GRAPHS WHOSE \boldsymbol{A}_{α}-SPECTRAL RADIUS DOES NOT EXCEED 2

Jian Feng Wang ${ }^{1}$
School of Mathematics and Statistics
Shandong University of Technology
Zibo 255049, P.R. China
e-mail: jfwang@sdut.edu.com
Jing Wang, Xiaogang Liu
Department of Applied Mathematics
Northwestern Polytechnical University Xi'an, 710072, P.R. China
e-mail: jwang66@aliyun.com xiaogliu@nwpu.edu.cn
AND
Francesco Belardo
Department of Mathematics and Applications "R. Caccioppoli" University of Naples "Federico II", I-80126 Naples, Italy
e-mail: fbelardo@unina.it

This paper is dedicated to the memory of our excellent colleague
Slobodan K. Simić who recently passed away.

Abstract

Let $A(G)$ and $D(G)$ be the adjacency matrix and the degree matrix of a graph G, respectively. For any real $\alpha \in[0,1]$, we consider $A_{\alpha}(G)=$ $\alpha D(G)+(1-\alpha) A(G)$ as a graph matrix, whose largest eigenvalue is called the A_{α}-spectral radius of G. We first show that the smallest limit point for the A_{α}-spectral radius of graphs is 2 , and then we characterize the connected graphs whose A_{α}-spectral radius is at most 2. Finally, we show that all such graphs, with four exceptions, are determined by their A_{α}-spectra. Keywords: A_{α}-matrix, Smith graphs, limit point, spectral radius, index. 2010 Mathematics Subject Classification: 05C50.

[^0]
1. Introduction

All graphs considered here are simple, undirected and connected. Let $G=$ $(V(G), E(G))$ be such a graph with the order $|V(G)|=n$ and size $|E(G)|=m$. Let $M=M(G)$ be a corresponding graph matrix defined in some prescribed way. The M-polynomial of G is defined as $\phi_{M}(G, \lambda)=\operatorname{det}(\lambda I-M)$, where I is the identity matrix. The M-eigenvalues of G are those of its graph matrix M, and constitute the M-spectrum of G. The M-index of G is its largest M-eigenvalue, which often is also the M-spectral radius, denoted by $\rho_{M}(G)$. In the literature, M takes the role of several matrices, as the adjacency matrix A, the Laplacian matrix L, the signless Laplacian matrix Q, the distance matrix \mathcal{D}, among others.

Usually, the M-index of a graph increases with the complexity of the graph structure. Therefore, graphs showing a simple structure get a relatively small M index. The first results in this direction were obtained for $M=A$, the adjacency matrix. It was Smith in [19], who detected all connected graphs whose A-index is equal to 2 (see also $[8,15]$ for a generalization), such graphs are known as the Smith graphs. In [9] Hoffman proved that 2 is the smallest limit point for the spectral radius of sequences of vertex-increasing graphs, and he found all limit values up to $\sqrt{2+\sqrt{5}}$. Finally, Hoffman and Smith in [10] proved that adding infinitely many vertices of degree 2 (by subdividing all edges) in any graph whose maximum degree is Δ, then the corresponding A-index converges to $\frac{\Delta}{\sqrt{\Delta-1}}$.

The seminal papers of Hoffman and Smith inspired similar investigations, as the complete characterization of connected graphs whose A-index does not exceed $\sqrt{2+\sqrt{5}}[2,4]$, and of connected graphs whose A-index does not exceed $\frac{3}{\sqrt{2}}[3,23,24]$. Analogous investigations were conducted for the Laplacian and signless Laplacian matrices [20-22], as well.

