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Abstract

A set S of vertices in a graph G is a dominating set of G if every vertex
not in S is adjacent to some vertex in S. The domination number, γ(G), of G
is the minimum cardinality of a dominating set of G. The authors proved in
[A new lower bound on the domination number of a graph, J. Comb. Optim.
38 (2019) 721–738] that if G is a connected graph of order n ≥ 2 with k ≥ 0
cycles and ℓ leaves, then γ(G) ≥ ⌈(n− ℓ+ 2− 2k)/3⌉. As a consequence of
the above bound, γ(G) = (n− ℓ+ 2(1− k) +m)/3 for some integer m ≥ 0.
In this paper, we characterize the class of cactus graphs achieving equality
here, thereby providing a classification of all cactus graphs according to their
domination number.
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1. Introduction

A dominating set of a graph G is a set S of vertices of G such that every vertex
not in S has a neighbor in S, where two vertices are neighbors in G if they are
adjacent. The minimum cardinality of a dominating set is the domination number

of G, denoted by γ(G). A dominating set of cardinality γ(G) is called a γ-set
of G. As remarked in [5], the notion of domination and its variations in graphs
has been studied a great deal; a rough estimate says that it occurs in more than
6000 papers to date. For fundamentals of domination theory in graphs we refer
the reader to the so-called domination books by Haynes, Hedetniemi, and Slater
[6, 7]. An updated glossary of domination parameters can be found in [4].

Two vertices u and v in a graph G are connected if there exists a (u, v)-path
in G. The graph G is connected if every two vertices in G are connected. A block

of G is a maximal connected subgraph of G which has no cut-vertex of its own.
A cactus is a connected graph in which every edge belongs to at most one cycle.
Equivalently, a (nontrivial) cactus is a connected graph in which every block is
an edge or a cycle. The distance between two vertices u and v in a connected
graph G is the minimum length of a (u, v)-path in G. The diameter, diam(G), of
G is the maximum distance among pairs of vertices in G.

For notation and graph theory terminology we generally follow [8]. In partic-
ular, the order of a graph G with vertex set V (G) and edge set E(G) is given by
n(G) = |V (G)| and its size by m(G) = |E(G)|. A neighbor of a vertex v in G is
a vertex adjacent to v, and the open neighborhood of v is the set of neighbors of
v, denoted NG(v). The closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}.
The degree of a vertex v in G is given by dG(v) = |NG(v)|.

For a set S of vertices in a graph G, the subgraph induced by S is denoted
by G[S]. Further, the subgraph obtained from G by deleting all vertices in S and
all edges incident with vertices in S is denoted by G− S. If S = {v}, we simply
denote G−{v} by G−v. A leaf of a graph G is a vertex of degree 1 in G, and its
unique neighbor is called a support vertex. The set of all leaves of G is denoted
by L(G), and we let ℓ(G) = |L(G)| be the number of leaves in G. We denote
the set of support vertices of G by S(G). We call a vertex of degree at least 2 a
non-leaf.

Following our notation in [5], we denote the path and cycle on n vertices by
Pn and Cn, respectively. A complete graph on n vertices is denoted by Kn, while
a complete bipartite graph with partite sets of size n and m is denoted by Kn,m.
A star is the graph K1,k, where k ≥ 1. Further if k > 1, the vertex of degree k
is called the center vertex of the star, while if k = 1, arbitrarily designate either
vertex of P2 as the center. A double star is a tree with exactly two (adjacent)
non-leaf vertices.

A rooted tree T distinguishes one vertex r called the root. For each vertex
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v 6= r of T , the parent of v is the neighbor of v on the unique (r, v)-path, while
a child of v is any other neighbor of v. A descendant of v is a vertex u 6= v
such that the unique (r, u)-path contains v. In particular, every child of v is a
descendant of v. We let D(v) denote the set of descendants of v, and we define
D[v] = D(v) ∪ {v}. The maximal subtree at v is the subtree of T induced by
D[v], and is denoted by Tv. We use the standard notation [k] = {1, . . . , k}.

2. Main Result

Our aim in this paper is to provide a classification of all cactus graphs according to
their domination number. For this purpose, we shall use a result of the authors
in [5] (which we present in Section 4) that establishes a lower bound on the
domination number of a graph in terms of its order, number of vertices of degree 1,
and number of cycles. From this result, we prove our desired characterization
below, where Gm

k is a family of graphs defined in Section 3.

Theorem 1. Let m ≥ 0 be an integer. If G is a cactus graph of order n ≥ 2
with k ≥ 0 cycles and ℓ leaves, then γ(G) = 1

3
(n− ℓ+ 2(1− k) +m), if and only

if G ∈ Gm
k .

