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Abstract

A graph G is well-covered if all maximal independent sets of G have the
same cardinality. In 1992 Topp and Volkmann investigated the structure
of well-covered graphs that have nontrivial factorizations with respect to
some of the standard graph products. In particular, they showed that both
factors of a well-covered direct product are also well-covered and proved
that the direct product of two complete graphs (respectively, two cycles)
is well-covered precisely when they have the same order (respectively, both
have order 3 or 4). Furthermore, they proved that the direct product of two
well-covered graphs with independence number one-half their order is well-
covered. We initiate a characterization of nontrivial connected well-covered
graphs G and H, whose independence numbers are strictly less than one-half
their orders, such that their direct product G×H is well-covered. In partic-
ular, we show that in this case both G and H have girth 3 and we present
several infinite families of such well-covered direct products. Moreover, we
show that if G is a factor of any well-covered direct product, then G is a
complete graph unless it is possible to create an isolated vertex by removing
the closed neighborhood of some independent set of vertices in G.
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1. Introduction

Plummer [15] defined a graph to be well-covered if every maximal independent set
is actually a maximum independent set. The attempts to better understand the
class of well-covered graphs have, for the most part, proceeded as follows. Find
a nice characterization of those well-covered graphs that, in addition, belong
to some natural subclass of graphs. For instance, Campbell, Ellingham and
Royle [2] characterized the class of cubic well-covered graphs. Finbow, Hartnell
and Nowakowski [4] characterized well-covered graphs that have no cycles of order
less than 5; the same group of authors [5] dealt with well-covered graphs with no
cycles of length 4 or 5. In a series of papers [6–9] Finbow, Hartnell, Nowakowski
and Plummer gave a complete characterization of the class of maximal planar,
well-covered graphs.

Topp and Volkmann [16] first studied well-covered graphs in the context of
graph products, including the Cartesian, conjunction (now commonly known as
direct), and lexicographic products. From their study open questions remained
for Cartesian and direct products. Several authors contributed to the current
understanding of well-covered Cartesian products. See [10–12]. As far as well-
covered direct products are concerned, Topp and Volkmann focused mainly on
graphs whose independence number is one-half the order. These graphs are called
very well-covered. However, much remains unknown about direct products that
are well-covered but not very well-covered. In this paper we initiate the charac-
terization of this class of graphs.

The remainder of the paper is structured as follows. In the next section
we provide the important definitions and recall preliminary results that will be
used in the remainder of the paper. Section 3 is devoted to direct products in
which one of the factors is a complete graph. In Section 4 we focus on direct
products in which one of the factors has no isolatable vertices. In the main result
of this section we prove that if G × H is well-covered and G has no isolatable
vertices, then G is a complete graph. In addition, for each positive integer n ≥ 3
we provide two infinite families of graphs such that the direct product of Kn

and any graph from these families is well-covered. In Section 5 we prove that if
G×H is well-covered but not very well-covered, then every edge of G (and of H)
is incident with a triangle. In particular, in this case both factors have girth 3.

2. Definitions and Preliminary Results

In general we follow the notation of [17]. In particular, we denote the order of
a finite graph G by n(G) and for a positive integer k the set of positive integers
no larger than k will be denoted by [k]. If A ⊆ V (G), then G[A] is the subgraph
of G induced by A. The set of isolated vertices of G will be denoted G0 and G+
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will represent the induced subgraph G − G0. A subset D ⊆ V (G) dominates a
subset S ⊆ V (G) if S ⊆ N [D]. If D dominates V (G), then we will also say that
D dominates the graph G and that D is a dominating set of G. A set I ⊆ V (G) is
an independent dominating set if I is simultaneously independent and dominat-
ing. This is equivalent to I being a maximal independent set with respect to set
inclusion. The independence number of G is the cardinality, α(G), of a largest in-
dependent set in G; we denote the smallest cardinality of a maximal independent
set in G by i(G). The graph G is well-covered if all maximal independent sets
of G have the same cardinality. Equivalently, G is well-covered if i(G) = α(G).

The independence ratio of a graph G is defined by α(G)
n(G) .

