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Abstract

Let D = (V,A) be a digraph of order n, S a subset of V of size k

and 2 ≤ k ≤ n. A subdigraph H of D is called an S-strong subgraph
if H is strong and S ⊆ V (H). Two S-strong subgraphs D1 and D2 are
said to be arc-disjoint if A(D1) ∩ A(D2) = ∅. Let λS(D) be the maximum
number of arc-disjoint S-strong digraphs in D. The strong subgraph k-
arc-connectivity is defined as λk(D) = min{λS(D) | S ⊆ V, |S| = k}. A
digraph D = (V,A) is called minimally strong subgraph (k, ℓ)-arc-connected
if λk(D) ≥ ℓ but for any arc e ∈ A, λk(D − e) ≤ ℓ − 1. Let G(n, k, ℓ)
be the set of all minimally strong subgraph (k, ℓ)-arc-connected digraphs
with order n. We define G(n, k, ℓ) = max{|A(D)| | D ∈ G(n, k, ℓ)} and
g(n, k, ℓ) = min{|A(D)| | D ∈ G(n, k, ℓ)}.

In this paper, we study the minimally strong subgraph (k, ℓ)-arc-con-
nected digraphs. We give a characterization of the minimally strong sub-
graph (3, n − 2)-arc-connected digraphs, and then give exact values and
bounds for the functions g(n, k, ℓ) and G(n, k, ℓ).
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1. Introduction

1.1. Motivation and concepts

The generalized k-connectivity κk(G) of a graph G = (V,E) was introduced by
Hager [8] in 1985 (2 ≤ k ≤ |V |). For a graph G = (V,E) and a set S ⊆ V of
at least two vertices, an S-Steiner tree or, simply, an S-tree is a subgraph T of
G which is a tree with S ⊆ V (T ). Two S-trees T1 and T2 are said to be edge-

disjoint if E(T1)∩E(T2) = ∅. Two edge-disjoint S-trees T1 and T2 are said to be
internally disjoint if V (T1)∩V (T2) = S. The generalized local connectivity κS(G)
is the maximum number of internally disjoint S-trees in G. For an integer k with
2 ≤ k ≤ n, the generalized k-connectivity is defined as

κk(G) = min{κS(G) | S ⊆ V (G), |S| = k}.

Observe that κ2(G) = κ(G). Li, Mao and Sun [10] introduced the following con-
cept of generalized k-edge-connectivity. The generalized local edge-connectivity

λS(G) is the maximum number of edge-disjoint S-trees in G. For an integer k

with 2 ≤ k ≤ n, the generalized k-edge-connectivity is defined as

λk(G) = min{λS(G) | S ⊆ V (G), |S| = k}.

Observe that λ2(G) = λ(G). Generalized connectivity of graphs has become a
well-established area in graph theory, see a recent monograph [9] by Li and Mao
on generalized connectivity of undirected graphs.

To extend generalized k-connectivity to directed graphs, Sun, Gutin, Yeo
and Zhang [14] observed that in the definition of κS(G), one can replace “an
S-tree” by “a connected subgraph of G containing S.” Therefore, Sun et al. [14]
defined strong subgraph k-connectivity by replacing “connected” with “strongly
connected” (or, simply, “strong”) as follows. LetD = (V,A) be a digraph of order
n, S a subset of V of size k and 2 ≤ k ≤ n. A subdigraph H of D is called an
S-strong subgraph if H is strong and S ⊆ V (H). Two S-strong subgraphs D1 and
D2 are said to be arc-disjoint if A(D1) ∩ A(D2) = ∅. Two arc-disjoint S-strong
subgraphs D1 and D2 are said to be internally disjoint if V (D1) ∩ V (D2) = S.
Let κS(D) be the maximum number of internally disjoint S-strong subgraphs in
D. The strong subgraph k-connectivity is defined as

κk(D) = min{κS(D) | S ⊆ V, |S| = k}.

