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Abstract

In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of
equitable coloring called equitable choosability. A k-assignment, L, for a
graph G assigns a list, L(v), of k available colors to each v ∈ V (G), and an
equitable L-coloring of G is a proper coloring, f , of G such that f(v) ∈ L(v)
for each v ∈ V (G) and each color class of f has size at most ⌈|V (G)|/k⌉.
Graph G is equitably k-choosable if G is equitably L-colorable whenever L is
a k-assignment for G. In 2018, Kaul, Mudrock, and Pelsmajer subsequently
introduced the List Equitable Total Coloring Conjecture which states that
if T is a total graph of some simple graph, then T is equitably k-choosable
for each k ≥ max{χℓ(T ),∆(T )/2 + 2} where ∆(T ) is the maximum degree
of a vertex in T and χℓ(T ) is the list chromatic number of T . In this paper,
we verify the List Equitable Total Coloring Conjecture for subdivisions of
stars and the generalized theta graph.

Keywords: graph coloring, total coloring, equitable coloring, list coloring,
equitable choosability.
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1. Introduction

In this paper, all graphs are nonempty, finite, simple graphs unless otherwise
noted. Generally speaking we follow West [37] for terminology and notation.
The set of natural numbers is N = {1, 2, 3, . . .}. For m ∈ N, we write [m] for the
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set {1, . . . ,m}. For sets A and B, we write A − B for the set of all elements of
A that are not elements of B. If G is a graph and S ⊆ V (G), we use G[S] for
the subgraph of G induced by S. For v ∈ V (G), we write dG(v) for the degree of
vertex v in the graph G and ∆(G) for the maximum degree of a vertex in G, and
we write NG(v) for the neighborhood of vertex v in the graph G. If e, w ∈ E(G)
and v ∈ V (G), we say e and v are incident if v is an endpoint of e, and we say
e and w are adjacent if e and w share an endpoint. Also, Gk denotes the kth

power of graph G (i.e. Gk has the same vertex set as G and edges between any
two vertices within distance k in G).

1.1. Total coloring, equitable coloring, and list coloring

In this paper, we study a conjecture that combines different types of colorings,
namely total coloring, equitable coloring, and list coloring. So, we begin by briefly
reviewing these three notions.

Given a graph G, in the classic vertex coloring problem we wish to color
the elements of V (G) with colors from the set [m] so that adjacent vertices re-
ceive different colors, a so-called proper m-coloring. The chromatic number of G,
denoted χ(G), is the smallest k such that a proper k-coloring of G exists.

1.1.1. Total coloring

A total m-coloring of G is a labeling f : V (G) ∪ E(G) → [m] where f(u) 6= f(v)
whenever u and v are adjacent or incident in G. The total chromatic number of
a graph G, denoted χ′′(G), is the smallest k such that G has a total k-coloring.
Clearly, for any graph G, χ′′(G) ≥ ∆(G)+1. A famous open problem is the Total
Coloring Conjecture (see [1, 34]) which states that for any graph G, χ′′(G) ≤
∆(G) + 2. See [22] for some other applications of total coloring.

It is possible to rephrase total coloring in terms of classic vertex coloring.
Specifically, the total graph of graph G, T (G), is the graph with vertex set V (G)∪
E(G) and vertices are adjacent in T (G) if and only if the corresponding elements
are adjacent or incident in G. Then G has a total k-coloring if and only if T (G)
has a proper k-coloring. It follows that χ′′(G) = χ(T (G)).

Given a graph G, one can construct T (G) in two steps: first subdivide every
edge of G to get a new graph H, then take its square (i.e. T (G) = H2). For
example, T (Pm) = P 2

2m−1.

1.1.2. Equitable coloring

The study of equitable coloring began in 1964 with a conjecture of Erdős [9], but
it was formally introduced by Meyer in the 1970’s [27]. An equitable k-coloring
of a graph G is a proper k-coloring of G, f , such that the sizes of the color classes
differ by at most one (where a proper k-coloring has exactly k color classes). In
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an equitable k-coloring, the color classes associated with the coloring are each of
size ⌈|V (G)|/k⌉ or ⌊|V (G)|/k⌋. We say that a graph G is equitably k-colorable if
there exists an equitable k-coloring of G. Many applications of equitable coloring
exist, see for example [16, 17, 31, 33].

Unlike classic vertex coloring, increasing the number of colors can make equi-
table coloring more difficult in certain cases. Indeed for any m ∈ N, K2m+1,2m+1

is equitably 2m-colorable, but it is not equitably (2m + 1)-colorable. In 1970,
Hajnál and Szemerédi [15] proved the 1964 conjecture of Erdős: every graph G
has an equitable k-coloring when k ≥ ∆(G) + 1.

In 1994, Chen, Lih, and Wu [5] conjectured that the result of Hajnál and
Szemerédi can be improved by 1 for most connected graphs. Their conjecture is
known as the ∆-Equitable Coloring Conjecture, and it is still open. Formally, the
∆-Equitable Coloring Conjecture states: a connected graph G is equitably ∆(G)-
colorable if it is different from Km, C2m+1, and K2m+1,2m+1. The ∆-Equitable
Coloring Conjecture has been proven true for interval graphs, bipartite graphs,
outerplanar graphs, subcubic graphs, certain planar graphs, and several other
classes of graphs (see [5, 7, 8, 25, 26, 38]).

1.1.3. List coloring

List coloring is another variation on classic vertex coloring that was introduced
independently by Vizing [35] and Erdős, Rubin, and Taylor [10] in the 1970’s. In
list coloring, we associate with graph G a list assignment, L, that assigns to each
vertex v ∈ V (G) a list, L(v), of available colors. Graph G is said to be L-colorable
if there exists a proper coloring f of G such that f(v) ∈ L(v) for each v ∈ V (G)
(we refer to f as a proper L-coloring of G). A list assignment L is called a k-

assignment for G if |L(v)| = k for each v ∈ V (G). We say G is k-choosable if G is
L-colorable whenever L is a k-assignment for G. The list chromatic number of G,
denoted χℓ(G), is the smallest k for which G is k-choosable. Since a k-assignment
can assign the same k colors to every vertex of a graph, χ(G) ≤ χℓ(G).

1.2. Equitable total coloring and list equitable coloring

We now briefly review work that has been done on equitably coloring total graphs,
and we review a list analogue of equitable coloring. We will then spend the
remainder of the paper focused upon list equitable total coloring.

