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Abstract

A set S of vertices in a graph G is a dominating set of G if every vertex
not in S is adjacent to some vertex in S. The domination number, v(G), of G
is the minimum cardinality of a dominating set of G. The authors proved in
[A new lower bound on the domination number of a graph, J. Comb. Optim.
38 (2019) 721-738] that if G is a connected graph of order n > 2 with & > 0
cycles and £ leaves, then v(G) > [(n — £ + 2 — 2k)/3]. As a consequence of
the above bound, v(G) = (n — £ + 2(1 — k) + m)/3 for some integer m > 0.
In this paper, we characterize the class of cactus graphs achieving equality
here, thereby providing a classification of all cactus graphs according to their
domination number.
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1. INTRODUCTION

A dominating set of a graph G is a set S of vertices of G such that every vertex
not in S has a neighbor in S, where two vertices are neighbors in G if they are
adjacent. The minimum cardinality of a dominating set is the domination number
of G, denoted by v(G). A dominating set of cardinality v(G) is called a ~y-set
of G. As remarked in [5], the notion of domination and its variations in graphs
has been studied a great deal; a rough estimate says that it occurs in more than
6000 papers to date. For fundamentals of domination theory in graphs we refer
the reader to the so-called domination books by Haynes, Hedetniemi, and Slater
[6, 7]. An updated glossary of domination parameters can be found in [4].

Two vertices u and v in a graph G are connected if there exists a (u,v)-path
in G. The graph G is connected if every two vertices in G are connected. A block
of GG is a maximal connected subgraph of G which has no cut-vertex of its own.
A cactus is a connected graph in which every edge belongs to at most one cycle.
Equivalently, a (nontrivial) cactus is a connected graph in which every block is
an edge or a cycle. The distance between two vertices u and v in a connected
graph G is the minimum length of a (u,v)-path in G. The diameter, diam(G), of
G is the maximum distance among pairs of vertices in G.

For notation and graph theory terminology we generally follow [8]. In partic-
ular, the order of a graph G with vertex set V(G) and edge set E(G) is given by
n(G) = |V(G)| and its size by m(G) = |E(G)|. A neighbor of a vertex v in G is
a vertex adjacent to v, and the open neighborhood of v is the set of neighbors of
v, denoted Ng(v). The closed neighborhood of v is the set Ng[v] = Ng(v) U {v}.
The degree of a vertex v in G is given by dg(v) = |Ng(v)|.

For a set S of vertices in a graph G, the subgraph induced by S is denoted
by G[S]. Further, the subgraph obtained from G by deleting all vertices in .S and
all edges incident with vertices in S is denoted by G — S. If S = {v}, we simply
denote G —{v} by G —v. A leaf of a graph G is a vertex of degree 1 in G, and its
unique neighbor is called a support vertex. The set of all leaves of G is denoted
by L(G), and we let /(G) = |L(G)| be the number of leaves in G. We denote
the set of support vertices of G by S(G). We call a vertex of degree at least 2 a
non-leaf.

Following our notation in [5], we denote the path and cycle on n vertices by
P, and C,, respectively. A complete graph on n vertices is denoted by K, while
a complete bipartite graph with partite sets of size n and m is denoted by K, ;,.
A star is the graph Ky, where £ > 1. Further if £ > 1, the vertex of degree k
is called the center vertex of the star, while if £k = 1, arbitrarily designate either
vertex of P, as the center. A double star is a tree with exactly two (adjacent)
non-leaf vertices.

A rooted tree T distinguishes one vertex r called the root. For each vertex
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v # r of T, the parent of v is the neighbor of v on the unique (r,v)-path, while
a child of v is any other neighbor of v. A descendant of v is a vertex u # v
such that the unique (r,u)-path contains v. In particular, every child of v is a
descendant of v. We let D(v) denote the set of descendants of v, and we define
Dv] = D(v) U {v}. The mazimal subtree at v is the subtree of T' induced by
DJv], and is denoted by T,. We use the standard notation [k] = {1,...,k}.

