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Abstract

A graph G = (V,E) of order n is said to be arbitrarily partitionable if for
each sequence λ = (λ1, λ2, . . . , λp) of positive integers with λ1+ · · ·+λp = n,
there exists a partition (V1, V2, . . . , Vp) of the vertex set V such that Vi
induces a connected subgraph of order λi in G for each i ∈ {1, 2, . . . , p}. In
this paper, we show that a threshold graph is arbitrarily partitionable if and
only if it admits a perfect matching or a near perfect matching. We also
give a necessary and sufficient condition for a {2K2, C4}-free graph being
arbitrarily partitionable, as an extension for a result of Broersma, Kratsch
and Woeginger [Fully decomposable split graphs, European J. Combin. 34
(2013) 567–575] on split graphs.
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1. Introduction

Let G = (V,E) be a simple, undirected graph of order n. A set M of edges of
G is called a matching of G if any pair of two elements of G have no common end
vertex. Furthermore, M is called a perfect matching (respectively, a near perfect
matching if every vertex of G (all but one vertex) is incident with an edge of M .
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The matching number of G, denoted by α′(G), is the cardinality of a maximum
matching of G. A graph G is called traceable if G has a Hamilton path. A subset
S ⊆ V is an independent set of G if no pair of vertices in S are adjacent in G. The
independence number of G, denoted by α(G), is the cardinality of a maximum
independent set of G.

A sequence λ = (λ1, λ2, . . . , λp) of positive integers is called a partition of n
if λ1 + · · ·+ λp = n. The graph G is called λ-decomposable (or λ is realizable) if
there exists a partition (V1, V2, . . . , Vp) of the vertex set V such that |Vi| = λi and
G[Vi] is connected for each i ∈ {1, . . . , k}. In this case, we call such a partition
of G a λ-decomposition of G, and G[Vi] (or Vi) a λi-component. Furthermore, G
is called arbitrarily partitionable (AP, for short) if G is λ-decomposable for every
partition λ of n. Note that if G is traceable, then it is AP; if G is AP, then it
admits a perfect matching or near perfect matching, and α(G) ≤

⌈
n
2

⌉
.

The notion of AP graphs was first introduced by Barth, Baudon and Puech
[1], and independently, by Horňák and Woźniak [20]. It is also called arbitrarily
vertex decomposable [20] or fully decomposable [12] or decomposable [1]. Simi-
larly, a graph G is called k-partitionable if G is λ-decomposable for each partition
λ = (λ1, λ2, . . . , λk) of n with length k.

A classical theorem of Győri [17] and Lovász [26] is stated as follows.

Theorem 1 (Győri [17] and Lovász [26]). Every k-connected graph is k-parti-
tionable.

Structure of AP graphs and minimal AP graphs are investigated in [7, 9].
The problem of deciding whether a given admissible sequence is realizable in
a given graph G is NP-complete [2]. Moreover, it is true even if we restrict
the problem to the class of trees of degree at most 3 [2]. More results for the
algorithmic aspects of AP graphs can be found in [2, 12, 10]. However, it still
remains to be an open problem for deciding whether a tree is AP is NP-complete.
Barth, Baudon and Puech [1] showed that this problem is polynomial in number
of vertices for the class of tripodes. Horňák and Woźniak [20] showed that the
maximum degree of a AP tree is at most 6. Later in [2], this bound was dropen to
4. Cichacz, Görlich, Marczyk and Przyby lo [15] gave a complete characterization
of AP caterpillars with four leaves. They also exhibited two infinite families of
AP trees with maximum degree three or four. Ravaux [29] focused on trees with
a large diameter. There are also some results on AP star-like trees [21], unicyclic
AP graphs [24] and the shape of AP trees [3].

Marczyk [27] showed that if G is connected, α(G) ≤
⌈
n
2

⌉
, and dG(x) + dG(y)

≥ n − 2 for all nonadjacent vertices x, y ∈ V (G), then G is AP. Later, he [28]
further showed that if G is a connected graph on n vertices with independence
number at most

⌈
n
2

⌉
and such that the degree sum of any pair of nonadjacent

vertices is at least n− 3, then G is AP or is isomorphic to one of two exceptional
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graphs. Horňák, Marczyk, Schiermeyer and Woźniak [18] showed that if for a
connected graph G of order n, the degree sum of any pair of nonadjacent vertices
is at least n− 5, then G is AP. Dense arbitrarily partitionable graphs have been
studied in [23].

Various variations of AP graphs, such as on-line arbitrarily partitionable
graphs [19, 22, 25], recursively arbitrarily partitionable graphs [4, 8] and AP+k
graphs [5, 6] are also investigated.

