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Abstract

A 2-rainbow dominating function (2RDF) of a graph G is a function g
from the vertex set V (G) to the family of all subsets of {1, 2} such that for
each vertex v with g(v) = ∅ we have

⋃
u∈N(v) g(u) = {1, 2}. The minimum

of g(V (G)) =
∑

v∈V (G) |g(v)| over all such functions is called the 2-rainbow
domination number. A 2RDF g of a graph G is independent if no two
vertices assigned non empty sets are adjacent. The independent 2-rainbow
domination number is the minimum weight of an independent 2RDF of G.
A Roman {2}-dominating function (R2DF) f : V −→ {0, 1, 2} of a graph
G = (V,E) has the property that for every vertex v ∈ V with f(v) = 0
either there is u ∈ N(v) with f(u) = 2 or there are x, y ∈ N(v) with
f(x) = f(y) = 1. The weight of f is the sum f(V ) =

∑
v∈V f(v). An

R2DF f is called independent if no two vertices assigned non-zero values are
adjacent. The independent Roman {2}-domination number is the minimum
weight of an independent R2DF on G.

We first show that the decision problem for computing the independent 2-
rainbow (respectively, independent Roman {2}-domination) number is NP-
complete even when restricted to planar graphs. Then, we give a linear
algorithm that computes the independent 2-rainbow domination number as
well as the independent Roman {2}-domination number of a given tree,
answering problems posed in [M. Chellali and N. Jafari Rad, Independent
2-rainbow domination in graphs, J. Combin. Math. Combin. Comput. 94
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(2015) 133–148] and [A. Rahmouni and M. Chellali, Independent Roman {2}-
domination in graphs, Discrete Appl. Math. 236 (2018) 408–414]. Then, we
give a linear algorithm that computes the independent 2-rainbow domination
number of a given unicyclic graph.

Keywords: independent 2-rainbow dominating function, independent Ro-
man {2}-dominating function, algorithm, 3-SAT.
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1. Introduction

For notation and terminology not given here we refer to [10]. Let G = (V,E) be
a graph with vertex set V of order n and edge set E. The open neighborhood of
a vertex v ∈ V is N(v) = {u ∈ V : uv ∈ E} and the closed neighborhood of v is
N [v] = N(v)∪{v}. The degree of v is deg(v) = |N(v)|. A vertex of degree one is
referred as a leaf and its unique neighbor is called a support vertex. A tree T of
order n ≥ 2 is called a star if n = 2 or n ≥ 3 and T contains exactly one vertex
that is not a leaf. A double star is a tree with precisely two vertices (as central
vertices) that are not leaves. A path of order n is denoted by Pn. A unicyclic
graph is a graph obtained from a tree T of order at least three by joining precisely
two non-adjacent vertices of T . A planar graph is a graph that can be drawn on
the plane in such a way that its edges intersect only at their endpoints.

A function f : V −→ {0, 1, 2} is a Roman dominating function (RDF) of a
graph G = (V,E) if every vertex u for which f(u) = 0 is adjacent to at least
one vertex v for which f(v) = 2. The weight of an RDF f , denoted by w(f), is
the sum f(V ) =

∑
v∈V f(v). The minimum weight of an RDF on G is called the

Roman domination number of G and is denoted by γR(G). The mathematical
concept of Roman domination, was defined and discussed by Stewart [16], and
ReVelle and Rosing [13], and subsequently developed by Cockayne et al. [8]. For

an RDF f on G, we denote by Vi (or V f
i to refer to f) the set of all the vertices of

G with label i under f . Thus an RDF f can be represented by a triple (V0, V1, V2),
and we can use the notation f = (V0, V1, V2).

In a recent paper, Chellali et al. [6] introduced a new variant of Roman
dominating functions. A Roman {2}-dominating function (R2DF) f : V −→
{0, 1, 2} of G has the property that for every vertex v ∈ V with f(v) = 0 either
there is u ∈ N(v) with f(u) = 2 or there are x, y ∈ N(v) with f(x) = f(y) = 1.
The weight of a Roman {2}-dominating function f on G is the sum f(V ) =∑

v∈V f(v) and the minimum weight of a Roman {2}-dominating function f is
the Roman {2}-domination number of G, denoted by γR2(G). Rahmouni and
Chellali [12] introduced independent Roman {2}-dominating function (IR2DF)
as a Roman {2}-dominating function f = (V0, V1, V2) for which V1 ∪ V2 is an
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independent set. The independent Roman {2}-domination number of G, denoted
by i{R2}(G), is the minimum weight of an IR2DF on G. They showed that the
decision problem associated with i{R2}(G) is NP-complete even when restricted
to bipartite graphs. They posed the following open problem.

Problem 1 (Rahmouni and Chellali [12]). Can you design a linear algorithm for
computing the value of i{R2}(T ) for any tree T?

Chen and Lu [7] have answered Problem 1 by giving an algorithm that com-
putes the independent Roman {2}-domination in trees. In this paper we answer
Problem 1 by a different approach.

Let f be a function on the vertex set of a graph G that assigns to each vertex
a set of colors chosen from the set {1, 2}; that is f : V (G) −→ P({1, 2}), where
P({1, 2}) is the power set of {1, 2}. If for each vertex v ∈ V (G) such that f(v) = ∅,
we have

⋃
u∈N(v) f(u) = {1, 2}, then f is called a 2-rainbow dominating function

(2RDF) of G. The weight of a 2RDF f is defined as w(f) =
∑

v∈V (G) |f(v)|.
The minimum weight of a 2-rainbow dominating function is called the 2-rainbow
domination number of G, denoted by γr2(G). We say that a function f is a

γr2(G)-function if it is a 2RDF and w(f) = γr2(G). For a 2RDF f we let V f
1 =

{v : f(v) = {1}}. Similarly, V f
2 , V f

12 and V f
0 are defined. So, we will write f =(

V f
0 , V

f
1 , V

f
2 , V

f
12

)
.

A function f is called an independent 2-rainbow dominating function (I2RDF)

of G, if f is a 2RDF and no two vertices in V (G) − V f
0 are adjacent. The

independent 2-rainbow domination number, denoted by ir2(G), is the minimum
weight of an independent 2-rainbow dominating function of G. We say that
a function f is an ir2(G)-function if it is an I2RDF and w(f) = ir2(G). The
concept of rainbow domination was introduced by Brešar, Henning, and Rall [2],
and further studied by several authors (see for example, [1, 3, 5, 14, 15, 17]).
Chellali et al. [4] posed the following problem.

Problem 2 (Chellali and Jafari Rad [4]). Is there a polynomial algorithm for
computing the independent 2-rainbow domination number for trees?

