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1. Introduction

All graphs, G = (V,E, F ) considered in this paper are simple, finite, undirected
and planar. A plane graph is a particular drawing of a planar graph on the
Euclidean plane. In all cases, a k-labeling (k-evaluation) will refer to a mapping
from the set of graph elements into a set of positive integers {1, 2, . . . , k}. If the
domain is the vertex set or the edge set or the face set, the k-labelings are called,
respectively, vertex labelings or edge labelings or face labelings and are denoted,
respectively, as k-labelings of type (1, 0, 0) or (0, 1, 0) or (0, 0, 1). If the domain is
V (G)∪E(G) or V (G)∪E(G)∪F (G) or V (G)∪F (G) or E(G)∪F (G), then we call
the k-labelings, respectively, as total k-labeling or entire k-labeling or vertex-face
k-labeling or edge-face k-labeling and we denote these k-labelings, respectively, as
labelings of type (1, 1, 0) or (1, 1, 1) or (1, 0, 1) or (0, 1, 1).

Suppose that G = (V,E, F ) is a plane graph. The weight of a face f under a
k-labeling is the sum of labels (if present) carried by that face and all the edges
and vertices surrounding it. In general, for a k-labeling ϕ of type (α, β, γ), where
α, β, γ ∈ {0, 1}, the associated face-weight of a face f ∈ F (G) is defined as

(1) wtϕ(α,β,γ)
(f) = α

∑

v∼f

ϕ(v) + β
∑

e∼f

ϕ(e) + γ ϕ(f),

where the sums are taken over all vertices and all edges adjacent to the face f ,
respectively. Note that the trivial case (α, β, γ) = (0, 0, 0) is not allowed.

A k-labeling ϕ of type (α, β, γ) of the plane graph G is defined to be a face
irregular k-labeling of type (α, β, γ) if for every two different faces f and g of G
there is

wtϕ(α,β,γ)
(f) 6= wtϕ(α,β,γ)

(g).

The face irregularity strength of type (α, β, γ) of a plane graph G, denoted
by fs(α,β,γ)(G), is the smallest integer k such that G admits a face irregular k-
labeling of type (α, β, γ). Note that for some classes of graphs and some values
of parameters α, β and γ the corresponding graph invariant is infinite. We will
discuss these cases later.

The irregular labelings of plane graphs with restrictions placed on the weights
of faces were introduced in [8] and there is defined the face irregularity strength
of type (1, 1, 1) as entire face irregularity strength, denoted by efs(G). Some
partial results on irregularity strength of type (1, 1, 0) under the notation total
face irregularity strength can be found in [20].

The face irregular k-labeling of type (α, β, γ) of the plane graphs is a modi-
fication of the well-known irregular assignments and vertex (edge) irregular total
labelings. The irregular assignments were introduced by Chartrand et al. in [12]
as edge k-labeling of a graph G, where the sums of the labels of edges incident
with every two distinct vertices in G are distinct. An irregularity strength s(G)
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of a graph G is known as the minimum k for which G has an irregular assign-
ment using labels at most k. This parameter has attracted much attention, see
[13, 16, 18].

A total k-labeling λ is a vertex irregular k-labeling if vertex-weights

wtλ(x) = λ(x) +
∑

xy∈E(G)

λ(xy)

are distinct for all couples of different vertices in G and it is an edge irregular
total k-labeling if edge-weights

wtλ(xy) = λ(x) + λ(xy) + λ(y)

are distinct for all couples of different edges in G. The total vertex (edge) irreg-
ularity strength is defined as the minimum k for which G admits a vertex (edge)
irregular total k-labeling.

The total vertex (edge) irregularity strengths were introduced in [10], where
are determined several bounds and exact values for different families of graphs.
These results were then improved by Przyby lo [22], Anholcer et al. [3] and Nurdin
et al. [21]. Other interesting results on total vertex (edge) irregularity strengths
can be found in [1, 2, 4, 11, 14, 15, 17, 19].

In this paper, we generalize the concept of the face irregular labelings of
plane graphs and we obtain some estimations on the face irregularity strength of
type (α, β, γ). We also determine the precise values of the corresponding graph
invariants for certain families of plane graphs that prove the sharpness of the
lower bounds.

2. Lower Bounds for Face Irregularity Strength

At the beginning of this section we determine the face irregularity strength of
type (α, β, γ) for a cycle Cn, n ≥ 3.

Theorem 1. Let α, β, γ ∈ {0, 1}. If n ≥ 3, then

fs(α,β,γ)(Cn) =

{

2, if γ = 1,

∞, if γ = 0.

Proof. The cycle Cn contains exactly two n-sided faces, say f1n and f2n. Evi-
dently, every vertex and every edge of Cn lays on the boundary of both these
faces. For the weight of a face f in, i = 1, 2, under a labeling ϕ of type (α, β, γ)
we get

wtϕ(α,β,γ)
(f in) = α

∑

v∈V (Cn)

ϕ(v) + β
∑

e∈E(Cn)

ϕ(e) + γ ϕ(f in).
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This implies that the faces have distinct weights if and only if distinct labels
are assigned to both faces. Trivially, if γ = 0, this is not possible and thus
fs(α,β,γ)(Cn) = ∞. If γ = 1, then fs(α,β,γ)(Cn) = 2.

The next theorem gives a lower bound of the face irregularity strength of
type (α, β, γ).

Theorem 2. Let G = (V,E, F ) be a 2-connected plane graph with ni i-sided
faces, i ≥ 3. Let α, β, γ ∈ {0, 1}, a = min{i : ni 6= 0} and b = max{i : ni 6= 0}.
Then the face irregularity strength of type (α, β, γ) of G is

fs(α,β,γ)(G) ≥

⌈

(α+ β)a+ γ + |F (G)| − 1

(α+ β)b+ γ

⌉

.