1.2.1. Equitable total coloring

The study of equitable total coloring was initiated by Fu in 1994 [11]. Specifically,
Fu introduced the Equitable Total Coloring Conjecture which we now state.
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Conjecture 1 (Equitable Total Coloring Conjecture [11]). For every graph G,

T (G) has an equitable k-coloring for each k ≥ max{χ(T (G)),∆(G) + 2}.

The “∆(G)+2” is required because Fu [11] found an infinite family of graphs
G with χ′′(G) = ∆(G) + 1 but T (G) is not equitably (∆(G) + 1)-colorable (cf.
Proposition 2.10 in [11]). Note that if the Total Coloring Conjecture is true, we
would have max{χ′′(G),∆(G) + 2} = ∆(G) + 2.

Fu [11] showed that Conjecture 1 holds for complete bipartite graphs, com-
plete t-partite graphs of odd order, trees, and certain split graphs. Equitable
total coloring has also been studied for graphs with maximum degree 3 [36], joins
of certain graphs [13, 14, 39], the Cartesian product of cycles [6], and the corona
product of cubic graphs [12].

1.2.2. List equitable coloring

In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable
coloring called equitable choosability [20]. Suppose that L is a k-assignment for
graph G. An equitable L-coloring of G is a proper L-coloring, f , of G such that
f uses no color more than ⌈|V (G)|/k⌉ times1. When an equitable L-coloring of
G exists we say that G is equitably L-colorable. Graph G is equitably k-choosable
if G is equitably L-colorable whenever L is a k-assignment for G.

We now mention a convention used in this paper. Suppose that H is a
subgraph of G, and suppose that L is a k-assignment for G. When there is
an equitable L′-coloring of H where L′ is the k-assignment for H defined by
L′(v) = L(v) for each v ∈ V (H), we say H has an equitable L-coloring. Notice an
equitable L-coloring of H requires color classes of size at most ⌈|V (H)|/k⌉ which
may be more restrictive than the bound required for an equitable L-coloring of G.

It is important to note that, similar to equitable coloring, making the lists
larger may make equitable list coloring more difficult in certain cases. Indeed
K1,9 is equitably 4-choosable, but it is not equitably 5-choosable. Also, equitable
k-choosability does not imply equitable k-colorability unless k = 2. Indeed K1,6

is equitably 3-choosable, but it is not equitably 3-colorable (see [29]). In [20],
there are (perhaps surprising) conjectures that are list analogues of Hajnál and
Szemerédi’s result and the ∆-Equitable Coloring Conjecture.

Conjecture 2 [20]. Every graph G is equitably k-choosable when k ≥ ∆(G) + 1.

Conjecture 3 [20]. A connected graph G is equitably k-choosable for each k ≥
∆(G) if it is different from Km, C2m+1, and K2m+1,2m+1.

In [20], it is shown that Conjectures 2 and 3 hold for forests, connected
interval graphs, and 2-degenerate graphs with maximum degree at least 5. It

1When it comes to equitable choosability, the word equitable indicates that no color is used
excessively often.
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was also shown in [20] that if G is a graph and k ≥ max{∆(G), |V (G)|/2}, then
G is equitably k-choosable unless G contains Kk+1 or is Kk,k with k odd in the
latter case. Thus, Conjecture 3 is true for small graphs (at most 2k vertices).
Conjectures 2 and 3 have also been verified for outerplanar graphs [42], powers of
paths and cycles [18], series-parallel graphs [41], and certain planar graphs (see
[23, 40, 43]). In 2013, Kierstead and Kostochka made substantial progress on
Conjecture 2, as follows.

Theorem 4 [19]. If G is any graph, then G is equitably k-choosable whenever

k ≥











∆(G) + 1 if ∆(G) ≤ 7,

∆(G) + ∆(G)+6
7 if 8 ≤ ∆(G) ≤ 30,

∆(G) + ∆(G)
6 if ∆(G) ≥ 31.

1.3. List equitable total coloring

In 2018, Kaul, Pelsmajer, and the first author, began studying the equitable
choosability of total graphs [18] which was originally suggested by Nakprasit
[30]. Motivated by the Equitable Total Coloring Conjecture (Conjecture 1), they
introduced the List Equitable Total Coloring Conjecture (LETCC for short).

Conjecture 5 (List Equitable Total Coloring Conjecture [18]). For every graph

G, T (G) is equitably k-choosable for each k ≥ max{χℓ(T (G)),∆(G) + 2}.

Note that since ∆(T (G)) = 2∆(G), the LETCC is saying something stronger
about total graphs than Conjectures 2 and 3 when ∆(G) > 2. Also, Fu’s infinite
family of graphs G with χ′′(G) = ∆(G) + 1 and T (G) is not equitably ∆(G) + 1-
colorable also has the property that χℓ(T (G)) = ∆(G) + 1 and T (G) is not
equitably (∆(G) + 1)-choosable. So the LETCC would be sharp if true. The
LETCC has been verified for all graphs G with ∆(G) ≤ 2, stars, double stars,
and trees of maximum degree 3 (see [18, 28]).

1.4. Outline of results and an open question

In this paper, we study list equitable total coloring of generalized theta graphs.
Suppose that m ∈ N and l1, . . . , lm ∈ N satisfy l1 ≤ · · · ≤ lm. Then, the
generalized theta graph Θ(l1, . . . , lm) is the equivalence class of graphs consisting
of two vertices joined by internally disjoint paths of lengths l1, . . . , lm. We will
assume that l2 ≥ 2 when m ≥ 2 since we will only be considering simple graphs in
this paper.2 Studying list equitable total coloring of generalized theta graphs is
quite natural as theta graphs and generalized theta graphs have many interesting

2For the remainder of this paper, whenever we see Θ(l1, . . . , lm), we will always assume
m, l1, . . . , lm ∈ N with l1 ≤ · · · ≤ lm and l2 ≥ 2 when m ≥ 2.
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properties that have been studied by many researchers (see [2, 3, 4, 10, 21, 24, 32]).
For this paper, we prove a positive answer to the question: Does the LETCC hold
for generalized theta graphs?

In order to build up to the generalized theta graph, in Section 2 we study list
equitable total coloring of subdivisions of stars. We say that H is a subdivision

of G if H is a graph obtained from G by replacing the edges of G with internally
disjoint paths. In Section 2, we prove the following theorem.