In this paper we study algorithmic and complexity of the independent 2-
rainbow domination number as well as the independent Roman {2}-domination
number. In Section 2, we show that the decision problem for computing the inde-
pendent 2-rainbow (respectively, independent Roman {2}-domination) number is
NP-complete even when restricted to chordal graphs. In Section 3, we first give
a linear algorithm that computes the independent 2-rainbow domination number
of a given tree, answering Problem 2. We then answer Problem 1 using the fol-
lowing Corollary 1 of [12]. Then we give a linear algorithm that computes the
independent 2-rainbow domination number of a given unicyclic graph.

Corollary 1 (Rahmouni and Chellali [12]). If T is a tree, then i{R2}(T ) = ir2(T ).
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2. NP-Completeness Results

Consider the following decision problems related to the optimization problems of
computing the independent 2-rainbow domination number and the independent
Roman {2}-domination number of a given graph.

Independent 2-Rainbow Domination (I2RD) Problem:
Instance: A graph G and a positive integer m.
Question: Does an I2RDF f exist on G with w(f) ≤ m?

Independent Roman {2}-Domination (IR2D) Problem:
Instance: A graph G and a positive integer m.
Question: Is there an IR2DF f on G with w(f) ≤ m?

We introduce a polynomial time reduction from PLANAR 3-SAT Problem
to I2RD and IR2D Problems to show that I2RD and IR2D Problems are NP-
complete even when restricted to planar graphs. Recall that 3-SAT is the problem
of deciding whether a given boolean formula in 3-conjunctive normal form is
satisfiable. Let Φ = {C,X} be an instance in 3-SAT Problem, that is, let Φ be a
boolean formula in 3-conjunctive normal form. Let C = {c1, c2, . . . , cl} be a set of
l ≥ 1 clauses over a set X = {x1, . . . , xk} of k ≥ 3 variables. For each 1 ≤ j ≤ l,
the clause cj (consisting of exactly three literals) is of the form cj = {y1j , y2j , y3j},
where each of y1j , y2j and y3j is either a variable or the negative of a variable in
X . A natural graph associated to 3-SAT Problem is the bipartite graph G{C,X}
that has C ∪ X as its vertex set and has an edge between the vertices xi and
cj if cj contains either xi or ¬xi. PLANAR 3-SAT is 3-SAT restricted to those
instances {C,X} for which G{C,X} is planar. It is well-know that PLANAR 3-
SAT Problem is NP-complete [9, 11]. Let Φ = {C,X} be an instance of 3-SAT
Problem such that the associated graph G{C,X} to Φ is planar. We construct
graph GΦ corresponding to Φ as follows.

Assume that H is a planar embedding of G{C,X}. We replace each variable-
vertex xi of H, where 1 ≤ i ≤ k, by a graph Hi as variable gadget, where Hi is
obtained from a cycle graph of order 4l with vertices u1

i , . . . , u
4l
i such that each of

vertices u4j−3
i , u4j−2

i , u4j−1
i , u4j

i is adjacent to a new vertex vji for each 1 ≤ j ≤ l.
We replace each clause-vertex cj of H, where 1 ≤ j ≤ l, by a new vertex zj . In
the rest we fix indices i and j, where 1 ≤ i ≤ k and 1 ≤ j ≤ l. Assume that
ci1 , ci2 , . . . , cim , where 1 ≤ m ≤ l, is the sequence of all clause-vertices adjacent to
xi in H in clockwise direction starting from an arbitrary clause-vertex in NH(xi),
that is, xicj′ is an edge of H for each j′ ∈ {i1, i2, . . . , im}. If xi ∈ cir (respectively,
¬xi ∈ cjr), where 1 ≤ r ≤ m, then we replace xicjr by new edges u4r−2

i zjr and
u4r
i zjr (respectively, u4r−3

i zjr and u4r−1
i zjr). Let HΦ be the resulting graph. See

Figure 1. It is easy to see that HΦ is a planar graph.



Algorithmic Aspects of the Independent 2-Rainbow Domination ...713

u1
i u2

i u3
i u4

i u5
i u6

i
u7
i u8

i

v1i v2i

u9
i u10

i u11
i u12

i u13
i u14

i u15
i u16

i

v3i v4i

xi

c1 c3 c4 z1 z3 z4

Figure 1. Illustration of replacing clause-vertex cj by zj for each j ∈ {1, 3, 4}, variable-
vertex xi by Hi, clause-edge xic3 by edges u2i z3 and u4i z3, clause-edge xic4 by edges
u6i z4 and u8i z4 and clause-edge xic1 by edges u9i z1 and u11i z1 for which l = 4, NH(xi) =
{c3, c4, c1}, xi ∈ c3, xi ∈ c4 and ¬xi ∈ c1.

Lemma 2. The boolean formula Φ is satisfiable if and only if there is an IR2DF
(respectively, I2RDF) f on HΦ with w(f) ≤ 2kl.

Proof. Assume that Φ is satisfiable. Let T be an assignment of truth values for
the variables of X for which Φ evaluates to true. We construct sets V1, V ′1 and V ′2
on the vertex set of HΦ as follows. If T assigns the value true to xi, then we add

all vertices in
{
u2j
i : 1 ≤ j ≤ 2l

}
,
{
u4j−2
i : 1 ≤ j ≤ l

}
and

{
u4j
i : 1 ≤ j ≤ l

}
to V1,

V ′1 and V ′2 , respectively. If T assigns the value false to xi, then we add all vertices

in
{
u2j−1
i : 1 ≤ j ≤ 2l

}
,
{
u4j−3
i : 1 ≤ j ≤ l

}
and

{
u4j−1
i : 1 ≤ j ≤ l

}
to V1, V ′1

and V ′2 , respectively. It is easy to see that f = (V (HΦ)− V1, V1, ∅) (respectively,
f = (V (HΦ) − (V ′1 ∪ V ′2), V ′1 , V

′
2 , ∅)) is an IR2DF (respectively, I2RDF) on HΦ

with w(f) = 2kl.
Assume that there is an IR2DF f = (V0, V1, V2) (respectively, I2RDF f =

(V ′0 , V
′

1 , V
′

2 , V
′

12)) on HΦ with w(f) ≤ 2kl. Consider values f(vji ), f
(
u4j−3
i

)
,

f
(
u4j−2
i

)
, f
(
u4j−1
i

)
, and f

(
u4j
i

)
for each 1 ≤ i ≤ k and 1 ≤ j ≤ l. Since

at least two of vertices u4j−3
i , u4j−2

i , u4j−1
i , u4j

i are not adjacent to vertex zj for

all 1 ≤ j ≤ l, we find that Sij = f(vji ) +
∑3

s=0 f
(
u4j−s
i

)
≥ 2 (respectively,

Sij = |f(vji )| +
∑3

s=0

∣∣∣f (u4j−s
i

)∣∣∣ ≥ 2) for each 1 ≤ i ≤ k and 1 ≤ j ≤ l. So,

w(f) ≥
∑

i∈{1,...,k},j∈{1,...,l} Sij ≥ 2kl. Since w(f) ≤ 2kl, we have Sij = 2 and

f(zj) = 0 (respectively,
∣∣f(zj)