Let $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the diagonal matrix of G, where $d_{i}=d\left(v_{i}\right)$ is the degree of vertex $v_{i} \in V(G)$. For any $\alpha \in[0,1]$ and for any graph G, the A_{α} matrix of G is defined as

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)
$$

Here, we study $M=A_{\alpha}$ (recall, $\alpha \in[0,1]$), and our aim is to characterize the graphs G getting a small A_{α}-index (in fact, the A_{α}-spectral radius) for the graph matrix A_{α}. For the sake of readability, we shall use A_{α}-index instead of $A_{\alpha^{-}}$ spectral radius, and we denote the characteristic polynomial $\left|\lambda I-A_{\alpha}(G)\right|$ by $\phi_{\alpha}(G, \lambda)$. The matrix A_{α} was first defined in [16] by Nikiforov as an unifying approach to study the graph matrices $A=A_{0}, D=A_{1}, Q=2 A_{1 / 2}$ and $L=$ $\frac{A_{\alpha}-A_{\beta}}{\alpha-\beta}$. This matrix has attracted the attention of several scholars, and there is already an interesting literature covering this graph matrix [11, 13, 14, 17, 18].

As usual, let $P_{n}, C_{n}, K_{1, n-1}$ and W_{n} be the path, the cycle, the star and the double-snake of order n, respectively. Let $T_{a, b, c}$ stand for a T-shaped tree defined
as a tree with a single vertex u of degree 3 such that $T_{a, b, c}-u=P_{a} \cup P_{b} \cup P_{c}$ $(a \leq b \leq c)$; when $a=b=1$, the tree $T_{1,1, n-3}$ is also called a snake. Both snake $T_{1,1, n-3}$ and double-snake W_{n} are depicted in Figure 1.

Figure 1. The snake and the double-snake.
The main results of this paper are stated as follows. The first one is about the smallest limit point for the A_{α}-index of graphs.

Theorem 1.1. The smallest limit point of the A_{α}-index $\rho_{A_{\alpha}}(G)$ of graphs is 2 .
Next, in Theorem 1.2 we characterize the connected graphs with A_{α}-index at most 2 .

Theorem 1.2. Let G be a connected graph with order n. Then, for $\alpha \in[0,1]$,
(i) $\rho_{A_{\alpha}}(G)<2$ if and only if G is one of the following graphs.
(a) $P_{n}(n \geq 1)$ for $\alpha \in[0,1)$,
(b) $T_{1,1, n-3}(n \geq 4)$ for $\alpha \in\left[0, s_{1}\right)$,
(c) $T_{1,2,2}$ for $\alpha \in\left[0, s_{2}\right), T_{1,2,3}$ for $\alpha \in\left[0, s_{3}\right)$ and $T_{1,2,4}$ for $\alpha \in\left[0, s_{4}\right)$.
(ii) $\rho_{A_{\alpha}}(G)=2$ if and only if G is one of the following graphs.
(a) $C_{n}, n \geq 3$,
(b) $P_{n}(n \geq 3)$ for $\alpha=1$,
(c) $W_{n}(n \geq 6)$ for $\alpha=0$,
(d) $T_{1,1, n-3}$ for $\alpha=s_{1}$, where $s_{1}=\frac{4}{n+1+\sqrt{(n+1)^{2}-16}}$,
(e) $T_{1,2,2}$ for $\alpha=s_{2}, T_{1,2,3}$ for $\alpha=s_{3}, T_{1,2,4}$ for $\alpha=s_{4}$,
(f) $T_{1,3,3}$ for $\alpha=0, T_{1,2,5}$ for $\alpha=0, K_{1,4}$ for $\alpha=0$ and $T_{2,2,2}$ for $\alpha=0$,
where $s_{2}=0.2192+$ is the solution of $2 \alpha^{3}-11 \alpha^{2}+16 \alpha-3=0, s_{3}=0.1206+$ is the solution of $\alpha^{3}-6 \alpha^{2}+9 \alpha-1=0$ and $s_{4}=0.0517+$ is the solution of $2 \alpha^{3}-13 \alpha^{2}+20 \alpha-1=0$.