Theorem 6. Suppose G is a subdivision of K1,m. If m = 1, then T (G) is

equitably k-choosable whenever k ≥ 3. Otherwise T (G) is equitably k-choosable
whenever k ≥ m+ 1.

Suppose G is a subdivision of K1,m. It is worth noting that Theorem 6 is the
best result possible since χℓ(T (G)) ≥ max{3,m+1}. Also, the result of Theorem
6 is saying something stronger than: the LETCC holds for subdivisions of stars.
This is because the LETCC only says that T (G) should be equitably k-choosable
for each k ≥ m+ 2.

Finally, in Section 3 we prove the following.

Theorem 7. Suppose G = Θ(l1, . . . , lm), then T (G) is equitably k-choosable
whenever k ≥ m+ 2.

So, the LETCC holds for generalized theta graphs. Notice that in Theorem 7,
T (G) is a path square and cycle square when m is 1 and 2 respectively. Since path
squares with at least 3 vertices are not equitably 2-choosable, and all cycle squares
with order not divisible by 3 are not equitably 3-choosable (see [18] for further
details), one can see that in the case of m = 1, 2, T (G) may not be equitably
(m+1)-choosable. The question of whether T (G) is equitably (m+1)-choosable
when m ≥ 3 is open.

Question 8. Suppose G = Θ(l1, . . . , lm). If m ≥ 3, does it follow that T (G) is

equitably (m+ 1)-choosable?

2. Subdivisions of Stars

In this section, we prove Theorem 6. Suppose that m ∈ N and l1, . . . , lm ∈ N

satisfy l1 ≤ · · · ≤ lm. Then, we use B(l1, . . . , lm) to denote the equivalence class of
subdivisions of K1,m where the edges of K1,m have been replaced with internally
disjoint paths of lengths: l1, . . . , lm.3

For the remainder of this paper when G = B(l1, . . . , lm), we assume that
V (G) = {u} ∪ {vi,j : i ∈ [m], j ∈ [li]}, and the edges of G are drawn so that for

3For the remainder of this paper, whenever we see B(l1, . . . , lm), we will always assume
m, l1, . . . , lm ∈ N with l1 ≤ · · · ≤ lm.
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each i ∈ [m] vertices are adjacent if and only if they appear consecutively in the
ordering: u, vi,1, . . . , vi,li .

Note that when G = B(l1, . . . , lm), T (G) is isomorphic to a copy of [B(2l1,
. . . , 2lm)]2. So, in order to prove Theorem 6, we begin by proving the following
result which will imply Theorem 6 for each m ≥ 3.

Theorem 9. For m ≥ 3, (B(l1, . . . , lm))2 is equitably k-choosable for each k ≥
m+ 1.

Notice that for m ≥ 3 Theorem 9 is saying something stronger than Theorem
6 since we are allowing any of the natural numbers l1, . . . , lm to be odd. We now
prove a Lemma that is closely related to a Lemma appearing in [20]; we use this
Lemma frequently to prove our results.

Lemma 10. Let G be a graph and let L be a k-assignment for G. Suppose

that |V (G)| = kq + r where 1 ≤ r ≤ k. Suppose t satisfies r ≤ t ≤ k. Let

S = {x1, . . . , xt} be a set of t distinct vertices in G. If G − S has an equitable

L-coloring and

|NG(xi)− S| ≤ k − i

for each i ∈ [t], then G has an equitable L-coloring.

Proof. Suppose that f is an equitable L-coloring of G− S (notice G− S could
be the empty graph). Note that no color is used more than q times by f . In an
equitable L-coloring of G, we must use no color more than ⌈(kq + r)/k⌉ = q + 1
times. Let L′(xi) = L(xi) − {f(v) : v ∈ NG(xi) − S} for each i ∈ [t]. Since
|NG(xi)− S| ≤ k− i, we know that |L′(xi)| ≥ i. So, there is a proper L′-coloring
of G[S] that uses t distinct colors. Such a coloring along with f completes an
equitable L-coloring of G.

We will now prove five lemmas that will imply Theorem 9. The first two of
the five lemmas will take care of the case where k ≥ m+ 2, and the last three of
the five lemmas will deal with k = m+ 1.

Lemma 11. Suppose m ≥ 3. If H = B(l1, l2, . . . , lm) and G = H2, then G is

equitably k-choosable whenever k ≥ m+ 3.

Proof. The result is obvious when k ≥ |V (G)| = 1+
∑m

i=1 li. So, we may assume
that L is an arbitrary k-assignment for G such that m+3 ≤ k < 1+

∑m
i=1 li. We

will show that G is equitably L-colorable.

Since 1 +
∑m

i=1 li > m + 3, lm > 1. Let S0 = {vi,1 : i ∈ [m]} ∪ A where
A = {u, vm,2} if vm,3 /∈ V (G) (i.e. lm = 2) and A = {u, vm,2, vm,3} otherwise.
Note m + 2 ≤ |S0| ≤ m + 3. Let d = k − |S0|. Let S1 be an arbitrary subset
of V (G) − S0 of size d, and let S = S0 ∪ S1. Note that G − S is a graph with
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maximum degree at most 4. By Theorem 4, there is an equitable L-coloring of
G− S.

Now, let x1 = u, xk−3 = vm−2,1, xk−2 = vm−1,1, xk−1 = vm,2, and xk =
vm,1. We then arbitrarily name the remaining vertices in S: x2, . . . , xk−4 in an
injective fashion. By the way S is constructed, |NG(xk−i) − S| ≤ 2 for i = 2, 3,
|NG(xk−1) − S| ≤ 1, and |NG(xk)− S| = 0. Moreover, |NG(x1)− S| ≤ m− 1 ≤
(m + 3) − 1 ≤ k − 1. Finally, for 2 ≤ i ≤ k − 4, |NG(xi) − S| ≤ 4 ≤ k − i. So,
Lemma 10 implies that G is equitably L-colorable.

Lemma 12. Suppose m ≥ 3. If H = B(l1, l2, . . . , lm) and G = H2, then G is

equitably (m+ 2)-choosable.

Proof. Note that the result is obvious when lm = 1 since G is a copy of Km+1

when lm = 1. So, we assume that lm > 1. Let L be an arbitrary (m + 2)-
assignment for G. We will show that G is equitably L-colorable in the following
cases: lm = 2, lm = 3, and lm ≥ 4.

