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Abstract

In [Independent transversal domination in graphs, Discuss. Math. Graph
Theory 32 (2012) 5–17], Hamid claims that if G is a connected bipartite
graph with bipartition {X,Y } such that |X| ≤ |Y | and |X| = γ(G), then
γit(G) = γ(G) + 1 if and only if every vertex x in X is adjacent to at least
two pendant vertices. In this corrigendum, we give a counterexample for the
sufficient condition of this sentence and we provide a right characterization.
On the other hand, we show an example that disproves a construction which
is given in the same paper.
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1. Introduction

Among the results that Hamid shows in [4] we find the following.

Theorem 1.1 [4]. Let G be a connected bipartite graph with bipartition {X,Y }
such that |X| ≤ |Y | and |X| = γ(G). Then γit(G) = γ(G)+1 if and only if every
vertex x in X is adjacent to at least two pendant vertices.
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We find a connected bipartite graph G with bipartition {X,Y } such that
|X| ≤ |Y |, |X| = γ(G) and γit(G) = γ(G) + 1. But there exists a vertex in X
which is not adjacent to at least two pendant vertices.

A problem that arises with Theorem 1.1 is that it is used in [1] in order to
prove the following result.

Corollary 1.2 [1]. Let T be a tree with bipartition {X,Y } such that 1 ≤ |X| ≤
|Y | and γ(T ) = |X|. Then, γit(T ) = γ(T ) if and only if there is a vertex in X
which is adjacent to at most one pendant vertex.

In this corrigendum, we provide a right characterization for bipartite graphs
G with bipartition {X,Y }, |X| ≤ |Y | and |X| = γ(G), such that γit(G) =
γ(G) + 1. As a consequence of the main result, we show the corrected version of
Corollary 1.2.

Other result showed in [4] is the following.

Theorem 1.3 [4]. Let a and b be two positive integers with b ≥ 2a − 1. Then
there exists a connected graph G on b vertices such that γit(G) = a.

In order to prove Theorem 1.3, Hamid proposes the following construction:
set b = 2a+ r, with r ≥ −1, and let H be any connected graph on a vertices. Let
V(H) = {v1, v2, . . . , va} be the vertex set of H and let G be the graph obtained
from H by attaching r+ 1 pendant edges at v1 and one pendant edge at each vi,
for i ≥ 2. Let ui be the pendant vertex in G adjacent to vi, for i ≥ 2.

Hamid claims that γit(G) = a and S = {v1, u2, u3, . . . , ua} is a γit(G)-set.
Further, every maximum independent set of G intersects S and hence γit(G) = a.

We find that, in some cases for H, G holds γit(G) 6= a and there exists an
α(G)-set which does not intersect S.

In this corrigendum we provide a correct proof of Theorem 1.3 for b ≥ 2a.

2. Definitions and Known Results

We use [2] and [3] for terminology and notation not defined here and consider
finite and simple graphs only. For introductory notation, let G be a graph. n(G)
denotes |V (G)|. Let v be a vertex of G, the open neighborhood of v in G, denoted
by N(v), is defined as the set {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex
v, denoted by δ(v), is the number |N(v)|. We say that a vertex u is a pendant
vertex if δ(u) = 1. For a graph G, the number min{δ(u) : u ∈ V (G)} is denoted
by δ(G). An edge of a graph is said to be a pendant edge if one of its vertices is a
pendant vertex. A complete graph is a graph with n vertices and an edge between
every two vertices, denoted by Kn. A subset I of V (G) is said to be independent
if every two vertices of I are non-adjacent. We say that a graph G is bipartite if
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there exists a partition {X,Y } of V (G) such that X and Y are independent sets
(we call that partition a bipartition). If G contains every edge joining X and Y ,
then G is a complete bipartite graph, denoted by Km,n with |X| = m and |Y | = n.
The complete bipartite graph K1,n is called a star.

