CORRIGENDUM TO: INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS [DISCUSS. MATH. GRAPH THEORY 32 (2012) 5-17]

Emma Guzman-Garcia
AND
Rocío SÁnchez-López ${ }^{1}$
Facultad de Ciencias, Universidad Nacional Autónoma de México Círcuito Exterior s/n, Coyoacán, Ciudad Universitaria, 04510
Ciudad de México, CDMX
e-mail: guzmanemma.604@gmail.com
usagitsukinomx@yahoo.com.mx

Abstract

In [Independent transversal domination in graphs, Discuss. Math. Graph Theory 32 (2012) 5-17], Hamid claims that if G is a connected bipartite graph with bipartition $\{X, Y\}$ such that $|X| \leq|Y|$ and $|X|=\gamma(G)$, then $\gamma_{i t}(G)=\gamma(G)+1$ if and only if every vertex x in X is adjacent to at least two pendant vertices. In this corrigendum, we give a counterexample for the sufficient condition of this sentence and we provide a right characterization. On the other hand, we show an example that disproves a construction which is given in the same paper.

Keywords: domination, independent, transversal, covering, matching.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

Among the results that Hamid shows in [4] we find the following.
Theorem 1.1 [4]. Let G be a connected bipartite graph with bipartition $\{X, Y\}$ such that $|X| \leq|Y|$ and $|X|=\gamma(G)$. Then $\gamma_{i t}(G)=\gamma(G)+1$ if and only if every vertex x in X is adjacent to at least two pendant vertices.

[^0]We find a connected bipartite graph G with bipartition $\{X, Y\}$ such that $|X| \leq|Y|,|X|=\gamma(G)$ and $\gamma_{i t}(G)=\gamma(G)+1$. But there exists a vertex in X which is not adjacent to at least two pendant vertices.

A problem that arises with Theorem 1.1 is that it is used in [1] in order to prove the following result.

Corollary 1.2 [1]. Let T be a tree with bipartition $\{X, Y\}$ such that $1 \leq|X| \leq$ $|Y|$ and $\gamma(T)=|X|$. Then, $\gamma_{i t}(T)=\gamma(T)$ if and only if there is a vertex in X which is adjacent to at most one pendant vertex.

In this corrigendum, we provide a right characterization for bipartite graphs G with bipartition $\{X, Y\},|X| \leq|Y|$ and $|X|=\gamma(G)$, such that $\gamma_{i t}(G)=$ $\gamma(G)+1$. As a consequence of the main result, we show the corrected version of Corollary 1.2.

Other result showed in [4] is the following.
Theorem 1.3 [4]. Let a and b be two positive integers with $b \geq 2 a-1$. Then there exists a connected graph G on b vertices such that $\gamma_{i t}(G)=a$.

In order to prove Theorem 1.3, Hamid proposes the following construction: set $b=2 a+r$, with $r \geq-1$, and let H be any connected graph on a vertices. Let $\mathrm{V}(H)=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ be the vertex set of H and let G be the graph obtained from H by attaching $r+1$ pendant edges at v_{1} and one pendant edge at each v_{i}, for $i \geq 2$. Let u_{i} be the pendant vertex in G adjacent to v_{i}, for $i \geq 2$.

Hamid claims that $\gamma_{i t}(G)=a$ and $S=\left\{v_{1}, u_{2}, u_{3}, \ldots, u_{a}\right\}$ is a $\gamma_{i t}(G)$-set. Further, every maximum independent set of G intersects S and hence $\gamma_{i t}(G)=a$.

We find that, in some cases for H, G holds $\gamma_{i t}(G) \neq a$ and there exists an $\alpha(G)$-set which does not intersect S.

In this corrigendum we provide a correct proof of Theorem 1.3 for $b \geq 2 a$.