In the case lm = 2, let S = {vi,1 : i ∈ [m]} ∪ {u, vm,2}. We name the vertices
of S as x1, x2, . . . , xm+2 where x1 = u, xm+2 = vm,2, and for each j ∈ [m],
xj+1 = vj,1. By Theorem 4, G− S is equitably L-colorable. It is easy to see that
|NG(x1)− S| ≤ m− 1 ≤ (m+ 2)− 1, |NG(xm+2)− S| = 0, |NG(xm+1)− S| = 0,
and for each 2 ≤ j ≤ m, |NG(xj) − S| ≤ 1 ≤ m + 2 − j. Thus, G is equitably
L-colorable by Lemma 10.

In the case lm = 3, let S = {vi,1 : 2 ≤ i ≤ m} ∪ {u, vm,2, vm,3}. We name the
vertices of S as x1, x2, . . . , xm+2 where x1 = u, xm+2 = vm,3, xm+1 = vm,2, and
for each 2 ≤ i ≤ m, xi = vi,1. By Theorem 4, G − S is equitably L-colorable.
It is easy to see that |NG(x1) − S| ≤ m ≤ (m + 2) − 1, |NG(xm+2) − S| = 0,
|NG(xm+1)−S| = 0, |NG(xm)−S| = 1, and for each 2 ≤ j ≤ m−1, |NG(xj)−S| ≤
3 ≤ m+ 2− j. Thus, G is equitably L-colorable by Lemma 10.

In the case lm ≥ 4, let S = {vi,1 : 3 ≤ i ≤ m} ∪ {u, vm,2, vm,3, vm,4}.
We name the vertices of S as x1, x2, . . . , xm+2 where x1 = u, xm+2 = vm,2,
xm+1 = vm,3, xm = vm,4, and xm−1 = vm,1. Finally, if m ≥ 4, then for each
2 ≤ j ≤ m − 2 we let xj = vj+1,1. Notice G − S has maximum degree at most
4. So, by Theorem 4, G − S is equitably L-colorable. It is easy to see that
|NG(x1)− S| ≤ m+ 1 ≤ (m+ 2)− 1, |NG(xm+2)− S| = 0, |NG(xm+1)− S| ≤ 1,
|NG(xm) − S| ≤ 2, and |NG(xm−1) − S| = 2. Finally, if m ≥ 4 then for each
2 ≤ j ≤ m− 2, |NG(xj)− S| ≤ 4 ≤ m+ 2− j. Thus, G is equitably L-colorable
by Lemma 10.

We now turn our attention to the case of k = m+ 1. Notice that in the case
when m = 3, when we try to use Lemma 10, we will no longer be able to use
Theorem 4 to show G−S is equitably L-colorable. So, we need a result from [18].
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Proposition 13 [18]. For p, n ∈ N, P p
n is equitably k-choosable whenever k ≥

p+ 1.

Notice that Proposition 13 immediately implies that if G is a spanning sub-
graph of a path square, then G is equitably k-choosable whenever k ≥ 3.

Lemma 14. Suppose m ≥ 3. If H = B(l1, l2, . . . , lm), G = H2, and l1 ≤ l2 ≤ 2,
then G is equitably (m+ 1)-choosable.

Proof. We may assume that |V (G)| > m+1. Suppose L is an arbitrary (m+1)-
assignment for G. In the case that l2 = 1, let S = {u, v1,1, v2,1, . . . , vm,1}. Clearly
G − S has an equitable L-coloring by Proposition 13. Let x1 = u, and let
xi+1 = vm+1−i,1 for each i ∈ [m]. Note that |NG(x1)−S| ≤ m− 2 ≤ (m+1)− 1,
|NG(xi)−S| ≤ 2 ≤ m+1−i for all 2 ≤ i ≤ m−1, and |NG(xi)−S| = 0 ≤ m+1−i
when i = m,m+ 1. By Lemma 10, we know that G has an equitable L-coloring.

In the case that l2 = 2, let S = {u, v1,1, v2,1, . . . , vm−1,1, v2,2}. Clearly G− S
has an equitable L-coloring by Proposition 13. Let x1 = u, xm−1 = v1,1, xm =
v2,1, and xm+1 = v2,2. If m ≥ 4, let xi+1 = vm−i,1 for each i ∈ [m − 3].
Note: |NG(x1) − S| ≤ m + 1 − 1, |NG(xm−1) − S| ≤ 2, |NG(xm) − S| = 1,
and |NG(xm+1) − S| = 0. Furthermore, if m ≥ 4, for each 2 ≤ i ≤ m − 2,
|NG(xi)− S| ≤ 3 ≤ m+ 1− i. By Lemma 10, we know that G has an equitable
L-coloring.

We now would like to prove for m ≥ 3 that if H = B(l1, l2, . . . , lm) and
G = H2, then G is equitably (m+1)-choosable by induction on

∑m
i=1 li. Lemma

14 takes care of the base case. The next lemma takes care of a small issue in the
inductive step when m = 3.

Lemma 15. If H = B(1, 3, 3) and G = H2, then G is equitably 4-choosable.

Proof. Suppose that L is an arbitrary 4-assignment for G. Let S = {v2,3, v3,3,
v3,2, v3,1}. Note that G − S is the square of a path. So, by Proposition 13 we
know that G − S has an equitable L-coloring. We then let x1 = v3,1, x2 = v2,3,
x3 = v3,2, and x4 = v3,3. Note that |NG(xi) − S| = 4 − i for all i ∈ [4]. So, by
Lemma 10, we know that G has an equitable L-coloring.

We are finally ready to complete our proof of Theorem 9.

Lemma 16. Suppose that m ≥ 3. If H = B(l1, l2, . . . , lm) and G = H2, then G
is equitably (m+ 1)-choosable.

Proof. We will prove the desired by induction on
∑m

i=1 li = |V (G)| − 1. Let
C =

∑m
i=1 li. Let L be an arbitrary (m+ 1)-assignment for G. We will show an

equitable L-coloring of G exists for each C ≥ m. For the base case suppose that



1224 J.A. Mudrock, M. Marsh and T. Wagstrom

m ≤ C ≤ 3m− 3. Since C ≤ 3m− 3, we know that l1 ≤ l2 ≤ 2. So, the desired
result holds by Lemma 14.

For the inductive step suppose that C ≥ 3m− 2 and assume that the desired
result holds for all natural numbers less than C and at least m. Note that when
l2 ≤ 2 the result holds by Lemma 14; so, we may assume that l2 ≥ 3.

