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Abstract

We introduce a new setting for dealing with the problem of the domi-
nation number of the Cartesian product of graphs related to Vizing’s con-
jecture. The new framework unifies two different approaches to the con-
jecture. The most common approach restricts one of the factors of the
product to some class of graphs and proves the inequality of the conjecture
then holds when the other factor is any graph. The other approach uti-
lizes the so-called Clark-Suen partition for proving a weaker inequality that
holds for all pairs of graphs. We demonstrate the strength of our frame-
work by improving the bound of Clark and Suen as follows: γ(X2Y ) ≥
max

{

1

2
γ(X)γt(Y ), 1

2
γt(X)γ(Y )

}

, where γ stands for the domination num-
ber, γt is the total domination number, and X 2Y is the Cartesian product
of graphs X and Y .
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1. Introduction

Let X = (V (X), E(X)) be a finite, simple graph. Let A ⊆ V (G). The open

neighborhood of A is the set, N(A), of vertices in G that have a neighbor in A,
and the closed neighborhood of A is the set N [A] defined by N [A] = N(A) ∪ A.
For subsets of vertices, A and S, we say that A dominates S if S ⊆ N [A]; that
is, if each vertex of S is in A or is adjacent to some vertex of A. (We also say
that vertices of A dominate (vertices of) S.) The domination number of X
is the smallest cardinality, denoted γ(X), of a set that dominates V (X). If A
dominates V (X), we will also say that A dominates the graph X and that A is
a dominating set of X.

If S and T are subsets of vertices in X, then T totally dominates S in X if
S ⊆ N(T ), that is, each vertex in S is adjacent to a vertex in T . Similarly, we
say that a vertex t totally dominates a vertex s if st ∈ E(X). A set T is a total

dominating set of X if T totally dominates V (X). The size of a minimum total
dominating set of a graph X is called the total domination number of X, and is
denoted by γt(X).

The Cartesian product X 2 Y of graphs X and Y is the graph whose vertex
set is V (X) × V (Y ). Two vertices (x1, y1) and (x2, y2) are adjacent in X 2 Y if
either x1 = x2 and y1y2 is an edge in Y , or y1 = y2 and x1x2 is an edge in X. For
a vertex x of X, the subgraph of X 2 Y induced by the set {(x, y) | y ∈ V (Y )}
is called a Y -fiber and is denoted by xY . Similarly, for y ∈ V (Y ), the X-fiber,
Xy, is the subgraph induced by {(x, y) | x ∈ V (X)}. We will also use the fiber
notation Xy and xY to refer to the set of vertices in these subgraphs; the meaning
should be clear from the context. It is clear that all X-fibers are isomorphic to
X and all Y -fibers are isomorphic to Y . As usual, the projection to X is the map
pX : V (X 2 Y ) → V (X) defined by pX(x, y) = x. Similarly, the projection to Y
is the map pY : V (X 2 Y ) → V (Y ) defined by pY (x, y) = y.

A subset S of vertices in a graph X is a packing if the closed neighborhoods
of vertices in S are pairwise disjoint. The packing number ρ(X) is the maximum
cardinality of a packing. The clique cover number of a graph X, denoted θ(X),
is the minimum number of complete subgraphs of X whose union is V (X). The
graph X is called a BG-graph if X is a spanning subgraph of some graph X ′ such
that γ(X) = θ(X ′) = γ(X ′).

The following conjecture concerning the domination number of a Cartesian
product was made by Vizing in 1968.

Conjecture 1 [14]. For every pair of graphs X and Y ,

(1) γ(X 2 Y ) ≥ γ(X) γ(Y ).

We say that a graph X satisfies Vizing’s conjecture if (1) holds for every
graph Y . The only classes of graphs that are known to satisfy Vizing’s conjecture
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are BG-graphs [2], chordal graphs [1], those with domination number 3 [13, 4],
Type X graphs [9] and those whose fair domination number and domination
number are equal [6]. See the survey [5] for other results on the conjecture.