2. Definitions and Known Results

We use [2] and [3] for terminology and notation not defined here and consider finite and simple graphs only. For introductory notation, let G be a graph. $n(G)$ denotes $|V(G)|$. Let v be a vertex of G, the open neighborhood of v in G, denoted by $N(v)$, is defined as the set $\{u \in V(G): u v \in E(G)\}$. The degree of a vertex v, denoted by $\delta(v)$, is the number $|N(v)|$. We say that a vertex u is a pendant vertex if $\delta(u)=1$. For a graph G, the number $\min \{\delta(u): u \in V(G)\}$ is denoted by $\delta(G)$. An edge of a graph is said to be a pendant edge if one of its vertices is a pendant vertex. A complete graph is a graph with n vertices and an edge between every two vertices, denoted by K_{n}. A subset I of $V(G)$ is said to be independent if every two vertices of I are non-adjacent. We say that a graph G is bipartite if
there exists a partition $\{X, Y\}$ of $V(G)$ such that X and Y are independent sets (we call that partition a bipartition). If G contains every edge joining X and Y, then G is a complete bipartite graph, denoted by $K_{m, n}$ with $|X|=m$ and $|Y|=n$. The complete bipartite graph $K_{1, n}$ is called a star.

A subset D of $V(G)$ is said to be dominating if for every u in $V(G)-D$ it holds $N(u) \cap D \neq \emptyset$. The cardinality of a smallest dominating set is the domination number, denoted by $\gamma(G)$, and we refer to such a set as a $\gamma(G)$-set. The cardinality of a largest independent set in G is the independence number, denoted by $\alpha(G)$, and an independent set having cardinality $\alpha(G)$ is called a maximum independent set. We refer to such a set as an $\alpha(G)$-set. A subset M of $E(G)$ is a matching if every two edges of M are non-adjacent. A maximum matching is one of largest cardinality in G. The number of edges in a maximum matching of a graph G is called the matching number of G, denoted by $\alpha^{\prime}(G)$. A subset K of $V(G)$ such that every edge of G has at least one end in K is called a covering of G. The number of vertices in a minimum covering of G is the covering number of G, denoted by $\beta(G)$. An independent transversal dominating set in G is a dominating set that intersects every maximum independent set in G. The independent transversal domination number, denoted by $\gamma_{i t}(G)$, is the smallest cardinality of an independent transversal dominating set of G. An independent transversal dominating set of cardinality $\gamma_{i t}(G)$ is called a minimum independent transversal dominating set. We refer to such a set as a $\gamma_{i t}(G)$-set.

We need the following results.
Theorem 2.1 [5]. For any tree $T, \gamma(T)=n(T)-\Delta(T)$ if and only if T is a wounded spider.

Proposition 2.1 ([4], Example 3.1). $\gamma_{i t}\left(K_{m, n}\right)=2$.
Theorem 2.2 [4]. For any graph G, we have $\gamma(G) \leq \gamma_{i t}(G) \leq \gamma(G)+\delta(G)$.
Lemma 2.3 ([2], page 74). Let M be a matching and K a covering such that $|M|=|K|$. Then M is a maximum matching and K is a minimum covering.

Lemma 2.4 ([2], page 101). Let G be a graph. Then $\alpha(G)+\beta(G)=n(G)$.

3. A Counterexample for Theorem 1.1

Consider the graph G in Figure 1. Since $M=\left\{x_{1} y_{2}, x_{2} y_{5}, x_{3} y_{4}, x_{4} y_{6}\right\}$ is a matching and X is a covering such that $|M|=|X|$, it follows from Lemmas 2.3 and 2.4 that $\alpha(G)=7$; also it is straightforward to see that $\gamma(G)=4$. On the other hand, notice that X and $\left(X-\left\{x_{4}\right\}\right) \cup\left\{y_{6}\right\}$ are the only one $\gamma(G)$-sets. Therefore, since Y and $\left(Y-\left\{y_{6}\right\}\right) \cup\left\{x_{4}\right\}$ are $\alpha(G)$-sets such that $X \cap Y=\emptyset$ and $\left(\left(Y-\left\{y_{6}\right\}\right) \cup\left\{x_{4}\right\}\right)$
$\cap\left(\left(X-\left\{x_{4}\right\}\right) \cup\left\{y_{6}\right\}\right)=\emptyset$, we get from Theorem 2.2 that $\gamma_{i t}(G)=\gamma(G)+1$ (because $\delta(G)=1$). As x_{4} is not adjacent to at least two pendant vertices, we obtain a counterexample for Theorem 1.1.

