A CLASSIFICATION OF CACTUS GRAPHS ACCORDING TO THEIR DOMINATION NUMBER

Majid Hajian
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
e-mail: majid_hajian2000@yahoo.com
Michael A. Henning ${ }^{1}$
Department of Mathematics and Applied Mathematics
University of Johannesburg
Johannesburg, South Africa
e-mail: mahenning@uj.ac.za

AND
Nader Jafari Rad
Department of Mathematics
Shahed University, Tehran, Iran
e-mail: n.jafarirad@gmail.com

Abstract

A set S of vertices in a graph G is a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number, $\gamma(G)$, of G is the minimum cardinality of a dominating set of G. The authors proved in [A new lower bound on the domination number of a graph, J. Comb. Optim. 38 (2019) 721-738] that if G is a connected graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves, then $\gamma(G) \geq\lceil(n-\ell+2-2 k) / 3\rceil$. As a consequence of the above bound, $\gamma(G)=(n-\ell+2(1-k)+m) / 3$ for some integer $m \geq 0$. In this paper, we characterize the class of cactus graphs achieving equality here, thereby providing a classification of all cactus graphs according to their domination number.

Keywords: domination number, lower bounds, cycles, cactus graphs.
2010 Mathematics Subject Classification: 05C69.

[^0]
1. Introduction

A dominating set of a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S, where two vertices are neighbors in G if they are adjacent. The minimum cardinality of a dominating set is the domination number of G, denoted by $\gamma(G)$. A dominating set of cardinality $\gamma(G)$ is called a γ-set of G. As remarked in [5], the notion of domination and its variations in graphs has been studied a great deal; a rough estimate says that it occurs in more than 6000 papers to date. For fundamentals of domination theory in graphs we refer the reader to the so-called domination books by Haynes, Hedetniemi, and Slater $[6,7]$. An updated glossary of domination parameters can be found in [4].

Two vertices u and v in a graph G are connected if there exists a (u, v)-path in G. The graph G is connected if every two vertices in G are connected. A block of G is a maximal connected subgraph of G which has no cut-vertex of its own. A cactus is a connected graph in which every edge belongs to at most one cycle. Equivalently, a (nontrivial) cactus is a connected graph in which every block is an edge or a cycle. The distance between two vertices u and v in a connected graph G is the minimum length of a (u, v)-path in G. The diameter, $\operatorname{diam}(G)$, of G is the maximum distance among pairs of vertices in G.

For notation and graph theory terminology we generally follow [8]. In particular, the order of a graph G with vertex set $V(G)$ and edge set $E(G)$ is given by $n(G)=|V(G)|$ and its size by $m(G)=|E(G)|$. A neighbor of a vertex v in G is a vertex adjacent to v, and the open neighborhood of v is the set of neighbors of v, denoted $N_{G}(v)$. The closed neighborhood of v is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of a vertex v in G is given by $d_{G}(v)=\left|N_{G}(v)\right|$.

For a set S of vertices in a graph G, the subgraph induced by S is denoted by $G[S]$. Further, the subgraph obtained from G by deleting all vertices in S and all edges incident with vertices in S is denoted by $G-S$. If $S=\{v\}$, we simply denote $G-\{v\}$ by $G-v$. A leaf of a graph G is a vertex of degree 1 in G, and its unique neighbor is called a support vertex. The set of all leaves of G is denoted by $L(G)$, and we let $\ell(G)=|L(G)|$ be the number of leaves in G. We denote the set of support vertices of G by $S(G)$. We call a vertex of degree at least 2 a non-leaf.

Following our notation in [5], we denote the path and cycle on n vertices by P_{n} and C_{n}, respectively. A complete graph on n vertices is denoted by K_{n}, while a complete bipartite graph with partite sets of size n and m is denoted by $K_{n, m}$. A star is the graph $K_{1, k}$, where $k \geq 1$. Further if $k>1$, the vertex of degree k is called the center vertex of the star, while if $k=1$, arbitrarily designate either vertex of P_{2} as the center. A double star is a tree with exactly two (adjacent) non-leaf vertices.

A rooted tree T distinguishes one vertex r called the root. For each vertex
$v \neq r$ of T, the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is any other neighbor of v. A descendant of v is a vertex $u \neq v$ such that the unique (r, u)-path contains v. In particular, every child of v is a descendant of v. We let $D(v)$ denote the set of descendants of v, and we define $D[v]=D(v) \cup\{v\}$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}. We use the standard notation $[k]=\{1, \ldots, k\}$.

2. Main Result

Our aim in this paper is to provide a classification of all cactus graphs according to their domination number. For this purpose, we shall use a result of the authors in [5] (which we present in Section 4) that establishes a lower bound on the domination number of a graph in terms of its order, number of vertices of degree 1 , and number of cycles. From this result, we prove our desired characterization below, where \mathcal{G}_{k}^{m} is a family of graphs defined in Section 3.

Theorem 1. Let $m \geq 0$ be an integer. If G is a cactus graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves, then $\gamma(G)=\frac{1}{3}(n-\ell+2(1-k)+m)$, if and only if $G \in \mathcal{G}_{k}^{m}$.

We proceed as follows. In Section 3 we define the families \mathcal{G}_{k}^{m} of graphs for each integer $k \geq 0$ and $m \geq 0$. Known results on the domination number are given in Section 4. In Section 5 we present a proof of our main result.

3. The Families \mathcal{G}_{k}^{m} For $m \geq 0$ and $k \geq 0$

In this section, we define the families \mathcal{G}_{k}^{m} of graphs for each integer $k \geq 0$ and $m \geq 0$. The families $\mathcal{G}_{k}^{0}, \mathcal{G}_{k}^{1}, \mathcal{G}_{k}^{2}, \mathcal{T}_{0}^{1,1}, \mathcal{T}_{0}^{2,1}$ of graphs were defined by the authors in [5]. For completeness, we include these definitions in Sections 3.1 and 3.2. We first define the families $\mathcal{G}_{k}^{0}, \mathcal{G}_{k}^{1}$ and \mathcal{G}_{k}^{2} of graphs in the special case when $k=0$.