We proceed as follows. In Section 3 we define the families Gm
k of graphs for

each integer k ≥ 0 and m ≥ 0. Known results on the domination number are
given in Section 4. In Section 5 we present a proof of our main result.

3. The Families Gm
k for m ≥ 0 and k ≥ 0

In this section, we define the families Gm
k of graphs for each integer k ≥ 0 and

m ≥ 0. The families G0
k , G

1
k , G

2
k , T

1,1
0

, T 2,1
0

of graphs were defined by the authors
in [5]. For completeness, we include these definitions in Sections 3.1 and 3.2. We
first define the families G0

k , G
1
k and G2

k of graphs in the special case when k = 0.

3.1. The families G0

0
, G1

0
and G2

0

Hajian et al. [5] defined the class of trees G0
0 , G

1
0 and G2

0 as follows.

• Let G0
0 be the class of all trees T that can be obtained from a sequence T1, . . . , Tk

of trees where k ≥ 1 such that T1 is a star with at least three vertices, T = Tk,
and, if k ≥ 2, then the tree Ti+1 can be obtained from the tree Ti by applying
Operation O defined below for all i ∈ [k − 1].

Operation O. Add a vertex disjoint copy of a star Qi with at least three vertices
to the tree Ti and add an edge joining a leaf of Qi and a leaf of Ti.
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• Let T 1,1
0

be the class of all trees T that can be obtained from a tree T ′ ∈ G0
0 by

adding a vertex disjoint copy of a star with at least three vertices and adding an
edge from a leaf of the added star to a non-leaf in T ′. Now, let G1

0 be the class of
all trees T that can be obtained from a sequence T1, . . . , Tk of trees where k ≥ 1
such that T1 ∈ T 1,1

0
∪ {P2}, T = Tk, and, if k ≥ 2, then the tree Ti+1 can be

obtained from the tree Ti by applying Operation O for all i ∈ [k − 1].

• Let T 2,1
0

be the class of all trees T that can be obtained from a tree T ′ ∈ G0
0

by adding a vertex disjoint copy of a star (with at least two vertices) and adding
an edge from the center of the added star to a non-leaf in T ′. Let T 2,2

0
be the

class of all trees T that can be obtained from a tree T ′ ∈ G1
0 by adding a vertex

disjoint copy of a star with at least three vertices and adding an edge from a
leaf of the added star to a non-leaf in T ′. Now, let G2

0 be the class of all trees T
that can be obtained from a sequence T1, . . . , Tk of trees, where k ≥ 1, such that
T1 ∈ T 2,1

0
∪T 2,2

0
∪{P4}, T = Tk, and, if k ≥ 2, then the tree Ti+1 can be obtained

from the tree Ti by applying Operation O for all i ∈ [k − 1].

3.2. The families G0

k
, G1

k
and G2

k
when k ≥ 1

For k ≥ 1, Hajian et al. [5] defined the families of graphs G0
k , G1

k and G2
k as

follows.

• For k ≥ 1, they recursively defined the family G0
i of graphs for each i ∈ [k] by

the following procedure.

Procedure A. For i ∈ [k], a graph Gi belongs to the family G0
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family G0
i−1 and the

vertices x and y are leaves in Gi−e that are connected by a unique path in Gi−e.

• For k ≥ 1, they recursively defined the family G1
i of graphs for each i ∈ [k] by

the following two procedures.

Procedure B. For i ∈ [k], a graph Gi belongs to the family G1
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family G1
i−1 and the

vertices x and y are leaves in Gi−e that are connected by a unique path in Gi−e.

Procedure C. For i ∈ [k], a graph Gi belongs to the family G1
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family G0
i−1 and the

vertices x and y are connected by a unique path in Gi − e. Further, exactly one
of x and y is a leaf in Gi − e.

• For k ≥ 1, they recursively defined the family G2
i of graphs for each i ∈ [k] by

the following four procedures.

Procedure D. For i ∈ [k], a graph Gi belongs to the family G2
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family G2
i−1 and the

vertices x and y are leaves in Gi−e that are connected by a unique path in Gi−e.
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Procedure E. For i ∈ [k], a graph Gi belongs to the family G2
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family G1
i−1 and the

vertices x and y are connected by a unique path in Gi − e. Further, exactly one
of x and y is a leaf in Gi − e.

Procedure F. For i ∈ [k], a graph Gi belongs to the family G2
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family G0
i−1 and the

vertices x and y are connected by a unique path in Gi − e. Further, both x and
y are non-leaves in Gi − e.