Figure 1. $N\left(x_{4}\right)$ has no pendant vertices.
4. Right Characterization for Bipartite Graphs G Such That

$$
|X| \leq|Y|,|X|=\gamma(G) \text { AND } \gamma_{i t}(G)=\gamma(G)+1
$$

We need the following results.
Corollary 4.1 [4]. If G has an isolated vertex, then $\gamma_{i t}(G)=\gamma(G)$.
Theorem 4.2 shows the right version of Theorem 1.1. Moreover, Theorem 4.2 allows disconnected graphs.

Theorem 4.2. Let G be a bipartite graph with bipartition $\{X, Y\}$ such that $|X| \leq$ $|Y|$ and $|X|=\gamma(G)$. Then $\gamma_{i t}(G)=\gamma(G)+1$ if and only if

1. every vertex x in X, such that $\delta(x) \neq 1$, is adjacent to at least two pendant vertices,
2. Y has no isolated vertices.

Proof. If $|V(G)|=2$, hypothesis $|X|=\gamma(G)$ implies that $G=K_{2}$ and therefore G satisfies Theorem 4.2. Assume that $|V(G)| \geq 3$.

Suppose that $\gamma_{i t}(G)=\gamma(G)+1$. It follows from Corollary 4.1 that G has no isolated vertices, which implies that $\delta(G) \geq 1$. Therefore, in particular Y has no isolated vertices. Thus, it remains to prove that every vertex x in X, such that $\delta(x) \neq 1$, is adjacent to at least two pendant vertices. Suppose that there exists a vertex w in X such that $\delta(w) \geq 2$.

Notice that X is a $\gamma(G)$-set (because for every u in $(V(G)-X)=Y, \delta(u) \geq 1$, and $|X|=\gamma(G)$).

Consider the following claims.
Claim 1. $\alpha(G)=|Y|$.
Given that Y is an independent set in G, we get that $\alpha(G) \geq|Y|$. On the other hand, the hypotheses $\gamma_{i t}(G)=\gamma(G)+1$ and $|X|=\gamma(G)$ imply that there exists an $\alpha(G)$-set S such that $X \cap S=\emptyset$. Since $S \subseteq Y$, then $\alpha(G)=|S| \leq|Y|$. Therefore, $\alpha(G)=|Y|$.

Claim 2. $\delta(G)=1$.
Proceeding by contradiction, suppose that $\delta(G) \geq 2$. Let u and v be two vertices in G such that $u \in X$ and $v \in N(u)$. Set $S=(X-\{u\}) \cup\{v\}$.

Claim 2.1. S is a dominating set in G.
Since $\delta(w) \geq 2$ for every w in $Y-\{v\}$, there exists x_{w} in $X-\{u\}$ such that $w x_{w} \in E(G)$. Therefore, S is a dominating set in G (consider the choice of v).
Claim 2.2. $S \cap J \neq \emptyset$ for every $\alpha(G)$-set J.
Let J be an $\alpha(G)$-set. If $v \in J$, then $S \cap J \neq \emptyset$. Suppose that $v \notin J$. Given that $|J|=\alpha(G)=|Y|$ (by Claim 1) and $v \notin J$, it follows that $X \cap J \neq \emptyset$. If $u \notin J$, we get $(X-\{u\}) \cap J \neq \emptyset$ (because $X \cap J \neq \emptyset$), which implies that $S \cap J \neq \emptyset$. Thus, suppose that $u \in J$. Since $\delta(u) \geq 2$, there exists z in $Y-\{v\}$ such that $u z \in E(G)$, which implies that $|J \cap Y| \leq|Y|-2$ (because $u \in J$, $\{u v, u z\} \subseteq E(G)$ and J is an independent set). Therefore, $2 \leq|X \cap J|$, which implies that $(X-\{u\}) \cap J \neq \emptyset$. Thus, $S \cap J \neq \emptyset$.