A subset D of V (G) is said to be dominating if for every u in V (G) − D
it holds N(u) ∩ D 6= ∅. The cardinality of a smallest dominating set is the
domination number, denoted by γ(G), and we refer to such a set as a γ(G)-set.
The cardinality of a largest independent set in G is the independence number,
denoted by α(G), and an independent set having cardinality α(G) is called a
maximum independent set. We refer to such a set as an α(G)-set. A subset M
of E(G) is a matching if every two edges of M are non-adjacent. A maximum
matching is one of largest cardinality in G. The number of edges in a maximum
matching of a graph G is called the matching number of G, denoted by α′(G). A
subset K of V (G) such that every edge of G has at least one end in K is called a
covering of G. The number of vertices in a minimum covering of G is the covering
number of G, denoted by β(G). An independent transversal dominating set in G
is a dominating set that intersects every maximum independent set in G. The
independent transversal domination number, denoted by γit(G), is the smallest
cardinality of an independent transversal dominating set of G. An independent
transversal dominating set of cardinality γit(G) is called a minimum independent
transversal dominating set. We refer to such a set as a γit(G)-set.

We need the following results.

Theorem 2.1 [5]. For any tree T , γ(T ) = n(T ) − ∆(T ) if and only if T is a
wounded spider.

Proposition 2.1 ([4], Example 3.1). γit(Km,n) = 2.

Theorem 2.2 [4]. For any graph G, we have γ(G) ≤ γit(G) ≤ γ(G) + δ(G).

Lemma 2.3 ([2], page 74). Let M be a matching and K a covering such that
|M | = |K|. Then M is a maximum matching and K is a minimum covering.

Lemma 2.4 ([2], page 101). Let G be a graph. Then α(G) + β(G) = n(G).

3. A Counterexample for Theorem 1.1

Consider the graph G in Figure 1. Since M = {x1y2, x2y5, x3y4, x4y6} is a match-
ing and X is a covering such that |M | = |X|, it follows from Lemmas 2.3 and 2.4
that α(G) = 7; also it is straightforward to see that γ(G) = 4. On the other hand,
notice that X and (X−{x4})∪{y6} are the only one γ(G)-sets. Therefore, since
Y and (Y −{y6})∪{x4} are α(G)-sets such that X∩Y = ∅ and ((Y −{y6})∪{x4})
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∩ ((X − {x4}) ∪ {y6}) = ∅, we get from Theorem 2.2 that γit(G) = γ(G) + 1
(because δ(G) = 1). As x4 is not adjacent to at least two pendant vertices, we
obtain a counterexample for Theorem 1.1.

Figure 1. N(x4) has no pendant vertices.

4. Right Characterization for Bipartite Graphs G Such That
|X| ≤ |Y |, |X| = γ(G) and γit(G) = γ(G) + 1

We need the following results.

Corollary 4.1 [4]. If G has an isolated vertex, then γit(G) = γ(G).

Theorem 4.2 shows the right version of Theorem 1.1. Moreover, Theorem 4.2
allows disconnected graphs.

Theorem 4.2. Let G be a bipartite graph with bipartition {X,Y } such that |X| ≤
|Y | and |X| = γ(G). Then γit(G) = γ(G) + 1 if and only if

1. every vertex x in X, such that δ(x) 6= 1, is adjacent to at least two pendant
vertices,

2. Y has no isolated vertices.

Proof. If |V (G)| = 2, hypothesis |X| = γ(G) implies that G = K2 and therefore
G satisfies Theorem 4.2. Assume that |V (G)| ≥ 3.

Suppose that γit(G) = γ(G) + 1. It follows from Corollary 4.1 that G has no
isolated vertices, which implies that δ(G) ≥ 1. Therefore, in particular Y has no
isolated vertices. Thus, it remains to prove that every vertex x in X, such that
δ(x) 6= 1, is adjacent to at least two pendant vertices. Suppose that there exists
a vertex w in X such that δ(w) ≥ 2.

Notice that X is a γ(G)-set (because for every u in (V (G)−X) = Y , δ(u) ≥ 1,
and |X| = γ(G)).
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Consider the following claims.

