that c
is the only uncolored unsafe vertex.

In the last two cases, Alice must win if she ensures the only uncolored unsafe
vertex has been colored after her third move.

This completes the proof of Theorem 2 (iii)=⇒(i).

5. Bob Begins: Proof of Theorems 36, 37 and 38

Game-perfect forests for the games where Bob begins can be characterised triv-
ially because of the following observation.

Observation 35 [5]. A game-perfect digraph D with regard to a game [B, Y ]
where Bob begins is an undirected graph, i.e., D does not contain any single arc.

Proof. The digraph consisting of two vertices a, b and a single arc (a, b) is [B, Y ]-
forbidden: it has clique number 1 and a winning strategy for Bob with one colour
is to colour a in his first move.

Observation 35 leads to the following characterisations of game-perfect forests
with regard to the games where Bob begins.

Theorem 36. For a semiorientation D of a forest, the following are equivalent.
(i) D is [B,A]-perfect.

(ii) D does neither contain any single arc nor the chair nor P5 as an induced
subdigraph.

(iii) Every component of D is a P4 or a star.
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Theorem 37. For a semiorientation D of a forest, the following are equivalent.

(i) D is [B,−]-perfect.

(ii) D does neither contain any single arc nor the chair nor P5 nor P4 ∪K1 as
an induced subdigraph.

(iii) Either D is the P4 or every component of D is a star.

Theorem 38. For a semiorientation D of a forest, the following are equivalent.

(i) D is [B,B]-perfect.

(ii) D does neither contain any single arc nor P4 as an induced subdigraph.

(iii) Every component of D is a star.

Proof of Theorem 36. (i)=⇒(ii) Let D be [B,A]-perfect. By Observation 35,
D does not contain single arcs. By (2), D is [A,A]-perfect, thus, by Theorem 1,
D does neither contain P5 nor the chair as an induced subdigraph.

(ii)=⇒(iii) Let T be a component of D. Since single arcs are forbidden by (ii),
T is an undirected tree. Since P5 and the chair are forbidden by (ii), by Lemma 10
the component T is a star or a P4.

(iii)=⇒(i) Since every proper subgraph of the P4 or a star is a forest of stars,
(iii) also holds for every subdigraph of D whenever (iii) holds for D. Therefore it
is sufficient to describe a winning strategy for Alice with 2 colours on D: using
skipping moves Alice can force Bob to start playing on each component of D and
then reply in this component to make it safe.

Proof of Theorem 37. (i)=⇒(ii) Let D be [B,−]-perfect. By (2), D is [B,A]-
perfect, thus, by Theorem 36, D does neither contain a single arc nor an induced
chair nor an induced P5. The graph P4 ∪K1 is also [B,−]-forbidden: Bob wins
if he colours the isolated vertex in his first move and thus forces Alice to begin
colouring the P4.

(ii)=⇒(iii) By Theorem 36, the components of D are P4s or stars. If there is
a P4-component, it is the unique component since P4 ∪K1 is forbidden by (ii).

(iii)=⇒(i) By the same argument as in the proof of Theorem 36(iii)=⇒(ii)
it is sufficient to show that Alice has a winning strategy on D. On the P4 or a
forest of stars, Alice wins in the game [B,−] with two colours, obviously.

Proof of Theorem 38. (i)=⇒(ii) Let D be [B,B]-perfect. Then, by Observa-
tion 35, D does not contain single arcs. By (2), D is [A,−]-perfect, thus, by
Theorem 2, D does not contain P4 as an induced subdigraph.

(ii)=⇒(iii) Let T be a component of D. Since single arcs are forbidden by
(ii), T is an undirected tree. Since P4 is forbidden by (ii), the diameter of T is
at most 2, thus T is a star.

(iii)=⇒(i) On a forest of stars, Alice wins obviously.
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6. Weakly Game-Perfect Forests

Yang and Zhu [20] introduced the following digraph colouring game, which we
call weak digraph colouring game, whereas the digraph colouring game considered
so far is also called strong digraph colouring game. Two players, Alice and Bob
alternately colour vertices of a given digraph D with colours of a given colour set
C, obeying the rule that creating any monochromatic cycle is forbidden. When
no more moves are possible, the game ends. Alice wins if every vertex is coloured
at the end, otherwise, Bob wins. The smallest cardinality |C| of the colour
set such that Alice has a winning strategy is called the weak game chromatic
number χwg(D).

As for the strong game we may also consider six variants wg of the weak
digraph colouring game, where wg = w[X,Y ] with g = [X,Y ] and X ∈ {A,B}
and Y ∈ {A,B,−} has the same meaning concerning the player X who begins
and the player Y who is allowed to skip as in the strong digraph colouring game.