Procedure G. For 2 ≤ i ∈ [k], a graph Gi belongs to the family G2
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family G0
i−2 and the

vertices x and y are connected by exactly two paths in Gi − e. Further, both x
and y are leaves in Gi − e.

3.3. The family Gm

0
when m ≥ 3

In this section, we define a family of graphs Gm
0 for each integer m ≥ 3 as follows.

We call a non-leaf x in a tree T a special vertex if γ(T − x) ≥ γ(T ). For m ≥ 3,
we first recursively define the class T m,1

0
and T m,2

0
of trees as follows.

• Let T m,1
0

be the class of all trees T that can be obtained from a tree T ′ ∈ Gm−2
0

by adding a vertex disjoint copy of a star Q and joining the center of Q to a
special vertex in T ′.

• Let T m,2
0

be the class of all trees T that can be obtained from a tree T ′ ∈ Gm−1
0

by adding a vertex disjoint copy of a star Q with at least three vertices and
joining a leaf of Q to a non-leaf in T ′.

For m ≥ 3, we next recursively define the family Gm
0 of graphs constructed

from the families Gm−1
0

and Gm−2
0

as follows.

• Let Gm
0 be the class of all trees T that can be obtained from a sequence T1, . . . , Tq

of trees, where q ≥ 1 and where the tree T1 ∈ T m,1
0

∪ T m,2
0

and the tree T = Tq.
Further, if q ≥ 2, then for each i ∈ [q] \ {1}, the tree Ti can be obtained from the
tree Ti−1 by applying the Operation O defined in Section 3.1.

Operation O. Add a vertex disjoint copy of a star Qi with at least three vertices
to the tree Ti and add an edge joining a leaf of Qi and a leaf of Ti.

3.4. The family Gm

k
when m ≥ 3 and k ≥ 1

For m ≥ 3 and k ≥ 1, we construct the family Gm
k from Gm−2

k−1
, Gm−1

k−1
and Gm

k−1
,

recursively, as follows.

Procedure H. For i ∈ [k], a graph Gi belongs to the family Gm
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family Gm
i−1 and the

vertices x and y are connected by a unique path in Gi− e and γ(Gi) = γ(Gi− e).
Further, both x and y are leaves in Gi − e.
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Procedure I. For i ∈ [k], a graph Gi belongs to the family Gm
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family Gm−1

i−1
and the

vertices x and y are connected by a unique path in Gi− e and γ(Gi) = γ(Gi− e).
Further, exactly one of x and y is a leaf in Gi − e.

Procedure J. For i ∈ [k], a graph Gi belongs to the family Gm
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family Gm−2

i−1
and the

vertices x and y are connected by a unique path in Gi− e and γ(Gi) = γ(Gi− e).
Further, both x and y are non-leaves in Gi − e.

4. Known Results

In this section, we present some preliminary observations and known results. We
begin with the following properties of graphs that belong to the families G0

k , G
1
k

and G2
k for k ≥ 0.

Observation 1. The following properties hold in a graph G ∈ G0
k ∪ G1

k ∪ G2
k,

where k ≥ 0.

(a) The graph G contains exactly k cycles.

(b) The graph G ∈ G0
k ∪ G1

k is a cactus graph.

We shall also need the following elementary property of a dominating set in
a graph.

Observation 2. If G is connected graph of order at least 3, then there exists a

γ-set of G that contains no leaf of G.

The following lemma is established in [5].

Lemma 2 [5]. If G is a connected graph and C is an arbitrary cycle in G, then

there is an edge e of C such that γ(G− e) = γ(G).

Several authors obtained bounds on the domination number in terms of dif-
ferent variants of graphs, see for example [1, 2, 3, 6, 9]. Let R be the family of
all trees in which the distance between any two distinct leaves is congruent to 2
modulo 3. Lemańska [9] established the following lower bound on the domination
number of a tree in terms of its order and number of leaves.

Theorem 3 [9]. If T is a tree of order n ≥ 2 with ℓ leaves, then γ(T ) ≥ (n− ℓ+
2)/3, with equality if and only if T ∈ R.

Hajian et al. [5] showed that the family R is precisely the family G0
0 ; that is,

R = G0
0 .

As a consequence of Theorem 3, we have the following result.
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Corollary 4 [9]. If T is a tree of order n ≥ 2 with ℓ leaves, then γ(T ) =
1

3
(n− ℓ+ 2 +m) for some integer m ≥ 0.

Hajian et al. [5] strengthened the result in Theorem 3 as follows.

Theorem 5 [5]. If T is a tree of order n ≥ 2 with ℓ leaves, then the following

holds.