A graph G is called a split graph if its vertex set can be partitioned into two
sets I and C, where I is an independent set of G, and C is a clique of G, that is,
a set of mutually adjacent vertices in G. For an integer n ≥ 2, a partition λ of n
is called 2-3-primitive if it has one of the following forms.

• λ = (1, 3, 3, . . . , 3) consists of threes and a single one;

• λ = (2, . . . , 2, 3, 3, . . . , 3) only consists of twos and threes.

Broersma, Kratsch and Woeginger [12] characterized AP split graphs as fol-
lows.

Theorem 2 (Broersma, Kratsch, Woeginger [12]). A split graph on n vertices is
AP if and only if it is λ-decomposable for each 2-3-primitive partition λ of n.

For n ≥ 2, the canonical 2-3-primitive partition λ of n is defined as follows.

• If n = 2k is even, then the canonical 2-primitive partition of n consists of
k twos. If n = 2k + 1 is odd, then the canonical 2-primitive partition of n
consists of k − 1 twos and a single three.

• If n = 3k, then the canonical 3-primitive partition of n consists of k threes. If
n = 3k + 1, then the canonical 3-primitive partition of n consists of k threes
and a single one. If n = 3k+ 2, then the canonical 3-primitive partition of n
consists of k threes and a single two.

The canonical 2-3-primitive partitions are a crucial subfamily of the 2-3-
primitive partitions.

Theorem 3 (Broersma, Kratsch, Woeginer [12]). A split graph on n vertices is
AP if and only if it is λ-decomposable for the canonical 2-3-primitive partition λ
of n.

Let F be a family of graphs. A graph G is called F-free if it contains no
induced subgraph isomorphic to a member F ∈ F . Földes and Hammer[16]
proved that a graph is a split graph if and only if it is {2K2, C4, C5}-free. Hence,
split graphs are a subclass of {2K2, C4}-free graphs.

In Section 2, we show that a connected threshold graph is AP if and only
if it admits a perfect matching or a near perfect matching (a matching omitting
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exactly one vertex). In Section 3, we extend the result of Theorem 3 to {2K2, C4}-
free graphs, by showing that a {2K2, C4}-free graph is AP if and only if it is
λ-decomposable for the canonical 2-3-primitive partition λ of n.

2. Threshold Graphs

Threshold graphs were first introduced and studied by Chvátal and Hammer
[14]. Let a1, a2, . . . , an be distinct real numbers, and define a simple graph G
with vertex set {a1, a2, . . . , an}, in which two vertices ai and aj are adjacent if
and only if ai+aj > 0. Without loss of generality, let a1 ≤ · · · ≤ an. Note that G
is connected if and only if a1 + an > 0. It is clear that threshold graphs are split
graphs. Chvátal and Hammer [14] showed that a graph G is a threshold graph if
and only if it is {2K2, P4, C4}-free.

Theorem 4. A connected threshold graph G of order n is AP if and only if
α′(G) =

⌊
n
2

⌋
.

Proof. To prove the necessity, we consider the admissible sequence λ=
(
2k1n−2k

)
,

where k =
⌊
n
2

⌋
. Since G is AP, there is λ-decomposition (V1, . . . , Vk) of G. Since

G[Vi] is connected for each i, we have α′(G) =
⌊
n
2

⌋
.

Next we show its sufficiency. Let V (G) = {a1, a2, . . . , an}, and let V +(G) =
{ai| ai ≥ 0} and V −(G) = {ai| ai < 0}. By the definition of the threshold graph,
V +(G) is a clique and V −(G) is an independent set of G. Since α′(G) =

⌊
n
2

⌋
,

|V +(G)| ≥
⌊
n
2

⌋
.

Let λ = (λ1, . . . , λl) be a partition of n. We show that G is λ-decomposable.
We proceed with induction on n. If n ≤ 2, then G ∼= Kn, the result holds
trivially. Next let us consider the case when n ≥ 3. Without loss of generality,
let λ1 ≤ · · · ≤ λl and a1 < a2 < · · · < an. By the definition of threshold graph,
N(ai) \ {aj} ⊆ N(aj) \ {ai} for each i, j with i < j. Combining this fact with the
assumption α′(G) =

⌊
n
2

⌋
, it follows that there exists a maximum matching M of

G with

M =

{ {
aian+1−i | 1 ≤ i ≤ n

2

}
, if n is even,{

aian+2−i | 2 ≤ i ≤ n+1
2

}
, if n is odd.