Finally, we study the spectral determination of graphs with A_{α}-index at most 2. We mention some basic notions. Two non-isomorphic graphs G and H with the same M-spectrum are called M-cospectral graphs. A graph G is said to be determined by its M-spectrum if there is no other non-isomorphic graph with the same M-spectrum. There are dozens of papers on this problem, especially
for the adjacency matrix; a good starting point are the excellent surveys $[5,6]$. For $M=A_{\alpha}$ there is already some literature. In [12], it is proved that the path P_{n} and the cycle C_{n} are determined by their A_{α}-spectra. Our result reads as follows.

Theorem 1.3. Let $\alpha \in[0,1]$ and G be a connected graph with A_{α}-index at most 2 . Then
(i) $P_{n}(n \geq 1)$ and $C_{n}(n \geq 3)$ are determined by their A_{α}-spectra for $\alpha \in[0,1]$,
(ii) $T_{1,1, n-3}(n \geq 4)$ for $\alpha \in\left[0, s_{1}\right]$ and $T_{1,2, c}(c \in\{2,3,4\})$ for $\alpha \in\left[0, s_{c}\right]$ are determined by their A_{α}-spectra,
(iii) $T_{1,3,3}$ and $T_{1,2,5}$ are determined by the A_{0}-spectrum,
(iv) $T_{1,1,1}$ and $K_{1} \cup C_{3}$ are $A_{\frac{1}{2}}$-cospectral,
(v) W_{n} and $C_{4} \cup P_{n-4}(n \geq 6), T_{2,2,2}$ and $K_{1} \cup C_{6}, K_{1,4}$ and $K_{1} \cup C_{4}$ are A_{0}-cospectral.

The rest of the paper is organized as follows. In Section 2, the smallest limit point of A_{α}-index of graphs is determined. In Section 3, all the connected graphs with the A_{α}-index at most 2 are characterized, and we also study their spectral determination. In Section 4, some concluding remarks about this topic are given.

2. The Limit Points of A_{α}-Index of Graphs

In this section, we investigate the smallest limit point of A_{α}-index of graphs.
Lemma 2.1 [16]. Let $\alpha \in[0,1]$. Then the A_{α}-index of $K_{1, n-1}$ is

$$
\rho_{A_{\alpha}}\left(K_{1, n-1}\right)=\frac{1}{2}\left(\alpha n+\sqrt{\alpha^{2} n^{2}+4(n-1)(1-2 \alpha)}\right) .
$$

Lemma 2.2 [17]. The spectral radius of $A_{\alpha}\left(P_{n}\right)$ satisfies

$$
\rho_{A_{\alpha}}\left(P_{n}\right) \leq \begin{cases}2 \alpha+2(1-\alpha) \cos \left(\frac{\pi}{n+1}\right), & \alpha \in[0,1 / 2), \\ 2 \alpha+2(1-\alpha) \cos \left(\frac{\pi}{n}\right), & \alpha \in[1 / 2,1]\end{cases}
$$

Equality holds if and only if $\alpha=0, \alpha=1 / 2, \alpha=1$.
Lemma 2.3 [17]. The spectral radius of $A_{\alpha}\left(P_{n}\right)$ satisfies

$$
\rho_{A_{\alpha}}\left(P_{n}\right) \geq \begin{cases}2 \alpha+2(1-\alpha) \cos \left(\frac{\pi}{n}\right), & \alpha \in[0,1 / 2), \\ 2 \alpha+2 \alpha \cos \left(\frac{\pi}{n}\right)-2(2 \alpha-1) \cos \left(\frac{\pi}{n+1}\right), & \alpha \in[1 / 2,1] .\end{cases}
$$

Equality holds if and only if $\alpha=1 / 2$.

In fact, the proof of Hoffman [9] given for $\alpha=0$ can be re-used for any $\alpha \in[0,1]$, so that Theorem 1.1 can be deduced. To keep the paper self-contained, we provide the proof adapted to the general case.