We get from Claims 2.1, 2.2, the definition of S and the hypothesis that $\gamma_{i t}(G) \leq|S|=|X|=\gamma(G)$, a contradiction with $\gamma_{i t}(G)=\gamma(G)+1$. Therefore, $\delta(G)=1$.

Let u be a vertex in X such that $\delta(u) \geq 2$. We will prove that u is adjacent to at least two pendant vertices. Proceeding by contradiction, suppose that $N(u)$ contains at most one pendant vertex. If $N(u)$ contains a pendant vertex v, choose v, otherwise let v be any vertex in $N(u)$. Set $S=(X-\{u\}) \cup\{v\}$.
Claim 3. S is a dominating set in G.
Given that $\delta(w) \geq 1$ for every w in $Y-N(u)$, it follows that there exists x_{w} in $X-\{u\}$ such that $w x_{w} \in E(G)$. On the other hand, since for every z in $N(u)-\{v\}$ it holds that $\delta(z) \geq 2$, then there exists x_{z} in $X-\{u\}$ such that $z x_{z} \in E(G)$. Therefore, S is a dominating set in G.

Claim 4. If J is an $\alpha(G)$-set, then $S \cap J \neq \emptyset$.
The proof is the same as the proof of Claim 2.2.

We get from Claims 3, 4, the definition of S and the hypothesis that $\gamma_{i t}(G) \leq$ $|S|=|X|=\gamma(G)$, a contradiction with $\gamma_{i t}(G)=\gamma(G)+1$. Hence, u is adjacent to at least two pendant vertices.

Therefore, every vertex x in X, such that $\delta(x) \neq 1$, is adjacent to at least two pendant vertices.

Suppose that for every vertex w in X, such that $\delta(w) \neq 1, N(w)$ contains at least two pendant vertices and Y has no isolated vertices. Notice that it follows from the hypothesis that $\delta(G) \geq 1$. Consider the following claims.

Claim A. $\alpha(G)=|Y|$.
Given that Y is an independent set, we get that $\alpha(G) \geq|Y|$. Proceeding by contradiction, suppose that $\alpha(G)>|Y|$ and let J be an $\alpha(G)$-set.

Since $\alpha(G)>|Y|$ and $|X| \leq|Y|$, we get that $J \cap X \neq \emptyset$ and $J \cap Y \neq \emptyset$. Set $X^{\prime}=J \cap X, Y^{\prime}=J \cap Y, X_{1}=\left\{x \in X^{\prime}: \delta(x) \geq 2\right\}$ and $X_{2}=\left\{x \in X^{\prime}: \delta(x)=1\right\}$.

Claim A.1. $\left|X_{1}\right| \geq 1$.
As $|Y|=\left|Y^{\prime}\right|+\left|Y-Y^{\prime}\right|,|J|=\left|X^{\prime}\right|+\left|Y^{\prime}\right|$ and $|J|>|Y|$, it follows that $\left|X^{\prime}\right|>\left|Y-Y^{\prime}\right|$, which implies that there exist two vertices in X^{\prime}, say u_{1} and u_{2}, and there exists a vertex y in $Y-Y^{\prime}$ such that $\left\{u_{1} y, u_{2} y\right\} \subseteq E(G)$.