In a well-covered graph G every vertex can (in a greedy fashion) be enlarged
to a maximal independent set, which then has order α(G). Note that a graph
is well-covered if and only if each of its components is well-covered. A vertex of
degree 1 is called a leaf and its only neighbor is called a support vertex. If G is a
well-covered graph with a support vertex x and M is any maximal independent
set in G that contains x, then replacing x in M by its set L of adjacent leaves is
also independent. It follows that |L| = 1. A vertex x of G is isolatable if there
exists an independent set I in G such that x has degree 0 (that is, x is isolated)
in G−N [I]. Note that a leaf in a component of order at least 3 is isolatable.

The direct product, G×H, of graphs G and H is defined as follows.

• V (G×H) = V (G)× V (H),

• E(G×H) = {(g1, h1)(g2, h2) | g1g2 ∈ E(G) and h1h2 ∈ E(H)}.

The direct product is both commutative, associative and distributes over disjoint
unions of graphs. For a vertex g of G, the H-layer over g of G × H is the set
{(g, h) | h ∈ V (H)}, and it is denoted by gH. Similarly, for h ∈ V (H), the
G-layer over h, Gh, is the set {(g, h) | g ∈ V (G)}. Note that each G-layer and
each H-layer is an independent set in G × H. The projection to G is the map
pG : V (G ×H) → V (G) defined by pG(g, h) = g. Similarly, the projection to H
is the map pH : V (G×H)→ V (H) defined by pH(g, h) = h.

In the remainder of this section we present some results that will prove useful
in establishing our main results. The first lemma is due to Topp and Volkmann
[16]. We provide a short proof since the ideas therein are so common when
studying well-covered direct products.

Lemma 1 [16]. Let H be a graph with no isolated vertices. If I is a maximal
independent set of any graph G, then I × V (H) is a maximal independent set of
G×H.

Proof. For any g ∈ I, the H-layer over g is independent. Since I is independent
in G, it follows that for distinct vertices a and b in I no vertex of aH is adjacent
to any vertex of bH, and thus I ×V (H) is independent. Let (u, v) ∈ V (G×H) \
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(I × V (H)). Since I is a maximal independent set of G and u 6∈ I, we infer there
exists x ∈ I such that x and u are adjacent. For any neighbor y of v (such a
vertex y exists since H has no isolated vertices), it follows that (x, y) belongs to
I × V (H) and is adjacent to (u, v). We conclude that I × V (H) is a maximal
independent set in G×H.

As an immediate consequence of Lemma 1 we get a lower bound for α(G×H),
which is well-known (see [13,14]), and an upper bound for i(G×H).

Corollary 2. If both G and H have no isolated vertices, then

• α(G×H) ≥ max{α(G)n(H), α(H)n(G)};
• i(G×H) ≤ min{i(G)n(H), i(H)n(G)}.

The following lemma follows directly from the definition of well-covered. It
has been very useful (especially as a necessary condition to show that a graph
is not well-covered) in several of the papers characterizing well-covered graphs
having some additional property (for example, a girth restriction).

Lemma 3 [4]. If G is a well-covered graph and I is an independent set of G,
then G−N [I] is well-covered.

The following lemma holds for any graph.

Lemma 4. If G is any graph and J is an independent set of vertices in G such
that |J | = α(G)− 1, then either J is a maximal independent set or G−N [J ] is
a complete graph.

Proof. Suppose that J is not a maximal independent set in G. This implies
that G − N [J ] is nonempty. If G − N [J ] contains two nonadjacent vertices u
and v, then J ∪ {u, v} is independent and has cardinality α(G) + 1, which is a
contradiction.

Our results will always involve graphs with no isolated vertices. However,
there are a number of situations in which isolated vertices arise when the closed
neighborhood of an independent set is removed from a graph. Thus we have the
following generalization of a theorem first proved by Topp and Volkmann [16].

Theorem 5. If G and H are graphs and G×H is well-covered, then

(a) G and H are well-covered, and

(b) α(G+)n(H+) = α(H+)n(G+).