(a) γ(T ) ≥ 1

3
(n− ℓ+ 2), with equality if and only if T ∈ G0

0 .

(b) γ(T ) = 1

3
(n− ℓ+ 3) if and only if T ∈ G1

0 .

(c) γ(T ) = 1

3
(n− ℓ+ 4) if and only if T ∈ G2

0 .

The result of Theorem 5 was generalized in [5] to connected graphs as follows.

Theorem 6 [5]. If G is a connected graph of order n ≥ 2 with k ≥ 0 cycles and

ℓ leaves, then the following holds.

(a) γ(G) ≥ 1

3
(n− ℓ+ 2(1− k)), with equality if and only if G ∈ G0

k.

(b) γ(G) = 1

3
(n− ℓ+ 3− 2k) if and only if G ∈ G1

k.

(c) γ(G) = 1

3
(n− ℓ+ 4− 2k) if and only if G ∈ G2

k.

As a consequence of Theorem 6(a), we have the following.

Corollary 7 [5]. If G is a connected graph of order n ≥ 2 with k ≥ 0 cycles and

ℓ leaves, then γ(G) = 1

3
(n− ℓ+ 2(1− k) +m) for some integer m ≥ 0.

5. Proof of Main Result

In this section, we present a proof of our main result, namely Theorem 1. For
this purpose, we first prove Theorem 1 in the special case when k = 0, that is,
when the cactus is a tree.

Theorem 8. Let m ≥ 0 be an integer. If T is a tree of order n ≥ 2 with ℓ leaves,
then γ(T ) = 1

3
(n− ℓ+ 2 +m) if and only if T ∈ Gm

0 .

Proof. Let T be a tree of order n ≥ 2 with ℓ leaves. We proceed by induction
on m ≥ 0, namely first-induction, to show that γ(T ) = 1

3
(n− ℓ+ 2 +m), if and

only if T ∈ Gm
0 . For the base step of the first-induction let m ≤ 2. If m = 0, then

the result follows by Theorem 5(a). If m = 1, then the result follows by Theorem
5(b). If m = 2, then the result follows by Theorem 5(c). This establishes the
base step of the induction. Let m ≥ 3 and assume that the result holds for all
trees T0 of order n0 with ℓ0 leaves, for m0 < m. Let T be a tree of order n and
with ℓ leaves. We will show that γ(T ) = 1

3
(n− ℓ+2+m), if and only if T ∈ Gm

0 .

(=⇒) Assume that γ(T ) = 1

3
(n − ℓ + 2 + m) (where we recall that here

m ≥ 3). We show that T ∈ Gm
0 . If T = P2, then by the definition of the family
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G1
0 , we have T ∈ G1

0 . Then by Theorem 5(b), γ(T ) = 1

3
(n − ℓ + 2 + 1), and so

m = 1, a contradiction. Hence we may assume that diam(T ) ≥ 2, for otherwise
the desired result follows. If diam(T ) = 2, then T is a star, and by the definition
of the family G0

0, we have T ∈ G0
0. Thus by Theorem 5(a), γ(T ) = 1

3
(n−ℓ+2+1),

and so m = 0, a contradiction. If diam(T ) = 2, then T is a double star, and
by definition of the family G2

0 we have T ∈ T 2,1
0

⊆ G2
0 . Thus by Theorem 5(c),

γ(T ) = 1

3
(n− ℓ+2+2), and so m = 2, a contradiction. Hence, diam(T ) ≥ 4 and

n ≥ 5.
We now root the tree T at a vertex r at the end of a longest path P in T .

Let u be a vertex at maximum distance from r, and so dT (u, r) = diam(T ).
Necessarily, r and u are leaves. Let v be the parent of u, let w be the parent of
v, let x be the parent of w, and let y be the parent of x. Possibly, y = r. Since
u is a vertex at maximum distance from the root r, every child of v is a leaf. By
Observation 2, there exists a γ-set, say S, of T that contains no leaf of T ; that
is, L(T ) ∩ S = ∅. In particular, we note that |S| = γ(T ) = 1

3
(n− ℓ+ 2 +m). In

order to dominate the vertex u, we note therefore that v ∈ S. Let dT (v) = t. We
note that t ≥ 2.

Claim 1. If dT (w) ≥ 3, then T ∈ Gm
0 .