∣∣ = 0) for each 1 ≤ i ≤ k and 1 ≤ j ≤ l. Since

f(zj) = 0 (respectively,
∣∣f(zj)

∣∣ = 0) for each 1 ≤ j ≤ l, if f
(
vji
)
6= 0 (respectively,∣∣f(vji )∣∣ 6= 0) for some 1 ≤ i ≤ k and 1 ≤ j ≤ l, then Sij > 2, a contradiction. So,

f
(
vji
)

= 0 (respectively,
∣∣f(vji )∣∣ = 0) for each 1 ≤ i ≤ k and 1 ≤ j ≤ l. Thus,

either both f
(
u2j−1
i

)
= 1 and f(u2j

i ) = 0 or both f
(
u2j−1
i

)
= 0 and f

(
u2j
i

)
= 1
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(respectively, either f
(
u4j−1
i

)
6= ∅, f

(
u4j−3
i

)
6= ∅, f

(
u4j−1
i

)
∪ f(u4j−3

i ) = {1, 2}

and f
(
u2j
i

)
= ∅ or f

(
u4j
i

)
6= ∅, f

(
u4j−2
i

)
6= ∅, f

(
u4j
i

)
∪ f

(
u4j−2
i

)
= {1, 2}

and f
(
u2j−1
i

)
= ∅) for each 1 ≤ i ≤ k and 1 ≤ j ≤ l.

We fix indices i and j, where 1 ≤ i ≤ k and 1 ≤ j ≤ l. If both f
(
u2j−1
i

)
= 0

and f
(
u2j
i

)
= 1 (respectively, f

(
u4j−1
i

)
6= ∅, f

(
u4j−3
i

)
6= ∅, f

(
u4j−1
i

)
∪

f
(
u4j−3
i

)
= {1, 2} and f

(
u2j
i

)
= ∅), then we assign the value true to the vari-

able xi and if both f
(
u2j−1
i

)
= 1 and f

(
u2j
i

)
= 0 (respectively, f

(
u4j
i

)
6= ∅,

f
(
u4j−2
i

)
6= ∅, f

(
u4j
i

)
∪ f

(
u4j−2
i

)
= {1, 2} and f

(
u2j−1
i

)
= ∅), then we as-

sign the value false to the variable xi. We claim that Φ is satisfiable for this
assignment.

Assume without loss of generality that cj = {x1,¬x2, x6}. Since f(zj) = 0

(respectively, |f(zj)| = 0), we have f
(
u4j′−2

1

)
= f

(
u4j′

1

)
= 1, f

(
u4j′′−3

2

)
=

f
(
u4j′′−1

2

)
= 1 or f

(
u4j′′′−2

6

)
= f

(
u4j′′′

6

)
= 1 (respectively, f

(
u4j′−2

1

)
∪f
(
u4j′

1

)
= {1, 2}, f

(
u4j′′−3

2

)
∪f
(
u4j′′−1

2

)
= {1, 2} or f

(
u4j′′′−2

6

)
∪f
(
u4j′′′

6

)
= {1, 2}) for

some j′, j′′, j′′′ ∈ {1, 2, . . . , l}. Assume without loss of generality that f
(
u4j′−2

1

)
=

f
(
u4j′

1

)
= 1 (respectively, f

(
u4j′−2

1

)
∪ f

(
u4j′

1

)
= {1, 2}). So, x1 has the value

true. It causes to satisfy the clause cj , that is, the boolean formula Φ is satisfiable.
This completes the proof.

Clearly, we can compute HΦ in polynomial time. By Lemma 2 and the facts
that HΦ is a planar graph and both IR2D and I2RD Problems belong to NP we
have the following.

Theorem 3. Both IR2D and I2RD Problems are NP-complete even when re-
stricted to planar graphs.

3. Linear Algorithms for Trees and Unicyclic Graphs

In this section we first give a linear algorithm that computes the independent 2-
rainbow domination number as well as the independent Roman {2}-domination
number of a given tree. Finally, using the above algorithm we give a linear
algorithm that computes the independent 2-rainbow domination number of a
given unicyclic graph.
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3.1. Trees

In this section, we give a linear algorithm (Algorithm 3.1) that computes the
independent 2-rainbow domination number of trees. We say that a rooted tree
T with the vertex set V = {v1, v2, . . . , vn} has Property 1 if j < i, where vj is
the parent of vi ∈ V . Let G = (V,E) be a graph such that u ∈ V and a vertex
v /∈ V . We define the following.

• ir2(G, u = 0) = min{w(f) : f is an I2RDF on G with f(u) = ∅},
• ir2(G, u = 1) = min{w(f) : f is an I2RDF on G with f(u) = {1}},
• ir2(G, u = 2) = min{w(f) : f is an I2RDF on G with f(u) = {2}},
• ir2(G, u = 12) = min{w(f) : f is an I2RDF on G with f(u) = {1, 2}},
• i′r2(G, u, v = 1) = min{w(f) : f is an I2RDF on G + uv with f(u) = ∅ and
f(v) = {1}},

• i′r2(G, u, v = 2) = min{w(f) : f is an I2RDF on G + uv with f(u) = ∅ and
f(v) = {2}},

• i′r2(G, u, v = 12) = min{w(f) : f is an I2RDF on G + uv with f(u) = ∅ and
f(v) = {1, 2}}.

Lemma 4. Let H1 = (V1, E1) and H2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅
such that u ∈ V1, v ∈ V2 and a vertex w /∈ V1 ∪ V2. Let G = (V1 ∪ V2, E1 ∪ E2 ∪
{uv}). Then,

(i) ir2(G, u = 0) = min{ir2(H1, u = 0) + ir2(H2, v = 0), i′r2(H1, u, w = 1) +
ir2(H2, v = 1) − 1, i′r2(H1, u, w = 2) + ir2(H2, v = 2) − 1, i′r2(H1, u, w = 12)
+ ir2(H2, v = 12)− 2},

(ii) ir2(G, u = 1) = ir2(H1, u = 1) + i′r2(H2, v, w = 1)− 1,

(iii) ir2(G, u = 2) = ir2(H1, u = 2) + i′r2(H2, v, w = 2)− 1,

(iv) ir2(G, u = 12) = ir2(H1, u = 12) + i′r2(H2, v, w = 12)− 2,

(v) i′r2(G, u,w = 1) = min{i′r2(H1, u, w = 1) + ir2(H2, v = 0), i′r2(H1, u, w =
1) + ir2(H2, v = 1), i′r2(H1, u, w = 12) + ir2(H2, v = 2) − 1, i′r2(H1, u, w =
12) + ir2(H2, v = 12)− 1},

(vi) i′r2(G, u,w = 2) = min{i′r2(H1, u, w = 2) + ir2(H2, v = 0), i′r2(H1, u, w =
12) + ir2(H2, v = 1) − 1, i′r2(H1, u, w = 2) + ir2(H2, v = 2), i′r2(H1, u, w =
12) + ir2(H2, v = 12)− 1},

(vii) i′r2(G, u,w = 12) = min{i′r2(H1, u, w = 12) + ir2(H2, v = 0), i′r2(H1, u, w =
12) + ir2(H2, v = 1), i′r2(H1, u, w = 12) + ir2(H2, v = 2), i′r2(H1, u, w =
12) + ir2(H2, v = 12)}.