If lm ≥ 4 we let S = {vj,lj : 2 ≤ j ≤ m − 1} ∪ {vm,lm−2, vm,lm−1, vm,lm}. By
the inductive hypothesis, G − S is equitably L-colorable. Now let xi = vi+1,li+1

for all i ∈ [m − 2], xm−1 = vm,lm−2, xm = vm,lm−1, and xm+1 = vm,lm . Note
that |NG(xi) − S| = 2 ≤ (m + 1) − i for all i ∈ [m − 1], |NG(xm) − S| = 1, and
|NG(xm+1)− S| = 0. Thus, Lemma 10 implies that G is equitably L-colorable.

Now, assume that lm ≤ 3 (note that this means lm = 3 since l2 ≥ 3). This
implies that 3m−2 ≤ C ≤ 3m. Let d = C−(2m+1). In the case that C = 3m−2,
we may assume that m ≥ 4 by Lemma 15. Note that m − 3 ≤ d ≤ m − 1 and
that |V (G)| − d = C + 1 − d = 2m + 2. We let S = {v2,l2 , . . . , v1+d,l1+d

}. By
the inductive hypothesis, we know that G − S has an equitable L-coloring. Let
xi = vi+1,li+1

for all i ∈ [d]. Note that |NG(xi)−S| = 2 ≤ (m+1)−i for all i ∈ [d].
Lemma 10 then implies that G has an equitable L-coloring. The induction step
is now complete.

Finally, notice the result of Theorem 6 is implied by Theorem 9 when m ≥ 3,
and the result of Theorem 6 is implied by Proposition 13 when m = 1, 2.

3. Generalized Theta Graphs

In this Section, we will prove Theorem 7. Throughout this section if G =
Θ(l1, . . . , lm), we will assume that the vertices that are the common endpoints in
V (G) are u and w. We also let the vertices of the ith path be4:

u, vi,1, . . . , vi,li−1, w.

When it comes to proving Theorem 7, it is crucial to note that ifG = Θ(l1, . . . , lm),
then T (G) is a copy of [Θ(2l1, . . . , 2lm)]2 where 2l2 ≥ 4 whenever m ≥ 2.
So, the results in this Section will focus upon the equitable choosability of the
squares of generalized theta graphs with sufficiently long paths. Notice that if
G = Θ(l1, . . . , lm), T (G) is a path square and cycle square on at least 6 vertices
when m is 1 and 2 respectively. So, when m = 1, 2 the result of Theorem 7 is
implied by Proposition 13 and the following result.

Proposition 17 [18]. Suppose that p, n ∈ N with p ≥ 2 and n ≥ 2p + 2. Then,

Cp
n is equitably k-choosable for each k ≥ 2p.

4Notice that if l1 = 1, the first path has no internal vertices.
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So, to complete the proof of Theorem 7, we may focus our attention on the
case where m ≥ 3. We begin by proving the following result.

Theorem 18. For m ≥ 3, l1 ≥ 2, and l2 ≥ 4, [Θ(l1, l2, . . . , lm)]2 is equitably

k-choosable whenever k ≥ m+ 3.

We will establish two lemmas that will immediately imply Theorem 18.

Lemma 19. Suppose that m ≥ 3. Suppose H = Θ(l1, l2, . . . , lm) where l1 ≥ 2
and l2 ≥ 4. If G = H2, then G is equitably k-choosable whenever k ≥ 2m+ 2.

Proof. The result is obvious when k ≥ |V (G)|; thus, we will assume that 2m+
2 ≤ k < |V (G)| = 2 +

∑m
i=1(li − 1). Suppose L is an arbitrary k-assignment for

G. Let

S0 = {u,w, vm,2, vm,3} ∪ {vi,1 : 1 ≤ i ≤ m} ∪ {vi,li−1 : 3 ≤ i ≤ m}.

Note that G−S0 is a spanning subgraph of a disjoint union of path squares.
Let d = k − |S0|. Let S1 be an arbitrary subset of V (G)− S0 of size d. Then let
S = S0∪S1. Note thatG−S has maximum degree at most 4. By Theorem 4, there
is an equitable L-coloring of G−S. We will name the vertices of S: x1, x2, . . . , xk
such that x1 = w, x2 = u, xk−3 = v2,1, xk−2 = vm,3, xk−1 = vm,2, xk = vm,1. We
then arbitrarily name the remaining vertices in S: x3, x4, . . . , xk−4 in an injective
fashion. For i ∈ {k−3, k−2, k−1, k} we have |NG(xi)−S| ≤ k−i. For 3 ≤ i ≤ k−4
we have that |NG(xi)−S| ≤ 4 ≤ k− i. Finally, |NG(x2)−S| ≤ m−1 ≤ k−2 and
|NG(x1) − S| ≤ m + 2 ≤ k − 1. By Lemma 10, there is an equitable L-coloring
for G.

Lemma 20. Suppose that m ≥ 3. Suppose H = Θ(l1, l2, . . . , lm) where l1 ≥ 2 and

l2 ≥ 4. If G = H2, then G is equitably k-choosable whenever m+3 ≤ k ≤ 2m+1.

Proof. Suppose that L is an arbitrary k-assignment for G such that m+3 ≤ k ≤
2m+1. We let S = {u, vm,3}∪{vi,1 : i ∈ [m]}∪{vi,2 : 2m+3−k ≤ i ≤ m}. Note
that |S| = k. Note that there is an r ∈ {m − 2,m − 1,m} and natural numbers
a1, . . . , ar with a1 ≤ · · · ≤ ar such that G−S is isomorphic to [B(a1, a2, . . . , ar)]

2.
When r ≤ 2, we know that G−S has an equitable L-coloring by Theorem 4 since
∆(G − S) ≤ 4. When r ≥ 3, we know that G − S has an equitable L-coloring
by Lemma 11. Let x1 = vm,3, x2 = v1,1, x3 = u, xk−1 = vm,2, and xk = vm,1.
Finally, we arbitrarily name the remaining vertices in S: x3, x4, . . . , xk−2 in an
injective fashion. Note that |NG(x1)−S| ≤ m ≤ k−1, |NG(x2)−S| ≤ m ≤ k−2,
|NG(x3)−S| ≤ m−1 ≤ k−3, |NG(xk−1)−S| = 1, and |NG(xk)−S| = 0. Finally
note that |NG(xi) − S| ≤ 2 ≤ k − i for all 4 ≤ i ≤ k − 2. So by Lemma 10 we
know that G has an equitable L-coloring.
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We are now finished with the proof of Theorem 18. To complete the proof
of Theorem 7 we must show that if G = Θ(l1, l2, . . . , lm), then T (G) is equi-
tably k-choosable when m ≥ 3 and k = m + 2. Recall for m ≥ 3 that if
G = Θ(l1, l2, . . . , lm), then T (G) is a copy of [Θ(2l1, 2l2, . . . , 2lm)]2 where 2l2 ≥ 4.
So, we begin working on the case of k = m + 2 by dealing with [Θ(2, 4, . . . , 4)]2

and [Θ(4, . . . , 4)]2. We will then finish the case of k = m + 2 by considering
[Θ(l1, l2, . . . , lm)]2 with l1 ≥ 2, l2 ≥ 4, and lm ≥ 6.