As a natural counterpart of the strong subgraph k-connectivity, Sun and
Gutin [11] introduced the concept of strong subgraph k-arc-connectivity. Let
D = (V (D), A(D)) be a digraph of order n, S ⊆ V a k-subset of V (D) and 2 ≤
k ≤ n. Let λS(D) be the maximum number of arc-disjoint S-strong subgraphs
in D. The strong subgraph k-arc-connectivity is defined as

λk(D) = min{λS(D) | S ⊆ V (D), |S| = k}.
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The strong subgraph k-(arc-)connectivity is not only a natural extension of
the concept of generalized k-(edge-)connectivity, but also relates to important

problems in graph theory. For k = 2, κ2
(←→
G

)

= κ(G) [14] and λ2

(←→
G

)

= λ(G)
[11]. Hence, κk(D) and λk(D) could be seen as generalizations of connectivity
and edge-connectivity of undirected graphs, respectively. For k = n, κn(D) =
λn(D) is the maximum number of arc-disjoint spanning strong subgraphs of D.
Moreover, we know that κS(D) and λS(D) denote the number of internally-
disjoint and arc-disjoint strong subgraphs containing a given set S, respectively.
Hence, these parameters are relevant to the subdigraph packing problem, see
[2–5,7,13]. For a recent survey on the topic of strong subgraph connectivity, the
readers can see [12].

A digraph D = (V (D), A(D)) is called minimally strong subgraph (k, ℓ)-arc-
connected if λk(D) ≥ ℓ but for any arc e ∈ A(D), λk(D − e) ≤ ℓ − 1. Note
that 2 ≤ k ≤ n, 1 ≤ ℓ ≤ n − 1 by the definition of λk(D) and Theorem 3.
Let G(n, k, ℓ) be the set of all minimally strong subgraph (k, ℓ)-arc-connected
digraphs with order n. We define

G(n, k, ℓ) = max{|A(D)| | D ∈ G(n, k, ℓ)}

and
g(n, k, ℓ) = min{|A(D)| | D ∈ G(n, k, ℓ)}.

We further define

Ex(n, k, ℓ) = {D | D ∈ G(n, k, ℓ), |A(D)| = G(n, k, ℓ)}

and
ex(n, k, ℓ) = {D | D ∈ G(n, k, ℓ), |A(D)| = g(n, k, ℓ)}.

In [11], Sun and Gutin first studied the minimally strong subgraph (k, ℓ)-
arc-connected digraphs and gave some characterizations for some special cases
(Proposition 7 and Theorem 8). In this paper, we continue to study the minimally
strong subgraph (k, ℓ)-arc-connected digraphs. We first give a characterization
of the minimally strong subgraph (3, n − 2)-arc-connected digraphs (Theorem
4), then give exact values and bounds for the functions g(n, k, ℓ) and G(n, k, ℓ)
(Theorem 6 and Proposition 10).

1.2. Prelimilaries

We will use the following Tillson’s decomposition theorem.

Theorem 1 [15]. The arcs of
←→
K n can be decomposed into Hamiltonian cycles if

and only if n 6= 4, 6.

The following proposition will also be used in our argument.
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Proposition 2 [11]. Let D be a digraph of order n, and let k ≥ 2 be an integer.

Then

(1) λk+1(D) ≤ λk(D) for every k ≤ n− 1,

(2) λk(D
′) ≤ λk(D) where D′ is a spanning subgraph of D,

(3) κk(D) ≤ λk(D) ≤ min{δ+(D), δ−(D)},

Sun and Gutin [11] obtained a sharp lower bound and a sharp upper bound
of λk(D) for 2 ≤ k ≤ n.

Theorem 3. Let 2 ≤ k ≤ n. For a strong digraph D of order n, we have

1 ≤ λk(D) ≤ n− 1.

Moreover, both bounds are sharp, and the upper bound holds if and only if

D ∼=
←→
K n, where k 6∈ {4, 6}, or, k ∈ {4, 6} and k < n.

2. Characterization of the Minimally Strong Subgraph

(3, n− 2)-Arc-Connected Digraphs

For a digraph D, its reverse Drev is a digraph with same vertex set and such that
xy ∈ A(Drev) if and only if yx ∈ A(D).

Theorem 4. A digraph D is minimally strong subgraph (3, n− 2)-arc-connected

if and only if D is a digraph obtained from the complete digraph
←→
K n by deleting

an arc set M such that
←→
K n[M ] is a union of vertex-disjoint cycles which cover

all but at most one vertex of
←→
K n.