Case 1. λ1 = 1. Clearly, G− a1 is also a connected threshold graph of order
n − 1 with α′(G − a1) =

⌊
n−1
2

⌋
. By induction hypothesis, λ′ = (λ2, . . . , λl) is

realizable for G− a1. Hence, λ = (λ1, . . . , λl) is realizable for G.

Case 2. λ1 ≥ 2. Then λl ≥ 2. Since G is connected, ana1 ∈ E(G), i.e., an+
a1 > 0. It follows that G[{an, a1, . . . , al−1}] is connected. Let Vl = {an, a1, . . . ,
al−1}. Note that α′(G − Vl) ≥

⌊
n−l
2

⌋
. By the induction hypothesis, (λ1, λ2, . . . ,

λl−1) is realizable for G− Vl. Thus, λ is realizable in G.
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3. {2K2, C4}-Free Graphs

Blázsik, Hujter, Pluhár and Tuza [11] gave a structural characterization of
{2K2, C4}-free graphs.

Theorem 5 (Blázsik, Hujter, Pluhár and Tuza [11]). A graph G = (V,E) is
{2K2, C4}-free if and only if there is a partition V1 ∪ V2 ∪ V3 = V with the
following properties.

(i) V1 is an independent set in G.

(ii) V2 is the vertex set of a complete subgraph in G.

(iii) V3 = ∅ or |V3| = 5, and in the latter case V3 induces a 5-cycle in G.

(iv) If V3 6= ∅, then for all vi ∈ Vi, i = 1, 2, 3, v1v3 /∈ E and v2v3 ∈ E hold.

Figure 1. A AP split graph H1 and a {2K2, C4}-free graph G1 which is not AP.

The graph H1 in Figure 1 is a split graph. It can be checked that (2, 2, 2, 3)
and (3, 3, 3) are realizable in H1, by Theorem 3, H1 is AP. Since the admissible
sequence (2, . . . , 2) is not realizable for G1 in Figure 1, G1 is not AP.

Figure 2. A split graph H2 that is not AP and a AP {2K2, C4}-free graph G2.
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On the other hand, the graph H2 in Figure 2 is a {2K2, C4}-free graph, which
is not AP, because (3, 3) is not realizable in H2. However, it is easy to check that
G2 is AP.

Theorem 6. A 2K2-free graph G on n vertices is AP if and only if every 2-3-
primitive partition λ of n is realizable in G.

Proof. The necessity is obvious. Next we prove the sufficiency. Let λ = (λ, . . . ,
λm) be an admissible sequence for G. It is well known that any integer l ≥ 2 can
be expressed as l = 2a+ 3b, where a and b are two nonnegative integers.

(1) Replace each λi ≥ 4 in λ with ai twos and bi threes, and denote the
resultant partition as λ′.

(2) Let λ0 denote the number of ones in the vector λ. If λ0 ≥ 2, then replace
the ones in vector λ with a0 twos and b0 threes, where λ0 = 2a0 + 3b0. If λ0 = 1
and there is a two in α, then replace the one and a two by a three, otherwise
leave the one as it is.

The resultant new partition λ′ = (λ′1, . . . , λ
′
m) of n has the form (1, 3, . . . , 3) or

(2, . . . , 2, 3, . . . , 3), and hence is a 2-3-primitive. By the assumption, let (V ′1 , . . . ,
V ′m) be a realization of λ′. Since G is 2K2-free, for any λ′i ≥ 2 and λ′j ≥ 2, the
union of the λ′i-component and the λ′j-component is connected. Therefore, the ai
2-components and the bi 3-components are combined into a λi-component.

This proves that λ is realizable in G. Thus, G is AP.

Let G be a {2K2, C4}-free graph. In view of Theorem 5, we denote G by
(I, C,C5, E), in which C5 also denotes V (C5) in sequel. Assume that T is a
connected subgraph of G with |V (T )| = 3. We say that T is of type-Tijk if
|V (T ) ∩ I| = i, |V (T ) ∩ C| = j and |V (T ) ∩ C5| = k. For the special case when
i = 1, j = 2 and k = 0, we denote Tijk by T120 if T ∼= K3, otherwise by T120. The
types of all connected subgraphs of G with order 3 belong to{

T120, T120, T111, T030, T021, T012, T003, T210
}
.

By Theorem 5, one can see that T120 ∼= T210 ∼= T111 ∼= T003 ∼= P3, T030 ∼= T021 ∼=
K3. Moreover, we may assume that T012 ∼= K3, since by Theorem 5, any two
vertices v2 ∈ C and v3 ∈ V (C5) are adjacent in G.