Proceeding by contradiction, suppose that $X_{1}=\emptyset$. Since $\delta\left(u_{1}\right)=1$ and $\delta\left(u_{2}\right)=1$, then for every z in $Y-\left(Y^{\prime} \cup\{y\}\right)$ there exists x_{z} in $X-\left\{u_{1}, u_{2}\right\}$ such that $z x_{z} \in E(G)$ (recall that $\delta(G) \geq 1$). On the other hand, given that J is an independent set, we get that for every w in Y^{\prime} there exists x_{w} in $X-X^{\prime}$ such that $w x_{w} \in E(G)$. Hence, $\left(X-\left\{u_{1}, u_{2}\right\}\right) \cup\{y\}$ is a dominating set, a contradiction with $|X|=\gamma(G)$. Therefore, $\left|X_{1}\right| \geq 1$.

Since $N\left(X^{\prime}\right) \subseteq Y-Y^{\prime}$ and every vertex of X_{1} is adjacent to at least two pendant vertices, we get from the definition of X_{2} that $\left|Y-Y^{\prime}\right| \geq 2\left|X_{1}\right|+\left|X_{2}\right|$; that is, $\left|Y-Y^{\prime}\right| \geq\left|X^{\prime}\right|+\left|X_{1}\right|$, which implies that $\left|X_{1}\right|+\left|X^{\prime}\right|+\left|Y^{\prime}\right| \leq|Y|$. Hence, since $\left|X_{1}\right|+|J| \leq|Y|, 1 \leq\left|X_{1}\right|$ (by Claim A.1) and $|Y|<|J|$, we get a contradiction.

Therefore, $\alpha(G)=|Y|$.
Claim B. If D is a $\gamma(G)$-set, then $V(G)-D$ is an $\alpha(G)$-set.
Let D be a $\gamma(G)$-set. Since $|D|=\gamma(G)=|X|$, then $|V(G)-D|=(|V(G)|-$ $|X|)=|Y|=\alpha(G)$ (by Claim A). It remains to prove that $V(G)-D$ is an independent set. It is clear that $V(G)-D$ is an independent set if either $(V(G)-$ $D) \subseteq X$ or $(V(G)-D) \subseteq Y$. Hence, suppose that $(V(G)-D) \cap X \neq \emptyset$ and $(V(G)-D) \cap Y \neq \emptyset$. Let u and v be two vertices in $V(G)-D$; we will prove that $u v \notin E(G)$. Suppose that $u \in(V(G)-D) \cap X$ and $v \in(V(G)-D) \cap Y$.

Claim B.1. $\delta(u)=1$.

Proceeding by contradiction, suppose that $\delta(u) \geq 2$. It follows from the hypothesis that $N(u)$ has at least two pendant vertices, say w and z. Since $u \notin D$, we get that $\{w, z\} \subseteq D$ (because D is a dominating set).

We will see that $S=(D-\{w, z\}) \cup\{u\}$ is a dominating set. Notice that $V(G)-S=(((V(G)-D) \cap X)-\{u\}) \cup(((V(G)-D) \cap Y) \cup\{w, z\}), D=$ $(D \cap X) \cup(D \cap Y)$ and $S=(D \cap X) \cup((D \cap Y)-\{w, z\}) \cup\{u\}$. Given that D is a dominating set, we get that for every y in $(V(G)-D) \cap Y$ there exists x_{y} in $D \cap X$ such that $y x_{y} \in E(G)$. In the same way for every x in $((V(G)-D) \cap X)-\{u\}$ there exists y_{x} in $D \cap Y$ such that $x y_{x} \in E(G) \quad\left(y_{x} \notin\{w, z\}\right.$ because w and z are pendant vertices which are adjacent to u). Hence, we conclude that S is a dominating set. Since $|S|=|X|-1$, we get a contradiction with $|X|=\gamma(G)$. Therefore, $\delta(u)=1$.

Given that $\delta(u)=1, u \notin D$ and D is a dominating set, it follows that $N(u) \subseteq D$, which implies that $u v \notin E(G)$ (because $v \notin D$).