Claim 1. α(G) = |Y |.

Given that Y is an independent set in G, we get that α(G) ≥ |Y |. On the
other hand, the hypotheses γit(G) = γ(G) + 1 and |X| = γ(G) imply that there
exists an α(G)-set S such that X ∩ S = ∅. Since S ⊆ Y , then α(G) = |S| ≤ |Y |.
Therefore, α(G) = |Y |.

Claim 2. δ(G) = 1.

Proceeding by contradiction, suppose that δ(G) ≥ 2. Let u and v be two
vertices in G such that u ∈ X and v ∈ N(u). Set S = (X − {u}) ∪ {v}.

Claim 2.1. S is a dominating set in G.

Since δ(w) ≥ 2 for every w in Y − {v}, there exists xw in X − {u} such that
wxw ∈ E(G). Therefore, S is a dominating set in G (consider the choice of v).

Claim 2.2. S ∩ J 6= ∅ for every α(G)-set J .

Let J be an α(G)-set. If v ∈ J , then S ∩ J 6= ∅. Suppose that v /∈ J .
Given that |J | = α(G) = |Y | (by Claim 1) and v /∈ J , it follows that X ∩ J 6= ∅.
If u /∈ J , we get (X − {u}) ∩ J 6= ∅ (because X ∩ J 6= ∅), which implies that
S ∩ J 6= ∅. Thus, suppose that u ∈ J . Since δ(u) ≥ 2, there exists z in Y − {v}
such that uz ∈ E(G), which implies that |J ∩ Y | ≤ |Y | − 2 (because u ∈ J ,
{uv, uz} ⊆ E(G) and J is an independent set). Therefore, 2 ≤ |X ∩ J |, which
implies that (X − {u}) ∩ J 6= ∅. Thus, S ∩ J 6= ∅.

We get from Claims 2.1, 2.2, the definition of S and the hypothesis that
γit(G) ≤ |S| = |X| = γ(G), a contradiction with γit(G) = γ(G) + 1. Therefore,
δ(G) = 1.

Let u be a vertex in X such that δ(u) ≥ 2. We will prove that u is adjacent
to at least two pendant vertices. Proceeding by contradiction, suppose that N(u)
contains at most one pendant vertex. If N(u) contains a pendant vertex v, choose
v, otherwise let v be any vertex in N(u). Set S = (X − {u}) ∪ {v}.

Claim 3. S is a dominating set in G.

Given that δ(w) ≥ 1 for every w in Y − N(u), it follows that there exists
xw in X − {u} such that wxw ∈ E(G). On the other hand, since for every z in
N(u) − {v} it holds that δ(z) ≥ 2, then there exists xz in X − {u} such that
zxz ∈ E(G). Therefore, S is a dominating set in G.

Claim 4. If J is an α(G)-set, then S ∩ J 6= ∅.

The proof is the same as the proof of Claim 2.2.
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We get from Claims 3, 4, the definition of S and the hypothesis that γit(G) ≤
|S| = |X| = γ(G), a contradiction with γit(G) = γ(G) + 1. Hence, u is adjacent
to at least two pendant vertices.

Therefore, every vertex x in X, such that δ(x) 6= 1, is adjacent to at least
two pendant vertices.

Suppose that for every vertex w in X, such that δ(w) 6= 1, N(w) contains at
least two pendant vertices and Y has no isolated vertices. Notice that it follows
from the hypothesis that δ(G) ≥ 1. Consider the following claims.

Claim A. α(G) = |Y |.

Given that Y is an independent set, we get that α(G) ≥ |Y |. Proceeding by
contradiction, suppose that α(G) > |Y | and let J be an α(G)-set.

Since α(G) > |Y | and |X| ≤ |Y |, we get that J ∩X 6= ∅ and J ∩ Y 6= ∅. Set
X ′ = J∩X, Y ′ = J∩Y , X1 = {x ∈ X ′ : δ(x) ≥ 2} and X2 = {x ∈ X ′ : δ(x) = 1}.