We use 2r3s to denote an admissible partition of n into r (possibly r = 0)
twos and s (possibly s = 0) threes. A partition of n = 3k + 1 into k threes and
1 one is denoted by 3k1. We say that G is (3, 3)-reducible if and only if 2r3s is
realizable for some r ≥ 0 and s ≥ 4 in G, then 2r+33s−2 is also realizable in G.
Similarly, we say that G is (1, 3)-reducible if 3k1 is realizable for some k ≥ 3 in
G, then 223k−1 is also realizable in G.

Lemma 7. Let G = (I, C,C5, E) be a {2K2, C4}-free graph of order n. If a can-
onical 2-3-primitive partition λ of n is realizable in G, then G is (3, 3)-reducible.
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Proof. Suppose λ = 2r3s is realizable in G for r ≥ 0 and s ≥ 4 and Λ be a
realization of λ. Assume first that there exist two 3-components in Λ, say T1 and
T2, of type other than T210, i.e., of type in {T120, T120, T111, T030, T021, T012, T003}.
One can see from Figure 3, that G[T1∪T2] has a perfect matching for all possible
cases, except possible the only case when T1 ∼= T111 ∼= T2. For this case, we may
assume that the two vertices of T1 ∩ C5 and T2 ∩ C5 are adjacent in G, because
each vertex in C5 is adjacent to every vertex of C. Thus, by transposing such
two 3-components into three 2-components in Λ, we obtain a realization Λ′ of
2r+33s−2 in G.

Figure 3. The subgraph of G induced by two 3-components of type in

{T120, T120, T111, T030, T021, T012, T003}.

Next assume that there exists at most one 3-components of type in {T120,
T120, T111, T030, T021, T012, T003}. Thus, at least s−1 3-components have type T210.
Since s ≥ 4, |I| ≥ 2(s− 1) ≥ 6. Moreover, by the assumption that the canonical
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2-primitive partition of n is realizable in G, |C| ≥ |I|−1 ≥ 5, and there exists two
3-components T ′ and T ′′ of type T210, say T ′ = {u1, u′1, v1}, T ′′ = {u2, u′2, v2} with
v1, v2 ∈ C, and two vertices w1, w2 ∈ C such that u1w1 ∈ E(G) and u2w2 ∈ E(G),
and w1, w2 are lying in 2-component or 3-component contained in C ∪ C5.

First assume that at least one of w1 and w2 belongs to a 3-component. With-
out loss of generality, suppose that {w1, w0, w

′
0} = T0 is a 3-component contained

in C∪C5. Then T0 ∈ {T030, T021, T012}. For the case when T0 ∼= T030 or T0 ∼= T021,
we can decompose the subgraph of G induced by T ′∪T0 into three 2-components.
For the case when T0 ∼= T012, we may assume that w0w

′
0 ∈ E(G). So, we can

decompose the subgraph of G induced by T ′ ∪ T0 into three 2-components.
If {w1, w2} is a 2-component, then we can decompose the subgraph of G

induced by T ′ ∪ T ′′ ∪ {w1, w2} into four 2-components. In the following, we
assume that w1 and w2 belong to different 2-components. Denote {w1, w

′
1} and

{w2, w
′
2} are two 2-components. If w′1w

′
2 ∈ E(G), we can decompose the subgraph

of G induced by T ′ ∪ T ′′ ∪ {w1, w
′
1, w2, w

′
2} into five 2-components. If w′1w

′
2 /∈

E(G), then w′1, w
′
2 ∈ V (C5), there exists at least one 2-component v0v

′
0 such that

v0 ∈ V (C5), v0w
′
1 ∈ E(G) and w′2v

′
0 ∈ E(G), and then we can decompose the

subgraph of G[T ′ ∪ T ′′ ∪ {w1, w
′
1, w2, w

′
2, v0, v

′
0}] into six 2-components.

Lemma 8. Let G = (I, C,C5, E) be a {2K2, C4}-free graph of order n. If a can-
onical 2-3-primitive partition λ of n is realizable in G, then G is (1, 3)-reducible.

Proof. Suppose λ = 3k1 is realizable in G for some k ≥ 3. Let {v0} ∪ Λ be a
λ = 3k1-decomposition of G, in which {v0} is the 1-component and Λ is the set
of 3-components.

Case 1. v0 ∈ C. By the assumption, every vertex of C5 belongs to a 3-comp-
onent, and hence there exists a 3-component T = {w, u, v} such that T ∩C5 6= ∅
and T ∩C 6= ∅. Thus T ∈ {T021, T012, T111}. We may assume that w ∈ T ∩C5 and
u ∈ T ∩C. Then v0w ∈ E(G) and uv ∈ E(G), implying that G is (1, 3)-reducible.