Proof. Let f be a 2RDF on G and let f1 and f2 be restrictions of f to H1 and
H2, respectively. Let f ′ = g(w) ∪ f , f ′1 = g(w) ∪ f1 and f ′2 = g(w) ∪ f2, where
g(w) ∈ {∅, {1}, {2}, {1, 2}}.
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Algorithm 3.1: I2RDNT(T )

Input: A connected rooted tree T with V (T ) = {v1, . . . , vn}, Property 1
and a vertex w /∈ V (T ).

Output: (ir2(T, v1 = 0), ir2(T, v1 = 1), ir2(T, v1 = 2), ir2(T, v1 = 12),
i′r2(T, v1, w = 1), i′r2(T, v1, w = 2), i′r2(T, v1, w = 12)).

1 for i = 1 to n do
2 ir2(vi = 0) =∞; ir2(vi = 1) = 1; ir2(vi = 2) = 1; ir2(vi = 12) = 2;

i′r2(vi, w = 1) =∞; i′r2(vi, w = 2) =∞; i′r2(vi, w = 12) = 2;

3 for i = n to 2 do
4 Let vj be the parent of vi;
5 ir2(vj = 0) = min{ir2(vj = 0) + ir2(vi = 0), i′r2(vj , w = 1) + ir2(vi = 1)

−1, i′r2(vj , w = 2) + ir2(vi = 2)−1, i′r2(vj , w = 12) + ir2(vi = 12)−2};
6 ir2(vj = 1) = ir2(vj = 1) + i′r2(vi, w = 1)− 1;
7 ir2(vj = 2) = ir2(vj = 2) + i′r2(vi, w = 2)− 1;
8 ir2(vj = 12) = ir2(vj = 12) + i′r2(vi, w = 12)− 2;
9 i′r2(vj , w = 1) = min{i′r2(vj , w = 1) + ir2(vi = 0), i′r2(vj , w = 1)

+ ir2(vi = 1), i′r2(vj , w = 12) + ir2(vi = 2)− 1, i′r2(vj , w = 12)
+ ir2(vi = 12)− 1};

10 i′r2(vj , w = 2) = min{i′r2(vj , w = 2) + ir2(vi = 0), i′r2(vj , w = 12)
+ ir2(vi = 1)− 1, i′r2(vj , w = 2) + ir2(vi = 2), i′r2(vj , w = 12)
+ ir2(vi = 12)− 1};

11 i′r2(vj , w = 12) = i′r2(vj , w = 12) + min{ir2(vi = 0), ir2(vi = 1),
ir2(vi = 2), ir2(vi = 12)};

12 return (ir2(v1 = 0), ir2(v1 = 1), ir2(v1 = 2), ir2(v1 = 12), i′r2(v1, w = 1),
i′r2(v1, w = 2), i′r2(v1, w = 12));

Clearly, f(u) ∈ {∅, {1}, {2}, {1, 2}} and f(v) ∈ {∅, {1}, {2}, {1, 2}}. Clearly,
f(u) = A if and only if f(u) = A and f(v) = ∅, f(u) = A and f(v) = {1}, f(u) =
A and f(v) = {2} or f(u) = A and f(v) = {1, 2} for each A ∈ {∅, {1}, {2}, {1, 2}}.

Let f(u) = ∅. Hence, f is an I2RDF on G with f(u) = ∅ if and only if f1 is
an I2RDF on H1 with f1(u) = ∅ and f2 is an I2RDF on H2 with f2(v) = ∅, f ′1 is
an I2RDF on H1 + uw with both f ′1(u) = ∅ and f ′1(w) = {1} and f2 is an I2RDF
on H2 with f2(v) = {1}, f ′1 is an I2RDF on H1 + uw with both f ′1(u) = ∅ and
f ′1(w) = {2} and f2 is an I2RDF on H2 with f2(v) = {2} or f ′1 is an I2RDF on
H1 +uw with both f ′1(u) = ∅ and f ′1(w) = {1, 2} and f2 is an I2RDF on H2 with
f2(v) = {1, 2}. This completes the proof of part (i).

Let f(u) = {1}. Hence, f is an I2RDF on G with f(u) = {1} if and only if
f1 is an I2RDF on H1 with f1(u) = {1} and f ′2 is an I2RDF on H2 + vw with
both f ′2(v) = ∅ and f ′2(w) = {1}. This completes the proof of part (ii).
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Let f(u) = {2}. Hence, f is an I2RDF on G with f(u) = {2} if and only if
f1 is an I2RDF on H1 with f1(u) = {2} and f ′2 is an I2RDF on H2 + vw with
both f ′2(v) = ∅ and f ′2(w) = {2}. This completes the proof of part (iii).

Let f(u) = {1, 2}. Hence, f is an I2RDF on G with f(u) = {1, 2} if and only
if f1 is an I2RDF on H1 with f1(u) = {1, 2} and f ′2 is an I2RDF on H2 +vw with
both f ′2(v) = ∅ and f ′2(w) = {1, 2}. This completes the proof of part (iv).

Let f ′(u) = ∅ and f ′(w) = {1}. Hence, f ′ is an I2RDF on G+ uw with both
f ′(u) = ∅ and f ′(w) = {1} if and only if f ′1 is an I2RDF on H1 + uw with both
f ′1(u) = ∅ and f ′1(w) = {1} and f2 is an I2RDF on H2 with f2(v) = ∅, f ′1 is an
I2RDF on H1 + uw with both f ′1(u) = ∅ and f ′1(w) = {1} and f2 is an I2RDF
on H2 with f2(v) = {1}, f ′1 is an I2RDF on H1 + uw with both f ′1(u) = ∅ and
f ′1(w) = {1, 2} and f2 is an I2RDF on H2 with f2(v) = {2}, f ′1 is an I2RDF on
H1 +uw with both f ′1(u) = ∅ and f ′1(w) = {1, 2} and f2 is an I2RDF on H2 with
f2(v) = {1, 2}. This completes the proof of part (v).

Let f ′(u) = ∅ and f ′(w) = {2}. Hence, f ′ is an I2RDF on G+ uw with both
f ′(u) = ∅ and f ′(w) = {2} if and only if f ′1 is an I2RDF on H1 + uw with both
f ′1(u) = ∅ and f ′1(w) = {2} and f2 is an I2RDF on H2 with f2(v) = ∅, f ′1 is an
I2RDF on H1 + uw with both f ′1(u) = ∅ and f ′1(w) = {1, 2} and f2 is an I2RDF
on H2 with f2(v) = {1}, f ′1 is an I2RDF on H1 + uw with both f ′1(u) = ∅ and
f ′1(w) = {2} and f2 is an I2RDF on H2 with f2(v) = {2}, f ′1 is an I2RDF on
H1 +uw with both f ′1(u) = ∅ and f ′1(w) = {1, 2} and f2 is an I2RDF on H2 with
f2(v) = {1, 2}. This completes the proof of part (vi).