Proof. Assume that ϕ is a face irregular k-labeling of type (α, β, γ) of a 2-
connected plane graph G with fs(α,β,γ)(G) = k.

The smallest face-weight under the face irregular k-labeling ϕ admits the
value at least (α + β)a + γ. Since |F (G)| =

∑b
i=3 ni, it follows that the largest

face-weight attains the value at least (α + β)a + γ + |F (G)| − 1 and at most
((α+ β)b+ γ) k.

Thus,

(α+ β)a+ γ + |F (G)| − 1 ≤ ((α+ β)b+ γ) k

and

k ≥

⌈

(α+ β)a+ γ + |F (G)| − 1

(α+ β)b+ γ

⌉

.

We use the previous result to find the face irregularity strength of type
(α, β, γ) for graphs with all faces of different sizes.

Theorem 3. Let α, β, γ ∈ {0, 1} and let G = (V,E, F ) be a 2-connected plane
graph in which no different faces have the same size. Then

fs(α,β,γ)(G) =

{

1, if (α, β) 6= (0, 0),

|F (G)|, if (α, β) = (0, 0).

Proof. Let G = (V,E, F ) be a 2-connected plane graph containing exactly one
si-sided face, i = 1, 2, . . . , |F (G)|. Let us denote the si-sided face by fi. Let
a = min{si : i = 1, 2, . . . , |F (G)|} and b = max{si : i = 1, 2, . . . , |F (G)|}.
Evidently, b ≥ a+ |F (G)| − 1. Then

(α+ β)b+ γ ≥ (α+ β)(a+ |F (G)| − 1) + γ

= (α+ β)a+ (α+ β)|F (G)| − (α+ β) + γ.
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For (α, β) 6= (0, 0) we get

(α+ β)b+ γ ≥ (α+ β)a+ (α+ β)|F (G)| − 1 + γ

and thus

(α+ β)a+ (α+ β)|F (G)| − 1 + γ

(α+ β)b+ γ
≤ 1.

Trivially, according to Theorem 2 we get that for (α, β) 6= (0, 0) is fs(α,β,γ)(G) ≥ 1.
To prove that fs(α,β,γ)(G) ≤ 1 in this case we consider a 1-labeling ϕ of (α, β, γ)
of G defined in the following way.

ϕ(x) =











α, if x ∈ V (G),

β, if x ∈ E(G),

γ, if x ∈ F (G).

Then the weight of a face fi, i = 1, 2, . . . , |F (G)|, under the labeling ϕ is

wtϕ(α,β,γ)
(fi) = α

∑

v∼fi

ϕ(v) + β
∑

e∼fi

ϕ(e) + γ ϕ(fi) = α
∑

v∼fi

α+ β
∑

e∼fi

β + γ · γ

= α2 · si + β2 · si + γ2 = (α+ β)si + γ.

Evidently, if (α, β) 6= (0, 0), the weights of all faces in G are distinct.
In the case when (α, β) = (0, 0) the weight of a face fi, i = 1, 2, . . . , |F (G)|,

under any k-labeling ψ of type (0, 0, 1) is

wtψ(0,0,1)
(fi) = ψ(fi).

As the weights of all faces must be distinct, evidently the labels of all faces must
be distinct. Thus k ≥ |F (G)|. This concludes the proof.

Note that if a plane graph contains at least two faces of the same size, then
fs(α,β,γ)(G) ≥ 2 for all feasible (α, β, γ).

Immediately from Theorem 2 and using the similar arguments as in the proof
of the previous theorem we get the following result.

Lemma 4. For every 2-connected plane graph G = (V,E, F ) is

fs(0,0,1)(G) = |F (G)|.

Immediately from Theorem 2 we get a lower bound for the entire face irreg-
ularity strength of a 2-connected plane graph.

(2) fs(1,1,1)(G) = efs(G) ≥

⌈

2a+ n3 + n4 + · · · + nb
2b+ 1

⌉

.
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This result was proved by Bača et al. [8]. Furthermore, the existence of a face
irregular entire 2-labeling of octahedron was shown in [9] and it proves the sharp-
ness of the lower bound (2).

In the case when a 2-connected plane graph G contains only one face of the
largest size, i.e., nb = 1 and c = max{i : ni 6= 0, i < b}, then by using similar
procedure as in the proof of Theorem 2 we can improve a lower bound for the
face irregularity strength of type (α, β, γ).

Theorem 5. Let G = (V,E, F ) be a 2-connected plane graph with ni i-sided
faces, i ≥ 3. Let α, β, γ ∈ {0, 1}, a = min{i : ni 6= 0}, b = max{i : ni 6= 0},
nb = 1 and c = max{i : ni 6= 0, i < b}. Then the face irregularity strength of
type (α, β, γ) of G is

fs(α,β,γ)(G) ≥

⌈

(α+ β)a+ γ + |F (G)| − 2

(α+ β)c+ γ

⌉

.

From this result we get that if a 2-connected plane graph contains only one
largest face, then a lower bound on the face irregularity strength of type (1, 1, 1)
is estimated as follows

(3) fs(1,1,1)(G) = efs(G) ≥

⌈

2a+ |F (G)| − 1

2c+ 1

⌉

.

This bound was presented in [8]. Moreover, the exact value of the entire face
irregularity strength for ladder Ln ≃ Pn�P2, n ≥ 3, was determined in [8] and it
proves the sharpness of the lower bound (3).