Case 2. v0 ∈ C5. Let w ∈ C5 be a vertex with v0w ∈ E(C5) and T = {w, u,
v} be a 3-component containing w. Then, T ∈ {T021, T012, T111, T003}, and so,
uv ∈ E(G), implying that G is (1, 3)-reducible.

Case 3. v0 ∈ I. By the assumption, there exists a vertex w ∈ C and T = {w,
u, v}. Clearly T ∈ {T120, T120, T111, T030, T021, T012, T210}.

For the case T ∼= T120, assume that u ∈ C and v ∈ I. If uv ∈ E(G), then
{v0, w} and {u, v} are two 2-components, and so, G is (1, 3)-reducible. Otherwise,
uv /∈ E(G) and wv ∈ E(G). Then we can choose {u} as the new 1-component,
and {v0, w, v} as the 3-component. Then, this case is reduced to Case 1.

If T ∼= T120, we may assume that v ∈ I. Without loss of generality, let
uv ∈ E(G). Clearly, the subgraph G[{v, w, u, v0}] can be partitioned into two
2-components {v0, w} and {u, v}. So, G is (1, 3)-reducible.
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For the case when T ∼= T111, let v ∈ I and u ∈ C5. We can choose {u} as
the new 1-component, and {v0, w, v} as the 3-component. Then it is reduced to
Case 2.

If T ∼= T030, then {v0}∪T can be repartitioned into two 2-components {v0, w}
and {u, v}.

If T ∼= T021, assume that u ∈ C5 and v ∈ C. Again, {v0} ∪ T can be
repartitioned into two 2-components {v0, w} and {u, v}.

If T ∼= T012, then {u, v} ⊆ C5. Actually, we may assume that uv ∈ E(G).
Then {v, w, u, v0}] can be partitioned into two 2-components {v0, w} and {u, v},
as we desired.

Now we deal with the last case when T ∼= T210. Since the canonical 2-
primitive partition of n is realizable in G, |C| ≥ |I| − 1. It means that there
must exist a 3-component T ′ with type distinct from T210. Take a sequence of
3-components T1, . . . , Tj of T (Let Ti = {ui, wi, vi} with ui, vi ∈ I and wi ∈ C),
such that viwi+1 ∈ E(G) and Ti ∼= T210 for each i < j, and Tj 6∼= T210. Let
T ′i = (Ti \ {vi}) ∪ {vi−1} for each i ∈ {1, . . . , j}. Replacing the components
{v0}, T1, . . . , Tj of T with {wj}, T ′1, . . . , T ′j , we obtain a new realization T ′ of
3s1 in which 1-component {wj} does not belong to I. By Cases 1 and 2, G is
(1, 3)-reducible.

Theorem 9. Let G = (I, C,C5, E) be a connected {2K2, C4}-free graph of order
n. If every canonical 2-3-primitive partition of n is realizable in G, then every
2-3-primitive partition of n is realizable in G.

Proof. Let λ = 2r3s be a 2-3-primitive partition of n. Since every canonical
2-3-primitive partition of n is realizable in G, we may assume that r ≥ 2 and
s ≥ 2.

If r = 2, we are able to obtain a λ-decomposition from the λ′-realization of
the canonical primitive partition 13s+1, because G is (1, 3)-reducible by Lemma 8.
If r ≥ 3, we can obtain a λ-decomposition from the realization of the 2-3-primitive
partition 2r−33s+2, because G is (3, 3)-reducible by Lemma 11.

By Theorem 6 and Theorem 9, we obtain the following result.

Theorem 10. A {2K2, C4}-free graph G on n vertices is AP if and only if every
canonical 2-3-primitive partition of n is realizable in G.

4. 2K2-Free Bipartite Graphs

Lemma 11. Let G = (X,Y ) be a connected 2K2-free bipartite graph. If G has
a perfect matching or a near perfect matching, then every 2-3-primitive partition
λ of n is realizable in G.
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Proof. SinceG has a perfect matching or a near perfect matching, λ∗ is realizable
in G, where

λ∗ =

{
2

n
2 , if n is even,

2
n−1
2 1, if n is odd.

Furthermore, since G is connected, (2, . . . , 2, 3) is realizable in G if n is odd. So,
let Λ0 be a λ0-decomposition of G, where

λ0 =

{
2

n
2 , if n is even,

2
n−3
2 3, if n is odd.

To prove every 2-3-primitive partition λ of n is realizable in G, it suffices to show
that

(i) the subgraph induced by any three 2-components of Λ0 can be decomposed
into two 3-components; and

(ii) the subgraph induced by any two 2-components of Λ0 can be decomposed
into one 1-component and one 3-component.