Let f ′(u) = ∅ and f ′(w) = {1, 2}. Hence, f ′ is an I2RDF on G + uw with
both f ′(u) = ∅ and f ′(w) = {1, 2} if and only if f ′1 is an I2RDF on H1 +uw with
both f ′1(u) = ∅ and f ′1(w) = {1, 2} and f2 is an I2RDF on H2 with f2(v) = ∅, f ′1
is an I2RDF on H1 + uw with both f ′1(u) = ∅ and f ′1(w) = {1, 2} and f2 is an
I2RDF on H2 with f2(v) = {1}, f ′1 is an I2RDF on H1 +uw with both f ′1(u) = ∅
and f ′1(w) = {1, 2} and f2 is an I2RDF on H2 with f2(v) = {2}, f ′1 is an I2RDF
on H1 + uw with both f ′1(u) = ∅ and f ′1(w) = {1, 2} and f2 is an I2RDF on H2

with f2(v) = {1, 2}. This completes the proof of part (vii).

Lemma 5. Let T be a tree with u ∈ V (T ) and a vertex w /∈ V (T ). Algorithm
3.1 computes values ir2(T, u = a) and i′r2(T, u, w = b) in linear time for each
a ∈ {0, 1, 2, 12} and b ∈ {1, 2, 12}.

Proof. We can compute a rooted tree T ′ with Property 1 and the root u for
T in linear time. Clearly, ir2(T, u = a) = ir2(T ′, u = a) and i′r2(T, u, w = b)
= i′r2(T ′, u, w = b) for each a ∈ {0, 1, 2, 12} and b ∈ {1, 2, 12}. By Lemma
4, Algorithm I2RDNT(T ′) computes these values. The running time of each
iteration of the for loops of Algorithm I2RDNT(T ′) is O(1) and so the running
time of Algorithm 3.1 is linear. This completes the proof.
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The following is clear.

Corollary 6. Let G = (V,E) be a graph such that u ∈ V . Then, ir2(G) =
min{ir2(G, u = 0), ir2(G, u = 1), ir2(G, u = 2), ir2(G, u = 12)}.

By Corollaries 1 and 6 and Lemma 5 we have the following.

Theorem 7. There is a linear algorithm that computes the independent 2-rainbow
domination number and the independent Roman {2}-domination number of a
given tree.

Note that Theorem 7 provides answers to Problems 1 and 2.

3.2. Computing independent 2-rainbow domination number of uni-
cyclic graphs

In this section using Algorithm 3.1 we give a linear algorithm that computes the
independent 2-rainbow domination number of a given unicyclic graph. Recall
that a connected unicyclic graph is a connected graph with a unique cycle. Let
A,C ∈ {{1}, {2}, {1, 2}} and B ∈ {∅, {1}, {2}, {1, 2}}, let G = (V,E) be a graph
with u, v ∈ V and vertices w, z /∈ V . We define the following.

• ir2(G, u = ∅, v = B) = min{w(f) : f is an I2RDF on G with f(u) = ∅ and
f(v) = B},

• ir2(G, u = B, v = ∅) = min{w(f) : f is an I2RDF on G with f(u) = B and
f(v) = ∅},

• i′r2(G, u,w = A, v = B) = min{w(f) : f is an I2RDF on G + uw with
f(u) = ∅, f(w) = A and f(v) = B},

• i′′r2(G, u,w = A, v, z = C) = min{w(f) : f is an I2RDF on G + uw with
f(u) = f(v) = ∅, f(w) = A and f(v) = C},
Let U be a connected unicyclic graph with the unique cycle C = v0, . . . ,

vk−1, v0, where k ≥ 3. Define T (v0, R) = U − v0v1. Clearly, T (v0, R) is a tree
with the vertex set V (U).

Lemma 8. Let U be a connected unicyclic graph with the unique cycle v0, . . . ,
vk−1, v0 (k > 2) with a vertex w /∈ V (U) and let A ∈ {{1}, {2}, {1, 2}}. Then,
ir2(U) = min{ir2(T (v0, R), v0 = ∅, v1 = ∅), i′r2(T (v0, R), v0, w = A, v1 = A) −
|A|, i′r2(T (v0, R), v1, w = A, v0 = A)− |A|}.

Proof. Assume that ir2 = min{ir2(T (v0, R), v0 = ∅, v1 = ∅), i′r2(T (v0, R), v0, w =
A, v1 = A) − |A|, i′r2(T (v0, R), v1, w = A, v0 = A) − |A|}, where A ∈ {{1}, {2},
{1, 2}}.

Let f be an I2RDF on T (v0, R) with f(v0) = f(v1) = ∅ and w(f) =
ir2(T (v0, R), v0 = ∅, v1 = ∅). Then, f is an I2RDF on U and so ir2(U) ≤
ir2(T (v0, R), v0 = ∅, v1 = ∅).



Algorithmic Aspects of the Independent 2-Rainbow Domination ...719

Let f be an I2RDF on T (v0, R)+v0w with f(v0) = ∅, f(v1) = f(w) = A and
w(f) = i′r2(T (v0, R), v0, w = A, v1 = A). Then, the restriction of f to V (T ) is an
I2RDF on U and so ir2(U) ≤ i′r2(T (v0, R), v0, w = A, v1 = A)− |A|.

Similarly, ir2(U) ≤ i′r2(T (v0, R), v1, w = A, v0 = A)− |A|. So, ir2(U) ≤ ir2.
Let f be an I2RDF on U with w(f) = ir2(U). We have either both f(v0) = ∅

and f(v1) ∈ {{1}, {2}, {1, 2}} or both f(v1) = ∅ and f(v0) ∈ {{1}, {2}, {1, 2}}.
In the following we consider these cases.

• Let f(v0) = f(v1) = ∅. Then f is an I2RDF on T (v0, R) with f(v0) =
f(v1) = ∅ and so ir2(T (v0, R), v0 = ∅, v1 = ∅) ≤ ir2(U).

• Let f(v0) = ∅ and f(v1) = g(w) = A, where A ∈ {{1}, {2}, {1, 2}}. Then,
h = f∪g is an I2RDF on T (v0, R)+v0w with h(v0) = ∅ and h(v1) = h(w) = A
and so i′r2(T (v0, R), v0, v1 = A,w = A)− |A| ≤ ir2(U).

• Similar to the previous case, if f(v1) = ∅ and f(v0) = g(w) = A, where
A ∈ {{1}, {2}, {1, 2}}, then i′r2(T (v0, R), v1, v0 = A,w = A)− |A| ≤ ir2(U).