Proof. Let D be a digraph obtained from the complete digraph
←→
K n by deleting

an arc set M such that
←→
K n[M ] is a union of vertex-disjoint cycles which cover all

but at most one vertex of
←→
K n. To prove the theorem it suffices to show that (a)

D is minimally strong subgraph (3, n− 2)-arc-connected, that is, λ3(D) ≥ n− 2
but for any arc e ∈ A(D), λ3(D− e) ≤ n−3, and (b) if a digraph H is minimally

strong subgraph (3, n − 2)-arc-connected then it must be constructed from
←→
K n

as the digraph D above. Thus, the remainder of the proof has two parts.

Part (a). We just consider the case that
←→
K n[M ] is a union of vertex-disjoint

cycles which cover all vertices of
←→
K n, since the argument for the other case is

similar. For any e ∈ A(
←→
K n) \M , observe that e must be adjacent to at least one

element of M , so λ3(D− e) ≤ min{δ+(D− e), δ−(D− e)} = n− 3 by (3). Hence,
it suffices to show that λ3(D) = n− 2 in the following. So we will show that for
S = {x, y, z} ⊆ V (D), there are at least n − 2 arc-disjoint S-strong subgraphs
in D.
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Case 1. x, y, z belong to the same cycle, say C = u1u2 · · ·utu1, of
←→
K n[M ].

Subcase 1.1. S induces a path of length two in C. Without loss of generality,
assume that x = u1, y = u2, z = u3.

For the case that t = 3, we construct the following n − 2 arc-disjoint S-
strong subgraphs: let D1 be the cycle zyxz; for any u ∈ V (D) \ S, let Du be the
subdigraph of D with vertex set S ∪ {u} and arc set {xu, ux, yu, uy, zu, uz}.

For the case that t = 4, we construct the following n−2 arc-disjoint S-strong
subgraphs: let D1 be the cycle zyxz; let D2 be the subdigraph of D with vertex
set V (C) and arc set {xut, zx, yut, uty, utz}; for any u ∈ V (D) \ V (C), let Du be
the subdigraph of D with vertex set S ∪ {u} and arc set {xu, ux, yu, uy, zu, uz}.

For the case that t ≥ 5, we construct the following n−2 arc-disjoint S-strong
subgraphs: let D1 be the cycle zyxz; let D2 be the cycle zxutyu4z; let D3 be the
subdigraph of D with vertex set S ∪{u4, ut} and arc set {xu4, u4x, zut, utz, utu4,
u4y, yut}; for any u ∈ V (D) \ ({u4, ut} ∪ S), let Du be the subdigraph of D with
vertex set S ∪ {u} and arc set {xu, ux, yu, uy, zu, uz}.

Subcase 1.2. Exactly two elements of S are adjacent. Without loss of gener-
ality, assume that x = u1, y = u2. We know t ≥ 5 in this case.

If t = 5, then z = u4. We construct the following n− 2 arc-disjoint S-strong
subgraphs: let D1 be the cycle zyxz; let D2 be the cycle zxutyz; let D3 be the
subdigraph of D with vertex set V (C) and arc set {xu3, u3x, u3y, yut, utz, zu3};
for any u ∈ V (D) \ V (C), let Du be the subdigraph of D with vertex set S ∪ {u}
and arc set {xu, ux, yu, uy, zu, uz}.

We now consider the case that t ≥ 6. If z = u4, then we construct the
following n− 2 arc-disjoint S-strong subgraphs: let D1 be the cycle zyxz; let D2

be the cycle zxutyz; let D3 be the subdigraph of D with vertex set {x, y, u3, z, ut}
and arc set {xu3, u3x, u3y, yut, utz, zu3}; let D4 be the subdigraph of D with
vertex set {x, y, z, u5, ut} and arc set {xu5, u5x, u5y, yu5, u5z, utu5, zut}; for any
u ∈ V (D) \ {x, y, u3, z, u5, ut}, let Du be the subdigraph of D with vertex set
S ∪ {u} and arc set {xu, ux, yu, uy, zu, uz}.

If z = ut−1, then we construct the following n− 2 arc-disjoint S-strong sub-
graphs: let D1 be the cycle zyxz; let D2 be the cycle zxutyz; let D3 be the
subdigraph of D with vertex set {x, y, u3, ut−2, z, ut} and arc set {xu3, u3x, u3y,
yut, utz, zut−2, ut−2u3}; let D4 be the subdigraph of D with vertex set {x, y, u3,
ut−2, z, ut} and arc set {xut−2, ut−2x, ut−2y, yut−2, ut−2ut, utut−2, utu3, u3ut,

u3z, zu3}; for any u ∈ V (D) \ {x, y, u3, ut−2, z, ut}, let Du be the subdigraph
of D with vertex set S ∪ {u} and arc set {xu, ux, yu, uy, zu, uz}.