We begin with two specific cases to which our general arguments do not
apply.

Lemma 21. Suppose H = Θ(2, 4, 4) and G = H2. Then, G is equitably 5-
choosable.

Proof. Suppose L is an arbitrary 5-assignment for G. We will show that G has
an equitable L-coloring in two cases: (1) L(v) is the same list for each v ∈ V (G)
and (2) there exist x, y ∈ V (G) such that L(x) 6= L(y). In case (1) we may
suppose L(v) = {1, 2, 3, 4, 5} for each v ∈ V (G). We let f be the proper L-
coloring of G defined as follows: f(u) = 1, f(v1,1) = 2, f(v2,1) = 3, f(v3,1) = 4,
f(v2,2) = 2, f(v3,2) = 3, f(v2,3) = 4, f(v3,3) = 1, and f(w) = 5. Clearly, f is an
equitable L-coloring of G.

We now turn our attention to case (2). Let S1 = {v2,1, v2,2, v2,3} and S2 =
{v3,1, v3,2, v3,3}. Note that (V (G)−S1)∪ (V (G)−S2) = V (G) and (V (G)−S1)∩
(V (G) − S2) 6= ∅. So, it must be the case that there exists at least two lists in
either {L(v) : v ∈ V (G)−S1} or {L(v) : v ∈ V (G)−S2}. We assume without loss
of generality that there are at least two lists in {L(v) : v ∈ V (G)−S1}. It is then
possible to find a proper L-coloring, f , of G − S1 that uses six distinct colors.
Let L′(v2,i) = L(v2,i) − {f(v) : v ∈ NG(v3,i) − S1} for each i ∈ [3]. Note that
|L′(v2,1)| ≥ 2, |L′(v2,2)| ≥ 3, and |L′(v2,3)| ≥ 2. So, there is a proper L′-coloring
of G[S1]. Such a coloring completes an equitable L-coloring of G.

Lemma 22. Suppose H = Θ(2, 4, 4, 4) and G = H2. Then, G is equitably 6-
choosable.

Proof. Suppose L is an arbitrary 6-assignment for G. Note an equitable L-
coloring of G uses no color more than twice. We will show that G has an equitable
L-coloring in two cases: (1) L(v) is the same list for each v ∈ V (G)−{u,w} and
(2) there exist x, y ∈ V (G) − {u,w} such that L(x) 6= L(y). In case (1) we may
suppose L(v) = {1, 2, 3, 4, 5, 6} for each v ∈ V (G)−{u,w}. Let f be the proper L-
coloring for G−{u,w} given by: f(v1,1) = 2, f(v2,1) = 3, f(v3,1) = 4, f(v4,1) = 5,
f(v2,2) = 2, f(v3,2) = 6, f(v4,2) = 6, f(v2,3) = 1, f(v3,3) = 5, and f(v4,3) = 4.
Then, let L′(u) = L(u) − {2, 3, 4, 5, 6} and L′(w) = L(w) − {1, 2, 4, 5, 6}. As
long as L′(u) and L′(w) are not the same set of size 1, we can find a proper L′-
coloring of G[{u,w}] which along with f completes an equitable L-coloring of G.
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So, we assume that L′(w) = L′(u) = {7}. This means L(u) = {2, 3, 4, 5, 6, 7} and
L(w) = {1, 2, 4, 5, 6, 7}. An equitable L coloring, g, of G can then be constructed
as follows: g(u) = 7, g(v1,1) = 2, g(v2,1) = 3, g(v3,1) = 4, g(v4,1) = 5, g(v2,2) = 2,
g(v3,2) = 3, g(v4,2) = 6, g(v2,3) = 6, g(v3,3) = 5, g(v4,3) = 4, and g(w) = 1.

For case (2), let S1 = {u,w, v4,1, v4,2, v3,2}, S2 = {u,w, v3,1, v3,2, v2,2}, and
S3 = {u,w, v2,1, v2,2, v4,2}. Note that (V (G)−S1)∪ (V (G)−S2)∪ (V (G)−S3) =
V (G)−{u,w} and

⋂3
i=1(V (G)−Si) 6= ∅. Thus, there must exist at least two lists

in {L(v) : v ∈ V (G) − S1}, {L(v) : v ∈ V (G) − S2}, or {L(v) : v ∈ V (G) − S3}.
Assume without loss of generality that {L(v) : v ∈ V (G)− S1} contains at least
two lists. It is possible to find a proper L-coloring, h, of G− S1 that uses seven
distinct colors. Let L′(v) = L(v) − {h(x) : x ∈ NG(v) − S1} for each v ∈ S1.
Note that |L′(u)| ≥ 2, |L′(w)| ≥ 1, |L′(v4,1)| ≥ 2, |L′(v3,2)| ≥ 4, |L′(v4,2)| ≥ 5.
Now, we greedily construct a proper L′-coloring of G[S1], h

′, that uses at least 4
distinct colors by coloring the vertices of S1 in the order: w, u, v4,1, v3,2, v4,2 (this
is possible since v4,1 is not adjacent to w in G). In the case |h′(S1)| = 5, h together
with h′ forms an equitable L-coloring of G. So, we suppose that |h′(S1)| = 4. By
the way h′ is constructed, it must be that h′(w) = h′(v4,1) = c.

Now, for the sake of contradiction, we suppose that h together with h′ is
not an equitable L-coloring of G. This means that c was used by h. Note
that V (G) − S1 ⊆ NG(w) ∪ NG(v4,1). So, by the definition of L′, c /∈ L′(w) or
c /∈ L′(v4,1) which is a contradiction. Thus h along with h′ forms an equitable
L-coloring of G.