We first prove (i). Let x1y1, x2y2 and x3y3 be three 2-components of Λ0,
where xi ∈ X, yi ∈ Y , 1 ≤ i ≤ 3. Since G is 2K2-free, the subgraph induced
by any two 2-components is connected. Without loss of generality, we assume
that x1y2 ∈ E(G). If x2y3 ∈ E(G), then {x1, y1, y2} and {x2, x3, y3} are two
3-components. Otherwise, x3y2 ∈ E(G). If x1y3 ∈ E(G), then {x1, y1, y3} and
{x2, x3, y2} are two 3-components. If x1y3 /∈ E(G), then x3y1 ∈ E(G), and
so {x1, x2, y2} and {x3, y1, y3} are two 3-components. For each case, we can
decompose three 2-components into two 3-components. Thus, (i) holds.

Since G is 2K2-free, the subgraph induced by any two 2-components is con-
nected. So, it is easy to partition this subgraph into a subgraph of order 1 and a
subgraph of order 3. Thus, (ii) holds.

By Theorem 6 and Lemma 11, we obtain the following result.

Theorem 12. Let G be a connected 2K2-free bipartite graph. Then G is AP if
and only if G has a perfect matching or a near perfect matching.

5. 2K2-Free Nonbipartite Graphs with Clique Number 2

In this section, we consider 2K2-free nonbipartite graphs with clique number 2.
Recall that o(H) denotes the number of odd components in H. The well-known
Tutte’s 1-factor theorem says that a graph G has a perfect matching if and only
if o(G − S) ≤ |S| for all S ⊆ V (G). The following consequence can be derived
easily from Tutte’s 1-factor theorem.
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Proposition 13. Let G be a graph of odd order. Then G has a near perfect
matching if and only if o(G− S) ≤ |S|+ 1 for all S ⊂ V .

For a vertex v ∈ V (G) and a positive integer n, we say that H is obtained
from G by multiplying v by n when H is formed by replacing the vertex v by an
independent set of n vertices each having the same neighbors as v.

Theorem 14 (Chung, Gyárfás, Tuza and Trotter [13]). Assume that G is 2K2-
free, ω(G) = 2 and G is not bipartite. Then G can be obtained from the cycle C5

by vertex multiplication.

So let G be a 2K2-free, nonbipartite graph with ω(G) = 2. Then, by Theorem
14, we denote G = (A1, A2, A3, A4, A5), where the sets Ai are independent sets
and form a partition of V (G), and each vertex of Ai is adjacent to all vertices in
Ai−1 ∪Ai+1 for each i = 1, 2, . . . , 5 where i− 1 and i+ 1 are taken modulo 5.

Theorem 15. Assume that G is a 2K2-free nonbipartite graph of even order with
ω(G) = 2. Then G has a perfect matching if and only if the following conditions
are satisfied for each i ∈ {1, 2, . . . , 5},
(1) |Ai|+ |Ai+2| ≤ |Ai−1|+ |Ai+1|+ |Ai−2| and

(2) |Ai| ≤ |Ai−1|+ |Ai+1|, with equality only if |Ai−2| = |Ai+2|.

Proof. First assume that G has a perfect matching. The conclusions (1) and (2)
can be deduced from Tutte’s 1-factor theorem by taking Ai−1 ∪Ai+1 ∪Ai+3 and
Ai−1 ∪Ai+1 into S, respectively.

Conversely, let G be a 2K2-free nonbipartite graph of even order with ω(G) =
2 satisfying conditions (1) and (2). Let S ⊂ V (G). We shall show that o(G−S) ≤
|S|. If G − S is connected, then o(G − S) ≤ 1 ≤ |S| for a nonempty set S, and
o(G−S) = o(G) = 0 = |S| for the empty set S, since |V (G)| is even. Now assume
that G−S is disconnected. At least two nonadjacent parts of {A1, A2, A3, A4, A5}
are contained in S. Without loss of generality, we assume that A2 ∪A5 ⊆ S.

Case 1. S = A2 ∪ A5. If |A1| = |A2| + |A5|, then by (2) |A3| = |A4|, and
hence

o(G− S) = |A1| = |A2|+ |A5| = |S|.
If |A1| ≤ |A2|+ |A5| − 1, then

o(G− S) ≤ |A1|+ 1 ≤ |A2|+ |A5| − 1 + 1 = |A2|+ |A5| = |S|.