If z 6∈ {u4, ut−1}, say z = u5, then we construct the following n − 2 arc-
disjoint S-strong subgraphs: let D1 be the cycle zyxz; let D2 be the cycle zxutyz;
let D3 be the subdigraph of D with vertex set {x, y, u3, u4, z, ut−1} and arc set
{xu3, u3x, u3y, yut−1, ut−1z, zu4, u4u3}; let D4 be the subdigraph of D with ver-
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tex set {x, y, z, ut−1, ut} and arc set {xut−1, ut−1x, utz, zut, yut, utut−1, ut−1y};
let D5 be the subdigraph of D with vertex set {x, y, u3, u4, z, ut−1} and arc set
{xu4, u4x, u4y, yu4, u4ut−1, ut−1u4, ut−1u3, u3ut−1, u3z, zu3}; for any u ∈ V (D) \
{x, y, u3, u4, z, ut−1, ut}, let Du be the subdigraph of D with vertex set S ∪ {u}
and arc set {xu, ux, yu, uy, zu, uz}.

Subcase 1.3. Any two elements of S are nonadjacent. Without loss of gener-
ality, assume that x = u1. We know t ≥ 6 in this case.

If t = 6, then we can assume that y = u3, z = u5. We construct the
following n − 2 arc-disjoint S-strong subgraphs: let D1 be the cycle zyxz; let
D2 = Drev

1 ; let D3 be the subdigraph of D with vertex set S ∪ {u2, ut} and arc
set {xu6, u6y, yu2, u2x, u2z, zu2}; let D4 be the subdigraph of D with vertex set
S∪{u4, ut} and arc set {zu4, u4y, yu6, u6z, u4x, xu4}; for any u ∈ V (D)\S, let Du

be the subdigraph ofD with vertex set S∪{u} and arc set {xu, ux, yu, uy, zu, uz}.
In the following we assume that t ≥ 7. We consider the case that exactly

one pair of elements, say x and z, of S does not have a common neighbor in
the cycle C. Without loss of generality, assume that y = u3, z = u5 (observe
that x and y have a common neighbor u2, y and z have a common neighbor u4,
but z and x do not have a common neighbor in the cycle C). We construct the
following n − 2 arc-disjoint S-strong subgraphs: let D1 be the cycle zyxz; let
D2 = Drev

1 ; let D3 be the subdigraph of D with vertex set S ∪ {u2, ut} and arc
set {xut, uty, yu2, u2x, u2z, zu2}; let D4 be the subdigraph of D with vertex set
S∪{u4, ut} and arc set {zu4, u4y, yut, utz, u4x, xu4}; let D5 be the subdigraph of
D with vertex set S ∪ {u6, ut} and arc set {xu6, u6x, u6y, yu6, zut, utu6, u6z}; for
any u ∈ V (D) \ (S ∪ {u2, u4, u6, ut}), let Du be the subdigraph of D with vertex
set S ∪ {u} and arc set {xu, ux, yu, uy, zu, uz}.

We now consider the case that exactly one pair of elements, say x and y, of
S has a common neighbor in the cycle C. Without loss of generality, assume that
y = u3, z = u6 (we know x and y have a common neighbor u2, y and z do not have
a common neighbor, z and x do not have a common neighbor in the cycle C). We
construct the following n−2 arc-disjoint S-strong subgraphs: let D1 be the cycle
zyxz; let D2 = Drev

1 ; let D3 be a subdigraph of D with vertex set S∪{u2, ut} and
arc set {xut, uty, yu2, u2x, u2z, zu2}; let D4 be a subdigraph of D with vertex set
S∪{u4, u7} and arc set {u4y, yu7, u7u4, u4x, xu4, u4z, zu4}; letD5 be a subdigraph
ofD with vertex set S∪{u5, u7} and arc set {u5u7, u7z, zu5, u5x, xu5, u5y, yu5}; let
D6 be a subdigraph of D with vertex set S ∪ {u7, ut} and arc set {u7y, yut, utu7,
u7x, xu7, utz, zut}; for any u ∈ V (D) \ (S ∪ {u2, u4, u5, u7, ut}), let Du be the
subdigraph of D with vertex set S ∪ {u} and arc set {xu, ux, yu, uy, zu, uz}.