We are now ready to prove two Lemmas that will complete the case of k =
m+ 2 for [Θ(2, 4, . . . , 4)]2 and [Θ(4, . . . , 4)]2.

Lemma 23. Suppose m ≥ 5. Suppose H = Θ(l1, l2, . . . , lm) where l1 = 2, and
l2 = lm = 4. If G = H2, then G is equitably (m+ 2)-choosable.

Proof. Suppose that L is an arbitrary (m + 2)-assignment for G. We will con-
struct an equitable L-coloring of G. Since m ≥ 5, in an equitable L-coloring of G,
no color can be used more than ⌈3m/(m+ 2)⌉ = 3 times. Let S1 = {u} ∪ {vi,1 :
i ∈ [m]}, S2 = {w} ∪ {vi,3 : 2 ≤ i ≤ m}, and S3 = {vi,2 : 2 ≤ i ≤ m}. Note that
|S1| = m + 1, |S2| = m, and |S3| = m − 1. We begin by coloring the vertices in
S1 with m + 1 distinct colors. For each v ∈ S2 suppose that L′(v) is obtained
from L(v) by deleting the colors used on the neighbors of v in the coloring of the
vertices in S1. Note that |L′(v)| ≥ m for each v ∈ S2. So, we can color each
v ∈ S2 with a color c ∈ L′(v) such that the vertices in S2 are colored with m
distinct colors.

Now, for each v ∈ S1 ∪ S2 let f(v) be the color used to color v. Note that
f uses at most m colors twice, and f uses no color more than twice. For each
v ∈ S3 let L′′(v) = L(v) − {f(x) : x ∈ (S1 ∪ S2) ∩NG(v)}. Since each vertex in
S3 has degree 4 in G, |L′′(v)| ≥ m− 2 for each v ∈ S3.
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If it is not the case that: |L′′(v)| = m − 2 for all v ∈ S3 and L′′(v2,2) =
L′′(v3,2) = · · · = L′′(vm,2), then it is clear that there exists a proper L′′-coloring
of G[S3] that uses m−1 distinct colors which completes an equitable L-coloring of
G. So, we assume that |L′′(v)| = m− 2 for all v ∈ S3 and L′′(v2,2) = L′′(v3,2) =
· · · = L′′(vm,2). Let A = L′′(v2,2). For the sake of contradiction, we assume
that all colors in A are used twice by f . Note that f−1(A) ⊆ S1 ∪ S2 and
|f−1(A)| = 2|A| = 2m− 4. Since |S1 ∪S2| = 2m+1, there are at most 5 vertices
in (S1 ∪ S2)− f−1(A). Note that

∣

∣

∣

∣

∣

m
⋃

i=2

NG(vi,2)

∣

∣

∣

∣

∣

= 2m ≥ 10 > 5.

So, there must be a z ∈ S1 ∪ S2 that is in f−1(A) ∩
⋃m

i=2NG(vi,2). This however
implies that for some 2 ≤ i ≤ m, f(z) was deleted from L(vi,2) when forming
L′′(vi,2) which implies f(z) /∈ L′′(vi,2) which is a contradiction.

Thus, there must exist an element a ∈ A that was not used twice by f . So,
we can complete an equitable L-coloring of G by coloring v2,2 and v3,2 with a and
coloring the remaining vertices in S3 with the m−3 distinct colors in A−{a}.

Lemma 24. Suppose m ≥ 3. Suppose H = Θ(l1, l2, . . . , lm) where l1 = lm = 4.
If G = H2, then G is equitably (m+ 2)-choosable.

Proof. Suppose that L is an arbitrary (m + 2)-assignment for G. We will con-
struct an equitable L-coloring of G. Since m ≥ 3, in an equitable L-coloring
of G, no color can be used more than ⌈(3m + 2)/(m + 2)⌉ = 3 times. Let S1 =
{u, v1,2}∪{vi,1 : i ∈ [m]}, S2 = {w}∪{vi,3 : i ∈ [m]}, and S3 = {vi,2 : 2 ≤ i ≤ m}.
Note that |S1| = m + 2, |S2| = m + 1, and |S3| = m − 1. We begin by coloring
the vertices in S1 with m+ 2 distinct colors. For each v ∈ S2 suppose that L′(v)
is obtained from L(v) by deleting the colors used on the neighbors of v in the
coloring of the vertices in S1. Note that |L′(w)| ≥ m + 1 and |L′(vi,3)| ≥ m for
all i ∈ [m]. So, we can color each v ∈ S2 with a color c ∈ L′(v) such that the
vertices in S2 are colored with m+ 1 distinct colors.

Now, for each v ∈ S1 ∪ S2 let f(v) be the color used to color v. Note that f
uses at most m+ 1 colors twice, and f uses no color more than twice. For each
v ∈ S3 suppose that L′′(v) = L(v) − {f(x) : x ∈ (S1 ∪ S2) ∩NG(v)}. Since each
vertex in S3 has degree 4 in G, |L′′(v)| ≥ m− 2 for each v ∈ S3.

If it is not the case that: |L′′(v)| = m − 2 for all v ∈ S3 and L′′(v2,2) =
L′′(v3,2) = · · · = L′′(vm,2), then it is clear that there exists a proper L′′-coloring
of G[S3] that uses m−1 distinct colors which completes an equitable L-coloring of
G. So, we assume that |L′′(v)| = m− 2 for all v ∈ S3 and L′′(v2,2) = L′′(v3,2) =
· · · = L′′(vm,2). Let A = L′′(v2,2). For the sake of contradiction, we assume
that all colors in A are used twice by f . Note that f−1(A) ⊆ S1 ∪ S2 and
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|f−1(A)| = 2|A| = 2m− 4. Since |S1 ∪S2| = 2m+3, there are at most 7 vertices
in (S1 ∪ S2)− f−1(A). Note that

∣

∣

∣

∣

∣

m
⋃

i=2

NG(vi,2)

∣

∣

∣

∣

∣

= 2m.