Claim A.1. |X1| ≥ 1.

As |Y | = |Y ′| + |Y − Y ′|, |J | = |X ′| + |Y ′| and |J | > |Y |, it follows that
|X ′| > |Y − Y ′|, which implies that there exist two vertices in X ′, say u1 and u2,
and there exists a vertex y in Y − Y ′ such that {u1y, u2y} ⊆ E(G).

Proceeding by contradiction, suppose that X1 = ∅. Since δ(u1) = 1 and
δ(u2) = 1, then for every z in Y − (Y ′ ∪{y}) there exists xz in X −{u1, u2} such
that zxz ∈ E(G) (recall that δ(G) ≥ 1). On the other hand, given that J is an
independent set, we get that for every w in Y ′ there exists xw in X−X ′ such that
wxw ∈ E(G). Hence, (X − {u1, u2}) ∪ {y} is a dominating set, a contradiction
with |X| = γ(G). Therefore, |X1| ≥ 1.

Since N(X ′) ⊆ Y − Y ′ and every vertex of X1 is adjacent to at least two
pendant vertices, we get from the definition of X2 that |Y − Y ′| ≥ 2|X1|+ |X2|;
that is, |Y − Y ′| ≥ |X ′| + |X1|, which implies that |X1| + |X ′| + |Y ′| ≤ |Y |.
Hence, since |X1| + |J | ≤ |Y |, 1 ≤ |X1| (by Claim A.1) and |Y | < |J |, we get a
contradiction.

Therefore, α(G) = |Y |.

Claim B. If D is a γ(G)-set, then V (G)−D is an α(G)-set.

Let D be a γ(G)-set. Since |D| = γ(G) = |X|, then |V (G)−D| = (|V (G)| −
|X|) = |Y | = α(G) (by Claim A). It remains to prove that V (G) − D is an
independent set. It is clear that V (G)−D is an independent set if either (V (G)−
D) ⊆ X or (V (G) − D) ⊆ Y . Hence, suppose that (V (G) − D) ∩ X 6= ∅ and
(V (G) − D) ∩ Y 6= ∅. Let u and v be two vertices in V (G) − D; we will prove
that uv /∈ E(G). Suppose that u ∈ (V (G)−D) ∩X and v ∈ (V (G)−D) ∩ Y .

Claim B.1. δ(u) = 1.
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Proceeding by contradiction, suppose that δ(u) ≥ 2. It follows from the
hypothesis that N(u) has at least two pendant vertices, say w and z. Since
u /∈ D, we get that {w, z} ⊆ D (because D is a dominating set).

We will see that S = (D − {w, z}) ∪ {u} is a dominating set. Notice that
V (G) − S = (((V (G) − D) ∩ X) − {u}) ∪ (((V (G) − D) ∩ Y ) ∪ {w, z}), D =
(D∩X)∪ (D∩Y ) and S = (D∩X)∪ ((D∩Y )−{w, z})∪{u}. Given that D is a
dominating set, we get that for every y in (V (G)−D)∩Y there exists xy in D∩X
such that yxy ∈ E(G). In the same way for every x in ((V (G)−D) ∩X)− {u}
there exists yx in D ∩ Y such that xyx ∈ E(G) (yx /∈ {w, z} because w and z
are pendant vertices which are adjacent to u). Hence, we conclude that S is a
dominating set. Since |S| = |X| − 1, we get a contradiction with |X| = γ(G).
Therefore, δ(u) = 1.

Given that δ(u) = 1, u /∈ D and D is a dominating set, it follows that
N(u) ⊆ D, which implies that uv /∈ E(G) (because v /∈ D).

Therefore, V (G)−D is an independent set. Hence, V (G)−D is an α(G)-set.

Claim C. δ(G) = 1.

Recall that δ(G) ≥ 1. If X has a pendant vertex, then we are done; otherwise,
it follows from the hypothesis that for u in X there exists a pendant vertex in
N(u). Therefore, δ(G) = 1.