We consider the remaining case that any pair of elements of S does not have
a common neighbor in the cycle C. Without loss of generality, assume that y =
u4, z = u7 (we know x and y do not a common neighbor u2, y and z do not have
a common neighbor, z and x do not have a common neighbor in the cycle C). We
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construct the following n−2 arc-disjoint S-strong subgraphs: let D1 be the cycle
zyxz; let D2 = Drev

1 ; let D3 be a subdigraph of D with vertex set S∪{u2, ut} and
arc set {xut, utu2, u2x, u2y, yu2, u2z, zu2}; let D4 be a subdigraph of D with ver-
tex set S∪{u3, ut} and arc set {u3ut, uty, yu3, u3x, xu3, u3z, zu3}; let D5 be a sub-
digraph of D with vertex set S∪{u5, ut} and arc set {u5y, yut, utu5, u5x, xu5, u5z,
zu5}; let D6 be a subdigraph of D with vertex set S ∪ {u6, ut} and arc set
{u6ut, utz, zu6, xu6, u6x, yu6, u6y}; let D7 be a subdigraph of D with vertex set
S ∪ {u8, ut} and arc set {u8z, zut, utu8, xu8, u8x, yu8, u8y}; for any u ∈ V (D) \
(S∪{u2, u3, u5, u6, u8, ut}), let Du be the subdigraph of D with vertex set S∪{u}
and arc set {xu, ux, yu, uy, zu, uz}.

Case 2. Exactly two elements of S belong to the same cycle, say C1 =

u1u2 · · ·utu1, of
←→
K n[M ], and the remaining element belongs to the other cycle

C2 = v1v2 · · · vhv1. Without loss of generality, assume that x, y ∈ V (C1), z = v1.

Subcase 2.1. x and y are adjacent. Without loss of generality, assume that
x = u1, y = u2. We just consider the case that t ≥ 4 and h ≥ 3, since the
arguments for the other cases are similar and simpler. We construct the fol-
lowing n − 2 arc-disjoint S-strong subgraphs: let D1 be the cycle zyvhxz; let
D2 = Drev

1 ; let D3 be a subdigraph of D with vertex set S ∪ {ut} and arc set
{xut, uty, yx, utz, zut}; let D4 be a subdigraph of D with vertex set S ∪ {u3, ut}
and arc set {yut, utu3, u3y, u3x, xu3, u3z, zu3}; let D5 be a subdigraph of D with
vertex set S ∪ {v2, vh} and arc set {zvh, vhv2, v2z, v2x, xv2, yv2, v2y}; for any
u ∈ V (D) \ (S ∪ {u3, ut, v2, vh}), let Du be the subdigraph of D with vertex
set S ∪ {u} and arc set {xu, ux, yu, uy, zu, uz}.

Subcase 2.2. x and y are nonadjacent. Without loss of generality, assume
that x = u1.

We first consider the case that t = 4, and observe that y = u3 now. Further-
more, assume that h ≥ 3 since the argument for the remaining case is similar and
simpler. We construct the following n−2 arc-disjoint S-strong subgraphs: let D1

be the cycle xyzx; let D2 = Drev
1 ; let D3 be a subdigraph of D with vertex set

S∪{u2, ut} and arc set {xut, uty, yu2, u2x, u2z, zu2}; let D4 be a subdigraph of D
with vertex set S∪{v2, ut} and arc set {xv2, v2x, yv2, v2y, utz, zut, utv2, v2ut}; let
D5 be a subdigraph of D with vertex set S ∪ {v2, vh} and arc set {xvh, vhx, yvh,
vhy, vhv2, v2z, zvh}; for any u ∈ V (D) \ (S ∪ {u2, ut, v2, vh}), let Du be the sub-
digraph of D with vertex set S ∪ {u} and arc set {xu, ux, yu, uy, zu, uz}.

Now we assume that t ≥ 5. We first consider the case that x and y have
exactly one common neighbor in the cycle C1. With a similar argument to that
of the case that t ≥ 7 and exactly one pair of elements, say x and y, of S has a
common neighbor in the cycle C in Subcase 1.3, we can construct n−2 arc-disjoint
S-strong subgraphs.