Let us consider a simple graph G = (V,E) such that every edge in E(G)
belongs at least to one subgraph of G isomorphic to a given graph H. We say
that G admits an H-covering in this case. The graph G admitting H-covering
admits an H-irregular total k-labeling f : V (G)∪E(G) → {1, 2, . . . , k} if distinct
subgraphs in G isomorphic to H have different H-weights, where the associated
H-weight is defined such that

wtf (H) =
∑

v∈V (H)

f(v) +
∑

e∈E(H)

f(e).

The minimum k for which the graph G has an H-irregular total k-labeling is called
the total H-irregularity strength of the graph G and is denoted by ths(G,H).
Analogously, we can define the vertex H-irregularity strength vhs(G,H) and the
edge H-irregularity strength ehs(G,H). These concepts were defined in [6] and
[5], respectively.

Next theorem provides the exact values of the face irregularity strength of
type (α, β, γ) for ladder Ln ≃ Pn�P2, n ≥ 3.
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Theorem 6. Let Ln ≃ Pn�P2, n ≥ 3, be a ladder and let α, β, γ ∈ {0, 1}. Then

fs(α,β,γ)(Ln) =































n, if (α, β, γ) = (0, 0, 1),
⌈

n+2
4

⌉

, if (α, β, γ) = (1, 0, 0); (0, 1, 0),
⌈

n+3
5

⌉

, if (α, β, γ) = (1, 0, 1); (0, 1, 1),
⌈

n+6
8

⌉

, if (α, β, γ) = (1, 1, 0),
⌈

n+7
9

⌉

, if (α, β, γ) = (1, 1, 1).

Proof. Let Ln ∼= Pn�P2, n ≥ 3, be a ladder with the vertex set V (Ln) = {vi, ui :
i = 1, 2, . . . , n} and the edge set E(Ln) = {vivi+1, uiui+1 : i = 1, 2, . . . , n − 1} ∪
{viui : i = 1, 2, . . . , n}. We denote the 4-sided faces fi, i = 1, 2, . . . , n − 1, such
that the face fi is surrounded by vertices ui, ui+1, vi, vi+1 and edges uiui+1,
vivi+1, uivi, ui+1vi+1. The ladder contains also one external 2n-sided face fext.

The result for fs(0,0,1)(Ln) follows from Lemma 4.
Using a connection between the face irregularity strength and the entire face

irregularity strength of ladders efs(Ln) and the total/vertex/edge C4-irregularity
strength of ladders, denoted by ths(Ln, C4)/vhs(Ln, C4)/ehs(Ln, C4), we get that
for n ≥ 3

fs(1,1,1)(Ln) = efs(Ln) =
⌈

n+7
9

⌉

, see [8],

fs(1,1,0)(Ln) = ths(Ln, C4) =
⌈

n+6
8

⌉

, see [6],

fs(1,0,0)(Ln) = vhs(Ln, C4) =
⌈

n+2
4

⌉

, see [5],

fs(0,1,0)(Ln) = ehs(Ln, C4) =
⌈

n+2
4

⌉

, see [5].

Now consider two remaining cases.

Case 1. When (α, β, γ) = (1, 0, 1). According to Theorem 5 we obtain
fs(1,0,1)(Ln) ≥ ⌈(n+ 3)/5⌉. Put k = ⌈(n+ 3)/5⌉. To show that k is an upper
bound for the face irregularity strength of type (1, 0, 1) of Ln we define a k-labeling
of type (1, 0, 1) ϕ : V (Ln) ∪ F (Ln) → {1, 2, . . . , k} in the following way

ϕ(vi) =
⌈

i+1
5

⌉

, for i = 1, 2, . . . , n,

ϕ(ui) =
⌈

i+3
5

⌉

, for i = 1, 2, . . . , n,

ϕ(fi) =
⌈

i
5

⌉

, for i = 1, 2, . . . , n− 1,

ϕ(fext) = k.

It is a routine matter to verify that under the labeling ϕ all vertex and face labels
are at most k. For the face-weight of the face fi, i = 1, 2, . . . , n − 1, under the
labeling ϕ of type (1, 0, 1) we get

wtϕ(1,0,1)
(fi) = ϕ(ui) + ϕ(ui+1) + ϕ(vi) + ϕ(vi+1) + ϕ(fi).
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Thus, for i = 1, 2, . . . , n− 2 we obtain

wtϕ(1,0,1)
(fi+1) − wtϕ(1,0,1)

(fi) = ϕ(ui+2) + ϕ(vi+2) + ϕ(fi+1) − ϕ(ui) − ϕ(vi)

− ϕ(fi) =
⌈

i+5
5

⌉

+
⌈

i+3
5

⌉

+
⌈

i+1
5

⌉

−
⌈

i+3
5

⌉

−
⌈

i+1
5

⌉

−
⌈

i
5

⌉

= 1.

This means that all weights of 4-sided faces are different. Moreover, the weight
of the external face is

wtϕ(1,0,1)
(fext) =

n
∑

i=1

ϕ(ui) +
n
∑

i=1

ϕ(vi) + ϕ(fext) >
n
∑

i=n−1

ϕ(ui) +
n
∑

i=n−1

ϕ(vi) + k

≥ wtϕ(1,0,1)
(fn−1).