It follows from Claim B that γit(G) 6= γ(G). Therefore, we get from Claim
C and Theorem 2.2 that γit(G) = γ(G) + 1.

5. Some Consequences of Theorem 4.2

A subdivision of an edge uv is obtained by replacing the edge uv with a path
(u,w, v), where w is a new vertex. For a positive integer t, a wounded spider is
a star K1,t with at most t − 1 of its edges subdivided. Similarly, for an integer
t ≥ 2, a healthy spider is a star K1,t with all of its edges subdivided.

Remark 5.1. It is straightforward to see that if G is a healthy spider, then
γ(G) = ∆(G). On the other hand, if G is a healthy spider, it follows from
Theorem 4.2 that γit(G) = γ(G).

Remark 5.2. Let G be a wounded spider which is not a star. Suppose that G
is obtained from K1,t by subdividing r of its edges, with 1 ≤ r ≤ t− 1 and t ≥ 2.

1. If r ≤ t− 2, then γit(G) = γ(G) + 1 = r + 2.

2. If r = t− 1, then γit(G) = γ(G) = t.

Proof. Suppose that V (G) = {u1, v2, . . . , vt, vt+1} ∪ {u2, . . . , ur, ur+1}, E(G) =
{u1vj : j ∈ {2, . . . , t + 1}} ∪ {uivi : i ∈ {2, . . . , r + 1}}. Set X = {u1, u2, . . . , ur,
ur+1} and Y = {v2, . . . , vt, vt+1}.
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1. Suppose that r ≤ t−2. It follows from Theorem 2.1 that γ(G) = ((t+1)+
r) − t = r + 1 which implies that |X| = γ(G). Therefore, we get from Theorem
4.2 that γit(G) = γ(G) + 1 = (r + 1) + 1.

2. Suppose that r = t− 1. It follows from Theorem 2.1 that γ(G) = t. Since
|X| = γ(G) and u1 is not adjacent to at least two pendant vertices in G, it follows
from Theorem 4.2 that γit(G) 6= γ(G) + 1. Therefore, given that δ(G) = 1, we
get from Theorem 2.2 that γit(G) = γ(G). Hence, γit(G) = t.

Corollary 5.1. Let T be a tree with bipartition {X,Y } such that 1 ≤ |X| ≤ |Y |
and γ(T ) = |X|. Then, γit(T ) = γ(T ) if and only if there is a vertex x in X,
with δ(x) 6= 1, which is adjacent to at most one pendant vertex.

6. Example Disproving Construction in Theorem 1.3

Recall that, in order to prove Theorem 1.3, Hamid proposes the following con-
struction: set b = 2a + r, with r ≥ −1, and let H be any connected graph on
a vertices. Let V(H) = {v1, v2, . . . , va} be the vertex set of H and let G be the
graph obtained from H by attaching r+ 1 pendant edges at v1 and one pendant
edge at each vi, for i ≥ 2. Let ui (i ≥ 2) be the pendant vertex in G adjacent
to vi.

Hamid claims that γit(G) = a and S = {v1, u2, u3, . . . , ua} is a γit(G)-set.
Further, every maximum independent set of G intersects S and hence γit(G) = a.

• We find that, when r = −1 and a ≥ 3, for the graph H = Ka, the associated
graph G does not hold the conclusion of Theorem 1.3, see Figure 2.

Figure 2

In this case, since K = (V (H) − {v1}) is a covering and M = {viui : i ∈
{2, . . . , a}} is a matching such that |K| = a − 1 = |M |, we get from Lemma 2.3
that |K| = β(G). Thus, it follows from Lemma 2.4 that α(G) = 2a−1−(a−1) =
a. Hence (V (G) − K) = {u2, . . . , ua, v1} is the only one independent set in G
such that |V (G)−K| = α(G). Therefore, V (G)− ((V (H)− {va}) ∪ {ua}) is an
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independent transversal dominating set in G, which implies that γit(G) ≤ a− 1.
On the other hand, let S be a γit(G)-set. Given that S is a dominating set, then
{vi, ui}∩S 6= ∅ for every i in {2, . . . , a}, which implies that a−1 ≤ |S|. Therefore,
γit(G) = a− 1

• We find that, when r > 0 and a ≥ 2, for the graph H = K1,a−1, the associated
graph G is a wounded spider and this does not hold the conclusion of Theorem
1.3, see Figure 3.