Proof of Theorem 1.1. Let G_{1}, G_{2}, \ldots be a sequence of graphs such that $\rho_{A_{\alpha}}\left(G_{i}\right) \neq \rho_{A_{\alpha}}\left(G_{j}\right)$ for $i \neq j$, and $\rho_{A_{\alpha}}\left(G_{n}\right) \rightarrow \lambda<2$. Suppose that G is a connected graph on at least three vertices, the maximum degree of the vertices of G is $\Delta(G)$, and the diameter of G is $d(G)$. Then $|V(G)| \leq \Delta^{d(G)}+1$. Therefore, $\max (\Delta(G), d(G)) \geq(\log |V(G)|-1)^{1 / 2}$. But since the graphs G_{i} are different, $|V(G)| \rightarrow \infty$. Hence, for sufficiently large n, G_{n} contains as a subgraph an arbitrarily long path P_{k} or arbitrarily large star $K_{1, t}$. But from Lemma 2.1 we know $\rho_{A_{\alpha}}\left(K_{1, t}\right) \rightarrow \infty$; while from Lemmas 2.2 and 2.3 it follows that $\rho_{A_{\alpha}}\left(P_{k}\right) \rightarrow 2$.

3. Graphs with A_{α}-Index at Most 2

In this section we characterize all the connected graph whose A_{α}-index does not exceed 2. The graphs mentioned in Lemma 3.1(ii) are depicted in Figure 2.

Lemma 3.1 [19]. Let G be a connected graph with A-index $\rho_{A}(G)$. Then
(i) $\rho_{A}(G)<2$ if and only if

$$
G \in \mathcal{G}_{1}=\left\{P_{n}(n \geq 1), T_{1,1, n-3}(n \geq 4), T_{1,2,2}, T_{1,2,3}, T_{1,2,4}\right\},
$$

(ii) $\rho_{A}(G)=2$ if and only if

$$
G \in \mathcal{G}_{2}=\left\{C_{n}(n \geq 3), W_{n}(n \geq 6), K_{1,4}, T_{2,2,2}, T_{1,2,5}, T_{1,3,3}\right\} .
$$

$C_{n}(n \geq 3)$

$W_{n}(n \geq 6)$

Figure 2. The Smith graphs.

Some useful properties of A_{α}-matrix are summarized in the following lemma.
Lemma 3.2. Let G be a connected graph of order n and maximum degree $\Delta(G)$.
(i) [16] Then $\rho_{A_{\alpha}}(G) \geq \rho_{A}(G)$ for $\alpha \in[0,1]$,
(ii) [16] Then $\rho_{A_{\alpha}}(G) \geq \rho_{A_{\beta}}(G)$ for $0 \leq \beta<\alpha \leq 1$, where inequality is strict, unless G is regular.
(iii) [17] For $\alpha \in[0,1]$,
(a) if $\alpha=1$, then $\rho_{A_{\alpha}}(G)=\Delta(G)$,
(b) if $\alpha \in[0,1)$, then $\rho_{A_{\alpha}}(G) \geq \rho_{A_{\alpha}}\left(P_{n}\right)$, where the equality holds if and only if $G=P_{n}$.
(iv) [16] If H is a proper subgraph of G, then $\rho_{A_{\alpha}}(H)<\rho_{A_{\alpha}}(G)$.
(v) [16] If λ is an eigenvalue of $A_{\alpha}(G)$ with a nonnegative eigenvector, then $\lambda=\rho_{A_{\alpha}}(G)$.