In this paper, we present a new framework for studying the domination num-
ber of the Cartesian product of graphs. Our framework partitions the vertex set
of the Cartesian product into cells, each of which is assigned one of four colors
determined by properties of the vertices in the cell with respect to a given dom-
inating set in the Cartesian product. Using the resulting framework we present
transparent proofs of several previously known results related to Vizing’s con-
jecture, including the classical result due to Barcalkin and German [2] and the
important result due to Clark and Suen [7], as well as new improved results. These
results by Barcalkin-German and Clark-Suen were considered as completely dif-
ferent approaches to the conjecture, since the first one proves that the conjectured
bound holds for a (large) class of graphs, while the second one provides a proof
of a weaker inequality related to the conjecture. The new framework thus unifies
most of the previous partial results on the conjecture and combines them into a
more transparent form.

We proceed as follows. In Section 2 we discuss our new framework. There-
after, we present some key preliminary lemmas in Section 3. In Section 4 we give
our main results and show that our new framework encompasses several of the
most important results to date on Vizing’s conjecture, including results due to
Clark and Suen [7], Barcalkin and German [2], Suen and Tarr [12], Brešar [3], and
Zerbib [15]. Further we show that if X and Y are arbitrary isolate-free graphs,
then γ(X 2 Y ) ≥ max

{

1
2γ(X)γt(Y ), 12γt(X)γ(Y )

}

.

2. A Framework for Domination in Cartesian Products

For our initial framework we use that of the proof of the bound due to Clark and
Suen in [7]. Let X be a graph with γ(X) = k and let {u1, . . . , uk} be a minimum
dominating set of X. Consider a partition π = {π1, . . . , πk} of V (X) chosen so
that ui ∈ πi and πi ⊆ N [ui] for each i. Let Yi = πi × V (Y ). For a vertex y of Y
the set of vertices πi×{y} is called a cell, and is denoted shortly by πy

i . (We may
say that the cell πy

i belongs to Yi, and from the other perspective it also belongs
to the fiber Xy.)

Let D be a minimum dominating set of X2Y . As usual, let [k] = {1, . . . , k}.
For i ∈ [k], let Di = D ∩ Yi. Similarly, we denote Dy = D ∩ Xy for y ∈ V (Y ).
The cell πy

i is blue if πy
i ∩D 6= ∅ and πy

i is dominated by Dy (the latter condition
will also be expressed as πy

i is horizontally dominated by D.) The cell πy
i is green

if πy
i ∩D 6= ∅ and πy

i is not horizontally dominated by D. Finally, we call the cell
red if it is horizontally dominated by D, and no vertex of πy

i is dominated by Di.
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All the remaining cells in Xy are colored white. Note that exactly the cells with
color blue and green contain vertices of D. We color the vertices in D ∩ πy

i blue
if the cell πy

i is blue. If a cell πy
i is green, then we color the vertices in D ∩ πy

i

green. This coloring of the vertices of D is a partition of D into subsets of blue
vertices and green vertices. We note that within the Cartesian product X 2Y
the only vertices that have a color are the blue vertices (the vertices from D that
belong to a blue cell), and the green vertices (the vertices of D that belong to a
green cell).

To illustrate this method of coloring cells consider the following example.
The graph X has order 8 with vertex set {x1, x2, . . . , x8} and Y = C4 with
V (Y ) = {y1, y2, y3, y4}. See Figure 1. Note that edges in the Cartesian product
X2Y are not drawn in the figure to simplify viewing. The domination number of
X is 3, and {x2, x4, x7} is a minimum dominating set of X. We use the partition
{π1, π2, π3}, where π1 = {x1, x2, x3}, π2 = {x4, x5} and π3 = {x6, x7, x8}. In this
example γ(X 2 Y ) = 8 and a minimum dominating set in X 2 Y is denoted by
the solid vertices. Using the definitions above we find that there are two blue
cells, πy1

1 and πy3
2 , and there is one red cell, πy1

2 . Cells πy2
1 , πy1

3 , πy2
3 , πy3

3 , and πy4
3

are green; the remaining cells πy3
1 , πy4

1 , πy2
2 , and πy4

2 are white.

x1 x2 x3 x4 x5 x6 x7 x8

y1

y2

y3

y4

X

Y

Figure 1. Cell coloring example.