Proof. Assume that G×H is well covered. Since the direct product distributes
over disjoint unions, G × H is the disjoint union of G+ × H+ and a graph K,
which is a set of n(G) · |H0| + |G0| · n(H+) isolated vertices. The subgraph
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G+×H+ of G×H is well-covered since it is the disjoint union of some components
(possibly just 1) of the well-covered graph G × H. Let I1 and I2 be maximal
independent sets in G+. By Lemma 1, I1×V (H+) and I2×V (H+) are maximal
independent sets in G+ × H+. Since G+ × H+ is well-covered, these two sets
have the same cardinality, and therefore |I1| = |I2|. This implies that G+ is
well-covered. It follows that every maximal independent set of G has cardinality
α(G+) + |G0|. Therefore, G is also well-covered. Similarly, H+ and H are well-
covered. Moreover, both G+ and H+ have no isolated vertices. We infer by
Corollary 2 that α(G+)n(H+) = α(H+)n(G+).

When G × H is well-covered and neither G nor H has isolated vertices,
Theorem 5 implies that G and H have the same independence ratio. That is,
α(G)
n(G) = α(H)

n(H) . On the other hand, if G or H has isolated vertices and G × H
is well-covered, then these ratios may not be equal. For a small example let
G = K2 ∪K1 and H = K2.

The following result was proved by Berge [1].

Theorem 6 [1]. If G is a well-covered graph with no isolated vertices, then
|S| ≤ |N(S)| for any independent set S of G.

This result immediately implies that α(G) ≤ 1
2n(G), for any well-covered G

with no isolated vertices. A well-covered graph with no isolated vertices that
achieves this upper bound is called very well-covered. Since both partite sets of a
bipartite graph are maximal independent sets, it is clear that a well-covered bipar-
tite graph with no isolated vertices is very well-covered. Favaron [3] characterized
the very well-covered graphs in terms of the existence of a perfect matching that
possesses a special property. Let G be a graph with a perfect matching M . For
each vertex u of G, we let M(u) denote the vertex adjacent to u in M . Favaron [3]
said M has Property (P) if for every vertex x of G the following holds.

• If y ∈ NG(x) and y 6= M(x), then y /∈ NG(M(x)) and y ∈ NG(z), for every
z ∈ NG(M(x)).

The following theorem of Favaron gives the aforementioned characterization.

Theorem 7 [3]. The following are equivalent for any simple graph G.

(i) The graph G is very well-covered.

(ii) There is a perfect matching in G that satisfies Property (P).

(iii) There exists at least one perfect matching in G, and every perfect matching
in G satisfies Property (P).

We will need the following theorem of Topp and Volkmann concerning very
well-covered graphs.
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Theorem 8 [16]. Let G and H be graphs without isolated vertices. If at least one
of G and H is very well-covered, then the following statements are equivalent.

(a) G×H is well-covered.

(b) G×H is very well-covered.

(c) Both G and H are very well-covered.

Because of Theorem 8 the general problem of characterizing well-covered
direct products that are not very well-covered is reduced to characterizing those
pairs of well-covered graphs G and H, neither of which is very well-covered, but
whose direct product G×H is well-covered.

3. Products of the Form G×Kn

Suppose that I is a maximal independent set in G×H and that g is a vertex of
G such that I ∩ gH 6= ∅ but that I ∩ gH 6= gH. Let (g, h) ∈ gH \ (I ∩ gH). Since
I is a dominating set of G×H and gH is independent, it follows that there exists
g′ ∈ NG(g) and h′ ∈ NH(h) such that (g′, h′) ∈ I. Furthermore, such a vertex h′

does not belong to NH(pH(I∩gH)). However, it is possible that h′ ∈ pH(I∩gH).

Consider now the special case G×Kn for n ≥ 2. Let V (Kn) = [n].

Lemma 9. Let n ≥ 2 and let G be any graph. If I is any maximal independent
set of G×Kn, then |I ∩ gKn| ∈ {0, 1, n}, for any g ∈ V (G).