Proof. Suppose that dT (w) ≥ 3. In this case, we consider the tree T ′ = T −
V (Tv), where Tv is the maximal subtree at v. Let T ′ have order n′ and let T ′

have ℓ′ leaves. We note that n′ = n − t. Since w is not a leaf in T ′, we have
ℓ′ = ℓ − (t − 1) = ℓ − t + 1. By Corollary 4, γ(T ′) = 1

3
(n′ − ℓ′ + 2 + m′) for

some integer m′ ≥ 0. If a child of w is a leaf in T ′, then since the dominating
set S contains no leaves, we have that w ∈ S. If no child of w is a leaf in T ,
then every child of w is a support vertex and therefore belongs to the set S. In
both cases, we note that the set S \ {v} is a dominating set of T ′, implying that
γ(T ′) ≤ |S|−1 = γ(T )−1. Every γ-set of T ′ can be extended to a dominating set
of T by adding to it the vertex v, implying that γ(T ) ≤ γ(T ′)+ 1. Consequently,
γ(T ′) = γ(T )− 1. Thus,

γ(T ′) = γ(T )− 1

= 1

3
(n− ℓ+ 2 +m)− 1

= 1

3
(n− ℓ+m− 1)

= 1

3
((n′ + t)− (ℓ′ + t− 1) +m− 1)

= 1

3
(n′ − ℓ′ +m).

As observed earlier, γ(T ′) = 1

3
(n′ − ℓ′ + 2 + m′) for some integer m′ ≥ 0.

Thus, m′ = m − 2. Applying the inductive hypothesis to the tree T ′, we have
T ′ ∈ Gm−2

0
. Let v′ be a child of w different from v. We note that the tree Tv′ is

a component of T ′ − w and this component is dominated by the vertex v′. We
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can therefore choose a γ-set of T ′ − w to contain the vertex v′. Such a γ-set of
T ′ − w is also a dominating set of T ′, implying that γ(T ′) ≤ γ(T ′ − w); that is,
the vertex w is a special vertex of T ′. Thus, the tree T is obtained from the tree
T ′ ∈ Gm−2

0
by adding a vertex disjoint copy of a star Tv and joining the center v

of Tv to a special vertex w in T ′. Thus T ∈ T m,1
0

. Consequently, T ∈ Gm
0 . This

completes the proof of Claim 1. 2

By Claim 1, we may assume that dT (w) = 2, for otherwise T ∈ Gm
0 as desired.

We now consider the tree T ′ = T − V (Tw), where Tw is the maximal subtree at
w. Let T ′ have order n′ and let T ′ have ℓ′ leaves. We note that n′ = n − t − 1.
By Corollary 4, γ(T ′) = 1

3
(n′ − ℓ′ + 2 +m′) for some integer m′ ≥ 0.

As observed earlier, the vertex v belongs to the dominating set S. If w ∈ S,
then we can replace w in S with the vertex x to produce a new γ-set of T that
contains no leaf of T . Hence we may assume that w /∈ S, implying that the set
S \ {v} is a dominating set of T ′ and therefore γ(T ′) ≤ |S| − 1 = γ(T )− 1. Every
γ-set of T ′ can be extended to a dominating set of T by adding to it the vertex
v, implying that γ(T ) ≤ γ(T ′) + 1. Consequently, γ(T ′) = γ(T )− 1.

Claim 2. If dT (x) ≥ 3, then T ∈ Gm
0 .

Proof. Suppose that dT (x) ≥ 3. In this case, the vertex x is not a leaf of T ′,
implying that ℓ′ = ℓ− (t− 1) = ℓ− t+ 1. Thus,

γ(T ′) = γ(T )− 1

= 1

3
(n− ℓ+m− 1)

= 1

3
((n′ + t+ 1)− (ℓ′ + t− 1) +m− 1)

= 1

3
(n′ − ℓ′ +m+ 1).

As observed earlier, γ(T ′) = 1

3
(n′ − ℓ′ + 2 + m′) for some integer m′ ≥ 0.

Thus, m′ = m − 1. Applying the inductive hypothesis to the tree T ′, we have
T ′ ∈ Gm−1

0
. Thus, the tree T is obtained from the tree T ′ ∈ Gm−1

0
by adding a

vertex disjoint copy of a star Tv with at least three vertices and joining a leaf of
the star Tv to the non-leaf x of T ′. Thus T ∈ T m,2

0
. Consequently, T ∈ Gm

0 . 2

By Claim 2, we may assume that dT (x) = 2, for otherwise T ∈ Gm
0 as desired.