Therefore, $V(G)-D$ is an independent set. Hence, $V(G)-D$ is an $\alpha(G)$-set. Claim C. $\delta(G)=1$.

Recall that $\delta(G) \geq 1$. If X has a pendant vertex, then we are done; otherwise, it follows from the hypothesis that for u in X there exists a pendant vertex in $N(u)$. Therefore, $\delta(G)=1$.

It follows from Claim B that $\gamma_{i t}(G) \neq \gamma(G)$. Therefore, we get from Claim C and Theorem 2.2 that $\gamma_{i t}(G)=\gamma(G)+1$.

5. Some Consequences of Theorem 4.2

A subdivision of an edge $u v$ is obtained by replacing the edge $u v$ with a path (u, w, v), where w is a new vertex. For a positive integer t, a wounded spider is a star $K_{1, t}$ with at most $t-1$ of its edges subdivided. Similarly, for an integer $t \geq 2$, a healthy spider is a star $K_{1, t}$ with all of its edges subdivided.

Remark 5.1. It is straightforward to see that if G is a healthy spider, then $\gamma(G)=\Delta(G)$. On the other hand, if G is a healthy spider, it follows from Theorem 4.2 that $\gamma_{i t}(G)=\gamma(G)$.

Remark 5.2. Let G be a wounded spider which is not a star. Suppose that G is obtained from $K_{1, t}$ by subdividing r of its edges, with $1 \leq r \leq t-1$ and $t \geq 2$.

1. If $r \leq t-2$, then $\gamma_{i t}(G)=\gamma(G)+1=r+2$.
2. If $r=t-1$, then $\gamma_{i t}(G)=\gamma(G)=t$.

Proof. Suppose that $V(G)=\left\{u_{1}, v_{2}, \ldots, v_{t}, v_{t+1}\right\} \cup\left\{u_{2}, \ldots, u_{r}, u_{r+1}\right\}, E(G)=$ $\left\{u_{1} v_{j}: j \in\{2, \ldots, t+1\}\right\} \cup\left\{u_{i} v_{i}: i \in\{2, \ldots, r+1\}\right\}$. Set $X=\left\{u_{1}, u_{2}, \ldots, u_{r}\right.$, $\left.u_{r+1}\right\}$ and $Y=\left\{v_{2}, \ldots, v_{t}, v_{t+1}\right\}$.

1. Suppose that $r \leq t-2$. It follows from Theorem 2.1 that $\gamma(G)=((t+1)+$ $r)-t=r+1$ which implies that $|X|=\gamma(G)$. Therefore, we get from Theorem 4.2 that $\gamma_{i t}(G)=\gamma(G)+1=(r+1)+1$.
2. Suppose that $r=t-1$. It follows from Theorem 2.1 that $\gamma(G)=t$. Since $|X|=\gamma(G)$ and u_{1} is not adjacent to at least two pendant vertices in G, it follows from Theorem 4.2 that $\gamma_{i t}(G) \neq \gamma(G)+1$. Therefore, given that $\delta(G)=1$, we get from Theorem 2.2 that $\gamma_{i t}(G)=\gamma(G)$. Hence, $\gamma_{i t}(G)=t$.

Corollary 5.1. Let T be a tree with bipartition $\{X, Y\}$ such that $1 \leq|X| \leq|Y|$ and $\gamma(T)=|X|$. Then, $\gamma_{i t}(T)=\gamma(T)$ if and only if there is a vertex x in X, with $\delta(x) \neq 1$, which is adjacent to at most one pendant vertex.

6. Example Disproving Construction in Theorem 1.3

Recall that, in order to prove Theorem 1.3, Hamid proposes the following construction: set $b=2 a+r$, with $r \geq-1$, and let H be any connected graph on a vertices. Let $\mathrm{V}(H)=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ be the vertex set of H and let G be the graph obtained from H by attaching $r+1$ pendant edges at v_{1} and one pendant edge at each v_{i}, for $i \geq 2$. Let $u_{i}(i \geq 2)$ be the pendant vertex in G adjacent to v_{i}.