In the projection pY (Yi) of the cells of Yi to Y , the vertex y = pY (π
y
i ) receives

the color of the cell πy
i for each i ∈ [k]. Let Bi, Gi and Ri be the resulting set of

vertices in Y colored blue, green and red, respectively, for i ∈ [k].
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We also introduce the following notation concerning the size of some of the
sets having certain colors. Let b′y be the number of blue cells in the fiber Xy,
let b′i the number of blue cells in Yi, and let b′ the total number of all blue cells
in X 2 Y . We define analogously g′y, g

′

i, g
′, associated with the green cells and

r′y, r
′

i, and r′, associated with red cells. Next, let by and bi denote the number
of blue vertices in Xy and Yi, respectively, and let b be the total number of blue
vertices in X 2 Y . In an analogous way we define gy, gi and g, associated with
the green vertices. Clearly, |D| = b+ g. Since each blue cell contains at least one
blue vertex, we get by ≥ b′y, bi ≥ b′i and b ≥ b′, and analogously, gy ≥ g′y, gi ≥ g′i
and g ≥ g′.

3. Key Preliminary Lemmas

In this section, we present some key preliminary lemmas.

Lemma 2. b′ + g′ + r′ ≥ γ(X)γ(Y ).

Proof. For any i ∈ [γ(X)], we consider the cells of Yi. Recall that pY (Yi) denotes
the projection of Yi onto Y . We color Y so that the vertex y = pY (π

y
i ) receives

the color of the cell πy
i . We claim that the set S of vertices in Y that received

(by the projection) one of the colors blue, green or red, forms a dominating set of
Y . To see this it suffices to show that every vertex in Y that received color white
(by the projection) is dominated by a vertex that received color blue or green.

Indeed, a white vertex y ∈ V (Y ) is projected from a white cell πy
i . By

definition the white cell πy
i , is either not dominated by D∩Xy, or it is dominated

by D ∩ Xy but contains at least one vertex that is dominated by Di. In either
case this white cell πy

i contains a vertex (u, y) that is dominated by a vertex

(u, y′) ∈ D, which is clearly blue or green. Hence y′ = pY (π
y′

i ) received color blue
or green and it dominates y in Y , as claimed. Therefore, S is a dominating set
of Y and it is clear that |S| = b′i + g′i + r′i, which implies b′i + g′i + r′i ≥ γ(Y ).
Summing up over all i between 1 and γ(X), we get

b′ + g′ + r′ =

γ(X)
∑

i=1

(b′i + g′i + r′i) ≥ γ(X)γ(Y ).

We proceed further with some additional notation. For i ∈ [γ(X)], we con-
sider the red cells in Yi. In the projection pY (Yi) to Y , let Ri be the set of
vertices in Y colored red. Let s′i be the minimum number of vertices in Y needed
to dominate the set Ri. Let

s′ =

γ(X)
∑

i=1

s′i.

Using this definition, we can improve Lemma 2 as follows.
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Corollary 3. b′ + g′ + s′ ≥ γ(X)γ(Y ).

Proof. For any i ∈ [γ(X)], we consider the cells of Yi, and, as before, in the
projection pY (Yi) to Y , the vertex y = pY (π

y
i ) receives the color of the cell

πy
i . Let Bi, Gi and Ri be the set of vertices in Y colored blue, green and red,

respectively. We note that |Bi| = b′i, |Gi| = g′i, and |Ri| = r′i. Let Si be a
minimum set of vertices in Y needed to dominate the set Ri, and so |Si| = s′i.
We claim that the set T = Bi∪Gi∪Si forms a dominating set of Y . Analogously
as in the proof of Lemma 2, every white vertex is dominated by a blue or green
vertex. By definition of the set Si, every red vertex is dominated by a vertex in
Si. Therefore, T is a dominating set of Y , which implies b′i + g′i + s′i ≥ γ(Y ).
Summing up over all i between 1 and γ(X), we get

b′ + g′ + s′ =

γ(X)
∑

i=1

(b′i + g′i + s′i) ≥ γ(X)γ(Y ).

Lemma 4. r′ ≤ b− b′ + g.

Proof. For y ∈ V (Y ), we consider the blue and green vertices in the fiber Xy.
These by + gy vertices dominate all vertices in the red and blue cells in Xy. In
the projection pX(Xy) of Xy onto X we note that the vertices projected from the
blue and green vertices, together with the vertices ui from every projected white
and green cell πy

i , form a dominating set of X. Clearly, the number of white and
green cells in Xy is γ(X) − b′y − r′y. Hence, γ(X) ≤ by + gy + (γ(X) − b′y − r′y),
or, equivalently, r′y ≤ by − b′y + gy. Summing over all vertices y ∈ V (Y ), we infer
that r′ ≤ b− b′ + g.