2. MAIN RESuLT

Our aim in this paper is to provide a classification of all cactus graphs according to
their domination number. For this purpose, we shall use a result of the authors
in [5] (which we present in Section 4) that establishes a lower bound on the
domination number of a graph in terms of its order, number of vertices of degree 1,
and number of cycles. From this result, we prove our desired characterization
below, where G;* is a family of graphs defined in Section 3.

Theorem 1. Let m > 0 be an integer. If G is a cactus graph of order n > 2
with k > 0 cycles and € leaves, then v(G) = £(n — €+ 2(1 — k) +m), if and only
if G e gl

We proceed as follows. In Section 3 we define the families G;"* of graphs for
each integer £k > 0 and m > 0. Known results on the domination number are
given in Section 4. In Section 5 we present a proof of our main result.

3. THE FAMILIES G;"" FOR m > 0 AND k >0

In this section, we define the families G;"* of graphs for each integer £ > 0 and
m > 0. The families gg, g,i, g,%, 761’1, 762’1 of graphs were defined by the authors
in [5]. For completeness, we include these definitions in Sections 3.1 and 3.2. We
first define the families g,g, g,i and g,% of graphs in the special case when k = 0.

3.1. The families GJ, G} and G2

Hajian et al. [5] defined the class of trees 98, gé and gg as follows.

o Let gg be the class of all trees T" that can be obtained from a sequence 17, ..., T}
of trees where k£ > 1 such that T} is a star with at least three vertices, T' = Ty,
and, if £ > 2, then the tree T;;; can be obtained from the tree T; by applying
Operation O defined below for all i € [k — 1].

Operation O. Add a vertex disjoint copy of a star (Q; with at least three vertices
to the tree T; and add an edge joining a leaf of (); and a leaf of T;.
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o Let ’761’1 be the class of all trees T that can be obtained from a tree T" € 98 by
adding a vertex disjoint copy of a star with at least three vertices and adding an
edge from a leaf of the added star to a non-leaf in 7”. Now, let g& be the class of
all trees T' that can be obtained from a sequence 11, ..., T} of trees where k > 1
such that T} € 761’1 U{P2}, T = Ty, and, if k£ > 2, then the tree T;;1 can be
obtained from the tree T; by applying Operation O for all i € [k — 1].

o Let ’762’1 be the class of all trees T" that can be obtained from a tree 1" € 98
by adding a vertex disjoint copy of a star (with at least two vertices) and adding
an edge from the center of the added star to a non-leaf in T". Let 762’2 be the
class of all trees T that can be obtained from a tree 7" € gé by adding a vertex
disjoint copy of a star with at least three vertices and adding an edge from a
leaf of the added star to a non-leaf in T”. Now, let QS be the class of all trees T’
that can be obtained from a sequence 171, ..., T} of trees, where k > 1, such that
T, € 762’1 U7E)2’2 U{Ps}, T = T}, and, if k > 2, then the tree T;;1 can be obtained
from the tree T; by applying Operation O for all i € [k — 1].

3.2. The families gg, g; and g,ﬁ when k > 1

For k > 1, Hajian et al. [5] defined the families of graphs G?, G} and G? as
follows.

e For k > 1, they recursively defined the family G? of graphs for each i € [k] by
the following procedure.

Procedure A. For i € [k], a graph G; belongs to the family G? if it contains
an edge e = zy such that the graph G; — e belongs to the family G? ; and the
vertices « and y are leaves in G; —e that are connected by a unique path in G; —e.

e For k > 1, they recursively defined the family G} of graphs for each i € [k] by
the following two procedures.

Procedure B. For i € [k], a graph G; belongs to the family G} if it contains
an edge e = zy such that the graph G; — e belongs to the family g}fl and the
vertices x and y are leaves in G; —e that are connected by a unique path in G; —e.

Procedure C. For i € [k], a graph G; belongs to the family G} if it contains
an edge e = zy such that the graph G; — e belongs to the family G2 ; and the
vertices « and y are connected by a unique path in G; — e. Further, exactly one
of x and y is a leaf in G; — e.

e For k > 1, they recursively defined the family g,? of graphs for each i € [k] by
the following four procedures.