Proof. If n = 2, then the conclusion is obvious. Assume n ≥ 3 and suppose
for the sake of contradiction that |I ∩ gKn| = m for some 2 ≤ m < n. Assume
without loss of generality that {(g, 1), (g, 2)} ⊆ I. Let i ∈ [n] such that (g, i) 6∈ I.
As above, there exists g′ ∈ NG(g) and j 6= i such that (g′, j) ∈ I. Since j 6= 1
or j 6= 2, this implies that (g′, j) ∈ N({(g, 1), (g, 2)}), which contradicts the
independence of I. Therefore, |I ∩ gKn| ∈ {0, 1, n}.

For an arbitrary positive integer n ≥ 2 and a maximal independent set I of
G×Kn, we can use Lemma 9 to define a weak partition of V (G). In particular,
V0, V1, . . . , Vn, V[n] defined by

(a) V0 = {g ∈ V (G) | I ∩ gKn = ∅},
(b) Vk = {g ∈ V (G) | I ∩ gKn = {(g, k)}} for k ∈ [n],

(c) V[n] = {g ∈ V (G) | I ∩ gKn = gKn}.

is a weak partition. Furthermore, the following four conditions hold.

1. For k ∈ [n], if u ∈ Vk and v ∈ V (G) \ (V0 ∪ Vk), then uv 6∈ E(G).

2. For k ∈ [n], if Vk is not empty, then no vertex of Vk is isolated in G[Vk].
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3. The set V[n] is independent in G.

4. For each g ∈ V0, either NG(g) ∩ V[n] 6= ∅ or g has a neighbor in at least two
of the sets V1, . . . , Vn.

If we have a weak partition of V (G) that satisfies these four conditions, then
it is clear how to construct a maximal independent set of G×Kn. Thus we have
a way to define i(G×Kn) and α(G×Kn) in terms of such partitions.

i(G×Kn) = min

{
n·
∣∣V[n]∣∣+ n∑

k=1

|Vk|
}
, α(G×Kn) = max

{
n·
∣∣V[n]∣∣+ n∑

k=1

|Vk|
}
,

where the minimum and maximum values are computed over all weak partitions
V0, V1, . . . , Vn, V[n] that satisfy conditions 1−4 above.

The next lemma gives a necessary condition on a graph G for the direct
product of G and a complete graph to be well-covered.

Lemma 10. Let n be a positive integer, n ≥ 2. If G×Kn is well-covered, then
for every x ∈ V (G) such that deg(x) ≥ n the graph G − N [x] has at least one
isolated vertex.

Proof. We prove the contrapositive. Suppose x is a vertex in G of degree at
least n such that G − N [x] has minimum degree at least 1. We define a weak
partition V0, V1, . . . , Vn, V[n] as follows. Let V0 = N(x), let V1 = V (G) \N [x], let
Vi = ∅ for 2 ≤ i ≤ n, and let V[n] = {x}. Since G−N [x] has minimum degree at
least 1, it is easy to check that this weak partition satisfies conditions 1−4 above.
Furthermore, deg(x) ≥ n, and hence,

i(G×Kn) ≤ n+ |V (G) \N [x]| ≤ n(G)− 1 < n(G) ≤ α(G×Kn).

This shows that G×Kn is not well-covered.

Using Lemma 10 we now use the context of direct products to prove a general
result about bipartite well-covered graphs.

Corollary 11. If B is a bipartite, well-covered graph with minimum degree at
least 2, then B has isolatable vertices. In fact, for any vertex x of B, the induced
subgraph B −N [x] has an isolated vertex.

Proof. Suppose B is bipartite, well-covered and δ(B) ≥ 2. The graph B is very
well-covered since it is bipartite and well-covered. By Theorem 8, B×K2 is very
well-covered. For any x ∈ V (B), it follows from Lemma 10 that B −N [x] has at
least one isolated vertex.
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4. Factors with No Isolatable Vertices

As mentioned in [4], when classifying well-covered graphs one particularly useful
property of a graph is whether or not it contains isolatable vertices. We first
consider direct products where at least one of the factor graphs does not contain
isolatable vertices.

Lemma 12. Let H be a nontrivial connected graph and let G be a graph with no
isolatable vertices such that G × H is well-covered. If A is any independent set
of G, then |N [A]| = |A|n(G)

α(G) .