Case 2. When (α, β, γ) = (0, 1, 1). By Theorem 5 we get fs(0,1,1)(Ln) ≥
⌈(n+ 3)/5⌉. Put k = ⌈(n+ 3)/5⌉. Consider a k-labeling of type (0, 1, 1) ψ :
E(Ln) ∪ F (Ln) → {1, 2, . . . , k} defined such that

ψ(uiui+1) =
⌈

i+2
5

⌉

, for i = 1, 2, . . . , n− 1,

ψ(vivi+1) =
⌈

i+1
5

⌉

, for i = 1, 2, . . . , n− 1,

ψ(uivi) =
⌈

i+3
5

⌉

, for i = 1, 2, . . . , n,

ψ(fi) =
⌈

i
5

⌉

, for i = 1, 2, . . . , n− 1,

ψ(fext) = k.

Evidently, under the labeling ψ all edge and face labels are at most k. The face-
weight of the face fi, i = 1, 2, . . . , n − 1, under the labeling ψ of type (0, 1, 1)
is

wtψ(0,1,1)(fi) = ψ(uiui+1) + ψ(vivi+1) + ψ(uivi) + ψ(ui+1vi+1) + ψ(fi).

For i = 1, 2, . . . , n− 2 we obtain

wtψ(0,1,1)(fi+1) − wtψ(0,1,1)(fi) = ψ(ui+1ui+2) + ψ(vi+1vi+2) + ψ(ui+2vi+2)

+ ψ(fi+1) − ψ(uiui+1) − ψ(vivi+1) − ψ(uivi) − ψ(fi)

=
⌈

i+3
5

⌉

+
⌈

i+2
5

⌉

+
⌈

i+5
5

⌉

+
⌈

i+1
5

⌉

−
⌈

i+2
5

⌉

−
⌈

i+1
5

⌉

−
⌈

i+3
5

⌉

−
⌈

i
5

⌉

= 1.

Thus the weights of all 4-sided faces are different. For the weight of the external
face we get
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wtψ(0,1,1)(fext) =
n−1
∑

i=1

ψ(uiui+1) +
n−1
∑

i=1

ψ(vivi+1) + ψ(u1v1) + ψ(unvn) + ψ(fext)

>
n−1
∑

i=n−1

ψ(uiui+1) +
n−1
∑

i=n−1

ψ(vivi+1) + ψ(un−1vn−1) + ψ(unvn) + k

≥ wtψ(0,1,1)(fn−1).

This concludes the proof.

In some cases the lower bound of the face irregularity strength of type (1, β, γ)
can be improved when we consider the maximum degree in a 2-connected plane
graph.

Theorem 7. Let G = (V,E, F ) be a 2-connected plane graph with the maximum
degree ∆(G). Let β, γ ∈ {0, 1} and x be a vertex of degree ∆(G). Let the smallest
face and the biggest face incident with x be an â-sided face and a b̂-sided face,
respectively. Then the face irregularity strength of type (1, β, γ) of G is

fs(1,β,γ)(G) ≥

⌈

â(β + 1) + γ + ∆(G) − 2

b̂(β + 1) + γ − 1

⌉

.

Proof. Consider a 2-connected plane graph with the maximum degree ∆(G) and
with a face irregular k-labeling ϕ of type (1, β, γ), where fs(1,β,γ)(G) = k. Suppose
that f1, f2, . . . , f∆(G) are the faces incident with a fixed vertex x of the maximum
degree ∆(G). Let the smallest face and the biggest face incident with x be an
â-sided face and a b̂-sided face, respectively.

Clearly, the face-weights wtϕ(1,β,γ)
(fi), i = 1, 2, . . . ,∆(G), are all distinct and

each of them contains the value ϕ(x).

The smallest face-weight under the face irregular k-labeling ϕ admits the
value at least ϕ(x) + â(β + 1) + γ − 1. Since there are ∆(G) faces incident with
x, it follows that the largest face-weight between them attains the value at least

ϕ(x) + â(β + 1) + γ + ∆(G) − 2 and at most ϕ(x) +
(

b̂(β + 1) + γ − 1
)

k. Then

ϕ(x) + â(β + 1) + γ + ∆(G) − 2 ≤ ϕ(x) +
(

b̂(β + 1) + γ − 1
)

k

and

k ≥

⌈

â(β + 1) + γ + ∆(G) − 2

b̂(β + 1) + γ − 1

⌉

.
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In [8] is proved that

(4) fs(1,1,1)(G) = efs(G) ≥

⌈

2â+ ∆(G) − 1

2b̂

⌉

.

Sharpness of the lower bound in (4) is proved for wheels Wn on n + 1 vertices,
n ≥ 3.

If many faces of the same size are incident with a fixed vertex, then for some
plane graphs it is possible to get even better lower bound.

Theorem 8. Let G = (V,E, F ) be a 2-connected plane graph with the biggest face
of size b. Let na(x) denote the number of a-sided faces incident with a vertex x
in G, where a = 3, 4, . . . , b. Let β, γ ∈ {0, 1}. Then the face irregularity strength
of type (1, β, γ) of G is

fs(1,β,γ)(G) ≥ max

{

max

{⌈

a(β + 1) + γ + na(x) − 2

a(β + 1) + γ − 1

⌉

: a = 3, 4, . . . , b

}

: x ∈ V (G)

}

.

Proof. Consider a 2-connected plane graph with the biggest face of size b. Let
na(x) be the number of a-sided faces incident with a vertex x in G, a = 3, 4, . . . , b.
Note, that

∑b
a=3 na(x) = deg(x).