4. Main Results

As an immediate consequence of Lemmas 2 and 4, we have the following funda-
mental result due to Clark and Suen [7].

Theorem 5 [7]. γ(X 2 Y ) ≥ 1
2γ(X)γ(Y ).

Proof. Let D be a minimum dominating set of X 2Y . By Lemmas 2 and 4, the
following holds.

γ(X)γ(Y )
(Lemma 2)

≤ b′ + g′ + r′

(Lemma 4)

≤ b′ + g′ + (b− b′ + g)
= b+ g + g′

≤ 2(b+ g)
= 2|D|,

implying that γ(X 2 Y ) = |D| ≥ 1
2γ(X)γ(Y ).
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Recall that a graph X is decomposable, as defined by Barcalkin and German
in [2], if its vertex set can be partitioned into γ(X) subsets each of which induces
a clique. In particular, note that for any minimum dominating set of X 2 Y ,
where Y is an arbitrary graph, and in the setting in which the sets in π induce
cliques, there will be no green vertices. Hence the next result may be viewed as
an extension of the classical result of Barcalkin and German.

Theorem 6. If there is no green cell, then γ(X2Y ) ≥ γ(X)γ(Y ). In particular,

the conjecture is true for decomposable graphs.

Proof. Suppose there is no green cell, and so g = 0. Let D be a minimum
dominating set of X 2 Y . By Lemmas 2 and 4,

γ(X 2 Y ) = |D| = b ≥ b′ + r′ ≥ γ(X)γ(Y ).

By our new coloring technique, we show next that the inequality given by
Clark and Suen in Theorem 5 is a strict inequality and can be improved in two
different ways. Our framework can be used to prove the result of Suen and
Tarr [12] as well as to show that for each pair of graphs the fraction 1/2 can be
replaced by a larger rational number. For this purpose, we need the following
additional lemma.

Lemma 7. Renaming the graphs X and Y if necessary, we may assume that

b ≥ γ(X).

Proof. Suppose that the projection pX(D) of D onto X is not equal to V (X).
Thus there is some vertex x ∈ X such that the Y -fiber, xY , contains no vertex of
D. Let y be an arbitrary vertex of Y . If the X-fiber, Xy, contains no vertex of D,
then the vertex (x, y) is not dominated by D in X 2 Y , which is a contradiction.
Hence, the X-fiber Xy contains at least one vertex of D, implying that the
projection pY (D) of D onto Y is the entire set V (Y ). Renaming the graphs X
and Y if necessary, we may therefore assume that the projection pX(D) is the set
V (X). For each vertex ui belonging to the minimum dominating set {u1, . . . , uk}
of X, let (ui, y) be a vertex of D that belongs to the Y -fiber, uiY . We note that
the cell πy

i is a blue cell, implying that there are at least k = γ(X) blue cells.
Hence, b ≥ γ(X).

We illustrate next that the coloring framework can be used to prove the
important result on Vizing’s conjecture by Suen and Tarr [12] that was historically
the first improvement of Theorem 5.

Theorem 8 [12]. For any graphs X and Y ,

γ(X 2 Y ) ≥
1

2
γ(X)γ(Y ) +

1

2
min{γ(X), γ(Y )}.
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Proof. By Lemma 7 we may assume that b ≥ γ(X). Following the proof of
Theorem 5 we get

γ(X) + γ(X)γ(Y ) ≤ b+ γ(X)γ(Y ) ≤ 2b+ g + g′ ≤ 2|D|.

The conclusion of the theorem follows immediately.

4.1. Results in terms of the total domination number

In this section, we use the coloring framework to obtain bounds in terms of the
total domination number. Having identified that inequalities involving b′, g′ and
r′ are useful in deducing bounds, we now show how to bound a linear combination
of them in terms of the domination number ofX and the total domination number
of Y . For this purpose, we need the following additional lemma.

Lemma 9. 2b′ + g′ + r′ ≥ γ(X)γt(Y ).

Proof. For each i ∈ [γ(X)], we consider the cells of Yi. Recall that in the
projection pY (Yi) to Y , the vertex y = pY (π

y
i ) receives the color of the cell πy

i .
Further, recall that Bi, Gi and Ri is the set of vertices in Y colored blue, green
and red, respectively. We note that |Bi| = b′i, |Gi| = g′i, and |Ri| = r′i. For each
vertex y ∈ Bi ∪Ri, let ty be a neighbor of y in Y , and let

Ti =
⋃

y∈Bi∪Ri

{ty}.