3.1. The families $\mathcal{G}_{0}^{0}, \mathcal{G}_{0}^{1}$ and \mathcal{G}_{0}^{2}

Hajian et al. [5] defined the class of trees $\mathcal{G}_{0}^{0}, \mathcal{G}_{0}^{1}$ and \mathcal{G}_{0}^{2} as follows.

- Let \mathcal{G}_{0}^{0} be the class of all trees T that can be obtained from a sequence T_{1}, \ldots, T_{k} of trees where $k \geq 1$ such that T_{1} is a star with at least three vertices, $T=T_{k}$, and, if $k \geq 2$, then the tree T_{i+1} can be obtained from the tree T_{i} by applying Operation \mathcal{O} defined below for all $i \in[k-1]$.
Operation \mathcal{O}. Add a vertex disjoint copy of a star Q_{i} with at least three vertices to the tree T_{i} and add an edge joining a leaf of Q_{i} and a leaf of T_{i}.
- Let $\mathcal{T}_{0}^{1,1}$ be the class of all trees T that can be obtained from a tree $T^{\prime} \in \mathcal{G}_{0}^{0}$ by adding a vertex disjoint copy of a star with at least three vertices and adding an edge from a leaf of the added star to a non-leaf in T^{\prime}. Now, let \mathcal{G}_{0}^{1} be the class of all trees T that can be obtained from a sequence T_{1}, \ldots, T_{k} of trees where $k \geq 1$ such that $T_{1} \in \mathcal{T}_{0}^{1,1} \cup\left\{P_{2}\right\}, T=T_{k}$, and, if $k \geq 2$, then the tree T_{i+1} can be obtained from the tree T_{i} by applying Operation \mathcal{O} for all $i \in[k-1]$.
- Let $\mathcal{T}_{0}^{2,1}$ be the class of all trees T that can be obtained from a tree $T^{\prime} \in \mathcal{G}_{0}^{0}$ by adding a vertex disjoint copy of a star (with at least two vertices) and adding an edge from the center of the added star to a non-leaf in T^{\prime}. Let $\mathcal{T}_{0}^{2,2}$ be the class of all trees T that can be obtained from a tree $T^{\prime} \in \mathcal{G}_{0}^{1}$ by adding a vertex disjoint copy of a star with at least three vertices and adding an edge from a leaf of the added star to a non-leaf in T^{\prime}. Now, let \mathcal{G}_{0}^{2} be the class of all trees T that can be obtained from a sequence T_{1}, \ldots, T_{k} of trees, where $k \geq 1$, such that $T_{1} \in \mathcal{T}_{0}^{2,1} \cup \mathcal{T}_{0}^{2,2} \cup\left\{P_{4}\right\}, T=T_{k}$, and, if $k \geq 2$, then the tree T_{i+1} can be obtained from the tree T_{i} by applying Operation \mathcal{O} for all $i \in[k-1]$.

3.2. The families $\mathcal{G}_{k}^{0}, \mathcal{G}_{k}^{1}$ and \mathcal{G}_{k}^{2} when $k \geq 1$

For $k \geq 1$, Hajian et al. [5] defined the families of graphs $\mathcal{G}_{k}^{0}, \mathcal{G}_{k}^{1}$ and \mathcal{G}_{k}^{2} as follows.

- For $k \geq 1$, they recursively defined the family \mathcal{G}_{i}^{0} of graphs for each $i \in[k]$ by the following procedure.
Procedure A. For $i \in[k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{0} if it contains an edge $e=x y$ such that the graph $G_{i}-e$ belongs to the family \mathcal{G}_{i-1}^{0} and the vertices x and y are leaves in $G_{i}-e$ that are connected by a unique path in $G_{i}-e$.
- For $k \geq 1$, they recursively defined the family \mathcal{G}_{i}^{1} of graphs for each $i \in[k]$ by the following two procedures.
Procedure B. For $i \in[k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{1} if it contains an edge $e=x y$ such that the graph $G_{i}-e$ belongs to the family \mathcal{G}_{i-1}^{1} and the vertices x and y are leaves in $G_{i}-e$ that are connected by a unique path in $G_{i}-e$.
Procedure C. For $i \in[k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{1} if it contains an edge $e=x y$ such that the graph $G_{i}-e$ belongs to the family \mathcal{G}_{i-1}^{0} and the vertices x and y are connected by a unique path in $G_{i}-e$. Further, exactly one of x and y is a leaf in $G_{i}-e$.
- For $k \geq 1$, they recursively defined the family \mathcal{G}_{i}^{2} of graphs for each $i \in[k]$ by the following four procedures.
Procedure D. For $i \in[k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{2} if it contains an edge $e=x y$ such that the graph $G_{i}-e$ belongs to the family \mathcal{G}_{i-1}^{2} and the vertices x and y are leaves in $G_{i}-e$ that are connected by a unique path in $G_{i}-e$.

Procedure E. For $i \in[k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{2} if it contains an edge $e=x y$ such that the graph $G_{i}-e$ belongs to the family \mathcal{G}_{i-1}^{1} and the vertices x and y are connected by a unique path in $G_{i}-e$. Further, exactly one of x and y is a leaf in $G_{i}-e$.
Procedure F. For $i \in[k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{2} if it contains an edge $e=x y$ such that the graph $G_{i}-e$ belongs to the family \mathcal{G}_{i-1}^{0} and the vertices x and y are connected by a unique path in $G_{i}-e$. Further, both x and y are non-leaves in $G_{i}-e$.
Procedure G. For $2 \leq i \in[k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{2} if it contains an edge $e=x y$ such that the graph $G_{i}-e$ belongs to the family \mathcal{G}_{i-2}^{0} and the vertices x and y are connected by exactly two paths in $G_{i}-e$. Further, both x and y are leaves in $G_{i}-e$.