Let $\alpha \in[0,1]$. We now pick up the connected graphs G with $\rho_{A_{\alpha}}(G) \leq 2$. Assume that $\rho_{A}(G)>2$. Then by Lemma 3.2 (i) we get $\rho_{A_{\alpha}}(G) \geq \rho_{A}(G)>2$. Hence, $\rho_{A}(G) \leq 2$, and thus $G \in \mathcal{G}_{1} \cup \mathcal{G}_{2}$ by Lemma 3.1. It is easy to check that if G is k-regular, then $A_{\alpha}(G)$ has constant row sum equal to k, and we get $\rho_{A_{\alpha}}(G)=k$ (cf. also [16]). Consequently, we have $\rho_{A_{\alpha}}\left(C_{n}\right)=2$, and then $\rho_{A_{\alpha}}\left(P_{n}\right)<2$ for $\alpha \in[0,1)$ and $\rho_{A_{\alpha}}\left(P_{n}\right)=2(n \geq 3)$ for $\alpha=1$ by Lemma 3.2(iii). Thereby, the left work is to discuss the graphs in the set $\left(\mathcal{G}_{1} \cup \mathcal{G}_{2}\right) \backslash\left\{P_{n}, C_{n}\right\}$. If $G \in \mathcal{G}_{2} \backslash\left\{C_{n} \mid n \geq 3\right\}$, by Lemmas 3.1 and 3.2 (ii) we obtain $\rho_{A_{\alpha}}(G) \geq \rho_{A_{0}}(G)=2$ with equality if and only if $\alpha=0$. Thus, we have shown the following proposition.

Proposition 3.3. Let G be a connected graph with order n. For $\alpha \in[0,1]$,
(i) if $\rho_{A_{\alpha}}(G) \leq 2$, then $G \in \mathcal{G}_{1} \cup \mathcal{G}_{2}$,
(ii) $\rho_{A_{\alpha}}\left(P_{n}\right)=2(n \geq 3)$ for $\alpha=1$, and $\rho_{A_{\alpha}}\left(P_{n}\right)<2(n \geq 1)$ for $\alpha \in[0,1)$;
(iii) $\rho_{A_{\alpha}}\left(C_{n}\right)=2(n \geq 3)$,
(iv) if $G \in \mathcal{G}_{2} \backslash\left\{C_{n} \mid n \geq 3\right\}$, then $\rho_{A_{\alpha}}(G)=2$ for $\alpha=0$.

At this stage, we need only discuss the graphs in $\mathcal{G}_{1} \backslash\left\{P_{n} \mid n \geq 1\right\}$. Recall that $\phi_{\alpha}(G, \lambda)=\operatorname{det}\left(\lambda I-A_{\alpha}(G)\right)$ is the A_{α}-polynomial of a graph G. Let

$$
D_{n}=\left|\begin{array}{ccccccc}
2-\alpha & 0 & \alpha-1 & & & & \\
0 & 2-\alpha & \alpha-1 & & & & \\
\alpha-1 & \alpha-1 & 2-3 \alpha & \alpha-1 & & \\
& & \alpha-1 & 2-2 \alpha & \alpha-1 & & \\
& & & & \ddots & & \\
& & & & \alpha-1 & 2-2 \alpha & \alpha-1 \\
& & & & & \alpha-1 & 2-2 \alpha
\end{array}\right|
$$

Lemma 3.4. For $n \geq 4, D_{n}=(-1)^{n}(\alpha-2)(\alpha-1)^{n-3}\left(\alpha^{2}-(n+1) \alpha+2\right)$.
Proof. We prove the lemma by induction on the order n. For $n=4$, a direct calculation shows that the lemma holds. Suppose that the lemma is true when $n \leq k-1$. For $n=k$, by expanding the determinant obtained by the last column we arrive at

$$
\begin{aligned}
D_{k} & =(2-2 \alpha) D_{k-1}-(\alpha-1)^{2} D_{k-2} \\
& =(2-2 \alpha)\left((-1)^{k-1}(\alpha-2)(\alpha-1)^{k-4}\left(\alpha^{2}-k \alpha+2\right)\right) \\
& -(\alpha-1)^{2}\left((-1)^{k-2}(\alpha-2)(\alpha-1)^{k-5}\left(\alpha^{2}-(k-1) \alpha+2\right)\right) \\
& =(-1)^{k-2}(\alpha-2)(\alpha-1)^{k-5}\left[(2 \alpha-2)(\alpha-1)\left(\alpha^{2}-k \alpha+2\right)\right. \\
& \left.-(\alpha-1)^{2}\left(\alpha^{2}-(k-1) \alpha+2\right)\right] \\
& =(-1)^{k-2}(\alpha-2)(\alpha-1)^{k-5}\left((\alpha-1)^{2}\left(\alpha^{2}-(k+1) \alpha+2\right)\right) \\
& =(-1)^{k}(\alpha-2)(\alpha-1)^{k-3}\left(\alpha^{2}-(k+1) \alpha+2\right) .
\end{aligned}
$$