We next consider the case that x and y do not have a common neighbor in
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the cycle C1. If h ≥ 3, then with a similar argument to that of the case that t ≥ 7
and any pair of elements of S doesnot have a common neighbor in the cycle C in
Subcase 1.3, we can construct n − 2 arc-disjoint strong subgraphs containing S.
Otherwise, we have h = 2. Without loss of generality, assume that y = u4. We
construct the following n−2 arc-disjoint S-strong subgraphs: let D1 be the cycle
xyzx; let D2 = Drev

1 ; let D3 be a subdigraph of D with vertex set S ∪ {u2, ut}
and arc set {xut, utu2, u2x, u2y, yu2, u2z, zu2}; let D4 be a subdigraph of D with
vertex set S ∪{u3, ut} and arc set {u3ut, uty, yu3, u3x, xu3, u3z, zu3}; let D5 be a
subdigraph of D with vertex set S ∪{u5, ut} and arc set {u5y, yut, utu5, u5x, xu5,
u5z, zu5}; let D6 be a subdigraph of D with vertex set S ∪ {ut, vh} and arc set
{xvh, vhx, vhut, utvh, vhy, yvh, utv1, v1ut}; for any u ∈ V (D) \ (S ∪ {u2, u3, ut, u5,
vh}), let Du be the subdigraph of D with vertex set S ∪ {u} and arc set {xu, ux,
yu, uy, zu, uz}.

Case 3. The elements of S belong to distinct cycles, say x ∈ V (C1), y ∈ V (C2),

z ∈ V (C3), of
←→
K n[M ].

Subcase 3.1. |V (Ci)| ≥ 3 for all 1 ≤ i ≤ 3. With a similar argument to the
case that t ≥ 7 and exactly one pair of elements, say x and y, of S has a common
neighbor in the cycle C in Subcase 1.3, we can construct n−2 arc-disjoint S-strong
subgraphs.

Subcase 3.2. |V (Ci0)| = 2 for some 1 ≤ i0 ≤ 3. With a similar argument
to the case that x, y do not have a common neighbor in the cycle C1 and h = 2
in last paragraph of Subcase 2.2, we can construct n − 2 arc-disjoint S-strong
subgraphs.

Subcase 3.3. |V (Ci0)| = |V (Cj0)| = 2 for some 1 ≤ i0, j0 ≤ 3. Without loss
of generality, we assume that i0 = 2, j0 = 3 and furthermore, u1x, xu2 ∈ E(C1),
u3y, yu3 ∈ E(C2), u4z, zu4 ∈ E(C3). We construct the following n− 2 arc-disjoint
S-strong subgraphs: let D1 be the cycle xyzx; let D2 = Drev

1 ; let D3 be a
subdigraph of D with vertex set S∪{u1, u2} and arc set {u1u2, u2x, xu1, u2y, yu2,
u2z, zu2}; let D4 be the cycle xu4yu1zu3x; let D5 = Drev

4 ; for any u ∈ V (D) \
(S ∪ {u1, u2, u3, u4}), let Du be a subdigraph of D with vertex set S ∪ {u} and
arc set {xu, ux, yu, uy, zu, uz}.

Subcase 3.4. |V (Ci)| = 2 for all 1 ≤ i ≤ 3. This case is easy and we omit the
details.

Part (b). Let H be minimally strong subgraph (3, n − 2)-arc-connected. By

Theorem 3, we have that H 6∼=
←→
K n, that is, H can be obtained from a complete

digraph
←→
K n by deleting a nonempty arc set M . To end our argument, we need

the following claim. Let us start from a simple yet useful observation, which
follows from (3).
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Proposition 5. No pair of arcs in M has a common head or tail.

Thus,
←→
K n[M ] must be a union of vertex-disjoint cycles or paths, otherwise,

there are two arcs ofM such that they have a common head or tail, a contradiction
with Proposition 5.

Claim 1.
←→
K n[M ] does not contain a path of order at least two.

Proof. Suppose that
←→
K n[M ] contains a path of order at least two. Let M ′ ⊇M

be a set of arcs obtained from M by adding some arcs from
←→
K n −M such that

the digraph
←→
K n[M

′] contains no path of order at least two. For example, if
←→
K n[M ] contains a path u1, . . . , uℓ with ℓ ≥ 2, then add the arc uℓu1 to M ′.