3.3. The family \mathcal{G}_{0}^{m} when $m \geq 3$

In this section, we define a family of graphs \mathcal{G}_{0}^{m} for each integer $m \geq 3$ as follows. We call a non-leaf x in a tree T a special vertex if $\gamma(T-x) \geq \gamma(T)$. For $m \geq 3$, we first recursively define the class $\mathcal{T}_{0}^{m, 1}$ and $\mathcal{T}_{0}^{m, 2}$ of trees as follows.

- Let $\mathcal{T}_{0}^{m, 1}$ be the class of all trees T that can be obtained from a tree $T^{\prime} \in \mathcal{G}_{0}^{m-2}$ by adding a vertex disjoint copy of a star Q and joining the center of Q to a special vertex in T^{\prime}.
- Let $\mathcal{T}_{0}^{m, 2}$ be the class of all trees T that can be obtained from a tree $T^{\prime} \in \mathcal{G}_{0}^{m-1}$ by adding a vertex disjoint copy of a star Q with at least three vertices and joining a leaf of Q to a non-leaf in T^{\prime}.

For $m \geq 3$, we next recursively define the family \mathcal{G}_{0}^{m} of graphs constructed from the families \mathcal{G}_{0}^{m-1} and \mathcal{G}_{0}^{m-2} as follows.

- Let \mathcal{G}_{0}^{m} be the class of all trees T that can be obtained from a sequence T_{1}, \ldots, T_{q} of trees, where $q \geq 1$ and where the tree $T_{1} \in \mathcal{T}_{0}^{m, 1} \cup \mathcal{T}_{0}^{m, 2}$ and the tree $T=T_{q}$. Further, if $q \geq 2$, then for each $i \in[q] \backslash\{1\}$, the tree T_{i} can be obtained from the tree T_{i-1} by applying the Operation \mathcal{O} defined in Section 3.1.
Operation \mathcal{O}. Add a vertex disjoint copy of a star Q_{i} with at least three vertices to the tree T_{i} and add an edge joining a leaf of Q_{i} and a leaf of T_{i}.

3.4. The family \mathcal{G}_{k}^{m} when $m \geq 3$ and $k \geq 1$

For $m \geq 3$ and $k \geq 1$, we construct the family \mathcal{G}_{k}^{m} from $\mathcal{G}_{k-1}^{m-2}, \mathcal{G}_{k-1}^{m-1}$ and \mathcal{G}_{k-1}^{m}, recursively, as follows.
Procedure H. For $i \in[k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{m} if it contains an edge $e=x y$ such that the graph $G_{i}-e$ belongs to the family G_{i-1}^{m} and the vertices x and y are connected by a unique path in $G_{i}-e$ and $\gamma\left(G_{i}\right)=\gamma\left(G_{i}-e\right)$. Further, both x and y are leaves in $G_{i}-e$.

Procedure I. For $i \in[k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{m} if it contains an edge $e=x y$ such that the graph $G_{i}-e$ belongs to the family G_{i-1}^{m-1} and the vertices x and y are connected by a unique path in $G_{i}-e$ and $\gamma\left(G_{i}\right)=\gamma\left(G_{i}-e\right)$. Further, exactly one of x and y is a leaf in $G_{i}-e$.
Procedure J. For $i \in[k]$, a graph G_{i} belongs to the family \mathcal{G}_{i}^{m} if it contains an edge $e=x y$ such that the graph $G_{i}-e$ belongs to the family G_{i-1}^{m-2} and the vertices x and y are connected by a unique path in $G_{i}-e$ and $\gamma\left(G_{i}\right)=\gamma\left(G_{i}-e\right)$. Further, both x and y are non-leaves in $G_{i}-e$.

4. Known Results

In this section, we present some preliminary observations and known results. We begin with the following properties of graphs that belong to the families $\mathcal{G}_{k}^{0}, \mathcal{G}_{k}^{1}$ and \mathcal{G}_{k}^{2} for $k \geq 0$.

Observation 1. The following properties hold in a graph $G \in \mathcal{G}_{k}^{0} \cup \mathcal{G}_{k}^{1} \cup \mathcal{G}_{k}^{2}$, where $k \geq 0$.
(a) The graph G contains exactly k cycles.
(b) The graph $G \in \mathcal{G}_{k}^{0} \cup \mathcal{G}_{k}^{1}$ is a cactus graph.

We shall also need the following elementary property of a dominating set in a graph.

Observation 2. If G is connected graph of order at least 3, then there exists a γ-set of G that contains no leaf of G.

The following lemma is established in [5].
Lemma 2 [5]. If G is a connected graph and C is an arbitrary cycle in G, then there is an edge e of C such that $\gamma(G-e)=\gamma(G)$.

Several authors obtained bounds on the domination number in terms of different variants of graphs, see for example $[1,2,3,6,9]$. Let \mathcal{R} be the family of all trees in which the distance between any two distinct leaves is congruent to 2 modulo 3. Lemańska [9] established the following lower bound on the domination number of a tree in terms of its order and number of leaves.

Theorem 3 [9]. If T is a tree of order $n \geq 2$ with ℓ leaves, then $\gamma(T) \geq(n-\ell+$ $2) / 3$, with equality if and only if $T \in \mathcal{R}$.

Hajian et al. [5] showed that the family \mathcal{R} is precisely the family \mathcal{G}_{0}^{0}; that is, $\mathcal{R}=\mathcal{G}_{0}^{0}$.

As a consequence of Theorem 3, we have the following result.

Corollary 4 [9]. If T is a tree of order $n \geq 2$ with ℓ leaves, then $\gamma(T)=$ $\frac{1}{3}(n-\ell+2+m)$ for some integer $m \geq 0$.

Hajian et al. [5] strengthened the result in Theorem 3 as follows.
Theorem 5 [5]. If T is a tree of order $n \geq 2$ with ℓ leaves, then the following holds.
(a) $\gamma(T) \geq \frac{1}{3}(n-\ell+2)$, with equality if and only if $T \in \mathcal{G}_{0}^{0}$.
(b) $\gamma(T)=\frac{1}{3}(n-\ell+3)$ if and only if $T \in \mathcal{G}_{0}^{1}$.
(c) $\gamma(T)=\frac{1}{3}(n-\ell+4)$ if and only if $T \in \mathcal{G}_{0}^{2}$.