Procedure D. For i € [k], a graph G; belongs to the family G? if it contains
an edge e = zy such that the graph G; — e belongs to the family G ; and the
vertices « and y are leaves in G; —e that are connected by a unique path in G; —e.
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Procedure E. For i € [k], a graph G; belongs to the family G? if it contains
an edge e = zy such that the graph G; — e belongs to the family G! ; and the
vertices « and y are connected by a unique path in GG; — e. Further, exactly one
of x and y is a leaf in G; — e.

Procedure F. For i € [k], a graph G; belongs to the family G? if it contains
an edge e = zy such that the graph G; — e belongs to the family G2 ; and the
vertices « and y are connected by a unique path in G; — e. Further, both  and
y are non-leaves in G; — e.

Procedure G. For 2 < i € [k], a graph G; belongs to the family G? if it contains
an edge e = zy such that the graph G; — e belongs to the family G2 , and the
vertices « and y are connected by exactly two paths in G; — e. Further, both z
and y are leaves in G; — e.

3.3. The family Gg* when m > 3

In this section, we define a family of graphs G* for each integer m > 3 as follows.
We call a non-leaf x in a tree T' a special vertex if v(T — x) > ~(T). For m > 3,
we first recursively define the class 73”’1 and 76’”’2 of trees as follows.

e Let 7}]7”’1 be the class of all trees T that can be obtained from a tree 7" € QS%Q
by adding a vertex disjoint copy of a star ) and joining the center of @) to a
special vertex in T".
o Let 76”"’2 be the class of all trees T’ that can be obtained from a tree 17" € gg”—l
by adding a vertex disjoint copy of a star () with at least three vertices and
joining a leaf of @) to a non-leaf in T".

For m > 3, we next recursively define the family Gj* of graphs constructed
from the families gg”—l and 96”_2 as follows.
o Let Gi* be the class of all trees T" that can be obtained from a sequence 11, ..., T
of trees, where ¢ > 1 and where the tree T} € 78”’1 U 7E)m’2 and the tree T' = T,.
Further, if ¢ > 2, then for each ¢ € [¢] \ {1}, the tree T; can be obtained from the
tree T;_1 by applying the Operation O defined in Section 3.1.
Operation O. Add a vertex disjoint copy of a star Q; with at least three vertices
to the tree T; and add an edge joining a leaf of @); and a leaf of T;.

3.4. The family G;* when m >3 and k > 1

For m > 3 and k > 1, we construct the family G;" from g,jff, Q]T:ll and G |,
recursively, as follows.

Procedure H. For i € [k], a graph G; belongs to the family G if it contains
an edge e = zy such that the graph G; — e belongs to the family G}, and the
vertices x and y are connected by a unique path in G; —e and v(G;) = v(G; —e).
Further, both x and y are leaves in G; — e.
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Procedure I. For i € [k], a graph G; belongs to the family G/ if it contains
an edge e = xy such that the graph G; — e belongs to the family G?z_ll and the
vertices x and y are connected by a unique path in G; —e and 7(G;) = v(G; —e).
Further, exactly one of x and y is a leaf in G; — e.

Procedure J. For i € [k], a graph G; belongs to the family G if it contains
an edge e = xy such that the graph G; — e belongs to the family G?SQ and the
vertices x and y are connected by a unique path in G; —e and v(G;) = v(G; —e).
Further, both  and y are non-leaves in G; — e.

4. KNOWN RESULTS

In this section, we present some preliminary observations and known results. We
begin with the following properties of graphs that belong to the families gg, Q,i
and Q,% for k£ > 0.

Observation 1. The following properties hold in a graph G € gg U g,i U g,%,
where k > 0.

(a) The graph G contains exactly k cycles.
(b) The graph G € GY UG} is a cactus graph.

We shall also need the following elementary property of a dominating set in
a graph.

Observation 2. If G is connected graph of order at least 3, then there exists a
v-set of G that contains no leaf of G.

The following lemma is established in [5].