Note that
←→
K n[M

′] is a supergraph of
←→
K n[M ] and is a union of vertex-disjoint

cycles which cover all but at most one vertex of
←→
K n. By Part (a), we have that

λ3(
←→
K n −M ′) = n − 2, so H is not minimally strong subgraph (3, n − 2)-arc-

connected, a contradiction. �

It follows from Claim 1 and its proof that
←→
K n[M ] must be a union of vertex-

disjoint cycles which cover all but at most one vertex of
←→
K n, which completes

the proof of Part (b).

3. Results for g(n, k, ℓ), G(n, k, ℓ), ex(n, k, ℓ) and Ex(n, k, ℓ)

The following result concerns the precise value for g(n, k, ℓ).

Theorem 6. For any triple (n, k, ℓ) with 2 ≤ k ≤ n, 1 ≤ ℓ ≤ n − 1 such that

(n, k, ℓ) 6∈ {(4, 4, 3), (6, 6, 5)}, we have

g(n, k, ℓ) = nℓ.

Proof. By Theorem 3 and the definition of g(n, k, ℓ), we have (n, k, ℓ) 6∈ {(4, 4, 3),
(6, 6, 5)}.

For all digraphs D and k ≥ 2, we have λk(D) ≤ δ+(D) and λk(D) ≤ δ−(D)
by (3). Hence for each D with λk(D) = ℓ, we have that δ+(D), δ−(D) ≥ ℓ, so
|A(D)| ≥ nℓ and then g(n, k, ℓ) ≥ nℓ.

We first consider the case that n 6∈ {4, 6}. Let D ∼=
←→
Kn. By Theorem 1, D

can be decomposed into n − 1 Hamiltonian cycles Hi (1 ≤ i ≤ n − 1). Let Dℓ

be the spanning subdigraph of D with arc sets A(Dℓ) =
⋃

1≤i≤ℓA(Hi). Clearly,
we have λk(Dℓ) ≥ ℓ for 2 ≤ k ≤ n, 1 ≤ ℓ ≤ n − 1. Furthermore, by (3), we
have λk(Dℓ) ≤ ℓ since the in-degree and out-degree of each vertex in Dℓ are both
ℓ. Hence, λk(Dℓ) = ℓ for 2 ≤ k ≤ n, 1 ≤ ℓ ≤ n − 1. For any e ∈ A(Dℓ), we
have δ+(Dℓ − e) = δ−(Dℓ − e) = ℓ − 1, so λk(Dℓ − e) ≤ ℓ − 1 by (3). Thus,
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Dℓ is minimally strong subgraph (k, ℓ)-arc-connected. As |A(Dℓ)| = nℓ, we have
g(n, k, ℓ) ≤ nℓ. From the lower bound that g(n, k, ℓ) ≥ nℓ, we have g(n, k, ℓ) = nℓ

for the case that n 6∈ {4, 6}.
Now we assume that n ∈ {4, 6}. We just consider the case that n = 6, since

the remaining case is similar and simpler. Let D be a digraph with vertex set
V (D) = {ui | 1 ≤ i ≤ 6} such that D is a union of four arc-disjoint cycles Ci,
where C1 : u1u2u3u4u5u6u1, C2 = C1

rev, C3 : u1u3u5u2u4u6u1 and C4 = C3
rev.

Let Dℓ (1 ≤ ℓ ≤ 4) be the spanning subdigraph of D with arc sets A(Dℓ) =
⋃

1≤i≤ℓA(Ci). Let D5 =
←→
K 6. Clearly, we have λk(Dℓ) ≥ ℓ for 2 ≤ k ≤ 5, 1 ≤ ℓ ≤

5. Furthermore, by (3), we have λk(Dℓ) ≤ ℓ since the in-degree and out-degree of
each vertex in Dℓ are both ℓ. Hence, λk(Dℓ) = ℓ for 2 ≤ k ≤ 5, 1 ≤ ℓ ≤ 5. For any
e ∈ A(Dℓ), we have δ

+(Dℓ−e) = δ−(Dℓ−e) = ℓ−1, so λk(Dℓ−e) ≤ ℓ−1 by (3).
Thus, Dℓ is minimally strong subgraph (k, ℓ)-arc-connected. As |A(Dℓ)| = nℓ,
we have g(n, k, ℓ) ≤ nℓ. Hence, g(n, k, ℓ) = nℓ holds for this case by the lower
bound that g(n, k, ℓ) ≥ nℓ. For the case that k = n = 6, we have 1 ≤ ℓ ≤ 4, with
a similar argument, we can also deduce that g(n, k, ℓ) = nℓ.