In this case, the vertex x is a leaf of T ′, implying that ℓ′ = ℓ−(t−1)+1 = ℓ−t+2.
Thus,

1

3
(n′ − ℓ′ + 2 +m′) = γ(T ′) = γ(T )− 1

= 1

3
(n− ℓ+m− 1)

= 1

3
((n′ + t+ 1)− (ℓ′ + t− 2) +m− 1)

= 1

3
(n′ − ℓ′ +m+ 2),
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and so m = m′. Applying the inductive hypothesis to the tree T ′, we have
T ′ ∈ Gm

0 . Thus, the tree T is obtained from the tree T ′ ∈ Gm
0 by adding a

vertex disjoint copy of a star Tv with at least three vertices and adding the edge
xw joining a leaf w of Tv and a leaf x of T ′; that is, T is obtained from T ′ by
Operation O. Hence, by definition of the family Gm

0 , we have T ∈ Gm
0 , as desired.

This completes the necessity part of the proof of Theorem 8.

(⇐=) Conversely, assume that T ∈ Gm
0 , where m ≥ 0. Recall that T is a tree

of order n ≥ 2 with ℓ leaves. Thus, T is obtained from a sequence T1, . . . , Tq of

trees, where q ≥ 1 and where the tree T1 ∈ T m,1
0

∪ T m,2
0

, and the tree T = Tq.
Further, if q ≥ 2, then for each i ∈ [q] \ {1}, the tree Ti can be obtained from the
tree Ti−1 by applying the following Operation O. We proceed by induction on
q ≥ 1, namely second-induction, to show that γt(T ) =

1

3
(n− ℓ+ 2 +m).

Claim 3. If q = 1, then γt(T ) = γ(T ) = 1

3
(n− ℓ+ 2 +m).

Proof. Suppose that q = 1. Thus, T1 ∈ T m,1
0

∪ T m,2
0

. We consider the two
possibilities in turn, and in both cases we will show that the tree T ∈ Gm

0 satisfies
γ(T ) = 1

3
(n− ℓ+ 2 +m).

Claim 3.1. If T ∈ T m,1
0

, then γt(T ) =
1

3
(n− ℓ+ 2 +m).

Proof. Suppose that T ∈ T m,1
0

. Thus, T is obtained from a tree T ′ ∈ Gm−2
0

by adding a vertex disjoint copy of a star Q with t ≥ 2 vertices and joining the
center of Q, say y, to a special vertex x in T ′. Let T ′ have order n′, and so
n′ = n − t. Further, let T ′ have ℓ′ leaves. Since x is a non-leaf of T ′, we have
ℓ′ = ℓ − (t − 1). Applying the first-induction hypothesis to the tree T ′ ∈ Gm−2

0
,

we have γt(T
′) = 1

3
(n′ − ℓ′ + 2 + (m− 2)) = 1

3
(n′ − ℓ′ +m).

We show next that γ(T ) = γ(T ′)+1. Since x is a special vertex of T ′, we note
that γ(T ′−x) ≥ γ(T ′). Every γ-set of T ′ can be extended to a dominating set of T
by adding to it the vertex y, implying that γ(T ) ≤ γ(T ′)+ 1. Conversely, we can
choose a γ-set, say D, of T to contain the vertex y which dominates the star Q.
If x ∈ D, then D\{y} is a dominating set of T ′, and so γ(T ′) ≤ |D|−1. If x /∈ D,
then D \{y} is a dominating set of T ′−x, and so γ(T ′) ≤ γ(T ′−x) ≤ |D|−1. In
both cases, γ(T ′) ≤ |D| − 1 = γ(T )− 1. Consequently, γ(T ) = γ(T ′) + 1. Thus,

γ(T ) = γ(T ′) + 1

= 1

3
(n′ − ℓ′ +m) + 1

= 1

3
((n− t)− (ℓ− t+ 1) +m) + 1

= 1

3
(n− ℓ+ 2 +m).

This completes the proof of Claim 3.1. 2
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Claim 3.2. If T ∈ T m,2
0

, then γt(T ) =
1

3
(n− ℓ+ 2 +m).

Proof. Suppose that T ∈ T m,2
0

. Thus, T is obtained from a tree T ′ ∈ Gm−1
0

by
adding a vertex disjoint copy of a star Q with t ≥ 3 vertices and joining a leaf,
say v, of Q to a non-leaf, say w, in T ′. Let u be the center of the star Q. Let
T ′ have order n′, and so n′ = n − t. Further, let T ′ have ℓ′ leaves. Since w is a
non-leaf of T ′, we have ℓ′ = ℓ− (t−2). Applying the first-induction hypothesis to
the tree T ′ ∈ Gm−1

0
, we have γt(T

′) = 1

3
(n′− ℓ′+2+(m−1)) = 1

3
(n′− ℓ′+m+1).