The result of Theorem 5 was generalized in [5] to connected graphs as follows.
Theorem 6 [5]. If G is a connected graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves, then the following holds.
(a) $\gamma(G) \geq \frac{1}{3}(n-\ell+2(1-k))$, with equality if and only if $G \in \mathcal{G}_{k}^{0}$.
(b) $\gamma(G)=\frac{1}{3}(n-\ell+3-2 k)$ if and only if $G \in \mathcal{G}_{k}^{1}$.
(c) $\gamma(G)=\frac{1}{3}(n-\ell+4-2 k)$ if and only if $G \in \mathcal{G}_{k}^{2}$.

As a consequence of Theorem 6(a), we have the following.
Corollary 7 [5]. If G is a connected graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves, then $\gamma(G)=\frac{1}{3}(n-\ell+2(1-k)+m)$ for some integer $m \geq 0$.

5. Proof of Main Result

In this section, we present a proof of our main result, namely Theorem 1. For this purpose, we first prove Theorem 1 in the special case when $k=0$, that is, when the cactus is a tree.

Theorem 8. Let $m \geq 0$ be an integer. If T is a tree of order $n \geq 2$ with ℓ leaves, then $\gamma(T)=\frac{1}{3}(n-\ell+2+m)$ if and only if $T \in \mathcal{G}_{0}^{m}$.
Proof. Let T be a tree of order $n \geq 2$ with ℓ leaves. We proceed by induction on $m \geq 0$, namely first-induction, to show that $\gamma(T)=\frac{1}{3}(n-\ell+2+m)$, if and only if $T \in \mathcal{G}_{0}^{m}$. For the base step of the first-induction let $m \leq 2$. If $m=0$, then the result follows by Theorem $5(\mathrm{a})$. If $m=1$, then the result follows by Theorem $5(\mathrm{~b})$. If $m=2$, then the result follows by Theorem $5(\mathrm{c})$. This establishes the base step of the induction. Let $m \geq 3$ and assume that the result holds for all trees T_{0} of order n_{0} with ℓ_{0} leaves, for $m_{0}<m$. Let T be a tree of order n and with ℓ leaves. We will show that $\gamma(T)=\frac{1}{3}(n-\ell+2+m)$, if and only if $T \in \mathcal{G}_{0}^{m}$.
(\Longrightarrow) Assume that $\gamma(T)=\frac{1}{3}(n-\ell+2+m)$ (where we recall that here $m \geq 3)$. We show that $T \in \mathcal{G}_{0}^{m}$. If $T=P_{2}$, then by the definition of the family
\mathcal{G}_{0}^{1}, we have $T \in \mathcal{G}_{0}^{1}$. Then by Theorem $5(\mathrm{~b}), \gamma(T)=\frac{1}{3}(n-\ell+2+1)$, and so $m=1$, a contradiction. Hence we may assume that $\operatorname{diam}(T) \geq 2$, for otherwise the desired result follows. If $\operatorname{diam}(T)=2$, then T is a star, and by the definition of the family G_{0}^{0}, we have $T \in G_{0}^{0}$. Thus by Theorem $5(\mathrm{a}), \gamma(T)=\frac{1}{3}(n-\ell+2+1)$, and so $m=0$, a contradiction. If $\operatorname{diam}(T)=2$, then T is a double star, and by definition of the family \mathcal{G}_{0}^{2} we have $T \in T_{0}^{2,1} \subseteq \mathcal{G}_{0}^{2}$. Thus by Theorem 5 (c), $\gamma(T)=\frac{1}{3}(n-\ell+2+2)$, and so $m=2$, a contradiction. Hence, $\operatorname{diam}(T) \geq 4$ and $n \geq 5$.

We now root the tree T at a vertex r at the end of a longest path P in T. Let u be a vertex at maximum distance from r, and so $d_{T}(u, r)=\operatorname{diam}(T)$. Necessarily, r and u are leaves. Let v be the parent of u, let w be the parent of v, let x be the parent of w, and let y be the parent of x. Possibly, $y=r$. Since u is a vertex at maximum distance from the root r, every child of v is a leaf. By Observation 2, there exists a γ-set, say S, of T that contains no leaf of T; that is, $L(T) \cap S=\emptyset$. In particular, we note that $|S|=\gamma(T)=\frac{1}{3}(n-\ell+2+m)$. In order to dominate the vertex u, we note therefore that $v \in S$. Let $d_{T}(v)=t$. We note that $t \geq 2$.

Claim 1. If $d_{T}(w) \geq 3$, then $T \in \mathcal{G}_{0}^{m}$.
Proof. Suppose that $d_{T}(w) \geq 3$. In this case, we consider the tree $T^{\prime}=T-$ $V\left(T_{v}\right)$, where T_{v} is the maximal subtree at v. Let T^{\prime} have order n^{\prime} and let T^{\prime} have ℓ^{\prime} leaves. We note that $n^{\prime}=n-t$. Since w is not a leaf in T^{\prime}, we have $\ell^{\prime}=\ell-(t-1)=\ell-t+1$. By Corollary 4 , $\gamma\left(T^{\prime}\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+m^{\prime}\right)$ for some integer $m^{\prime} \geq 0$. If a child of w is a leaf in T^{\prime}, then since the dominating set S contains no leaves, we have that $w \in S$. If no child of w is a leaf in T, then every child of w is a support vertex and therefore belongs to the set S. In both cases, we note that the set $S \backslash\{v\}$ is a dominating set of T^{\prime}, implying that $\gamma\left(T^{\prime}\right) \leq|S|-1=\gamma(T)-1$. Every γ-set of T^{\prime} can be extended to a dominating set of T by adding to it the vertex v, implying that $\gamma(T) \leq \gamma\left(T^{\prime}\right)+1$. Consequently, $\gamma\left(T^{\prime}\right)=\gamma(T)-1$. Thus,

$$
\begin{aligned}
\gamma\left(T^{\prime}\right) & =\gamma(T)-1 \\
& =\frac{1}{3}(n-\ell+2+m)-1 \\
& =\frac{1}{3}(n-\ell+m-1) \\
& =\frac{1}{3}\left(\left(n^{\prime}+t\right)-\left(\ell^{\prime}+t-1\right)+m-1\right) \\
& =\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+m\right)
\end{aligned}
$$