Proof. Assume G and H are as in the hypothesis of the theorem and let A be an
independent set of G. For |A| = α(G) the conclusion holds since any independent
set of G that has cardinality α(G) dominates G. If G is a clique, then |A| = 1 and
again the conclusion follows. Hence, we may assume that G is not a complete
graph. Since both G and H have minimum degree at least 1, it follows from
Theorem 5 that α(G)n(H) = α(H)n(G) and also that both G and H are well-
covered. Since δ(H) ≥ 1, G×H−N [A×V (H)] = G′×H, where G′ = G−N [A].
Since A is independent, Lemma 3 implies that G′ is well-covered, and since G
has no isolatable vertex, we infer that δ(G′) ≥ 1. Furthermore, A × V (H) is
independent in G ×H, and thus by Lemma 3 we conclude that G′ ×H is well-
covered. Applying Theorem 5 again gives

α(G)

n(G)
=
α(H)

n(H)
=
α(G′)

n(G′)
.

Note that since G is well-covered, there exists a maximum independent set of G
that contains A and this implies that α(G′) = α(G)− |A|. Thus,

α(G)

n(G)
=
α(G′)

n(G′)
=

α(G)− |A|
n(G)− |N [A]|

,

which implies |N [A]| = |A|n(G)
α(G) .

A special case of Lemma 12 is when |A| = 1, which yields the following
corollary.

Corollary 13. Let G and H be nontrivial connected graphs such that G has no
isolatable vertex. If G × H is well-covered, then G is a regular graph of degree
n(G)
α(G) − 1.

Using Corollary 13 we can now easily establish the following result.

Corollary 14. Let G be a nontrivial connected graph. If G×K3 is well-covered,
then G = K3 or G has at least one isolatable vertex.
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Proof. Assume that G×K3 is well-covered and that G has no isolatable vertex.
Since G × K3 is well-covered, Theorem 5 implies G is well-covered and that
the independence ratio, α(G)

n(G) , is 1/3. By Corollary 13 we see that G is 2-regular.
However, the only connected 2-regular graphs that are well-covered are K3, C4, C5

and C7. Of these, only K3 has independence ratio 1/3.

We now have the results necessary to give a partial characterization of well-
covered direct products in which at least one of the factors has no isolatable
vertices.

Theorem 15. Let G and H be nontrivial connected graphs such that the direct
product G×H is well-covered. If G has no isolatable vertices, then G is a complete
graph.

Proof. Let G and H be connected graphs with minimum degree at least 1 such
that G×H is well-covered and assume that G has no isolatable vertices. Suppose
that G is not a complete graph. That is, suppose that s = α(G) − 1 ≥ 1. Let
x be any vertex of G. Since G is well-covered (by Theorem 5), we can find a
maximal (in fact a maximum) independent set of G that contains x. Let M be

such a maximum independent set. By Lemma 12, |N [M \ {x}]| = sn(G)
α(G) = sn(G)

s+1 ,
and by Corollary 13,

|V (G) \N [M \ {x}]| = n(G)− sn(G)

s+ 1
=
n(G)

s+ 1
=
n(G)

α(G)
= |N [x]|.

In addition, by Lemma 4, G − N [M \ {x}] is a clique, it contains x, and it has
order |N [x]|. By Corollary 13, G is regular, and this implies that N [x] is a
component of G. Since G is connected, we conclude that G is complete, which is
a contradiction.

Using Theorem 15 we can completely characterize direct products of con-
nected graphs in which neither factor has an isolatable vertex.

Corollary 16. Let G and H be nontrivial connected graphs, neither of which has
an isolatable vertex. If G×H is well-covered, then G = H = Kn(G).

Proof. Since neither G nor H has an isolatable vertex, it follows from Theorem
15 that both G and H are complete graphs. By Theorem 5, the independence
ratios of G and H are equal. Consequently, G and H have the same order.