Lemma 2 [5]. If G is a connected graph and C' is an arbitrary cycle in G, then
there is an edge e of C such that v(G — e) = v(G).

Several authors obtained bounds on the domination number in terms of dif-
ferent variants of graphs, see for example [1, 2, 3, 6, 9]. Let R be the family of
all trees in which the distance between any two distinct leaves is congruent to 2
modulo 3. Lemariska [9] established the following lower bound on the domination
number of a tree in terms of its order and number of leaves.

Theorem 3 [9]. If T is a tree of order n > 2 with ¢ leaves, then v(T) > (n— £+
2)/3, with equality if and only if T € R.

Hajian et al. [5] showed that the family R is precisely the family GJ; that is,
R =G§.
As a consequence of Theorem 3, we have the following result.
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Corollary 4 [9]. If T is a tree of order n > 2 with { leaves, then v(T') =

%(n — 0+ 24 m) for some integer m > 0.

Hajian et al. [5] strengthened the result in Theorem 3 as follows.
Theorem 5 [5|. If T is a tree of order n > 2 with ¢ leaves, then the following
holds.
(a) Y(T) > &(n — £+ 2), with equality if and only if T € G§.
(b) Y(T) = z(n— £+ 3) if and only if T € G§.
(¢) Y(T) = 3(n—L+4) if and only if T € G§.

[= Qo= ol

The result of Theorem 5 was generalized in [5] to connected graphs as follows.

Theorem 6 [5]. If G is a connected graph of order n > 2 with k > 0 cycles and
l leaves, then the following holds.

(a) ¥(G) > 2(n—€+2(1 — k)), with equality if and only if G € Gy.

(b) v(G) = %(n — 0+ 3 —2k) if and only if G € G}.

(c) v(G) = %(n — 0 +4—2k) if and only if G € G2.

As a consequence of Theorem 6(a), we have the following.

Corollary 7 [5]. If G is a connected graph of order n > 2 with k > 0 cycles and
C leaves, then v(G) = $(n — €+ 2(1 — k) +m) for some integer m > 0.

5. PROOF OF MAIN RESULT

In this section, we present a proof of our main result, namely Theorem 1. For
this purpose, we first prove Theorem 1 in the special case when k& = 0, that is,
when the cactus is a tree.

Theorem 8. Let m > 0 be an integer. If T is a tree of order n > 2 with £ leaves,
then v(T) = 3(n — {4+ 2+m) if and only if T € GI".

Proof. Let T be a tree of order n > 2 with ¢ leaves. We proceed by induction
on m > 0, namely first-induction, to show that v(T') = %(n — 0+ 2+ m), if and
only if T" € G§*. For the base step of the first-induction let m < 2. If m = 0, then
the result follows by Theorem 5(a). If m = 1, then the result follows by Theorem
5(b). If m = 2, then the result follows by Theorem 5(c). This establishes the
base step of the induction. Let m > 3 and assume that the result holds for all
trees Ty of order ng with ¢y leaves, for my < m. Let T be a tree of order n and
with ¢ leaves. We will show that y(T) = &(n — £+ 2+ m), if and only if T € GJ".

(=) Assume that (T) = %(n — ¢+ 2+ m) (where we recall that here
m > 3). We show that T' € Gi*. If T' = P», then by the definition of the family
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G§, we have T € G}. Then by Theorem 5(b), ¥(T) = %(n — £+ 2+ 1), and so
m = 1, a contradiction. Hence we may assume that diam(7") > 2, for otherwise
the desired result follows. If diam(7") = 2, then 7" is a star, and by the definition
of the family G}, we have T € G{). Thus by Theorem 5(a), v(T) = 1(n—{(+2+1),
and so m = 0, a contradiction. If diam(7") = 2, then T is a double star, and
by definition of the family G2 we have T € TO2 1 C G2. Thus by Theorem 5(c),
Y(T) = #(n—{€+2+2), and so m = 2, a contradiction. Hence, diam(7’) > 4 and
n > 5.