Let ϕ be a face irregular k-labeling of type (1, β, γ), where fs(1,β,γ)(G) = k.
Suppose that fa,1(x), fa,2(x), . . . , fa,na(x)(x) are the a-sided faces incident with a
fixed vertex x, where a = 3, 4, . . . , b. Clearly, the face-weights wtϕ(1,β,γ)

(fa,i(x)),
i = 1, 2, . . . , na(x), are all distinct, each of them contains the value ϕ(x) and the
smallest of them admits the value at least ϕ(x)+a(β+1)+γ−1. Since there are
na(x) a-sided faces incident with the vertex x, it follows that the corresponding
largest face-weight attains the value at least ϕ(x) + a(β + 1) + γ + na(x)− 2 and
at most ϕ(x) + (a(β + 1) + γ − 1) k. Then

ϕ(x) + a(β + 1) + γ + na(x) − 2 ≤ ϕ(x) + (a(β + 1) + γ − 1) k

and

k ≥

⌈

a(β + 1) + γ + na(x) − 2

a(β + 1) + γ − 1

⌉

.

Moreover, this inequality must hold for every a, a = 3, 4, . . . , b and every vertex
x in G.

A fan Fn, n ≥ 2, is a graph obtained by joining all vertices of path Pn to a
further vertex. The next theorem gives the exact value of the face irregularity
strength of type (α, β, γ) for a fan.
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Theorem 9. Let Fn, n ≥ 3, be a fan and let α, β, γ ∈ {0, 1}. Then

fs(α,β,γ)(Fn) =











































n, if (α, β, γ) = (0, 0, 1),
⌈

n
2

⌉

, if (α, β, γ) = (1, 0, 0),
⌈

n+1
3

⌉

, if (α, β, γ) = (1, 0, 1); (0, 1, 0),
⌈

n+2
4

⌉

, if (α, β, γ) = (0, 1, 1),
⌈

n+3
5

⌉

, if (α, β, γ) = (1, 1, 0),
⌈

n+4
6

⌉

, if (α, β, γ) = (1, 1, 1).

Proof. The fan Fn contains n+ 1 vertices, say, w, v1, v2, . . . , vn and 2n− 1 edges
wvi, i = 1, 2, . . . , n, and vivi+1, i = 1, 2, . . . , n− 1. We denote its 3-sided faces by
the symbol fi, i = 1, 2, . . . , n− 1, such that the face fi is surrounded by vertices
vi, vi+1, w and edges vivi+1, viw, vi+1w. The external (n + 1)-sided face we
denote by fext.

The value for the parameter fs(0,0,1)(Fn) follows from Lemma 4.
Using a connection between the face irregularity strength and the total /

vertex / edge C3-irregularity strength of fan graphs, denoted by ths(Fn, C3) /
vhs(Fn, C3) / ehs(Fn, C3), we get that for n ≥ 3

fs(1,1,0)(Fn) = ths(Fn, C3) =
⌈

n+3
5

⌉

, see [6],

fs(1,0,0)(Fn) = vhs(Fn, C3) =
⌈

n
2

⌉

, see [5],

fs(0,1,0)(Fn) = ehs(Fn, C3) =
⌈

n+1
3

⌉

, see [7].

Next consider three remaining cases.

Case 1. When (α, β, γ) = (1, 1, 1). According to Theorem 8 we have
fs(1,1,1)(Fn) ≥ ⌈(n+ 4)/6⌉. Put k = ⌈(n+ 4)/6⌉. We define a k-labeling of
type (1, 1, 1) ϕ : V (Fn) ∪ E(Fn) ∪ F (Fn) → {1, 2, . . . , k} such that

ϕ(vi) =
⌈

i+4
6

⌉

, for i = 1, 2, . . . , n,

ϕ(w) = 1,

ϕ(viw) =
⌈

i+1
6

⌉

, for i = 1, 2, . . . , n,

ϕ(vivi+1) =
⌈

i+3
6

⌉

, for i = 1, 2, . . . , n− 1,

ϕ(fi) =
⌈

i
6

⌉

, for i = 1, 2, . . . , n− 1,

ϕ(fext) = k.

It is easy to see that all labels are at most k. The face-weight of the face fi,
i = 1, 2, . . . , n− 1, under the labeling ϕ of type (1, 1, 1) is

wtϕ(1,1,1)
(fi) = ϕ(vi) + ϕ(vivi+1) + ϕ(vi+1) + ϕ(w) + ϕ(viw) + ϕ(vi+1w) + ϕ(fi).
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Thus, for i = 1, 2, . . . , n− 2 we obtain

wtϕ(1,1,1)
(fi+1) − wtϕ(1,1,1)

(fi) = ϕ(vi+2) + ϕ(vi+1vi+2) + ϕ(vi+2w) + ϕ(fi+1)

− ϕ(vi) − ϕ(vivi+1) − ϕ(viw) − ϕ(fi)

=
⌈

i+6
6

⌉

+
⌈

i+4
6

⌉

+
⌈

i+3
6

⌉

+
⌈

i+1
6

⌉

−
⌈

i+4
6

⌉

−
⌈

i+3
6

⌉

−
⌈

i+1
6

⌉

−
⌈

i
6

⌉

= 1.

This means that all weights of 3-sided faces are different. The weight of the
external (n+ 1)-sided face is

wtϕ(1,1,1)
(fext) =

n
∑

i=1

ϕ(vi) + ψ(w) +
n−1
∑

i=1

ϕ(vivi+1) + ϕ(v1w) + ϕ(vnw) + ϕ(fext)

>
n
∑

i=n−1

ϕ(vi) + ψ(w) +
n−1
∑

i=n−1

ϕ(vivi+1) + ϕ(vn−1w) + ϕ(vnw) + k

≥ wtϕ(1,1,1)
(fn−1).