A digraph D is minimally strong if D is strong but D− e is not for every arc
e of D. Sun and Gutin [11] gave the following characterizations.

Proposition 7 [11]. The following assertions hold.

(i) A digraph D is minimally strong subgraph (k, 1)-arc-connected if and only if

D is minimally strong digraph.

(ii) Let 2 ≤ k ≤ n. If k 6∈ {4, 6}, or, k ∈ {4, 6} and k < n, then a digraph D is

minimally strong subgraph (k, n− 1)-arc-connected if and only if D ∼=
←→
K n.

Theorem 8 [11]. A digraph D is minimally strong subgraph (2, n − 2)-arc-

connected if and only if D is a digraph obtained from the complete digraph
←→
K n

by deleting an arc set M such that
←→
K n[M ] is a union of vertex-disjoint cycles

which cover all but at most one vertex of
←→
K n.

To prove upper bounds on the number of arcs in a minimally strong subgraph
(k, ℓ)-arc-connected digraph, we will use the following result, see e.g. Corollary
5.3.6 of [1].

Theorem 9. Every strong digraph D on n vertices has a strong spanning sub-

graph H with at most 2n − 2 arcs and equality holds only if H is a symmetric

digraph whose underlying undirected graph is a tree.

Proposition 10. We have (i) G(n, n, ℓ) ≤ 2ℓ(n − 1); (ii) For every k (2 ≤ k ≤
n), G(n, k, 1) = 2(n − 1) and Ex(n, k, 1) consists of symmetric digraphs whose

underlying undirected graphs are trees; (iii) G(n, k, n−2) = (n−1)2 for k ∈ {2, 3}.

Proof. (i) Let D = (V,A) be a minimally strong subgraph (n, ℓ)-arc-connected
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digraph, and letD1, . . . , Dℓ be arc-disjoint strong spanning subgraphs ofD. Since
D is minimally strong subgraph (n, ℓ)-arc-connected and D1, . . . , Dℓ are pairwise
arc-disjoint, |A| =

∑ℓ
i=1
|A(Di)|. Thus, by Theorem 9, |A| ≤ 2ℓ(n− 1).

(ii) In the proof of Proposition 7, Sun and Gutin [11] showed that a digraph
D is strong if and only if λk(D) ≥ 1. Now let λk(D) ≥ 1 and a digraph D has
a minimal number of arcs. By Theorem 9, we have that |A(D)| ≤ 2(n− 1), and
if D ∈ Ex(n, k, 1) then |A(D)| = 2(n − 1) and D is a symmetric digraph whose
underlying undirected graph is a tree.

Part (iii) follows directly from Theorems 4 and 8.

By Theorems 4 and 8, we can get the following result on ex(n, k, ℓ) and
Ex(n, k, ℓ).

Proposition 11. The following assertions hold.

(i) For k ∈ {2, 3}, Ex(n, k, n− 2) = {
←→
Kn−M} where M is an arc set such that

←→
K n[M ] is a union of vertex-disjoint cycles which cover all but exactly one

vertex of
←→
K n.

(ii) For k ∈ {2, 3}, ex(n, k, n− 2) = {
←→
Kn −M} where M is an arc set such that

←→
K n[M ] is a union of vertex-disjoint cycles which cover all vertices of

←→
K n.

4. Discussion

In this paper, we give the characterization of minimally strong subgraph (3, n−2)-
arc-connected digraphs. We determine the precise values for g(n, k, ℓ) completely
and the precise values for G(n, k, n−2) for k ∈ {2, 3}. So it would be interesting to
determine G(n, k, n−2) for every value of k ≥ 2, as obtaining characterizations of
all (k, n−2)-arc-connected digraphs for 2 ≤ k ≤ n seems a very difficult problem.
It would also be interesting to find a sharp upper bound for G(n, k, ℓ) for all k ≥ 2
and ℓ ≥ 2.
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