Case 2. A2 ∪ A5 ⊂ S and S ∩ (A1 ∪ A3 ∪ A4) 6= ∅. If A3 * S and A4 * S,
then o(G− S) ≤ |A1|+ 1 ≤ |A2|+ |A5|+ 1 ≤ |S|.

If A3 ⊂ S, then o(G− S) ≤ |A1|+ |A4| ≤ |A2|+ |A5|+ |A3| ≤ |S|.
If A4 ⊂ S, then o(G− S) ≤ |A1|+ |A3| ≤ |A2|+ |A5|+ |A4| ≤ |S|.
In either case, we obtain o(G − S) ≤ |S| for S ⊂ V (G). By Tutte’s 1-factor

theorem, G has a perfect matching.
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Theorem 16. Assume that G is a 2K2-free nonbipartite graph of odd order with
ω(G) = 2. Then G has a near perfect matching if and only if the following
conditions are satisfied for each i ∈ {1, 2, . . . , 5},
(1) |Ai|+ |Ai+2| ≤ |Ai−1|+ |Ai+1|+ |Ai−2|+ 1 and

(2) |Ai| ≤ |Ai−1|+ |Ai+1|+ 1, with equality only if |Ai−2| = |Ai+2|.

Proof. First assume that G has a near perfect matching. The conclusions (1)
and (2) can be deduced from Proposition 13 by taking Ai−1 ∪ Ai+1 ∪ Ai+3 and
Ai−1 ∪Ai+1 into S, respectively.

Conversely, let G be a 2K2-free nonbipartite graph of odd order with ω(G) =
2 satisfying conditions (1) and (2). Let S ⊂ V (G). We shall show that o(G−S) ≤
|S|+1. If G−S is connected, then o(G−S) ≤ 1 ≤ |S| for a nonempty set S, and
o(G−S) = o(G) = 1 = |S|+ 1 for the empty set S, since |V (G)| is odd. If G−S
is disconnected, then at least two nonadjacent parts of {A1, A2, A3, A4, A5} are
contained in S. Without loss of generality, we assume that A2 ∪A5 ⊆ S.

Case 1. S = A2 ∪A5. If |A1| ≤ |A2|+ |A5|, then

o(G− S) = o(G−A2 −A5) ≤ |A1|+ 1 ≤ |A2|+ |A5|+ 1 = |S|+ 1.

If |A1| = |A2|+ |A5|+ 1, then by the assumption, |A3| = |A4|. Therefore,

o(G− S) = o(G−A2 −A5) = |A1| = |A2|+ |A5|+ 1 = |S|+ 1.

Case 2. A2 ∪ A5 ⊂ S and S ∩ (A1 ∪ A3 ∪ A4) 6= ∅. If A3 * S and A4 * S,
then o(G− S) ≤ |A1|+ 1 ≤ |A2|+ |A5|+ 1 + 1 ≤ |S|+ 1.

If A3 ⊂ S, then o(G− S) ≤ |A1|+ |A4| ≤ |A2|+ |A5|+ |A3|+ 1 ≤ |S|+ 1.
If A4 ⊂ S, then o(G− S) ≤ |A1|+ |A3| ≤ |A2|+ |A5|+ |A4|+ 1 ≤ |S|+ 1.
For each case, we obtain o(G − S) ≤ |S| + 1 for S ⊂ V (G). By proposition

13, G has a near perfect matching.

Theorem 17. Let G be a 2K2-free nonbipartie graph G with ω(G) = 2. Then G
is AP if and only if it has a perfect matching or a near perfect matching.

Proof. The necessity is obvious. We prove the sufficiency by induction on the
order n of G. If 5 ≤ n ≤ 6, then G is traceable, and so, G is AP. If n = 7, then

(|A1|, |A2|, |A3|, |A4|, |A5|) ∈ {(1, 1, 1, 2, 2), (1, 1, 2, 1, 2)}.

It is easy to check that in the both cases, G is traceable, and thus it is AP. If n = 8,
then (|A1|, |A2|, |A3|, |A4|, |A5|) = (1, 1, 1, 2, 3) or (1, 1, 2, 2, 2) or (1, 2, 1, 2, 2). For
each case, it can be checked that G is traceable, and hence G is AP.

Now let n ≥ 9, and λ = (λ1, λ2, . . . , λp) be a partition of n with λ1 ≤ λ2 ≤
· · · ≤ λp. Since G is 2-connected, if p ≤ 2, then λ is realizable in G by Theorem
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1. So, we assume that p ≥ 3. If there exists V1 ⊆ V (G) with |V1| = λ1, which
come from some (at least two) consecutive parts of G, such that G1 = G− V1 is
2K2-free, ω(G1) = 2 and G1 is not bipartite graph with a perfect matching or a
near perfect matching, then by induction hypothesis, G1 is (λ2, . . . , λp)-realizable,
and hence G is λ-realizable. If such a set V1 does not exist, we have the following
result.