So, ir2 ≤ ir2(U). This completes the proof.

By Lemma 8 for computing the independent 2-rainbow domination number of
a given unicyclic graph we need to compute ir2(T, u = ∅, v = ∅) and i′r2(T, u, w =
A, v = A), where A ∈ {{1}, {2}, {1, 2}} and T is a tree with u, v ∈ V (T ) and a
vertex w /∈ V (T ). We claim that Algorithms 3.2, 3.3, 3.4 and 3.5 compute these
values. We define PT (v, u) as the shortest path between v and u in T .

Lemma 9. Let T be a rooted tree with the root u, v ∈ V (T ) and a vertex w /∈
V (T ). Let (a0, . . . , a6) be the output of Algorithm I2RDNT0(T, u, v). Then,

• a0 = ir2(T, v = ∅, u = ∅),
• a1 = ir2(T, v = ∅, u = {1}),
• a2 = ir2(T, v = ∅, u = {2}),
• a3 = ir2(T, v = ∅, u = {1, 2}),
• a4 = i′r2(T, u, w = {1}, v = ∅),
• a5 = i′r2(T, u, w = {2}, v = ∅),
• a6 = i′r2(T, u, w = {1, 2}, v = ∅).

Proof. Let PT (v, u) = w0(= v), . . . , wk(= u), where k > 0. The proof is by
induction on k = |PT (v, u)|. Let k = 1. So, u is the parent of v. Let T ′ = Tu−Tv.
So,

• ir2(T, v = ∅, u = ∅) = ir2(Tv, v = 0) + ir2(T ′, u = 0),

• ir2(T, v = ∅, u = {1}) = i′r2(Tv, v, w = 1) + ir2(T ′, u = 1)− 1,

• ir2(T, v = ∅, u = {2}) = i′r2(Tv, v, w = 2) + ir2(T ′, u = 2)− 1,

• ir2(T, v = ∅, u = {1, 2}) = i′r2(Tv, v, w = 12) + ir2(T ′, u = 12)− 2,
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Algorithm 3.2: I2RDNT0(T, u, v)

Input: A rooted tree T with the root u, v ∈ V (T ) and a vertex
w /∈ V (T ).

Output: {ir2(T, v = ∅, u = A), i′r2(T, u, w = B, v = ∅) : A ∈
{∅, {1}, {2}, {1, 2}}, B ∈ {{1}, {2}, {1, 2}}}.

1 Let PT (u, v) = w0(= v), . . . , wk(= u).
2 T ′ = Tw1 − Tw0 ;
3 i00 = ir2(Tw0 , w0 = 0) + ir2(T ′, w1 = 0);
4 i01 = i′r2(Tw0 , w0, w = 1) + ir2(T ′, w1 = 1)− 1;
5 i02 = i′r2(Tw0 , w0, w = 2) + ir2(T ′, w1 = 2)− 1;
6 i012 = i′r2(Tw0 , w0, w = 12) + ir2(T ′, w1 = 12)− 2;
7 i′1 = ir2(Tw0 , w0 = 0) + i′r2(T ′, w1, w = 1);
8 i′2 = ir2(Tw0 , w0 = 0) + i′r2(T ′, w1, w = 2);
9 i′12 = ir2(Tw0 , w0 = 0) + i′r2(T ′, w1, w = 12);

10 for i = 2 to k do
11 T ′ = Twi − Twi−1 ;
12 α00 = min{ir2(T ′, wi = 0) + i00, i

′
r2(T ′, wi, w = 1)

+ i01 − 1, i′r2(T ′, wi, w = 2) + i02 − 1, i′r2(T ′, wi, w = 12) + i012 − 2};
13 α01 = ir2(T ′, wi = 1) + i′1 − 1;
14 α02 = ir2(T ′, wi = 2) + i′2 − 1;
15 α012 = ir2(T ′, wi = 12) + i′12 − 2;
16 i′1 = min{i′r2(T ′, w, wi = 1) + i00, i

′
r2(T ′, w, wi = 1)

+ i01, i
′
r2(T ′, w, wi = 12) + i02 − 1, i′r2(T ′, w, wi = 12) + i012 − 1};

17 i′2 = min{i′r2(T ′, w, wi = 2) + i00, i
′
r2(T ′, w, wi = 12)

+ i01 − 1, i′r2(T ′, w, wi = 2) + i02, i
′
r2(T ′, w, wi = 12) + i012 − 1};

18 i′12 = i′r2(T ′, w, wi = 12) + min{i00, i01, i02, i012};
19 i00 = α00; i01 = α01; i02 = α02; i012 = α012;

20 return (i00, i01, i02, i012, i
′
1, i
′
2, i
′
12);

• i′r2(T, u, w = {1}, v = ∅) = ir2(Tv, v = 0) + i′r2(T ′, u, w = 1),

• i′r2(T, u, w = {2}, v = ∅) = ir2(Tv, v = 0) + i′r2(T ′, u, w = 2),

• i′r2(T, u, w = {1, 2}, v = ∅) = ir2(Tv, v = 0) + i′r2(T ′, u, w = 12).

Since k = 1, the for loop of Algorithm I2RDNT0(T, u, v) does not execute.
This proves the base case of the induction. Assume that the result is true for any
rooted tree T ′ with the root u, v ∈ V (T ′), a vertex w /∈ V (T ′) and |PT ′(v, u)| ≤ m,
where m ≥ 1. Let T be a rooted tree with the root u, v ∈ V (T ), a vertex
w /∈ V (T ), |PT (v, u)| = m + 1 and PT (v, u) = w0(= v), . . . , wm, wm+1(= u). Let
Twm be the rooted subtree of T with the root wm. Let (a0, . . . , a6) and (b0, . . . , b6)
be the outputs of Algorithms I2RDNT0(T, u, v) and I2RDNT0(Twm , wm, v), re-
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Algorithm 3.3: I2RDNT1(T, u, v)

Input: A rooted tree T with root u, v ∈ V (T ) and vertices w, z /∈ V (T ).
Output: {i′r2(T, v, w = {1}, u = A), i′′r2(T, v, w = {1}, u, z = B) : A ∈

{∅, {1}, {2}, {1, 2}}, B ∈ {{1}, {2}, {1, 2}}}.
1 Let PT (u, v) = w0(= v), . . . , wk(= u).
2 T ′ = Tw1 − Tw0 ;
3 i10 = i′r2(Tw0 , w0, w = 1) + ir2(T ′, w1 = 0);
4 i11 = i′r2(Tw0 , w0, w = 1) + ir2(T ′, w1 = 1);
5 i12 = i′r2(Tw0 , w0, w = 12) + ir2(T ′, w1 = 2)− 1;
6 i112 = i′r2(Tw0 , w0, w = 12) + ir2(T ′, w1 = 12)− 1;
7 i′11 = i′r2(Tw0 , w0, w = 1) + i′r2(T ′, w1, w = 1);
8 i′12 = i′r2(Tw0 , w0, w = 1) + i′r2(T ′, w1, w = 2);
9 i′112 = i′r2(Tw0 , w0, w = 1) + i′r2(T ′, w1, w = 12);