Case 2. When (α, β, γ) = (1, 0, 1). Using Theorem 8 we get the lower bound,
i.e., fs(1,0,1)(Fn) ≥ ⌈(n+ 1)/3⌉. Put k = ⌈(n+ 1)/3⌉. We define a k-labeling of
type (1, 0, 1) ψ : V (Fn) ∪ F (Fn) → {1, 2, . . . , k} such that

ψ(vi) =
⌈

i+1
3

⌉

, for i = 1, 2, . . . , n,

ψ(w) = 1,

ψ(fi) =
⌈

i
3

⌉

, for i = 1, 2, . . . , n− 1,

ψ(fext) = k.

For i = 1, 2, . . . , n− 1 we get

wtψ(1,0,1)
(fi) = ψ(vi) + ψ(vi+1) + ψ(w) + ψ(fi)

and for i = 1, 2, . . . , n− 2 we obtain

wtψ(1,0,1)
(fi+1) − wtψ(1,0,1)

(fi) = ψ(vi+2) + ψ(fi+1) − ψ(vi) − ψ(fi)

=
⌈

i+3
3

⌉

+
⌈

i+1
3

⌉

−
⌈

i+1
3

⌉

−
⌈

i
3

⌉

= 1.

Thus the 3-sided face-weights are distinct. Moreover,

wtψ(1,0,1)
(fext) =

n
∑

i=1

ψ(vi) + ψ(w) + ψ(fext) >
n
∑

i=n−1

ψ(vi) + ψ(w) + k

≥ wtψ(1,0,1)
(fn−1).
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Case 3. When (α, β, γ) = (0, 1, 1). By Theorem 5 we get fs(0,1,1)(Fn) ≥
⌈(n+ 2)/4⌉. Put k = ⌈(n+ 2)/4⌉. We define a k-labeling of type (0, 1, 1) ξ :
E(Fn) ∪ F (Fn) → {1, 2, . . . , k} such that

ξ(viw) =
⌈

i+2
4

⌉

, for i = 1, 2, . . . , n,

ξ(vivi+1) =
⌈

i+1
4

⌉

, for i = 1, 2, . . . , n− 1,

ξ(fi) =
⌈

i
4

⌉

, for i = 1, 2, . . . , n− 1,

ξ(fext) = k.

The face-weight of the face fi, i = 1, 2, . . . , n − 1, under the labeling ξ of type
(0, 1, 1) is

wtξ(0,1,1)(fi) = ξ(vivi+1) + ξ(viw) + ξ(vi+1w) + ξ(fi)

and for i = 1, 2, . . . , n− 2 we get

wtξ(0,1,1)(fi+1) − wtξ(0,1,1)(fi) = ξ(vi+1vi+2) + ξ(vi+2w) + ξ(fi+1) − ξ(vivi+1)

− ξ(viw) − ξ(fi) =
⌈

i+2
4

⌉

+
⌈

i+4
4

⌉

+
⌈

i+1
4

⌉

−
⌈

i+1
4

⌉

−
⌈

i+2
4

⌉

−
⌈

i
4

⌉

= 1.

Thus all weights of 3-sided faces are different. To finish the proof we need to
show that the weight of the external (n+ 1)-sided face is not equal to the weight
of any 3-sided face. However, this follows from the following inequality.

wtξ(0,1,1)(fext) =
n−1
∑

i=1

ξ(vivi+1) + ξ(v1w) + ξ(vnw) + ξ(fext)

>
n−1
∑

i=n−1

ξ(vivi+1) + ξ(vn−1w) + ξ(vnw) + k ≥ wtξ(0,1,1)(fn−1).

Sometimes two or more faces can have not just one, but two vertices in
common. The following two theorems present the lower bounds if more faces share
two common vertices. The first theorem deals with the case when we consider
all such faces, the second theorem describes the situation when we consider only
faces of the same size.

Theorem 10. Let G = (V,E, F ) be a 2-connected plane graph. Let β, γ ∈ {0, 1}.
Let n(x, y) be the number of faces incident with both vertices x and y in G. Let the
smallest face and the biggest face incident with x and y be an ax,y-sided face and
a bx,y-sided face, respectively. Then the face irregularity strength of type (1, β, γ)
of G is

fs(1,β,γ)(G) ≥ max

{⌈

ax,y(β + 1) + γ + n(x, y) − 3

bx,y(β + 1) + γ − 2

⌉

: x, y ∈ V (G)

}

.
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Proof. Consider a 2-connected plane graph. Let n(x, y) denote the number of
faces incident with both vertices x and y in G. Let the smallest face and the
biggest face incident with x and y be an ax,y-sided face and a bx,y-sided face,
respectively.

Let ϕ be a face irregular k-labeling of type (1, β, γ), where fs(1,β,γ)(G) = k.
Suppose that f1(x, y), f2(x, y), . . . , fn(x,y)(x, y) are the faces incident with both
fixed vertices x and y in G. Clearly, the face-weights wtϕ(1,β,γ)

(fi(x, y)), i =
1, 2, . . . , n(x, y), are all distinct and each of them contains the values ϕ(x) and
ϕ(y). The corresponding smallest face-weight under the face irregular k-labeling
ϕ admits the value at least ϕ(x) + ϕ(y) + ax,y(β + 1) + γ − 2. Since there are
n(x, y) faces incident with both vertices x, y, it follows that the corresponding
largest face-weight attains the value at least ϕ(x)+ϕ(y)+ax,y(β+1)+γ+n(x, y)−3
and at most ϕ(x) + ϕ(y) + (bx,y(β + 1) + γ − 2) k. Then

ϕ(x) +ϕ(y) +ax,y(β+ 1) +γ+n(x, y)− 3 ≤ ϕ(x) +ϕ(y) + (bx,y(β + 1) + γ − 2) k

and

k ≥

⌈

ax,y(β + 1) + γ + n(x, y) − 3

bx,y(β + 1) + γ − 2

⌉

.