We note that |Ti| ≤ |Bi|+ |Ri| = b′i+ r′i. We claim that the set Bi∪Gi∪Ti is
a total dominating set of Y . Every white vertex in Y has a neighbor in Bi ∪Gi,
and every blue and red vertex has a neighbor in Ti. Further, let y be an arbitrary
green vertex in Y , and let πy

i be the corresponding green cell in Yi. Since the cell
πy
i is not horizontally dominated, it contains a vertex (u, y) that is dominated in

X 2 Y by a vertex (u, y′) ∈ Di for some neighbor y′ of y. Since the vertex (u, y′)

is green or blue, the cell πy′

i is green or blue. Therefore, the vertex y′ received the
color green or blue, implying that y is totally dominated by a vertex of Bi ∪Gi.
Hence also every green vertex in Y has a neighbor in Bi ∪Gi. Therefore, the set
Bi ∪ Gi ∪ Ti is a total dominating set of Y , as claimed. Recall that |Bi| = b′i,
|Gi| = g′i, and b′i+r′i ≥ |Ti|. Thus, 2b

′

i+g′i+r′i ≥ |Bi∪Gi∪Ti| ≥ γt(Y ). Summing
up over all i between 1 and γ(X), we get

2b′ + g′ + r′ =

γ(X)
∑

i=1

(2b′i + g′i + r′i) ≥ γ(X)γt(Y ).

Theorem 10. For any graphs X and Y ,

γ(X 2 Y ) ≥ max

{

1

2
γ(X)γt(Y ),

1

2
γt(X)γ(Y )

}

.
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Proof. Let D be a minimum dominating set of X 2Y . By Lemmas 4 and 9, the
following holds.

γ(X)γt(Y )
(Lemma 9)

≤ 2b′ + g′ + r′

(Lemma 4)

≤ 2b′ + g′ + (b− b′ + g)
= (g + g′) + (b+ b′)
≤ 2(b+ g)
= 2|D|,

implying that γ(X 2 Y ) = |D| ≥ 1
2γ(X)γt(Y ). Interchanging the roles of X and

Y , the desired result follows.

Since γt(Y ) ≥ γ(Y ), Theorem 10 provides an improvement of Theorem 5
due to Clark and Suen [7]. While the result could also be proved by using
the standard Clark-Suen technique, our proof serves to illustrate the use of the
coloring framework for attacking Vizing’s conjecture.

In order to see that Theorem 10 provides an improvement over Theorem 5 we
now present an infinite family of graphs {Xk}, none of which is known to satisfy
Vizing’s conjecture. Furthermore for a positive integer k, γ(Xk) = k+3 whereas
γt(Xk) = 2k + 3. Applying Theorem 10 we see that

γ(Xk 2 Y ) ≥ 1
2γt(Xk)γ(Y )

= 1
2(2k + 3)γ(Y )

= 1
2(γ(Xk) + k)γ(Y )

= 1
2γ(Xk)γ(Y ) + k

2γ(Y ).

For a positive integer k we let Xk be the graph of order 3k + 8 shown in
Figure 2, where there are k copies of a path of order 3 attached at vertex x.
It is easy to verify that the subgraph Q of Xk induced by the set of vertices
{a1, a2, b1, b2, b3, x, y, z} has domination number 3 and total domination number
3. In addition, if any missing edge is added to Q, the resulting graph has dom-
ination number 2. From this it follows that the clique cover number of Q is 4,
and thus Q is not a BG-graph.

We now proceed to show thatXk is not a BG-graph. That is, it is not possible
to add some missing edges to Xk and produce a graph with domination number
k + 3 and clique cover number k + 3. Suppose for the sake of contradiction that
there is a subset M ⊆ E(Xk) such that if X+

k = Xk +M , then γ(X+
k ) = k+3 =

θ(X+
k ). Let C = {c1, . . . , ck}, let E = {e1, . . . , ek} and let F = {f1, . . . , fk}. If

a1ei ∈ M for some i ∈ [k], then {a2, x} ∪E is a dominating set of X+
k which is a

contradiction. Similarly, a2ei /∈ M for any i ∈ [k]. If b1ei ∈ M for some i ∈ [k],
then {b2, x} ∪E is a dominating set of X+

k of cardinality k + 2, which is again a
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contradiction. A similar argument shows that neither of b2 nor b3 is adjacent in
X+

k to any vertex of E. If a1fi ∈ M for some i ∈ [k], then {a2, fi, x}∪ (E−{ei})
is a set of cardinality k + 2 that dominates X+

k , which is a contradiction. A
parallel argument holds when a2fi ∈ M . Similarly, a contradiction is produced if
either b1 or b2 is adjacent in X+

k to a vertex of F .

a1 a2

b1 b2 b3

c1 e1 f1

c2 e2 f2

ck ek fk

x

y

z

Figure 2. The graph Xk.