As observed earlier, $\gamma\left(T^{\prime}\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+m^{\prime}\right)$ for some integer $m^{\prime} \geq 0$. Thus, $m^{\prime}=m-2$. Applying the inductive hypothesis to the tree T^{\prime}, we have $T^{\prime} \in \mathcal{G}_{0}^{m-2}$. Let v^{\prime} be a child of w different from v. We note that the tree $T_{v^{\prime}}$ is a component of $T^{\prime}-w$ and this component is dominated by the vertex v^{\prime}. We
can therefore choose a γ-set of $T^{\prime}-w$ to contain the vertex v^{\prime}. Such a γ-set of $T^{\prime}-w$ is also a dominating set of T^{\prime}, implying that $\gamma\left(T^{\prime}\right) \leq \gamma\left(T^{\prime}-w\right)$; that is, the vertex w is a special vertex of T^{\prime}. Thus, the tree T is obtained from the tree $T^{\prime} \in \mathcal{G}_{0}^{m-2}$ by adding a vertex disjoint copy of a star T_{v} and joining the center v of T_{v} to a special vertex w in T^{\prime}. Thus $T \in \mathcal{T}_{0}^{m, 1}$. Consequently, $T \in \mathcal{G}_{0}^{m}$. This completes the proof of Claim 1.

By Claim 1, we may assume that $d_{T}(w)=2$, for otherwise $T \in \mathcal{G}_{0}^{m}$ as desired. We now consider the tree $T^{\prime}=T-V\left(T_{w}\right)$, where T_{w} is the maximal subtree at w. Let T^{\prime} have order n^{\prime} and let T^{\prime} have ℓ^{\prime} leaves. We note that $n^{\prime}=n-t-1$. By Corollary $4, \gamma\left(T^{\prime}\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+m^{\prime}\right)$ for some integer $m^{\prime} \geq 0$.

As observed earlier, the vertex v belongs to the dominating set S. If $w \in S$, then we can replace w in S with the vertex x to produce a new γ-set of T that contains no leaf of T. Hence we may assume that $w \notin S$, implying that the set $S \backslash\{v\}$ is a dominating set of T^{\prime} and therefore $\gamma\left(T^{\prime}\right) \leq|S|-1=\gamma(T)-1$. Every γ-set of T^{\prime} can be extended to a dominating set of T by adding to it the vertex v, implying that $\gamma(T) \leq \gamma\left(T^{\prime}\right)+1$. Consequently, $\gamma\left(T^{\prime}\right)=\gamma(T)-1$.

Claim 2. If $d_{T}(x) \geq 3$, then $T \in \mathcal{G}_{0}^{m}$.
Proof. Suppose that $d_{T}(x) \geq 3$. In this case, the vertex x is not a leaf of T^{\prime}, implying that $\ell^{\prime}=\ell-(t-1)=\ell-t+1$. Thus,

$$
\begin{aligned}
\gamma\left(T^{\prime}\right) & =\gamma(T)-1 \\
& =\frac{1}{3}(n-\ell+m-1) \\
& =\frac{1}{3}\left(\left(n^{\prime}+t+1\right)-\left(\ell^{\prime}+t-1\right)+m-1\right) \\
& =\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+m+1\right) .
\end{aligned}
$$

As observed earlier, $\gamma\left(T^{\prime}\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+m^{\prime}\right)$ for some integer $m^{\prime} \geq 0$. Thus, $m^{\prime}=m-1$. Applying the inductive hypothesis to the tree T^{\prime}, we have $T^{\prime} \in \mathcal{G}_{0}^{m-1}$. Thus, the tree T is obtained from the tree $T^{\prime} \in \mathcal{G}_{0}^{m-1}$ by adding a vertex disjoint copy of a star T_{v} with at least three vertices and joining a leaf of the star T_{v} to the non-leaf x of T^{\prime}. Thus $T \in \mathcal{T}_{0}^{m, 2}$. Consequently, $T \in \mathcal{G}_{0}^{m}$.

By Claim 2, we may assume that $d_{T}(x)=2$, for otherwise $T \in \mathcal{G}_{0}^{m}$ as desired. In this case, the vertex x is a leaf of T^{\prime}, implying that $\ell^{\prime}=\ell-(t-1)+1=\ell-t+2$. Thus,

$$
\begin{aligned}
\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+m^{\prime}\right)=\gamma\left(T^{\prime}\right) & =\gamma(T)-1 \\
& =\frac{1}{3}(n-\ell+m-1) \\
& =\frac{1}{3}\left(\left(n^{\prime}+t+1\right)-\left(\ell^{\prime}+t-2\right)+m-1\right) \\
& =\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+m+2\right),
\end{aligned}
$$

and so $m=m^{\prime}$. Applying the inductive hypothesis to the tree T^{\prime}, we have $T^{\prime} \in \mathcal{G}_{0}^{m}$. Thus, the tree T is obtained from the tree $T^{\prime} \in \mathcal{G}_{0}^{m}$ by adding a vertex disjoint copy of a star T_{v} with at least three vertices and adding the edge $x w$ joining a leaf w of T_{v} and a leaf x of T^{\prime}; that is, T is obtained from T^{\prime} by Operation \mathcal{O}. Hence, by definition of the family \mathcal{G}_{0}^{m}, we have $T \in \mathcal{G}_{0}^{m}$, as desired. This completes the necessity part of the proof of Theorem 8.
(\Longleftarrow) Conversely, assume that $T \in \mathcal{G}_{0}^{m}$, where $m \geq 0$. Recall that T is a tree of order $n \geq 2$ with ℓ leaves. Thus, T is obtained from a sequence T_{1}, \ldots, T_{q} of trees, where $q \geq 1$ and where the tree $T_{1} \in \mathcal{T}_{0}^{m, 1} \cup \mathcal{T}_{0}^{m, 2}$, and the tree $T=T_{q}$. Further, if $q \geq 2$, then for each $i \in[q] \backslash\{1\}$, the tree T_{i} can be obtained from the tree T_{i-1} by applying the following Operation \mathcal{O}. We proceed by induction on $q \geq 1$, namely second-induction, to show that $\gamma_{t}(T)=\frac{1}{3}(n-\ell+2+m)$.