Thus, classifying all well-covered direct products when exactly one of the
factor graphs does not contain isolatable vertices reduces to the study of well-
covered direct products of the form Kn × G. Using Lemma 9 and the partition
approach in Section 3, it is easy to show that for any integer r ≥ 2, the direct
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product K3 ×Kr,r,r is well-covered. (This generalizes to Kn ×Kr,...,r being well-
covered, where the second factor is a complete n-partite graph.) To see that
finding a characterization of those G such that G×Kn is well-covered is a non-
trivial problem, consider the following infinite class of graphs. Let k and n be
positive integers. Form a graph H(k, n) of order k(n + 1) by starting with the
disjoint union of Kkn and an independent set {z1, . . . , zk}. Partition the vertices
of Kkn into subsets A1, . . . , Ak each of cardinality n. Finally, add edges to make
the open neighborhood of zi in H(k, n) be Ai, for each i ∈ [k].

z1 z2 z3 z4

x1 y1 x2 y2 x3 y3 x4 y4K8

Figure 1. The graph H(4, 2).

The example in Figure 1 is H(4, 2). For the special case when n = 1, the
resulting graphs H(k, 1) are coronas. If k = 1, then H(1, n) = Kn+1. All of these
graphs are split graphs, and because of their structure it is easy to show that
H(k, n) is well-covered with α(H(k, n)) = k.

Proposition 17. For each pair of positive integers n and k, the graph H(k, n)×
Kn+1 is well-covered.

Proof. For n = 1 the graph H(k, n)×Kn+1 is the direct product of K2 and the
corona of Kk. Both of these graphs are very well-covered, and thus H(k, n) ×
Kn+1 is well-covered by Theorem 8. Now assume that n ≥ 2 and for notational
simplification let G = H(k, n). Let Bi = Ai ∪ {zi} for each i ∈ [k]. Note that Bi
and

⋃k
r=1Ar induce complete subgraphs of G. Let I be any maximal independent

set in G × Kn+1 and let V0, V1, . . . , Vn+1, V[n+1] be the weak partition of V (G)
defined by (a), (b), and (c) and satisfying conditions 1− 4 following Lemma 9 in
Section 3. We claim that for every i ∈ [k] either

∣∣Bi ∩ V[n+1]

∣∣ = 1 and

∣∣∣∣∣Bi ∩
n+1⋃
j=1

Vj

∣∣∣∣∣ = 0

or
Bi ⊆ Vj for some j ∈ [n+ 1].

We consider two cases.
If Bi ∩V[n+1] 6= ∅, then because G[Bi] is a complete subgraph, it follows that

|Bi ∩ V[n+1]| = 1 and |Bi ∩
⋃n+1
j=1 Vj | = 0. Otherwise, if Bi ∩ V[n+1] = ∅, then by

condition 4 and the fact that Bi induces a complete subgraph we have zi 6∈ V0.
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Hence, there exists j ∈ [n + 1] such that zi ∈ Vj . By condition 2, we infer that
there exists a vertex u in Ai ∩ Vj . Let w ∈ Ai \ {u}. Since {zi, u} ⊆ Vj , it follows

by condition 1 that w ∈ V0∪Vj . We now infer that w ∈ Vj since
⋃k
r=1Ar induces

a complete subgraph of G. Therefore, Bi ⊆ Vj . It follows that the cardinality of
I is k(n+ 1), completing the proof.

Problem 18. Let n be a positive integer. Find a characterization of the class,
C, of all connected graphs G such that G has an isolatable vertex and G×Kn is
well-covered.

5. General Direct Products

In the previous section we characterized well-covered direct products of connected
graphs when neither factor has an isolatable vertex. Note that if connected
graphs G and H both have girth at least 4 and also have no isolatable vertices,
then it follows from Corollary 16 that G = H = K2. In the main result of this
section we make no assumptions about the girth of the factors and no assumptions
about whether the factors have isolatable vertices. We show that if G and H are
nontrivial connected graphs whose direct product is well-covered but not very
well-covered, then both G and H have girth 3.

Lemma 19. Let G and H be nontrivial connected graphs such that G × H is
well-covered but not very well-covered. If I is any independent set of G and B is
any bipartite component of G−N [I], then B = K1.