We now root the tree T' at a vertex r at the end of a longest path P in T
Let u be a vertex at maximum distance from 7, and so dp(u,r) = diam(7T).
Necessarily, r and u are leaves. Let v be the parent of u, let w be the parent of
v, let & be the parent of w, and let y be the parent of z. Possibly, y = r. Since
u is a vertex at maximum distance from the root r, every child of v is a leaf. By
Observation 2, there exists a v-set, say S, of T' that contains no leaf of T'; that
is, L(T) NS = (). In particular, we note that |S| =~(T) = %(n —l+2+m). In
order to dominate the vertex u, we note therefore that v € S. Let dr(v) =t. We
note that ¢t > 2.

Claim 1. If dr(w) > 3, then T € G

Proof. Suppose that dp(w) > 3. In this case, we consider the tree T/ = T —
V(T,), where T, is the maximal subtree at v. Let 7" have order n’ and let T’
have ¢’ leaves. We note that n’ = n —t. Since w is not a leaf in T”, we have
¢ =0—(t—1) =¢—t+1. By Corollary 4, v(T") = 2(n' — ¢ + 2+ m’) for
some integer m’ > 0. If a child of w is a leaf in T, then since the dominating
set S contains no leaves, we have that w € S. If no child of w is a leaf in T,
then every child of w is a support vertex and therefore belongs to the set S. In
both cases, we note that the set S\ {v} is a dominating set of 77, implying that
Y(T") < |S|—=1=~(T)—1. Every v-set of T’ can be extended to a dominating set
of T by adding to it the vertex v, implying that v(T') < (7") 4+ 1. Consequently,
v(T") = ~(T) — 1. Thus,

V(T') = ~(T) -
m—0+2+m)—1
mn—f+m-—1)
(W+t)—(l'+t—1)+m—1)
(n" — 0 +m).

Wl Wl W= o= <

As observed earlier, v(T") = (n’ — ¢’ + 2+ m’) for some integer m’ > 0.
Thus, m’ = m — 2. Applying the inductive hypothesis to the tree T’, we have
A= 931_2. Let v’ be a child of w different from v. We note that the tree T, is
a component of 7" — w and this component is dominated by the vertex v’. We
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can therefore choose a y-set of T" — w to contain the vertex v’. Such a ~-set of
T' — w is also a dominating set of 7", implying that v(T") < v(T" — w); that is,
the vertex w is a special vertex of T”. Thus, the tree T is obtained from the tree
T € gg’“? by adding a vertex disjoint copy of a star T}, and joining the center v
of T, to a special vertex w in T7”. Thus T € 76'”’1. Consequently, T' € G*. This
completes the proof of Claim 1. O

By Claim 1, we may assume that dr(w) = 2, for otherwise T" € G as desired.
We now consider the tree 7" =T — V(T),), where T, is the maximal subtree at
w. Let T’ have order n’ and let 7" have ¢’ leaves. We note that n’ =n —t — 1.
By Corollary 4, y(T") = &(n/ — £/ +2 +m/) for some integer m’ > 0.

As observed earlier, the vertex v belongs to the dominating set S. If w € .S,
then we can replace w in S with the vertex x to produce a new ~-set of T that
contains no leaf of T. Hence we may assume that w ¢ S, implying that the set
S\ {v} is a dominating set of 77 and therefore v(T") < |S| -1 =~(T) — 1. Every
~v-set of T' can be extended to a dominating set of T by adding to it the vertex
v, implying that v(7') < v(T") 4+ 1. Consequently, v(1") = v(T') — 1.

Claim 2. If dp(x) > 3, then T € G

Proof. Suppose that dr(x) > 3. In this case, the vertex z is not a leaf of 7",
implying that ¢/ =¢— (t — 1) = ¢ —t+ 1. Thus,

AT = A1) -1
n—~{+m-—1)
(W +t+1)— (' +t—1)+m—1)

n' —0 +m+1).

W= Wl W= 2

—~ o~ o~

As observed earlier, ¥(T") = $(n’ — ¢ + 2+ m’) for some integer m’ > 0.