Claim 3. If $q=1$, then $\gamma_{t}(T)=\gamma(T)=\frac{1}{3}(n-\ell+2+m)$.
Proof. Suppose that $q=1$. Thus, $T_{1} \in \mathcal{T}_{0}^{m, 1} \cup \mathcal{T}_{0}^{m, 2}$. We consider the two possibilities in turn, and in both cases we will show that the tree $T \in \mathcal{G}_{0}^{m}$ satisfies $\gamma(T)=\frac{1}{3}(n-\ell+2+m)$.

Claim 3.1. If $T \in \mathcal{T}_{0}^{m, 1}$, then $\gamma_{t}(T)=\frac{1}{3}(n-\ell+2+m)$.
Proof. Suppose that $T \in \mathcal{T}_{0}^{m, 1}$. Thus, T is obtained from a tree $T^{\prime} \in \mathcal{G}_{0}^{m-2}$ by adding a vertex disjoint copy of a star Q with $t \geq 2$ vertices and joining the center of Q, say y, to a special vertex x in T^{\prime}. Let T^{\prime} have order n^{\prime}, and so $n^{\prime}=n-t$. Further, let T^{\prime} have ℓ^{\prime} leaves. Since x is a non-leaf of T^{\prime}, we have $\ell^{\prime}=\ell-(t-1)$. Applying the first-induction hypothesis to the tree $T^{\prime} \in \mathcal{G}_{0}^{m-2}$, we have $\gamma_{t}\left(T^{\prime}\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+(m-2)\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+m\right)$.

We show next that $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. Since x is a special vertex of T^{\prime}, we note that $\gamma\left(T^{\prime}-x\right) \geq \gamma\left(T^{\prime}\right)$. Every γ-set of T^{\prime} can be extended to a dominating set of T by adding to it the vertex y, implying that $\gamma(T) \leq \gamma\left(T^{\prime}\right)+1$. Conversely, we can choose a γ-set, say D, of T to contain the vertex y which dominates the star Q. If $x \in D$, then $D \backslash\{y\}$ is a dominating set of T^{\prime}, and so $\gamma\left(T^{\prime}\right) \leq|D|-1$. If $x \notin D$, then $D \backslash\{y\}$ is a dominating set of $T^{\prime}-x$, and so $\gamma\left(T^{\prime}\right) \leq \gamma\left(T^{\prime}-x\right) \leq|D|-1$. In both cases, $\gamma\left(T^{\prime}\right) \leq|D|-1=\gamma(T)-1$. Consequently, $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. Thus,

$$
\begin{aligned}
\gamma(T) & =\gamma\left(T^{\prime}\right)+1 \\
& =\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+m\right)+1 \\
& =\frac{1}{3}((n-t)-(\ell-t+1)+m)+1 \\
& =\frac{1}{3}(n-\ell+2+m)
\end{aligned}
$$

This completes the proof of Claim 3.1.

Claim 3.2. If $T \in \mathcal{T}_{0}^{m, 2}$, then $\gamma_{t}(T)=\frac{1}{3}(n-\ell+2+m)$.
Proof. Suppose that $T \in \mathcal{T}_{0}^{m, 2}$. Thus, T is obtained from a tree $T^{\prime} \in \mathcal{G}_{0}^{m-1}$ by adding a vertex disjoint copy of a star Q with $t \geq 3$ vertices and joining a leaf, say v, of Q to a non-leaf, say w, in T^{\prime}. Let u be the center of the star Q. Let T^{\prime} have order n^{\prime}, and so $n^{\prime}=n-t$. Further, let T^{\prime} have ℓ^{\prime} leaves. Since w is a non-leaf of T^{\prime}, we have $\ell^{\prime}=\ell-(t-2)$. Applying the first-induction hypothesis to the tree $T^{\prime} \in \mathcal{G}_{0}^{m-1}$, we have $\gamma_{t}\left(T^{\prime}\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+(m-1)\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+m+1\right)$.

We show next that $\gamma(T)=\gamma_{t}\left(T^{\prime}\right)+1$. Every γ-set of T^{\prime} can be extended to a dominating of T by adding to it the vertex u, implying that $\gamma(T) \leq \gamma\left(T^{\prime}\right)+1$. By Observation 2, there exists a γ-set D of T that contains no leaf of G. Thus, $u \in D$. If $v \in D$, then we can replace v in D with the vertex w. Hence we may assume that $v \notin D$, implying that $D \backslash\{u\}$ is a dominating set of T^{\prime}, and so $\gamma\left(T^{\prime}\right) \leq|D|-1=\gamma(T)-1$. Consequently, $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. Thus,

$$
\begin{aligned}
\gamma(T) & =\gamma\left(T^{\prime}\right)+1 \\
& =\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+m+1\right)+1 \\
& =\frac{1}{3}((n-t)-(\ell-t+2)+m+1)+1 \\
& =\frac{1}{3}(n-\ell+2+m) .
\end{aligned}
$$

This completes the proof of Claim 3.2.
By Claims 3.1 and 3.2, if $T \in \mathcal{T}_{0}^{m, 1} \cup \mathcal{T}_{0}^{m, 2}$, then $\gamma(T)=\frac{1}{3}(n-\ell+2+m)$. This completes the proof of Claim 3.