10 for i = 2 to k do
11 T ′ = Twi − Twi−1 ;
12 α10 = min{ir2(T ′, wi = 0) + i10, i

′
r2(T ′, wi, w = 1)

+ i11 − 1, i′r2(T ′, wi, w = 2) + i12 − 1, i′r2(T ′, wi, w = 12) + i112 − 2};
13 α11 = ir2(T ′, wi = 1) + i′11 − 1;
14 α12 = ir2(T ′, wi = 2) + i′12 − 1;
15 α112 = ir2(T ′, wi = 12) + i′112 − 2;
16 i′11 = min{i′r2(T ′, wi, w = 1) + i10, i

′
r2(T ′, wi, w = 1)

+ i11, i
′
r2(T ′, wi, w = 12) + i12 − 1, i′r2(T ′, wi, w = 12) + i112 − 1};

17 i′12 = min{i′r2(T ′, wi, w = 2) + i10, i
′
r2(T ′, wi, w = 12)

+ i11 − 1, i′r2(T ′, wi, w = 2) + i12, i
′
r2(T ′, wi, w = 12) + i112 − 1};

18 i′112 = i′r2(T ′, wi, w = 12) + min{i10, i11, i12, i112};
19 i10 = α10; i11 = α11; i12 = α12; i112 = α112;

20 return (i10, i11, i12, i112, i
′
11, i

′
12, i

′
112);

spectively. By the induction hypothesis,

• b0 = ir2(Twm , v = ∅, wm = ∅),
• b1 = ir2(Twm , v = ∅, wm = {1}),
• b2 = ir2(Twm , v = ∅, wm = {2}),
• b3 = ir2(Twm , v = ∅, wm = {1, 2}),
• b4 = i′r2(Twm , wm, w = {1}, v = ∅),
• b5 = i′r2(Twm , wm, w = {2}, v = ∅),
• b6 = i′r2(Twm , wm, w = {1, 2}, v = ∅).

Let
(
ok0, . . . , o

k
6

)
be values of variables

(
i00, i01, i02, i012, i

′
1, i
′
2, i
′
3

)
of Algorithm

I2RDNT0(T, u, v), respectively, after the iteration of the for loop for each 2 ≤ k ≤
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Algorithm 3.4: I2RDNT2(T, u, v)

Input: A rooted tree T with root u, v ∈ V (T ) and vertices w, z /∈ V (T ).
Output: {i′r2(T, v, w = {2}, u = A), i′′r2(T, v, w = {2}, u, z = B) : A ∈

{∅, {1}, {2}, {1, 2}}, B ∈ {{1}, {2}, {1, 2}}}.
1 Let PT (u, v) = w0(= v), . . . , wk(= u).
2 T ′ = Tw1 − Tw0 ;
3 i20 = i′r2(Tw0 , w0, w = 2) + ir2(T ′, w1 = 0);
4 i21 = i′r2(Tw0 , w0, w = 12) + ir2(T ′, w1 = 1)− 1;
5 i22 = i′r2(Tw0 , w0, w = 2) + ir2(T ′, w1 = 2);
6 i212 = i′r2(Tw0 , w0, w = 12) + ir2(T ′, w1 = 12)− 1;
7 i′21 = i′r2(Tw0 , w0, w = 2) + i′r2(T ′, w1, w = 1);
8 i′22 = i′r2(Tw0 , w0, w = 2) + i′r2(T ′, w1, w = 2);
9 i′212 = i′r2(Tw0 , w0, w = 2) + i′r2(T ′, w1, w = 12);

10 for i = 2 to k do
11 T ′ = Twi − Twi−1 ;
12 α20 = min{ir2(T ′, wi = 0) + i20, i

′
r2(T ′, wi, w = 1)

+ i21 − 1, i′r2(T ′, wi, w = 2) + i22 − 1, i′r2(T ′, wi, w = 12) + i212 − 2};
13 α21 = ir2(T ′, wi = 1) + i′21 − 1;
14 α22 = ir2(T ′, wi = 2) + i′22 − 1;
15 α212 = ir2(T ′, wi = 12) + i′212 − 2;
16 i′21 = min{i′r2(T ′, wi, w = 1) + i20, i

′
r2(T ′, wi, w = 1)

+ i21, i
′
r2(T ′, wi, w = 12) + i22 − 1, i′r2(T ′, wi, w = 12) + i212 − 1};

17 i′22 = min{i′r2(T ′, wi, w = 2) + i20, i
′
r2(T ′, wi, w = 12)

+ i21 − 1, i′r2(T ′, wi, w = 2) + i22, i
′
r2(T ′, wi, w = 12) + i212 − 1};

18 i′112 = i′r2(T ′, wi, w = 12) + min{i20, i21, i22, i212};
19 i20 = α20; i21 = α21; i22 = α22; i212 = α212;

20 return (i20, i21, i22, i212, i
′
21, i

′
22, i

′
212);

m+ 1. Clearly, (b0, . . . , b6) =
(
om0 , . . . , o

m
6

)
and (a0, . . . , a6) =

(
om+1

0 , . . . , om+1
6

)
.

Let T ′ = T − Twm . Since u is the parent of wm( 6= v) in T , we have

• ir2(T, v = ∅, u = ∅) = min{ir2(T ′, wi = 0) + b0, i
′
r2(T ′, wi, w = 1) + b1 − 1,

i′r2(T ′, wi, w = 2) + b2 − 1, i′r2(T ′, wi, w = 12) + b3 − 2},
• ir2(T, v = ∅, u = {1}) = ir2(T ′, wi = 1) + b4 − 1,

• ir2(T, v = ∅, u = {2}) = ir2(T ′, wi = 2) + b5 − 1,

• ir2(T, v = ∅, u = {1, 2}) = ir2(T ′, wi = 12) + b6 − 2,

• i′r2(T, u, w = {1}, v = ∅) = min{i′r2(T ′, w, wi = 1) + b0, i
′
r2(T ′, w, wi = 1) +

b1, i
′
r2(T ′, w, wi = 12) + b2 − 1, i′r2(T ′, w, wi = 12) + b3 − 1},

• i′r2(T, u, w = {2}, v = ∅) = min{i′r2(T ′, w, wi = 2) + b0, i
′
r2(T ′, w, wi = 12) +
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Algorithm 3.5: I2RDNT12(T, u, v)

Input: A rooted tree T with root u, v ∈ V (T ) and vertices w, z /∈ V (T ).
Output: {i′r2(T, v, w = {1, 2}, u = A), i′′r2(T, v, w = {1, 2}, u, z = B) :