Figure 3

Notice that G is also obtained from K1,a+r by subdividing exactly a − 1 of
its edges, where a− 1 ≤ (a+ r)− 2. Therefore, it follows from Remark 5.2 that
γit(G) = γ(G) + 1 = (a− 1) + 2 = a+ 1.

• When r > 0 and a = 1 we have that G = K1,r+1 and in this case we get from
Proposition 2.1 that γit(G) = 2 = a+ 1, see Figure 4.

Figure 4

• When H = K1,a−1, for r ≥ 0 and a ≥ 2, there exists an α(G)-set in G which
does not intersect S = {v1, u2, u3, . . . , ua}.

For every i in {1, . . . , r+1} let xi be the pendant vertex adjacent to v1. Since
M = {v1x1, v2u2, . . . , vaua} is a matching and K = V (H) is a covering such that
|M | = |K|, then we get from Lemma 2.3 that K is a minimum covering. On the
other hand, it follows from Lemma 2.4 that 2a + r = |V (G)| = α(G) + β(G) =
α(G) + a, which implies that α(G) = a+ r.

Therefore (V (H)−{v1})∪{x1, . . . , xr+1} is an α(G)-set in G which does not
intersect S.
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For b ≥ 2a we proceed to prove the following.

Theorem 6.1. Let a and b be two positive integers with b ≥ 2a. Then there
exists a connected graph G on b vertices such that γit(G) = a.

Proof. Suppose that b = 2a + r, for some r in N. Let H be a connected graph
of order a, such that H � K1,a−1, with vertex set V (H) = {v1, . . . , va}. Let
{x1, . . . , xr+1} and {u2, . . . , ua} be two sets such that {x1, . . . , xr+1} ∩ {u2, . . . ,
ua} = ∅, {x1, . . . , xr+1} ∩ V (H) = ∅ and V (H) ∩ {u2, . . . , ua} = ∅. Let G
be the graph with V (G) = V (H) ∪ {x1, . . . , xr+1} ∪ {u2, . . . , ua} and E(G) =
E(H) ∪ {viui : i ∈ {2, . . . , a}} ∪ {v1xi : i ∈ {1, . . . , r + 1}}.

Claim 1. a ≤ γit(G).

We will prove that γ(G) = a. Since V (H) is a dominating set in G, then
γ(G) ≤ a. On the other hand, let S be a γ(G)-set. Given that {ui, vi} ∩ S 6= ∅
(because S is a dominating set) for every i in {2, . . . , a} and r + 1 ≥ 1 we get
that |S| ≥ a. Hence, γ(G) = a. Therefore, it follows from Theorem 2.2 that
a ≤ γit(G).

Claim 2. α(G) = r + a.

Since K = V (H) is a covering and M = ({viui : i ∈ {2, . . . , a}}∪{v1x1}) is a
matching such that |K| = a = |M |, it follows from Lemma 2.3 that |K| = β(G).
Hence, we get from Lemma 2.4 that α(G) = r + a.

Claim 3. S = {v1, u2, . . . , ua} is an independent transversal dominating set
in G.

Given that S is a dominating set, it remains to prove that S intersects every
maximum independent set in G. Since H � K1,a−1 and H is connected, we get
that V (H) − {v1} is not an independent set in G, which implies that (V (H) −
{v1}) ∪ {x1, . . . , xr+1} is not an independent set in G. Since |(V (H) − {v1}) ∪
{x1, . . . , xr+1}| = a+ r, it follows that S intersects every maximum independent
set in G.

Therefore, we get from Claims 1 and 3 that a ≤ γit(G) ≤ a.
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