Moreover, this inequality must hold for all couples of vertices x, y in G.

Theorem 11. Let G = (V,E, F ) be a 2-connected plane graph with the biggest
face of size b. Let β, γ ∈ {0, 1}. Let na(x, y) denote the number of a-sided faces
incident with both vertices x and y in G, where a = 3, 4, . . . , b. Then the face
irregularity strength of type (1, β, γ) of G is

fs(1,β,γ)(G) ≥ max
{

max
{⌈

a(β+1)+γ+na(x,y)−3
a(β+1)+γ−2

⌉

: a = 3, 4, . . . , b
}

: x, y ∈ V (G)
}

.

Proof. Consider a 2-connected plane graph with the biggest face of size b. Let
na(x, y) denote the number of a-sided faces incident with both vertices x and y
in G, where a = 3, 4, . . . , b.

Let ϕ be a face irregular k-labeling of type (1, β, γ), where fs(1,β,γ)(G) = k.
Suppose that fa,1(x, y), fa,2(x, y), . . . , fa,na(x,y)(x, y) are the a-sided faces incident
with both fixed vertices x and y in G, where a = 3, 4, . . . , b. Clearly, the face-
weights wtϕ(1,β,γ)

(fa,i(x, y)), i = 1, 2, . . . , na(x, y), are all distinct and each of
them contains the values ϕ(x) and ϕ(y). The corresponding smallest face-weight
under the face irregular k-labeling ϕ admits the value at least ϕ(x)+ϕ(y)+a(β+
1)+γ−2. Since there are na(x, y) a-sided faces incident with both vertices x, y, it
follows that the corresponding largest face-weight attains the value at least ϕ(x)+
ϕ(y) +a(β+ 1) +γ+na(x, y)− 3 and at most ϕ(x) +ϕ(y) + (a(β + 1) + γ − 2) k.
Then

ϕ(x) + ϕ(y) + a(β + 1) + γ + na(x, y) − 3 ≤ ϕ(x) + ϕ(y) + (a(β + 1) + γ − 2) k
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and

k ≥

⌈

a(β + 1) + γ + na(x, y) − 3

a(β + 1) + γ − 2

⌉

.

Moreover, this inequality must hold for all couples of vertices x, y in G and for
every a, a = 3, 4, . . . , b. This concludes the proof.

3. Upper Bounds for Face Irregularity Strength

In Theorem 1 we proved that fs(α,β,0)(Cn) = ∞. In the following section of the
paper we show that except this case the face irregularity strength of type (α, β, γ)
of any 2-connected plane graph G is always finite.

Theorem 12. Let α, β ∈ {0, 1} and let G = (V,E, F ) be a 2-connected plane
graph containing faces of D different sizes. Then

fs(α,β,1)(G) ≤

{

|F (G)|, if (α, β) = (0, 0),

|F (G)| + 1 −D, if (α, β) 6= (0, 0).

Proof. Let α, β ∈ {0, 1} and let G = (V,E, F ) be a 2-connected plane graph
containing faces of D different sizes. Let us denote the faces of G arbitrarily by
the symbols fi such that if si is the size of a face fi, i = 1, 2, . . . , |F (G)|, then for
every i = 1, 2, . . . , |F (G)| − 1

si ≤ si+1.(5)

We define a labeling ϕ of type (α, β, 1) of G in the following way.

ϕ(x) =

{

α, if x ∈ V (G),

β, if x ∈ E(G),

ϕ(fi) =











1, if i = 1,

ϕ(fi−1), if (α+ β)si 6= (α+ β)si−1, i = 2, 3, . . . , |F (G)|,

ϕ(fi−1) + 1, if (α+ β)si = (α+ β)si−1, i = 2, 3, . . . , |F (G)|.

For the weights of faces fi, i = 1, 2, . . . , |F (G)|, under the labeling ϕ we get

wtϕ(α,β,1)
(fi) = α

∑

v∼fi

ϕ(v) + β
∑

e∼fi

ϕ(e) + ϕ(fi) = αsi + βsi + ϕ(fi)

= (α+ β)si + ϕ(fi).

Thus by the definition of the labeling ϕ and according to (5) we get that for every
i = 1, 2, . . . , |F (G)| − 1

wtϕ(α,β,1)
(fi) =(α+ β)si + ϕ(fi) < (α+ β)si+1 + ϕ(fi+1) = wtϕ(α,β,1)

(fi+1).
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It means that all face weights are distinct and thus ϕ is a face irregular labeling
of type (α, β, 1) of G. This implies that

fs(α,β,1)(G) ≤ ϕ(f|F (G)|) =

{

|F (G)|, if (α, β) = (0, 0),

|F (G)| + 1 −D, if (α, β) 6= (0, 0).

Now we will deal with the case when γ = 0 and we prove that the face
irregularity strength of type (1, 0, 0) of any 2-connected graph G different from a
cycle is again finite.

Theorem 13. For every 2-connected plane graph G = (V,E, F ) different from a
cycle we have

fs(1,0,0)(G) ≤ 2|V (G)|−1.

Proof. Let G = (V,E, F ) be a 2-connected plane graph different from a cycle.

Let us denote the faces in G arbitrarily by the symbols f1, f2, . . . , f|F (G)| and
let us denote the vertices in G arbitrarily by the symbols v1, v2, . . . , v|V (G)|. We

define a 2|V (G)|−1-labeling ϕ of type (1, 0, 0) of G such that

ϕ(vi) = 2i−1, for i = 1, 2, . . . , |V (G)|.