Thus, m’ = m — 1. Applying the inductive hypothesis to the tree T’, we have
T' € G*~'. Thus, the tree T is obtained from the tree T/ € G;*~! by adding a
vertex disjoint copy of a star T, with at least three vertices and joining a leaf of
the star T}, to the non-leaf x of T". Thus T € 73”’2. Consequently, T' € Gi*. O

By Claim 2, we may assume that dr(x) = 2, for otherwise T' € GJ* as desired.
In this case, the vertex x is a leaf of T’ implying that ¢/ =¢—(t—1)+1={¢—t+2.
Thus,

T =l +24m)=~(T) =~yT) -1
n—L0+m-—1)
n+t+1) -l +t—2)+m—1)

n' =0 4+m+2),

W= Wl W= 2
e N e TR
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and so m = m/. Applying the inductive hypothesis to the tree T’, we have
T' € G§'. Thus, the tree T is obtained from the tree 7" € G§* by adding a
vertex disjoint copy of a star T, with at least three vertices and adding the edge
zw joining a leaf w of T, and a leaf x of T”; that is, T is obtained from 7" by
Operation O. Hence, by definition of the family G{*, we have T' € G, as desired.
This completes the necessity part of the proof of Theorem 8.

(«<=) Conversely, assume that T € Gy", where m > 0. Recall that 7' is a tree
of order n > 2 with ¢ leaves. Thus, T is obtained from a sequence 71,...,T; of
trees, where ¢ > 1 and where the tree T € 73”’1 U 73”’2, and the tree T' = Tj,.
Further, if ¢ > 2, then for each i € [q] \ {1}, the tree T; can be obtained from the
tree T;_1 by applying the following Operation O. We proceed by induction on
g > 1, namely second-induction, to show that v(T) = £(n — £ + 2+ m).

Claim 3. If ¢ =1, then v(T) = (T) = 3(n — {4+ 2 +m).

Proof. Suppose that ¢ = 1. Thus, T} € 73"’1 U 767”’2. We consider the two
possibilities in turn, and in both cases we will show that the tree T' € G satisfies
YT)=4(n—C+2+m).

Claim 3.1. If T € Ty, then %(T) = 3(n — £+ 2 +m).

Proof. Suppose that T € 73”’1. Thus, T is obtained from a tree 7' € G~ >
by adding a vertex disjoint copy of a star ) with ¢ > 2 vertices and joining the
center of @, say y, to a special vertex = in 7”. Let T” have order n/, and so
n' = n —t. Further, let 7" have ¢’ leaves. Since x is a non-leaf of T7”, we have
¢ ={— (t—1). Applying the first-induction hypothesis to the tree T € Gf*2,
we have 7(T") = £(n' — ' + 2+ (m — 2)) = 3(n — £’ + m).

We show next that v(T') = ~(T")+1. Since z is a special vertex of 7", we note
that y(T'—x) > v(T"). Every ~-set of T’ can be extended to a dominating set of T
by adding to it the vertex y, implying that v(T) < v(T") 4+ 1. Conversely, we can
choose a ~y-set, say D, of T to contain the vertex y which dominates the star Q).
If x € D, then D\ {y} is a dominating set of 7", and so v(1") < |D|—1. If ¢ D,
then D\ {y} is a dominating set of 77—z, and so y(T") < y(T"—z) < |D|—1. In
both cases, y(T") < |D| — 1 = 4(T) — 1. Consequently, v(T') = v(T") + 1. Thus,

~(T) =T +1
n—0 +m)+1
n—t)—l—t+1)+m)+1
— 0+ 2+ m).

—~

W= Wl W= 2

o~ o~ o~ —~

3

This completes the proof of Claim 3.1. O
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Claim 3.2. If T € Ty, then %(T) = Y(n — £+ 2 +m).

Proof. Suppose that T' € 7'8”’2. Thus, T is obtained from a tree T € gg"‘—l by
adding a vertex disjoint copy of a star @) with t > 3 vertices and joining a leaf,
say v, of @ to a non-leaf, say w, in T". Let u be the center of the star (). Let
T’ have order n/, and so n’ = n — t. Further, let 77 have ¢’ leaves. Since w is a
non-leaf of T”, we have ¢/ = ¢ — (t —2). Applying the first-induction hypothesis to
the tree 7" € Gi' ™', we have 7, (T") = 2(n' — €'+ 2+ (m—1)) = (0’ — '+ m+1).