Hamid claims that $\gamma_{i t}(G)=a$ and $S=\left\{v_{1}, u_{2}, u_{3}, \ldots, u_{a}\right\}$ is a $\gamma_{i t}(G)$-set. Further, every maximum independent set of G intersects S and hence $\gamma_{i t}(G)=a$.

- We find that, when $r=-1$ and $a \geq 3$, for the graph $H=K_{a}$, the associated graph G does not hold the conclusion of Theorem 1.3, see Figure 2.

Figure 2
In this case, since $K=\left(V(H)-\left\{v_{1}\right\}\right)$ is a covering and $M=\left\{v_{i} u_{i}: i \in\right.$ $\{2, \ldots, a\}\}$ is a matching such that $|K|=a-1=|M|$, we get from Lemma 2.3 that $|K|=\beta(G)$. Thus, it follows from Lemma 2.4 that $\alpha(G)=2 a-1-(a-1)=$ a. Hence $(V(G)-K)=\left\{u_{2}, \ldots, u_{a}, v_{1}\right\}$ is the only one independent set in G such that $|V(G)-K|=\alpha(G)$. Therefore, $V(G)-\left(\left(V(H)-\left\{v_{a}\right\}\right) \cup\left\{u_{a}\right\}\right)$ is an
independent transversal dominating set in G, which implies that $\gamma_{i t}(G) \leq a-1$. On the other hand, let S be a $\gamma_{i t}(G)$-set. Given that S is a dominating set, then $\left\{v_{i}, u_{i}\right\} \cap S \neq \emptyset$ for every i in $\{2, \ldots, a\}$, which implies that $a-1 \leq|S|$. Therefore, $\gamma_{i t}(G)=a-1$

- We find that, when $r>0$ and $a \geq 2$, for the graph $H=K_{1, a-1}$, the associated graph G is a wounded spider and this does not hold the conclusion of Theorem 1.3, see Figure 3.

Figure 3
Notice that G is also obtained from $K_{1, a+r}$ by subdividing exactly $a-1$ of its edges, where $a-1 \leq(a+r)-2$. Therefore, it follows from Remark 5.2 that $\gamma_{i t}(G)=\gamma(G)+1=(a-1)+2=a+1$.

- When $r>0$ and $a=1$ we have that $G=K_{1, r+1}$ and in this case we get from Proposition 2.1 that $\gamma_{i t}(G)=2=a+1$, see Figure 4.

Figure 4

- When $H=K_{1, a-1}$, for $r \geq 0$ and $a \geq 2$, there exists an $\alpha(G)$-set in G which does not intersect $S=\left\{v_{1}, u_{2}, u_{3}, \ldots, u_{a}\right\}$.

For every i in $\{1, \ldots, r+1\}$ let x_{i} be the pendant vertex adjacent to v_{1}. Since $M=\left\{v_{1} x_{1}, v_{2} u_{2}, \ldots, v_{a} u_{a}\right\}$ is a matching and $K=V(H)$ is a covering such that $|M|=|K|$, then we get from Lemma 2.3 that K is a minimum covering. On the other hand, it follows from Lemma 2.4 that $2 a+r=|V(G)|=\alpha(G)+\beta(G)=$ $\alpha(G)+a$, which implies that $\alpha(G)=a+r$.

Therefore $\left(V(H)-\left\{v_{1}\right\}\right) \cup\left\{x_{1}, \ldots, x_{r+1}\right\}$ is an $\alpha(G)$-set in G which does not intersect S.

For $b \geq 2 a$ we proceed to prove the following.
Theorem 6.1. Let a and b be two positive integers with $b \geq 2 a$. Then there exists a connected graph G on b vertices such that $\gamma_{i t}(G)=a$.