A notion of game-perfectness for the weak game was introduced in [6]. For
any g, a digraph D is weakly g-perfect (or weakly game-perfect with respect to the
game g) if, for any induced subdigraph H of D, χwg(H) = ω(H).

Observation 39. The inclusions given in (2) for the classes of strongly game-
perfect digraphs also hold for the classes of weakly game-perfect digraphs.

Guo and Surmacs [16] call the weak game chromatic number also game
dichromatic number as it is nearer to the notion of dichromatic number than
the strong number. Their definition is supported by the following two results.

Theorem 40 [20]. For (any g and) any orientation D of a graph G,

χwg(D) ≤
⌊

colg(G)

2

⌋
,

where colg(G) denotes the game colouring number introduced by Zhu [21].

Theorem 41 [6]. For any g, a digraph D is weakly g-perfect if and only if

(i) the symmetric part S(D) of D is a g-perfect graph and

(ii) D does not contain any induced directed n-cycle with n ≥ 3.

Since semiorientations of forests do not contain induced directed cycles of
length greater than 2, Theorem 41 immediately implies the following.

Corollary 42. For any g, a semiorientation D of a forest is weakly g-perfect if
and only if S(D) is g-perfect.
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Corollary 42 enables us to characterise weakly game-perfect forests. For the
proofs of the following characterisations (Theorem 44, 46, respectively, 47), recall
from the definitions at the beginning that P4 and stars always denote undirected
graphs, whereas a forest denotes a digraph (a semiorientation of an undirected
forest). In the proofs we frequently use the fact that the strong game and the
weak game are equivalent when played on undirected graphs.

Observation 43. For any undirected graph (=symmetric digraph) G we have
χg(G) = χwg(G).

Proof. In both colouring games on a graph G, the vertices of any edge which
is a directed 2-cycle, must be coloured differently. Thus, the players have to
respect that the colouring is proper, which means that both games are equivalent
to Bodlaender’s graph colouring game when played on a symmetric digraph.

Theorem 44. For a semiorientation D of a forest, the following are equivalent.
(i) D is weakly [B,A]-perfect.

(i’) D is weakly [A,A]-perfect.

(ii) D does neither contain P5 nor the chair as an induced subdigraph.

(iii) Every component of S(D) is a star or a P4.

Proof. The implication (i)=⇒(i’) follows directly from Observation 39.
Let D be weakly [A,A]-perfect. By Corollary 42, S(D) is [A,A]-perfect. By

Theorem 1, S(D) does neither contain any induced (undirected) P5 nor any
induced (undirected) chair, which implies (ii). Thus (i’) implies (ii).

Let D be a digraph that does neither contain P5 nor the chair as an induced
subdigraph. Since D is a forest, every induced P5, respectively, chair in S(D),
is an induced subdigraph of D, too. Therefore S(D) does neither contain an
induced P5 nor an induced chair. This means that every component of S(D) has
diameter at most 3, and if it has diameter 3, it is a P4. Thus (ii) implies (iii).

Assume (iii) holds. By Observation 16, S(D) is [B,A]-perfect. By Corol-
lary 42, D is weakly [B,A]-perfect. Thus (iii) implies (i).

For the next theorem, we define the following. A P 0
4 is a digraph on 5 vertices

consisting of an undirected P4 and an additional vertex v0 and at most one single
arc which, in case it exists, connects v0 and some vertex of the P4. There are
exactly five pairwise nonisomorphic digraphs that are a P 0

4 (see Figure 12).

Lemma 45. For any digraph D of type P 0
4 we have χw[B,−] > 2.

Proof. For any digraph D of type P 0
4 , there exists an edge in D such that its

two ending vertices cannot have the same colour. Therefore, Bob must win the
weak [B,−]-game on D with 1 colour. Now we give a winning strategy for Bob
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P4 ∪K1 P+
5 P−5

C+ C−

Figure 12. The five digraphs of type P 0
4 .

in the weak [B,−]-game with 2 colours played on a P 0
4 . In his first move, Bob

colours v0. This move does not affect the colouring of any other vertex since v0
is not contained in a directed cycle. Now Alice is forced to start colouring the
P4, say vertex u. Bob wins by colouring a vertex at distance 2 in S(P 0

4 ) from u
with the other colour.

Theorem 46. For a semiorientation D of a forest, the following are equivalent.

(i) D is weakly [B,−]-perfect.

(ii) D does neither contain P5 nor the chair nor any of the five P 0
4 s as an induced

subdigraph.