Claim 1. There exist two nonadjacent parts of (A1, A2, A3, A4, A5) with cardi-
nality 1. Moreover,

∑p
i=2 λi ≥ 6.

Proof. Since n =
∑p

i=1 λi ≥ 9 with λ1 ≤ · · · ≤ λp and p ≥ 3, if
∑p

i=2 λi ≤ 5,
then λ1 ≤ 1

2

∑p
i=2 λi ≤

1
2 × 5 = 2.5. It follows that

∑p
i=1 λi = λ1 +

∑p
i=2 λi ≤

2.5 + 5 = 7.5 < 9, a contradiction. Thus,
∑p

i=2 λi ≥ 6.

By Claim 1, suppose that |A1| = |A3| = 1, without loss of generality. Since G
has a perfect matching or a near perfect matching, by Theorem 15 and Theorem
16,

|A2| ≤
{

2, if n is even,
3, if n is odd.

Claim 2. min{|A4|, |A5|} ≥ 2.

Proof. Suppose that min{|A4|, |A5|} = 1, and without loss of generality, let
|A4| = 1. Then by Theorem 16(1), |A2|+ |A5| ≤ |A1|+ |A3|+ |A4|+ 1 = 4. Thus,
n = Σ5

i=1|Ai| ≤ 7, a contradiction.

Claim 3. |A4|+ |A5| − 2 < λ1 ≤ n
3 and 9 ≤ n ≤ 10.

Proof. Since p ≥ 3,
∑p

i=1 λi = n and λ1 ≤ · · · ≤ λp, we have λ1 ≤ n
3 .

If |A4|+ |A5|− 2 ≥ λ1, then we can obtain G1 from G by deleting λ1 vertices
from A4 ∪A5, a contradiction. Since |A4|+ |A5| − 2 < λ1,

n ≤ |A4|+ |A5|+ 2 + 3 < λ1 + 2 + 2 + 3 = λ1 + 7 ≤ n

3
+ 7,

implying that n < 21
2 , i.e., 9 ≤ n ≤ 10.

If n = 10 (n is even), then |A2| ≤ 2. It follows that (|A1|, |A2|, |A3|, |A4|,
|A5|) = (1, 1, 1, 4, 3) or (1, 2, 1, 3, 3). Since λ1 ≤ 10

3 , we can obtain G1 by deleting
λ1 vertices from |A4| and |A5|, again a contradiction.

If n = 9, then |A2| ≤ 3. It follows that (|A1|, |A2|, |A3|, |A4|, |A5|) = (1, 1, 1,
3, 3) or (1, 2, 1, 3, 2) or (1, 3, 1, 2, 2). Since λ1 ≤ 9

3 , for the cases when (1, 1, 1, 3, 3)
and (1, 2, 1, 3, 2), we can obtain G1 from G by deleting λ1 vertices from A4 ∪A5.
For the case when (1, 3, 1, 2, 2), if λ1 ≤ 2, we can obtain G1 from G by deleting
λ1 vertices from A4 ∪A5. If λ1 = 3, then λ = (3, 3, 3). Denote A2 = {u2, v2, w2}
and A4 = {u4, v4}. Then we take V1 = A1 ∪ {u2, v2}, V2 = A3 ∪ {w2, u4}, V3 =
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A5∪{v4}. Note that G[Vi] is connected for each i ∈ {1, 2, 3}. That is, λ = (3, 3, 3)
is realizable in G.

By Theorem 15, Theorem 16 and Theorem 17, we can obtain the following
result. Let G be set of 2K2-free graphs G with ω(G) = 2, satisfying the conditions
(1) and (2) in Theorem 16 or Theorem 17 (depending whether G has even or odd
order).

Theorem 18. If G is 2K2-free, ω(G) = 2 and G is not bipartite, then the
following statements are equivalent.

(i) G is AP.

(ii) G ∈ G.

(iii) G has a perfect matching or a near perfect matching.

By Theorem 12 and Theorem 18 we obtain the following result.

Theorem 19. If G is 2K2-free and ω(G) = 2, then G is AP if and only if G has
a perfect matching or a near perfect matching.
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[23] R. Kalinowski, M. Piĺsniak, I. Schiermeyer and M. Woźniak, Dense arbitrarily par-
titionable graphs, Discuss. Math. Graph Theory 36 (2016) 5–22.
https://doi.org/10.7151/dmgt.1833
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