Consider the partition of V (X+
k ) into k+3 cliques of X+

k . Note that at most
one of a1 and a2 is in a clique with b3 since a1 and a2 are not adjacent in X+

k .
Without loss of generality we assume that a1 and b3 belong to different cliques.
Since no vertex of E ∪ F is adjacent to a1 in X+

k , if a vertex w belongs to the
clique containing a1, then w ∈ {b1, b2} ∪ C. Since b1 and b2 belong to different
cliques, we can assume without loss of generality that any such vertex w is in
C ∪ {b1}.

Suppose first that x and b3 belong to the same clique. Note that x, z and b2
belong to three distinct cliques in the partition. In this case by adding a single
vertex from each of the remaining k− 1 cliques not containing a1 to {x, z, b2} we
get a dominating set of cardinality k + 2. Finally suppose that x are b3 are in
different cliques of the partition. By choosing x, a2 and whichever of b2 and b3 is
not in the same clique as a2 we can form a dominating set of size k+2 by adding
a single vertex from each of the other k − 1 cliques not containing a1. This final
contradiction proves that no such partition of V (X+

k ) into k+ 3 cliques exists in
X+

k . That is, Xk is not a BG-graph.

Note that Xk is not a chordal graph. Furthermore, Xk is not of Type X and
the fair domination number of Xk appears to be less than k + 3. Therefore, it
was not known whether Xk satisfies Vizing’s conjecture.

4.2. Results in terms of the packing number

In this section, our aim is to show that the coloring framework can be used to
prove previously published results on Vizing’s conjecture involving bounds in
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terms of the packing number. For this purpose we first present two preliminary
lemmas.

Lemma 11. If A is an arbitrary subset of vertices of a graph X, then there is a

set S ⊆ V (X) such that S dominates A and |S| ≤ 1
2(|A|+ ρ(X)).

Proof. Consider the collection of all partitions of A, say (A1, . . . , Ak, Ak+1),
such that Ak+1 is a 2-packing in X and for each i ∈ [k], Ai consists of two
vertices of distance at most 2 in X. (We allow the possibilities that Ak+1 = ∅
or Ak+1 = A.) Choose such a partition with k as large as possible. By choice,
|Ak+1| ≤ ρ(X). For i ∈ [k], let zi be a vertex that dominates Ai, and define S by
S = {z1, . . . , zk} ∪Ak+1. It is clear that S dominates A and

|S| ≤ k + |Ak+1| =
|A| − |Ak+1|

2
+ |Ak+1| =

|A|+ |Ak+1|

2
≤

|A|+ |ρ(X)|

2
.

Our next lemma bounds the parameter s′ in terms of the domination number
of X and the packing number of Y .

Lemma 12. s′ ≤ 1
2(r

′ + γ(X)ρ(Y )).

Proof. We adopt the notation employed in the proof of Lemma 3. Let i ∈ [γ(X)].
By Lemma 11 applied to the graph Y the set Ri can be dominated by a subset
Si of Y such that s′i = |Si| ≤

1
2(|Ri| + ρ(Y )). Summing up over all i between 1

and γ(X), we get

s′ =

γ(X)
∑

i=1

s′i ≤

γ(X)
∑

i=1

1

2
(r′i + ρ(Y )) =

1

2
(r′ + γ(X)ρ(Y )).

We are now in a position to show how the coloring framework can be used
to prove the following result, which was first proven in [3].

Theorem 13. If X and Y are arbitrary graphs, then

γ(X 2 Y ) ≥ max

{(

2γ(X)− ρ(X)

3

)

γ(Y ),

(

2γ(Y )− ρ(Y )

3

)

γ(X)

}

.