We show next that γ(T ) = γt(T
′) + 1. Every γ-set of T ′ can be extended to

a dominating of T by adding to it the vertex u, implying that γ(T ) ≤ γ(T ′) + 1.
By Observation 2, there exists a γ-set D of T that contains no leaf of G. Thus,
u ∈ D. If v ∈ D, then we can replace v in D with the vertex w. Hence we
may assume that v /∈ D, implying that D \ {u} is a dominating set of T ′, and so
γ(T ′) ≤ |D| − 1 = γ(T )− 1. Consequently, γ(T ) = γ(T ′) + 1. Thus,

γ(T ) = γ(T ′) + 1

= 1

3
(n′ − ℓ′ +m+ 1) + 1

= 1

3
((n− t)− (ℓ− t+ 2) +m+ 1) + 1

= 1

3
(n− ℓ+ 2 +m).

This completes the proof of Claim 3.2. 2

By Claims 3.1 and 3.2, if T ∈ T m,1
0

∪ T m,2
0

, then γ(T ) = 1

3
(n − ℓ + 2 +m).

This completes the proof of Claim 3. 2

By Claim 3, if q = 1, then γ(T ) = 1

3
(n − ℓ + 2 + m). This establishes the

base step of the second-induction. Let q ≥ 2 and assume that if q′ is an integer
where 1 ≤ q′ < q and if T ′ ∈ Gm

0 is a tree of order n′ ≥ 2 with ℓ′ leaves obtained
from a sequence of q′ trees, then γ(T ) = 1

3
(n′ − ℓ′ + 2 + m). Recall that T is

obtained from a sequence T1, . . . , Tq of trees, where q ≥ 1 and where the tree

T1 ∈ T m,1
0

∪ T m,2
0

, and the tree T = Tq. Further for each i ∈ [q] \ {1}, the tree Ti

can be obtained from the tree Ti−1 by applying the Operation O.
We now consider the tree T ′ = Tq−1. Thus, the tree T ∈ Gm

0 is obtained from
the tree T ′ by adding a vertex disjoint copy of a star Q with t ≥ 3 vertices and
adding an edge joining a leaf of Q to a leaf of T ′. Let T ′ have order n′ and let
T ′ have ℓ′ leaves. We note that n′ = n − t and ℓ′ = ℓ − (t − 2) + 1 = ℓ − t + 3.
Applying the second-induction hypothesis to the tree T ′ ∈ Gm

0 , we have γ(T ′) =
1

3
(n′ − ℓ′ + 2+m). Analogous arguments as before show that γ(T ) = γt(T

′) + 1.
Thus,

γ(T ) = γ(T ′) + 1

= 1

3
(n′ − ℓ′ + 2 +m) + 1

= 1

3
((n− t)− (ℓ− t+ 3) + 2 +m) + 1

= 1

3
(n− ℓ+ 2 +m).
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Hence we have shown that if T ∈ Gm
0 , where m ≥ 0 and where T has order n ≥ 2

with ℓ leaves, then γ(T ) = 1

3
(n − ℓ + 2 + m). This completes the proof of

Theorem 8.

We are now in a position to prove our main result, namely Theorem 1. Recall
its statement.

Theorem 1. Let m ≥ 0 be an integer. If G is a cactus graph of order n ≥ 2
with k ≥ 0 cycles and ℓ leaves, then γ(G) = 1

3
(n− ℓ+ 2(1− k) +m), if and only

if G ∈ Gm
k .

Proof. Let m ≥ 0 be an integer, and let G be a cactus graph of order n ≥ 2
with k ≥ 0 cycles and ℓ leaves. We proceed by induction on k to show that
γ(G) = 1

3
(n− ℓ+ 2(1− k) +m) if and only if G ∈ Gm

k . If k = 0, then the result
follows from Theorem 8. This establishes the base case. Let k ≥ 1 and assume
that if G′ is a cactus graph of order n′ ≥ 2 with k′ cycles and ℓ′ leaves where
0 ≤ k′ < k, then γ(G) = 1

3
(n′ − ℓ′ + 2(1 − k′) +m′) if and only if G ∈ Gm′

k′ . Let
G be a cactus graph of order n ≥ 2 with k ≥ 0 cycles and ℓ leaves. We will show
that γ(G) = 1

3
(n− ℓ+ 2(1− k) +m), if and only if G ∈ Gm

k . If m = 0, then the
result follows by Theorem 6(a). If m = 1, then the result follows by Theorem
6(b). If m = 2, then the result follows by Theorem 6(c). Thus, we may assume
that m ≥ 3, for otherwise the desired result follows.