By Claim 3, if $q=1$, then $\gamma(T)=\frac{1}{3}(n-\ell+2+m)$. This establishes the base step of the second-induction. Let $q \geq 2$ and assume that if q^{\prime} is an integer where $1 \leq q^{\prime}<q$ and if $T^{\prime} \in \mathcal{G}_{0}^{m}$ is a tree of order $n^{\prime} \geq 2$ with ℓ^{\prime} leaves obtained from a sequence of q^{\prime} trees, then $\gamma(T)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+m\right)$. Recall that T is obtained from a sequence T_{1}, \ldots, T_{q} of trees, where $q \geq 1$ and where the tree $T_{1} \in \mathcal{T}_{0}^{m, 1} \cup \mathcal{T}_{0}^{m, 2}$, and the tree $T=T_{q}$. Further for each $i \in[q] \backslash\{1\}$, the tree T_{i} can be obtained from the tree T_{i-1} by applying the Operation \mathcal{O}.

We now consider the tree $T^{\prime}=T_{q-1}$. Thus, the tree $T \in \mathcal{G}_{0}^{m}$ is obtained from the tree T^{\prime} by adding a vertex disjoint copy of a star Q with $t \geq 3$ vertices and adding an edge joining a leaf of Q to a leaf of T^{\prime}. Let T^{\prime} have order n^{\prime} and let T^{\prime} have ℓ^{\prime} leaves. We note that $n^{\prime}=n-t$ and $\ell^{\prime}=\ell-(t-2)+1=\ell-t+3$. Applying the second-induction hypothesis to the tree $T^{\prime} \in \mathcal{G}_{0}^{m}$, we have $\gamma\left(T^{\prime}\right)=$ $\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+m\right)$. Analogous arguments as before show that $\gamma(T)=\gamma_{t}\left(T^{\prime}\right)+1$. Thus,

$$
\begin{aligned}
\gamma(T) & =\gamma\left(T^{\prime}\right)+1 \\
& =\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+m\right)+1 \\
& =\frac{1}{3}((n-t)-(\ell-t+3)+2+m)+1 \\
& =\frac{1}{3}(n-\ell+2+m) .
\end{aligned}
$$

Hence we have shown that if $T \in \mathcal{G}_{0}^{m}$, where $m \geq 0$ and where T has order $n \geq 2$ with ℓ leaves, then $\gamma(T)=\frac{1}{3}(n-\ell+2+m)$. This completes the proof of Theorem 8.

We are now in a position to prove our main result, namely Theorem 1. Recall its statement.

Theorem 1. Let $m \geq 0$ be an integer. If G is a cactus graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves, then $\gamma(G)=\frac{1}{3}(n-\ell+2(1-k)+m)$, if and only if $G \in \mathcal{G}_{k}^{m}$.

Proof. Let $m \geq 0$ be an integer, and let G be a cactus graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves. We proceed by induction on k to show that $\gamma(G)=\frac{1}{3}(n-\ell+2(1-k)+m)$ if and only if $G \in \mathcal{G}_{k}^{m}$. If $k=0$, then the result follows from Theorem 8. This establishes the base case. Let $k \geq 1$ and assume that if G^{\prime} is a cactus graph of order $n^{\prime} \geq 2$ with k^{\prime} cycles and ℓ^{\prime} leaves where $0 \leq k^{\prime}<k$, then $\gamma(G)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2\left(1-k^{\prime}\right)+m^{\prime}\right)$ if and only if $G \in \mathcal{G}_{k^{\prime}}^{m^{\prime}}$. Let G be a cactus graph of order $n \geq 2$ with $k \geq 0$ cycles and ℓ leaves. We will show that $\gamma(G)=\frac{1}{3}(n-\ell+2(1-k)+m)$, if and only if $G \in \mathcal{G}_{k}^{m}$. If $m=0$, then the result follows by Theorem $6(\mathrm{a})$. If $m=1$, then the result follows by Theorem $6(\mathrm{~b})$. If $m=2$, then the result follows by Theorem 6 (c). Thus, we may assume that $m \geq 3$, for otherwise the desired result follows.
(\Longrightarrow) Assume that $\gamma(G)=\frac{1}{3}(n-\ell+2+m-2 k)$ (where we recall that here $m \geq 3$). We will show that $T \in \mathcal{G}_{k}^{m}$. By Lemma 2 , the graph G contains a cycle edge e such that $\gamma(G-e)=\gamma(G)$. Let $e=u v$, and consider the graph $G^{\prime}=G-e$. Let G^{\prime} have order n^{\prime} with $k^{\prime} \geq 0$ cycles and ℓ^{\prime} leaves. We note that $n^{\prime}=n$. Further, since G is a cactus graph, $k^{\prime}=k-1$. Removing the cycle edge e from G produces at most two new leaves, namely the ends of the edge e, implying that $\ell^{\prime}-2 \leq \ell \leq \ell^{\prime}$. By Corollary 7, we have $\gamma\left(G^{\prime}\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+m^{\prime}-2 k^{\prime}\right)$ for some integer $m^{\prime} \geq 0$. Applying the inductive hypothesis to the cactus graph G^{\prime}, we have that $G^{\prime} \in \mathcal{G}_{k^{\prime}}^{m^{\prime}}=\mathcal{G}_{k-1}^{m^{\prime}}$. Our earlier observations imply that

$$
\begin{aligned}
\frac{1}{3}(n-\ell+2+m-2 k) & =\gamma(G)=\gamma\left(G^{\prime}\right) \\
& =\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+m^{\prime}-2 k^{\prime}\right) \\
& =\frac{1}{3}\left(n-\ell^{\prime}+2+m^{\prime}-2(k-1)\right)
\end{aligned}
$$

and so $m-\ell=m^{\prime}-\ell^{\prime}+2$. Since G is a cactus, the vertices u and v are connected in $G^{\prime}=G-e$ by a unique path. As observed earlier, $\ell^{\prime}-2 \leq \ell \leq \ell^{\prime}$.