Proof. Interchanging the roles of X and Y , it suffices for us to prove the in-
equality γ(X 2 Y ) ≥ (2γ(Y ) − ρ(Y ))γ(X)/3. Let D be a minimum dominating
set of X 2 Y . By Lemmas 4, 3 and 12, the following holds.

|D| = b+ g

≥
b+ g

2
+

b′ + g′

2

≥
b− b′ + g

2
+ b′ +

g′

2
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(Lemma 4)

≥
r′

2
+ b′ +

g′

2
(Lemma 12)

≥ s′ −
1

2
γ(X)ρ(Y ) + b′ +

g′

2

= b′ + g′ + s′ −
1

2
γ(X)ρ(Y )−

g′

2
(Lemma 3)

≥ γ(X)γ(Y )−
1

2
γ(X)ρ(Y )−

g′

2
.

Therefore, since |D| = g + b ≥ g′, we infer the following.

(2)
3

2
|D| = |D|+

1

2
|D| ≥ |D|+

1

2
g′ ≥ γ(X)γ(Y )−

1

2
γ(X)ρ(Y ),

or, equivalently,

|D| ≥
γ(X)

3
(2γ(Y )− ρ(Y )).

4.3. Results involving domination numbers of X and Y

We close with the following stronger result than Theorem 8. We remark that this
result was first proven by Zerbib [15] using the standard Clark-Suen technique.
As before we use our coloring framework except that the dominating set of X is
chosen differently here. However, the coloring, projecting and counting proceeds
exactly as in the underlying framework, noting that the color of the resulting
cells determines the color of the set of vertices in the dominating set D of the
Cartesian product X 2Y .

Theorem 14. For any graphs X and Y ,

γ(X 2 Y ) ≥
1

2
γ(X)γ(Y ) +

1

2
max{γ(X), γ(Y )} .

Proof. Renaming the graphs X and Y if necessary, we may assume that γ(X) ≥
γ(Y ). In what follows, we adopt precisely the notation defined in Section 2 for
our initial framework, except that here k ≥ γ(X) and we define the dominating
set {u1, . . . , uk} of X differently. Let DX be the projection pX(D) of the set D to
X. Since D is a (minimum) dominating set of X2Y , the set DX is a dominating
set of X. Among all subsets of vertices of DX that form a dominating set of X,
let U = {u1, . . . , uk} be one of minimum size. Possibly, U = DX . Since U is a
dominating set of X, we note that γ(X) ≤ |U | = k. We proceed further with the
following two claims.

Claim 1. b′ + g′ + r′ ≥ kγ(Y ).
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Proof. Proceeding exactly as in the proof of Lemma 2, we have that b′i+g′i+r′i ≥
γ(Y ) holds for every i ∈ [k]. Summing up over all i between 1 and k, we get
b′ + g′ + r′ =

∑k
i=1 (b

′

i + g′i + r′i) ≥ kγ(Y ).

Claim 2. r′ ≤ b− b′ + g.

Proof. Proceeding as in the proof of Lemma 4, for each vertex y ∈ V (Y ) we
consider the set, Uy say, consisting of the projection pX(D ∩Xy) of D ∩Xy onto
X together with the set of all vertices ui from every projected white and green
cell πy

i ; that is,

Uy = pX(D ∩Xy) ∪ {ui ∈ U | πy
i is a white or green cell}.

Since the set Uy is a dominating set of X and since Uy ⊆ DX , by the minimality
of U we have |U | ≤ |Uy|. Thus, k = |U | ≤ |Uy| = by + gy + (k − b′y − r′y), or,
equivalently, r′y ≤ by− b′y+gy. Summing over all vertices y ∈ V (Y ), we infer that
r′ ≤ b− b′ + g.

We now return to the proof of Theorem 14. For each vertex ui ∈ U , let
(ui, y) be a vertex of D that belongs to the Y -fiber, uiY . Since the cell πy

i is a
blue cell, there are at least k blue cells, implying that b ≥ k. By Claims 1 and 2,
the following holds.

γ(X) + γ(X)γ(Y ) ≤ k + kγ(Y )
≤ b+ kγ(Y )

(Claim 1)

≤ b+ (b′ + g′ + r′)

(Claim 2)

≤ b+ (b′ + g′ + (b− b′ + g))
= 2b+ g + g′

≤ 2(b+ g)
= 2|D|,

implying that γ(X 2 Y ) = |D| ≥ 1
2γ(X)γ(Y ) + 1

2 max{γ(X), γ(Y )}.
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