Proof. Let G and H be nontrivial connected graphs such that G × H is well-
covered but not very well-covered. By Theorems 5 and 8, G and H are well-
covered but neither G nor H is very well-covered. Suppose the lemma is not true.
Let I be independent in G and let B be a nontrivial bipartite component of G−
N [I]. By choosing a maximal independent set in each of the other components of
G−N [I] besides B (if there are any), and adding them to I we get an independent
set J such that B = G−N [J ]. Since H has no isolated vertices,

G×H −N [J × V (H)] = (G−N [J ])×H = B ×H.

Using the fact that J × V (H) is independent, it follows from Lemma 3 and
Theorem 5 that B × H and B are well-covered. Since B is bipartite, we infer
that B is very well-covered. As a result, H is very well-covered by Theorem 8,
which is a contradiction. Therefore, B = K1.

Theorem 20. Let G and H be nontrivial connected graphs such that G ×H is
well-covered but not very well-covered. Every edge of G is incident with a triangle.
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Proof. Let G and H be graphs satisfying the hypotheses of the theorem. Let xy
be an arbitrary edge of G. Note that G and H are both well-covered but neither
is very well-covered. If xy is in a triangle of G, then there is nothing to prove.
Suppose then that N(x) ∩ N(y) = ∅. Let I be any maximal independent set of
the graph G − N [{x, y}] and let F = G − N [I]. Note that F is connected. By
Lemmas 3 and 19, F is well-covered and F is not bipartite. Furthermore, if y is
a leaf of F , then {x} is a maximal independent set of F , but {y} is independent
but not maximal independent in F , which contradicts the fact that F is well-
covered. Thus, y (and similarly x) is not a leaf in F . Let Fx = F − N [y] and
let Fy = F −N [x]. Since F is not bipartite, at least one of Fx or Fy contains an
edge. Consequently, at least one of x or y is in a triangle.

The following corollary follows immediately from Theorem 20.

Corollary 21. Let G and H be nontrivial connected graphs. If G × H is well-
covered but not very well-covered, then both G and H have girth 3.

From the above result, classifying all well-covered direct products where both
factors contain isolatable vertices reduces to the study of well-covered direct prod-
ucts where both factors have girth 3 and every edge of G (and of H) is incident
with a triangle. We now show the existence of graphs G and H each with girth
3 and containing isolatable vertices neither of which are very well-covered such
that G×H is well-covered. The following lemma will be used in the subsequent
result. Its proof is immediate.

Lemma 22. Let I be a maximal independent set in a graph G. If u and v are
two vertices with NG(u) = NG(v), then either I ∩NG(u) 6= ∅ or {u, v} ⊆ I.

As observed in [16], for n ≥ 2 the graph Kn ×Kn is well-covered. That is,
the “direct product square” of a nontrivial complete graph is well-covered. The
following proposition gives another infinite class of graphs whose direct product
squares are well-covered but not very well-covered. Of course, any such graph
(other than a complete graph) must have isolatable vertices by Theorem 15.

Proposition 23. Let r and m be positive integers and let G be the complete
m-partite graph Kr,...,r. The direct product G×G is well-covered.

Proof. We prove the statement of the proposition for m = 3 and any r. The
proof for an arbitrary m is similar. Let V (G) = {a1, . . . , a3r}, with color classes
X1 = {a1, . . . , ar}, X2 = {ar+1, . . . , a2r} and X3 = {a2r+1, . . . , a3r}. Suppose
that I is any maximal independent set of G × G. We assume without loss of
generality that (a1, a1) ∈ I. The open neighborhood of (a1, a1) is (X2 ∪ X3) ×
(X2 ∪ X3), and this is the open neighborhood of every vertex in X1 × X1. By
Lemma 22 it follows that X1 × X1 ⊆ I. Since I is a maximal independent set,
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I has a nonempty intersection with exactly one of X1 ×X2 or X2 ×X1. Again
with no loss of generality we may assume that I ∩ (X1 ×X2) 6= ∅. Using Lemma
22 again we can infer that I = X1 × V (G). That is, |I| = 3r2, and thus G×G is
well-covered.
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