A ∈ {∅, {1}, {2}, {1, 2}}, B ∈ {{1}, {2}, {1, 2}}}.
1 Let PT (u, v) = w0(= v), . . . , wk(= u).
2 T ′ = Tw1 − Tw0 ;
3 i120 = i′r2(Tw0 , w0, w = 12) + ir2(T ′, w1 = 0);
4 i121 = i′r2(Tw0 , w0, w = 12) + ir2(T ′, w1 = 1);
5 i122 = i′r2(Tw0 , w0, w = 12) + ir2(T ′, w1 = 2);
6 i1212 = i′r2(Tw0 , w0, w = 12) + ir2(T ′, w1 = 12);
7 i′121 = i′r2(Tw0 , w0, w = 12) + i′r2(T ′, w1, w = 1);
8 i′122 = i′r2(Tw0 , w0, w = 12) + i′r2(T ′, w1, w = 2);
9 i′1212 = i′r2(Tw0 , w0, w = 12) + i′r2(T ′, w1, w = 12);

10 for i = 2 to k do
11 T ′ = Twi − Twi−1 ;
12 α120 = min{ir2(T ′, wi = 0) + i120, i

′
r2(T ′, wi, w = 1)

+ i121− 1, i′r2(T ′, wi, w = 2) + i122− 1, i′r2(T ′, wi, w = 12) + i1212− 2};
13 α121 = ir2(T ′, wi = 1) + i′121 − 1;
14 α122 = ir2(T ′, wi = 2) + i′122 − 1;
15 α1212 = ir2(T ′, wi = 12) + i′1212 − 2;
16 i′121 = min{i′r2(T ′, wi, w = 1) + i120, i

′
r2(T ′, wi, w = 1)

+ i121, i
′
r2(T ′, wi, w = 12) + i122 − 1, i′r2(T ′, wi, w = 12) + i1212 − 1};

17 i′122 = min{i′r2(T ′, wi, w = 2) + i120, i
′
r2(T ′, wi, w = 12)

+ i121 − 1, i′r2(T ′, wi, w = 2) + i122, i
′
r2(T ′, wi, w = 12) + i1212 − 1};

18 i′1212 = i′r2(T ′, wi, w = 12) + min{i120, i121, i122, i1212};
19 i120 = α120; i121 = α121; i122 = α122; i1212 = α1212;

20 return (i120, i121, i122, i1212, i
′
121, i

′
122, i

′
1212);

b1 − 1, i′r2(T ′, w, wi = 2) + b2, i
′
r2(T ′, w, wi = 12) + b3 − 1},

• i′r2(T, u, w = {1, 2}, v = ∅) = i′r2(T ′, w, wi = 12) + min{b0, b1, b2, b3}.

This completes the proof.

Similar to Lemma 9 we have the following.

Lemma 10. Let T be a rooted tree with the root u, v ∈ V (T ) and vertices w, z /∈
V (T ). Let (a0, . . . , a6) be the output of Algorithm I2RDNT1(T, u, v). Then,

• a0 = i′r2(T, v, w = {1}, u = ∅),
• a1 = i′r2(T, v, w = {1}, u = {1}),
• a2 = i′r2(T, v, w = {1}, u = {2}),
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• a3 = i′r2(T, v, w = {1}, u = {1, 2}),
• a4 = i′′r2(T, v, w = {1}, u, z = {1}),
• a5 = i′′r2(T, v, w = {1}, u, z = {2}),
• a6 = i′′r2(T, v, w = {1}, u, z = {1, 2}).

Lemma 11. Let T be a rooted tree with the root u, v ∈ V (T ) and a vertex
w /∈ V (T ). Let (a0, . . . , a6) be the output of Algorithm I2RDNT2(T, u, v). Then,

• a0 = i′r2(T, v, w = {2}, u = ∅),
• a1 = i′r2(T, v, w = {2}, u = {1}),
• a2 = i′r2(T, v, w = {2}, u = {2}),
• a3 = i′r2(T, v, w = {2}, u = {1, 2}),
• a4 = i′′r2(T, v, w = {2}, u, z = {1}),
• a5 = i′′r2(T, v, w = {2}, u, z = {2}),
• a6 = i′′r2(T, v, w = {2}, u, z = {1, 2}).

Lemma 12. Let T be a rooted tree with the root u, v ∈ V (T ) and a vertex
w /∈ V (T ). Let (a0, . . . , a6) be the output of Algorithm I2RDNT12(T, u, v). Then,

• a0 = i′r2(T, v, w = {1, 2}, u = ∅),
• a1 = i′r2(T, v, w = {1, 2}, u = {1}),
• a2 = i′r2(T, v, w = {1, 2}, u = {2}),
• a3 = i′r2(T, v, w = {1, 2}, u = {1, 2}),
• a4 = i′′r2(T, v, w = {1, 2}, u, z = {1}),
• a5 = i′′r2(T, v, w = {1, 2}, u, z = {2}),
• a6 = i′′r2(T, v, w = {1, 2}, u, z = {1, 2}).

Theorem 13. There is a linear algorithm that computes the independent 2-
rainbow domination number of a given unicyclic graph.

Proof. Let U be a connected unicyclic graph with the unique cycle v0, . . . , vk−1,
v0 such that a vertex w /∈ V (U). By Lemma 8, ir2(U) = min{ir2(T (v0, R), v0 =
∅, v1 = ∅), i′r2(T (v0, R), v0, w = A, v1 = A) − |A|, i′r2(T (v0, R), v1, w = A, v0 =
A)− |A|}, where A ∈ {{1}, {2}, {1, 2}}. Let Tu be a rooted tree of T (v0, R) with
the root u and let v ∈ V (Tu). Clearly, ir2(T (v0, R), v = A, u = A) = ir2(Tu, v =
A, u = A) and i′r2(T (v0, R), v, w = A, u = A) = i′r2(Tu, v, w = A, u = A), where
A ∈ {{1}, {2}, {1, 2}}. It follows from Lemmas 9, 10, 11 and 12 that Algorithms
3.2, 3.3, 3.4 and 3.5 compute ir2(U).

It remains to compute the running time of these algorithms. Let PT (v, u) =
w0(= v), . . . , wk(= u), where k > 0. Clearly, we can compute Tu and P (T, v, u)
in linear time. Let Tm be the value of variable T ′ of Algorithm I2RDNT0(T, u, v)
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after the iteration of the for loop for each 2 ≤ m ≤ k. By Lemma 5, the running
time of lines 2–9 of Algorithm I2RDNT0(T, u, v) is O(V (T1)) and the running
time of the iteration of the for loop of Algorithm I2RDNT0(T, u, v) for 2 ≤ m ≤ k
is O(V (Tm)). Clearly, V (Ti)∩V (Tj) = ∅ for each 2 ≤ i < j ≤ k. So, the running

time of Algorithm I2RDNT0(T, u, v) is equal to
∑k

i=2O(V (Tm)) = O(V (T )) and
so the running time of Algorithm 3.2 is linear. Similarly, the running times of
Algorithms of 3.3, 3.4 and 3.5 are linear. This completes the proof.
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