Consider a labeling θ defined such that

θi,j =

{

1, if vi ∼ fj ,

0, if vi 6∼ fj ,

where i = 1, 2, . . . , |V (G)|, j = 1, 2, . . . , |F (G)|.

Every face-weight under a labeling of type (1, 0, 0) is the sum of all labels of
vertices surrounding this face. Thus, for j = 1, 2, . . . , |F (G)| we have

wtϕ(1,0,0)
(fj) =

∑

v∼fj

ϕ(v) =
∑

vi∼fj

2i−1 =

|V (G)|
∑

i=1

θi,j · 2i−1.(6)

To prove that the face-weights are all distinct it is enough to show that the sums
∑|V (G)|

i=1 θi,j · 2i−1 are distinct for every j = 1, 2, . . . , |F (G)|. However, this is ev-
ident if we consider that the ordered |V (G)|-tuple (θ|V (G)|,jθ|V (G)|−1,j . . . θ2,jθ1,j)
corresponds to the binary code representation of the sum (6). As G is not iso-
morphic to a cycle we get that different faces cannot have the same vertex sets
and we immediately get that the |V (G)|-tuples are different for different faces.

In a similar way we can prove the following results.
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Theorem 14. For every 2-connected plane graph G = (V,E, F ) different from a
cycle we have

fs(0,1,0)(G) ≤ 2|E(G)|−1.

Theorem 15. For every 2-connected plane graph G = (V,E, F ) different from a
cycle we have

fs(1,1,0)(G) ≤ 2|V (G)|+|E(G)|−1.

4. Modification of the Problem

In the previous sections we discussed the case when the face-weights of different
faces are distinct. However, in the light of a face-antimagic labeling we can
consider a modification of the foregoing concept that we will require that just the
weights of the faces of the same size must be distinct. This means that the faces
of the different size can have the same weights.

A k-labeling ϕ of type (α, β, γ) of the plane graph G is called a same-face
irregular k-labeling if for every number s the face-weights are different for all pairs
of distinct s-sided faces. Thus for every couple of s-sided faces f and g in G there
is

wtϕ(α,β,γ)
(f) 6= wtϕ(α,β,γ)

(g).

The same-face irregularity strength of type (α, β, γ) of a plane graph G, denoted
by sfs(α,β,γ)(G), is the smallest integer k such that G admits a same-face irregular
k-labeling of type (α, β, γ).

Trivially, if all face-weights are distinct, then also weights of faces of the same
size are distinct.

Theorem 16. If G is a 2-connected plane graph and α, β, γ ∈ {0, 1}, then

sfs(α,β,γ)(G) ≤ fs(α,β,γ)(G).

In some cases the equality holds.

Theorem 17. If n ≥ 3 and α, β, γ ∈ {0, 1}, then

sfs(α,β,γ)(Cn) = fs(α,β,γ)(Cn),

sfs(α,β,γ)(Ln) = fs(α,β,γ)(Ln),

sfs(α,β,γ)(Fn) = fs(α,β,γ)(Fn).

Using similar arguments as in the previous parts we can prove the following
results.
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Theorem 18. Let α, β, γ ∈ {0, 1} and let G = (V,E, F ) be a 2-connected plane
graph in which no different faces have the same size. Then

sfs(α,β,γ)(G) = 1.

Theorem 19. Let G = (V,E, F ) be a 2-connected plane graph with the biggest
face of size b. Let na(G), a = 3, 4, . . . , b, denote the number of a-sided faces in
G. Then

sfs(0,0,1)(G) = max {na(G) : a = 3, 4, . . . , b} .

Theorem 20. Let G = (V,E, F ) be a 2-connected plane graph with the biggest
face of size b. Let na(x) denote the number of a-sided faces incident with a vertex
x in G, where a = 3, 4, . . . , b. Let β, γ ∈ {0, 1}. Then the same-face irregularity
strength of type (1, β, γ) of G is

sfs(1,β,γ)(G) ≥ max
{

max
{⌈

a(β+1)+γ+na(x)−2
a(β+1)+γ−1

⌉

: a = 3, 4, . . . , b
}

: x ∈ V (G)
}

.

Theorem 21. Let G = (V,E, F ) be a 2-connected plane graph with the biggest
face of size b. Let β, γ ∈ {0, 1}. Let na(x, y) denote the number of a-sided faces
incident with both vertices x and y in G, where a = 3, 4, . . . , b. Then the same-
face irregularity strength of type (1, β, γ) of G is

sfs(1,β,γ)(G) ≥ max
{

max
{⌈

a(β+1)+γ+na(x,y)−3
a(β+1)+γ−2

⌉

: a = 3, 4, . . . , b
}

: x, y ∈ V (G)
}

.

We conclude this section with an upper bound for the same-face irregularity
strength of type (α, β, 1).

Theorem 22. Let α, β ∈ {0, 1}. Let G = (V,E, F ) be a 2-connected plane graph
with the biggest face of size b. Let na(G), a = 3, 4, . . . , b, denote the number of
a-sided faces in G. Then

sfs(α,β,1)(G) ≤ max {na(G) : a = 3, 4, . . . , b} .

5. Conclusion

In the paper, we estimated the lower bounds and the upper bounds of the face
irregularity strength of type (α, β, γ) for 2-connected plane graphs and determined
the precise values of these parameters for certain families of plane graphs, namely
ladders and fan graphs to prove the sharpness of the lower bounds. We also
conjecture that if the studied parameter is finite it is equal to the maximum of
the presented lower bounds.
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