(=⇒) Assume that γ(G) = 1

3
(n− ℓ+ 2+m− 2k) (where we recall that here

m ≥ 3). We will show that T ∈ Gm
k . By Lemma 2, the graph G contains a

cycle edge e such that γ(G − e) = γ(G). Let e = uv, and consider the graph
G′ = G− e. Let G′ have order n′ with k′ ≥ 0 cycles and ℓ′ leaves. We note that
n′ = n. Further, since G is a cactus graph, k′ = k−1. Removing the cycle edge e
from G produces at most two new leaves, namely the ends of the edge e, implying
that ℓ′ − 2 ≤ ℓ ≤ ℓ′. By Corollary 7, we have γ(G′) = 1

3
(n′ − ℓ′ + 2 +m′ − 2k′)

for some integer m′ ≥ 0. Applying the inductive hypothesis to the cactus graph
G′, we have that G′ ∈ Gm′

k′ = Gm′

k−1
. Our earlier observations imply that

1

3
(n− ℓ+ 2 +m− 2k) = γ(G) = γ(G′)

= 1

3
(n′ − ℓ′ + 2 +m′ − 2k′)

= 1

3
(n− ℓ′ + 2 +m′ − 2(k − 1)),

and so m−ℓ = m′−ℓ′+2. Since G is a cactus, the vertices u and v are connected
in G′ = G− e by a unique path. As observed earlier, ℓ′ − 2 ≤ ℓ ≤ ℓ′.

Suppose that ℓ = ℓ′. In this case, neither u nor v is a leaf of G′, implying that
both u and v have degree at least 2 in G′. Further, the equation m−ℓ = m′−ℓ′+2
simplifies to m′ = m−2. Thus, G′ ∈ Gm−2

k−1
. Hence, the graph G is obtained from

G′ by Procedure J and therefore G ∈ Gm
k .
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Suppose that ℓ = ℓ′ − 1. In this case, exactly one of u and v is a leaf of
G′. Further, the equation m − ℓ = m′ − ℓ′ + 2 simplifies to m′ = m − 1. Thus,
G′ ∈ Gm−1

k−1
. Hence, the graph G is obtained from G′ by Procedure I, and therefore

G ∈ Gm
k .

Suppose that ℓ = ℓ′ − 2. In this case, both u and v are leaves in G′. Further,
the equation m− ℓ = m′ − ℓ′ + 2 simplifies to m′ = m. Thus, G′ ∈ Gm

k−1
. Hence,

the graph G is obtained from G′ by Procedure H, and therefore G ∈ Gm
k . This

completes the necessity part of the proof of Theorem 1.

(⇐=) Conversely, assume that G ∈ Gm
k . Recall that by our earlier assump-

tions, m ≥ 3 and k ≥ 1. Thus, the graph G is obtained from either a graph
G′ ∈ Gm

k−1
by Procedure H or from a graph G′ ∈ Gm−1

k−1
by Procedure I or from

a graph G′ ∈ Gm−2

k−1
by Procedure J. In all three cases, let G′ have order n′ with

k′ ≥ 0 cycles and ℓ′ leaves. Further, in all cases we note that n′ = n and k′ = k−1.
We consider the three possibilities in turn.

Suppose firstly that G is obtained from a graph G′ ∈ Gm
k−1

by Procedure H.
In this case, ℓ = ℓ′ − 2 and γ(G) = γ(G′). Applying the inductive hypothesis to
the graph G′ ∈ Gm

k−1
, we have γ(G) = γ(G′) = 1

3
(n′ − ℓ′ + 2 +m − 2(k − 1)) =

1

3
(n− (ℓ+ 2) + 4 +m− 2k) = 1

3
(n− ℓ+ 2 +m− 2k).

Suppose next that G is obtained from a graph G′ ∈ Gm−1

k−1
by Procedure I. In

this case, ℓ = ℓ′ − 1 and γ(G) = γ(G′). Applying the inductive hypothesis to the
graph G′ ∈ Gm−1

k−1
, we have γ(G) = γ(G′) = 1

3
(n′ − ℓ′ + 2+ (m− 1)− 2(k − 1)) =

1

3
(n− (ℓ+ 1) + 3 +m− 2k) = 1

3
(n− ℓ+ 2 +m− 2k).

Suppose finally that G is obtained from a graph G′ ∈ Gm−2

k−1
by Procedure J.

In this case, ℓ = ℓ′ and γ(G) = γ(G′). Applying the inductive hypothesis to the
graph G′ ∈ Gm−2

k−1
, we have γ(G) = γ(G′) = 1

3
(n′ − ℓ′ + 2+ (m− 2)− 2(k − 1)) =

1

3
(n − ℓ + 2 +m − 2k). In all three cases, γ(G) = 1

3
(n − ℓ + 2 +m − 2k). This

completes the proof of Theorem 1.
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