We show next that v(T') = v(T") + 1. Every ~-set of T” can be extended to
a dominating of T by adding to it the vertex u, implying that ~(T") < v(T") + 1.
By Observation 2, there exists a v-set D of T that contains no leaf of G. Thus,
u € D. If v € D, then we can replace v in D with the vertex w. Hence we
may assume that v ¢ D, implying that D \ {u} is a dominating set of 77, and so
Y(T") < |D| =1 =~(T) — 1. Consequently, v(T') = v(T") + 1. Thus,

1T) = A(T") +1
=i —lC+m+1)+1
=1i((n—t)—(L—t+2)+m+1)+1
=1i(n—L+2+m).
This completes the proof of Claim 3.2. O
By Claims 3.1 and 3.2, if T € 76m’1 U 73”’2, then y(T) = (n — £+ 2+ m).
This completes the proof of Claim 3. O

By Claim 3, if ¢ = 1, then v(T) = £(n — £ + 2+ m). This establishes the
base step of the second-induction. Let ¢ > 2 and assume that if ¢’ is an integer
where 1 < ¢’ < ¢ and if 77 € GJ" is a tree of order n' > 2 with ¢ leaves obtained
from a sequence of ¢’ trees, then ~(T) = %(n’ — ¢ + 2+ m). Recall that T is
obtained from a sequence T1i,...,T; of trees, where ¢ > 1 and where the tree
Ty € Ty UTY™?, and the tree T = T,,. Further for each i € [g]\ {1}, the tree T
can be obtained from the tree T;_; by applying the Operation O.

We now consider the tree 7" = Ty—1. Thus, the tree T' € G* is obtained from
the tree 7" by adding a vertex disjoint copy of a star @ with ¢ > 3 vertices and
adding an edge joining a leaf of Q to a leaf of T”. Let T” have order n’ and let
T’ have ¢’ leaves. We note that n’ =n—tand ¢’ =0 —(t—2)+1=0—1t+ 3.
Applying the second-induction hypothesis to the tree 7" € GiI*, we have v(T") =
2(n’ — ¢ 4+ 2+ m). Analogous arguments as before show that y(T) = y(T") + 1.
Thus,

AT) = AT) +
n' — E' +24+m)+1
(n—t)—(—t+3)+2+m)+1
n—4{0+2+m).

oli= Wl Wl 2

o~~~ —~
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Hence we have shown that if 7' € G*, where m > 0 and where T" has order n > 2
with ¢ leaves, then ~(T) = %(n — ¢+ 2+ m). This completes the proof of
Theorem 8. [ |

We are now in a position to prove our main result, namely Theorem 1. Recall
its statement.

Theorem 1. Let m > 0 be an integer. If G is a cactus graph of order n > 2
with k > 0 cycles and ¢ leaves, then v(G) = £(n — €+ 2(1 — k) +m), if and only
if G € gl

Proof. Let m > 0 be an integer, and let G be a cactus graph of order n > 2
with £ > 0 cycles and ¢ leaves. We proceed by induction on k to show that
Y(G) = +(n— £+ 2(1 — k) +m) if and only if G € G". If k = 0, then the result
follows from Theorem 8. This establishes the base case. Let £ > 1 and assume
that if G’ is a cactus graph of order n’ > 2 with k¥’ cycles and ¢’ leaves where
0 <k <k, then y(G) = (0 = €'+ 2(1 — k') + m/) if and only if G € gy, Let
G be a cactus graph of order n > 2 with k£ > 0 cycles and ¢ leaves. We will show
that v(G) = £(n — £+ 2(1 — k) + m), if and only if G € GJ". If m = 0, then the
result follows by Theorem 6(a). If m = 1, then the result follows by Theorem
6(b). If m = 2, then the result follows by Theorem 6(c). Thus, we may assume
that m > 3, for otherwise the desired result follows.