(iii) Either D is the P4 or every component of S(D) is a star.

Proof. Let D be weakly [B,−]-perfect. By Corollary 42, S(D) is [B,−]-perfect.
By Theorem 37, S(D) does neither contain any induced P5 nor any induced chair,
which implies that D does neither contain an induced P5 nor an induced chair.
By Lemma 45, D does not contain any induced P 0

4 . Thus (i) implies (ii).

Now, let D be such that (ii) holds. Since D is a forest, every induced P5 or
chair of S(D) is induced in D, too. With (ii) this implies that S(D) does neither
contain an induced P5 nor an induced chair. By Theorem 44, every component
of S(D) is a star or a P4. As well, since D does not contain any induced P 0

4 ,
S(D) does not contain an induced P4∪K1. If S(D) contains a P4-component H,
then, since P4∪K1 is forbidden in S(D), S(D) must be connected and consist only
of a P4. In this case, since D has the same vertex set as S(D), the digraph D is a
forest on four vertices that has the P4 as a subdigraph, therefore, D = S(D) = P4.
Thus (ii) implies (iii).

Finally, let D be such that (iii) holds. Since every proper subdigraph H of D
is a digraph with each component of S(H) being a star, we are left to prove
that D is w[B,−]-nice. If D is the P4, then Alice wins with 2 colours, since Bob
is forced to start colouring the P4. Otherwise, S(D) is a forest of stars. Then
Alice has the following winning strategy with ω(D) colours. Whenever Bob starts
colouring a star of S(D), Alice colours the center of this star if possible. If this
is not possible, she colours the center of any other star or any vertex of a star
the center has already been coloured. If such move is not possible, every vertex
is coloured. Alice will win by following this strategy on S(D). Thus S(D) is
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[B,−]-perfect. Therefore, by Corollary 42, the digraph D is [B,−]-perfect. Thus
(iii) implies (i).

Theorem 47. For a semiorientation D of a forest, the following are equivalent.

(i) D is weakly [B,B]-perfect.

(i’) D is weakly [A,B]-perfect.

(i”) D is weakly [A,−]-perfect.

(ii) D does not contain P4 as an induced subdigraph.

(iii) Every component of S(D) is a star.

Proof. The implications (i)=⇒(i’)=⇒(i”) follow directly from Observation 39.

Let D be weakly [A,−]-perfect. By Corollary 42, S(D) is [A,−]-perfect. By
Theorem 2, S(D) does not contain an induced P4, which implies that D does not
contain an induced P4. This proves the implication (i”)=⇒(ii).

Now, let D be such that (ii) holds. Since D is a forest, every induced P4 of
S(D) is induced in D, too. With (ii) this implies that S(D) does not contain an
induced P4. Thus every component of S(D) has diameter at most 2, i.e., it is a
star. Thus (ii) implies (iii).

Finally, let D be such that (iii) holds. Then, by Theorem 38, S(D) is [B,B]-
perfect. Thus, by Corollary 42, D is [B,B]-perfect. Thus (iii) implies (i).

7. Final Remarks and Open Questions

A cactus is a graph with the property that any two different of its cycles intersect
in at most one vertex. In particular, an undirected forest is a cactus without any
cycles. Combining the ideas from this paper with the characterisation of strongly
game-perfect semiorientations of cycles in [5], it might be possible to easily solve
the following problem.

Problem 48. Characterise game-perfect semiorientations of cactuses for any of
the 12 game variants.

Moreover, the following more general problem, which partially already was
proposed in [5], could be the next step towards a characterisation of all game-
perfect digraphs for each of the 12 game variants.

Problem 49. Characterise game-perfect digraphs with clique number 2 for any
of the 12 game variants.

Problem 50. Characterise game-perfect digraphs for any of the 12 game vari-
ants.
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The solution of Problem 50 is known only for the variants [B,B] ([4]) and
[B,−] ([8, 17]) of the strong digraph colouring game and for the variants [B,B],
[A,B], [A,−] ([4, 6]) and [B,−] ([6, 8, 17]) of the weak digraph colouring game,
whereas for the other six, quite more interesting game variants it is still open.

Our results support the following seemingly intuitive conjecture, but which,
to our knowledge, still has not been proven.

Conjecture 51. For any g, if D is strongly g-perfect, then D is weakly g-perfect.

Or, more generally.

Conjecture 52. For any g, χwg(D) ≤ χg(D).

Let GP [X,Y ] be the class of [X,Y ]-perfect digraphs. Our results support
the following, which is true for undirected graphs.

Conjecture 53. GP [A,B] = GP [A,−].
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