So, when m ≥ 4, there must be a z ∈ S1 ∪ S2 that is in f−1(A) ∩
⋃m

i=2NG(vi,2),
and we reach a contradiction as we did in the proof of Lemma 23. When m = 3
note that since {v1,1, v1,2, v1,3} is a clique in G, the single element in A must be
in f

(
⋃3

i=2NG(vi,2)
)

. So, when m = 3 there must also be a z ∈ S1 ∪ S2 that is in
f−1(A) ∩

⋃m
i=2NG(vi,2), and we reach a contradiction as we did in the proof of

Lemma 23.
Finally, we can complete an equitable L-coloring of G as we did in the proof

of Lemma 23.

We now complete the proof of Theorem 7 with two lemmas. The next lemma
will be important for proving the final lemma which will address all remaining
cases needed for Theorem 7.

Lemma 25. Suppose m ≥ 3. Suppose H = B(l1, l2, . . . , lm), where lm ≥ 3.
Suppose G′ = H2. Let G be the graph obtained from G′ by adding an extra edge

between the vertices va,la and vb,lb where a and b are chosen so that 1 ≤ a < b ≤ m.

Then, G is equitably (m+ 2)-choosable.

Note that this lemma can be extended to lm = 2, but this is not necessary
to complete the proof of Theorem 7.

Proof. Let L be an arbitrary (m + 2)-assignment for G. We will show that G
has an equitable L-coloring in the following cases: (1) lm = 3 and (2) lm ≥ 4.

In the case lm = 3, let S = {u} ∪ {vi,1 : 2 ≤ i ≤ m} ∪ {vm,2, vm,3}. Then,
we name the vertices of S: x1, x2, . . . , xm+2 where x1 = u, xm+2 = vm,2, xm+1 =
vm,3, and for each 2 ≤ i ≤ m, xi = vi,1. Note ∆(G− S) ≤ 3. So, by Theorem 4,
G−S is equitably L-colorable. It is easy to see that |NG(x1)−S| = m ≤ m+2−1,
|NG(xm+2) − S| = 0, |NG(xm+1) − S| ≤ 1, |NG(xm) − S| = 1, and for each
2 ≤ j ≤ m − 1, |NG(xj) − S| ≤ 3 ≤ m + 2 − j. Thus G is equitably L-colorable
by Lemma 10.

For case (2), we will show that G has an equitable L-coloring in the following
subcases: (a) m ≥ 4 and (b) m = 3. When m ≥ 4, choose a t such that t ∈ [m],
t 6= a, t 6= b, and t 6= m. Let

S = {u, vm,2, vm,3, vm,4} ∪ ({vi,1 : i ∈ [m]} − {va,1, vt,1}).

Then we name the vertices of S: x1, x2, . . . , xm+2 where x1 = u, xm+2 = vm,2,
xm+1 = vm,3, xm = vm,4, and xm−1 = vm,1. Finally, we arbitrarily name the
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remaining vertices in S: x2, . . . , xm−2 in an injective fashion. Note ∆(G−S) ≤ 4,
and so by Theorem 4, G − S is equitably L-colorable. It is easy to see that
|NG(x1) − S| = m + 1 ≤ m + 2 − 1, |NG(xm+2) − S| = 0, |NG(xm+1) − S| ≤ 1,
|NG(xm) − S| ≤ 2, and |NG(xm−1) − S| = 2. Finally, for each 2 ≤ j ≤ m − 2,
|NG(xj)− S| ≤ 4 ≤ m+ 2− j. Thus, G is equitably L-colorable by Lemma 10.

For subcase (b), m = 3, and we let S = {u, v3,1, v3,2, v3,3, v3,4}. Note that
∆(G−S) ≤ 4. So, by Theorem 4 we know that G−S has an equitable L-coloring.
We name the vertices of S as follows: x1 = u, x2 = v3,1, x3 = v3,4, x4 = v3,3,
and x5 = v3,2. Note |NG(x1) − S| ≤ 4, |NG(x2) − S| = 2, |NG(x3) − S| ≤ 2,
|NG(x4)− S| ≤ 1, and |NG(x5)− S| = 0. So, by Lemma 10 we know that G has
an equitable L-coloring.

Lemma 26. Suppose m ≥ 3. Suppose H = Θ(l1, l2, . . . , lm) where l1 ≥ 2, l2 ≥ 4,
and lm ≥ 6. If G = H2, then G is equitably (m+ 2)-choosable.

Proof. Let L be an arbitrary (m + 2)-assignment for G. We will show that G
has an equitable L-coloring. We let

S = {u, vm,2, vm,3, vm,4} ∪ {vi,1 : 3 ≤ i ≤ m}.

There exist natural numbers a1, . . . , am satisfying a1 ≤ · · · ≤ am and am ≥ 3
such that the following holds. If H = [B(a1, . . . , am)]2, then there are i, j ∈ [m]
satisfying 1 ≤ i < j ≤ m such that G − S is H plus an edge between the
vertices vi,ai and vj,aj . Note that we know such an i and j exist since v1,1 and
v2,1 are adjacent in G − S. Also note that we know am ≥ 3 since v2,1, v2,2,
and v2,3 are in G − S. By Lemma 25 we know that G − S has an equitable L-
coloring. We name the vertices of S: x1, x2, . . . , xm+2 where x1 = u, xm−1 = vm,4,
xm = vm,1, xm+1 = vm,3 and xm+2 = vm,2. Finally, if m ≥ 4, we arbitrarily name
the remaining vertices in S: x2, . . . , xm−2 in an injective fashion. Note that
|NG(x1)−S| = m+1, |NG(xm−1)−S| = 2, |NG(xm)−S| = 1, |NG(xm+1)−S| = 1,
|NG(xm+2) − S| = 0, and |NG(xi) − S| ≤ 4 ≤ m + 2 − i for all 2 ≤ i ≤ m − 2.
Thus, G has an equitable L-coloring by Lemma 10.
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Theory and Its Applications, A. Rényi and V.T. Sós (Ed(s)), (Vol. II, North-Holland,
Amsterdam, 1970) 601–623.

https://doi.org/10.1016/j.disc.2016.03.003
https://doi.org/10.1006/jctb.2001.2057
https://doi.org/10.1007/s00373-014-1441-1
https://doi.org/10.1006/eujc.1994.1047
https://doi.org/10.1016/j.dam.2008.08.030
https://arxiv.org/abs/1806.01064
https://doi.org/10.7151/dmgt.2049
https://doi.org/10.7151/dmgt.2245
https://doi.org/10.4236/ojapps.2012.24B023
https://doi.org/10.1007/s10255-006-6031-4


1232 J.A. Mudrock, M. Marsh and T. Wagstrom
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