Proof. Suppose that $b=2 a+r$, for some r in \mathbb{N}. Let H be a connected graph of order a, such that $H \not \not K_{1, a-1}$, with vertex set $V(H)=\left\{v_{1}, \ldots, v_{a}\right\}$. Let $\left\{x_{1}, \ldots, x_{r+1}\right\}$ and $\left\{u_{2}, \ldots, u_{a}\right\}$ be two sets such that $\left\{x_{1}, \ldots, x_{r+1}\right\} \cap\left\{u_{2}, \ldots\right.$, $\left.u_{a}\right\}=\emptyset,\left\{x_{1}, \ldots, x_{r+1}\right\} \cap V(H)=\emptyset$ and $V(H) \cap\left\{u_{2}, \ldots, u_{a}\right\}=\emptyset$. Let G be the graph with $V(G)=V(H) \cup\left\{x_{1}, \ldots, x_{r+1}\right\} \cup\left\{u_{2}, \ldots, u_{a}\right\}$ and $E(G)=$ $E(H) \cup\left\{v_{i} u_{i}: i \in\{2, \ldots, a\}\right\} \cup\left\{v_{1} x_{i}: i \in\{1, \ldots, r+1\}\right\}$.

Claim 1. $a \leq \gamma_{i t}(G)$.
We will prove that $\gamma(G)=a$. Since $V(H)$ is a dominating set in G, then $\gamma(G) \leq a$. On the other hand, let S be a $\gamma(G)$-set. Given that $\left\{u_{i}, v_{i}\right\} \cap S \neq \emptyset$ (because S is a dominating set) for every i in $\{2, \ldots, a\}$ and $r+1 \geq 1$ we get that $|S| \geq a$. Hence, $\gamma(G)=a$. Therefore, it follows from Theorem 2.2 that $a \leq \gamma_{i t}(G)$.
Claim 2. $\alpha(G)=r+a$.
Since $K=V(H)$ is a covering and $M=\left(\left\{v_{i} u_{i}: i \in\{2, \ldots, a\}\right\} \cup\left\{v_{1} x_{1}\right\}\right)$ is a matching such that $|K|=a=|M|$, it follows from Lemma 2.3 that $|K|=\beta(G)$. Hence, we get from Lemma 2.4 that $\alpha(G)=r+a$.

Claim 3. $S=\left\{v_{1}, u_{2}, \ldots, u_{a}\right\}$ is an independent transversal dominating set in G.

Given that S is a dominating set, it remains to prove that S intersects every maximum independent set in G. Since $H \nsubseteq K_{1, a-1}$ and H is connected, we get that $V(H)-\left\{v_{1}\right\}$ is not an independent set in G, which implies that $(V(H)-$ $\left.\left\{v_{1}\right\}\right) \cup\left\{x_{1}, \ldots, x_{r+1}\right\}$ is not an independent set in G. Since $\mid\left(V(H)-\left\{v_{1}\right\}\right) \cup$ $\left\{x_{1}, \ldots, x_{r+1}\right\} \mid=a+r$, it follows that S intersects every maximum independent set in G.

Therefore, we get from Claims 1 and 3 that $a \leq \gamma_{i t}(G) \leq a$.

Acknowledgements

We thank the referees for their suggestions which improved the rewriting of this paper.

References

[1] H.A. Ahangar, V. Samodivkin and I.G. Yero, Independent transversal dominating sets in graphs: Complexity and structural properties, Filomat 30 (2016) 293-303. https://doi.org/10.2298/FIL1602293A
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London, 1976).
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition (CRC Press, Boca Raton, 2005).
[4] I.S. Hamid, Independent transversal domination in graphs, Discuss. Math. Graph Theory 32 (2012) 5-17. https://doi.org/10.7151/dmgt. 1581
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

Received 29 May 2019
Revised 30 December 2019
Accepted 3 January 2020

[^0]: ${ }^{1}$ Corresponding author.