(=) Assume that v(G) = 3(n— ¢+ 2+ m — 2k) (where we recall that here
m > 3). We will show that 7" € G;*. By Lemma 2, the graph G contains a
cycle edge e such that (G —e) = 7(G). Let e = uv, and consider the graph
G' = G — e. Let G’ have order n’ with ¥’ > 0 cycles and ¢’ leaves. We note that
n’ = n. Further, since G is a cactus graph, ¥ = k— 1. Removing the cycle edge e
from G produces at most two new leaves, namely the ends of the edge e, implying
that ¢/ —2 < ¢ < ¢'. By Corollary 7, we have v(G') = (n' — ¢ + 2+ m/ — 2K')
for some integer m’ > 0. Applying the inductive hypothesis to the cactus graph
G’, we have that G’ € QZZ‘/ = Q,T_ll. Our earlier observations imply that

tn—C0+24+m—2k) = 4(G) =+(G)
= %(n’—€’+2+m'—2k')
=iln—l+2+m' —2(k-1)),

and so m—/{ = m/ —#'+2. Since G is a cactus, the vertices u and v are connected
in G’ = G — e by a unique path. As observed earlier, ¢/ —2 < ¢ < /.

Suppose that ¢ = ¢'. In this case, neither u nor v is a leaf of G’, implying that
both u and v have degree at least 2 in G’. Further, the equation m—¢ = m’—¢'+2
simplifies to m’ = m —2. Thus, G’ € Q,T:f. Hence, the graph G is obtained from
G’ by Procedure J and therefore G € g
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Suppose that £ = ¢/ — 1. In this case, exactly one of u and v is a leaf of
G’. Further, the equation m — ¢ = m/ — ¢’ + 2 simplifies to m’ = m — 1. Thus,
G' e ng__ll. Hence, the graph G is obtained from G’ by Procedure I, and therefore
G e gy

Suppose that £ = ¢/ — 2. In this case, both v and v are leaves in G’. Further,
the equation m — ¢ = m’ — ¢ + 2 simplifies to m’ = m. Thus, G’ € G} ;. Hence,
the graph G is obtained from G’ by Procedure H, and therefore G € G;*. This
completes the necessity part of the proof of Theorem 1.

(<) Conversely, assume that G € G;". Recall that by our earlier assump-
tions, m > 3 and k > 1. Thus, the graph G is obtained from either a graph
G' € G | by Procedure H or from a graph G’ € Q,T__ll by Procedure I or from
a graph G’ € G;"? by Procedure J. In all three cases, let G’ have order n’ with
k" > 0 cycles and ¢’ leaves. Further, in all cases we note that n’ = n and ¥’ = k—1.
We consider the three possibilities in turn.

Suppose firstly that G is obtained from a graph G’ € G} ; by Procedure H.
In this case, £ = ¢/ — 2 and v(G) = v(G’). Applying the inductive hypothesis to
the graph G’ € GI" |, we have y(G) =v(G') = 1(n/ =0 +2+m —2(k - 1)) =
Tn—(l+2)+44m—2k)=1(n—L+2+m—2k).

Suppose next that G is obtained from a graph G’ € Q,Z”__ll by Procedure I. In
this case, £ = ¢ — 1 and v(G) = v(G"). Applying the inductive hypothesis to the
graph G’ € G"', we have 7(G) = v(G') = (0 — €'+ 2+ (m— 1) = 2(k — 1)) =
in—((+1)+34+m—2k)=1(n—L+2+m—2k).

Suppose finally that G is obtained from a graph G’ € g,’f_*f by Procedure J.
In this case, £ = ¢' and v(G) = v(G’). Applying the inductive hypothesis to the
graph G’ € G;" %, we have v(G) = y(G") = 3(n' — '+ 2+ (m —2) —2(k — 1)) =
$(n— {042+ m—2k). In all three cases, 7(G) = $(n — {4+ 2+ m — 2k). This
completes the proof of Theorem 1. [
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