Suppose that $\ell=\ell^{\prime}$. In this case, neither u nor v is a leaf of G^{\prime}, implying that both u and v have degree at least 2 in G^{\prime}. Further, the equation $m-\ell=m^{\prime}-\ell^{\prime}+2$ simplifies to $m^{\prime}=m-2$. Thus, $G^{\prime} \in \mathcal{G}_{k-1}^{m-2}$. Hence, the graph G is obtained from G^{\prime} by Procedure J and therefore $G \in \mathcal{G}_{k}^{m}$.

Suppose that $\ell=\ell^{\prime}-1$. In this case, exactly one of u and v is a leaf of G^{\prime}. Further, the equation $m-\ell=m^{\prime}-\ell^{\prime}+2$ simplifies to $m^{\prime}=m-1$. Thus, $G^{\prime} \in \mathcal{G}_{k-1}^{m-1}$. Hence, the graph G is obtained from G^{\prime} by Procedure I, and therefore $G \in \mathcal{G}_{k}^{m}$.

Suppose that $\ell=\ell^{\prime}-2$. In this case, both u and v are leaves in G^{\prime}. Further, the equation $m-\ell=m^{\prime}-\ell^{\prime}+2$ simplifies to $m^{\prime}=m$. Thus, $G^{\prime} \in \mathcal{G}_{k-1}^{m}$. Hence, the graph G is obtained from G^{\prime} by Procedure H , and therefore $G \in \mathcal{G}_{k}^{m}$. This completes the necessity part of the proof of Theorem 1.
(\Longleftarrow) Conversely, assume that $G \in \mathcal{G}_{k}^{m}$. Recall that by our earlier assumptions, $m \geq 3$ and $k \geq 1$. Thus, the graph G is obtained from either a graph $G^{\prime} \in \mathcal{G}_{k-1}^{m}$ by Procedure H or from a graph $G^{\prime} \in \mathcal{G}_{k-1}^{m-1}$ by Procedure I or from a graph $G^{\prime} \in \mathcal{G}_{k-1}^{m-2}$ by Procedure J. In all three cases, let G^{\prime} have order n^{\prime} with $k^{\prime} \geq 0$ cycles and ℓ^{\prime} leaves. Further, in all cases we note that $n^{\prime}=n$ and $k^{\prime}=k-1$. We consider the three possibilities in turn.

Suppose firstly that G is obtained from a graph $G^{\prime} \in \mathcal{G}_{k-1}^{m}$ by Procedure H. In this case, $\ell=\ell^{\prime}-2$ and $\gamma(G)=\gamma\left(G^{\prime}\right)$. Applying the inductive hypothesis to the graph $G^{\prime} \in \mathcal{G}_{k-1}^{m}$, we have $\gamma(G)=\gamma\left(G^{\prime}\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+m-2(k-1)\right)=$ $\frac{1}{3}(n-(\ell+2)+4+m-2 k)=\frac{1}{3}(n-\ell+2+m-2 k)$.

Suppose next that G is obtained from a graph $G^{\prime} \in \mathcal{G}_{k-1}^{m-1}$ by Procedure I. In this case, $\ell=\ell^{\prime}-1$ and $\gamma(G)=\gamma\left(G^{\prime}\right)$. Applying the inductive hypothesis to the graph $G^{\prime} \in \mathcal{G}_{k-1}^{m-1}$, we have $\gamma(G)=\gamma\left(G^{\prime}\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+(m-1)-2(k-1)\right)=$ $\frac{1}{3}(n-(\ell+1)+3+m-2 k)=\frac{1}{3}(n-\ell+2+m-2 k)$.

Suppose finally that G is obtained from a graph $G^{\prime} \in \mathcal{G}_{k-1}^{m-2}$ by Procedure J. In this case, $\ell=\ell^{\prime}$ and $\gamma(G)=\gamma\left(G^{\prime}\right)$. Applying the inductive hypothesis to the graph $G^{\prime} \in \mathcal{G}_{k-1}^{m-2}$, we have $\gamma(G)=\gamma\left(G^{\prime}\right)=\frac{1}{3}\left(n^{\prime}-\ell^{\prime}+2+(m-2)-2(k-1)\right)=$ $\frac{1}{3}(n-\ell+2+m-2 k)$. In all three cases, $\gamma(G)=\frac{1}{3}(n-\ell+2+m-2 k)$. This completes the proof of Theorem 1 .

References

[1] Cs. Bujtás, M.A. Henning and Zs. Tuza, Transversals and domination in uniform hypergraphs, European J. Combin. 33 (2012) 62-71.
https://doi.org/10.1016/j.ejc.2011.08.002
[2] E. DeLaViña, R. Pepper and W. Waller, A note on dominating sets and average distance, Discrete Math. 309 (2009) 2615-2619.
https://doi.org/10.1016/j.disc.2008.03.018
[3] E. DeLaViña, R. Pepper and W. Waller, Lower bounds for the domination number, Discuss. Math. Graph Theory 30 (2010) 475-487.
https://doi.org/10.7151/dmgt. 1508
[4] R. Gera, T.W. Haynes, S.T. Hedetniemi and M.A. Henning, An annotated glossary of graph theory parameters, with conjectures, in: Graph Theory - Favorite Conjectures and Open Problems. 2, R. Gera. T.W. Haynes and S.T. Hedetniemi (Ed(s)), (Springer, Switzerland, 2018) 177-281.
[5] M. Hajian, M.A. Henning and N. Jafari Rad, A new lower bound on the domination number of a graph, J. Comb. Optim. 38 (2019) 721-738.
https://doi.org/10.1007/s10878-019-00409-x
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
[8] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013).
https://doi.org/10.1007/978-1-4614-6525-6
[9] M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math. Graph Theory 24 (2004) 165-169.
https://doi.org/10.7151/dmgt. 1222

Revised 3 January 2020
Accepted 3 January 2020

[^0]: ${ }^{1}$ Research supported in part by the University of Johannesburg.