Hence, the result follows.
Lemma 3.5. The A_{α}-polynomial of $T_{1,1, n-3}$, for $n \geq 4$, computed at 2 is

$$
\phi_{A_{\alpha}}\left(T_{1,1, n-3}, 2\right)=(-1)^{n+1}(\alpha-2)(\alpha-1)^{n-4}\left(2 \alpha^{2}-(n+1) \alpha+2\right) .
$$

Proof. Clearly, the A_{α}-polynomial of $T_{1,1, n-3}$ when $\lambda=2$ is

$$
\phi_{A_{\alpha}}\left(T_{1,1, n-3}, 2\right)=\left|\begin{array}{ccccccc}
2-\alpha & 0 & \alpha-1 & & & & \\
0 & 2-\alpha & \alpha-1 & & & & \\
\alpha-1 & \alpha-1 & 2-3 \alpha & \alpha-1 & & \\
& & \alpha-1 & 2-2 \alpha & \alpha-1 & & \\
& & & & \ddots & & \\
& & & & \alpha-1 & 2-2 \alpha & \alpha-1 \\
& & & & & \alpha-1 & 2-\alpha
\end{array}\right|
$$

From Lemma 3.4, expanding the above determinant obtained by the last column we obtain that

$$
\begin{aligned}
\phi_{A_{\alpha}}\left(T_{1,1, n-3}, 2\right) & =D_{n}+\alpha D_{n-1} \\
& =(-1)^{n}(\alpha-2)(\alpha-1)^{n-3}\left(\alpha^{2}-(n+1) \alpha+2\right) \\
& +\alpha\left((-1)^{n-1}(\alpha-2)(\alpha-1)^{n-4}\left(\alpha^{2}-n \alpha+2\right)\right) \\
& =(-1)^{n-1}(\alpha-2)(\alpha-1)^{n-4}\left(\alpha\left(\alpha^{2}-n \alpha+2\right)\right. \\
& \left.-(\alpha-1)\left(\alpha^{2}-(n+1) \alpha+2\right)\right) \\
& =(-1)^{n+1}(\alpha-2)(\alpha-1)^{n-4}\left(2 \alpha^{2}-(n+1) \alpha+2\right) .
\end{aligned}
$$

This completes the proof.

Figure 3. The labeled trees $T_{1,1, n-3}$ and $T_{1,2, n-4}$.

Proposition 3.6. Let $T_{1,1, n-3}$ be a tree $(n \geq 4)$ and $\alpha \in[0,1]$. Then

$$
\rho_{A_{\alpha}}\left(T_{1,1, n-3}\right)\left\{\begin{array}{ll}
<2, & \alpha \in\left[0, s_{1}\right), \\
=2, & \alpha=s_{1}, \\
>2, & \alpha \in\left(s_{1}, 1\right]
\end{array} \quad \text { where } s_{1}=\frac{4}{n+1+\sqrt{(n+1)^{2}-16}}\right.
$$

Proof. To obtain the results, in view of Lemma 3.2(ii) we only need to show $\rho_{A_{\alpha}}\left(T_{1,1, n-3}\right)=2$ if and only if $\alpha=s_{1}$. From Lemma 3.5 and $\alpha \in[0,1]$, it follows that 2 is an A_{α}-eigenvalue of $T_{1,1, n-3}$ if and only if $\phi_{\alpha}\left(T_{1,1, n-3}, 2\right)=0$, that is

$$
\alpha \in\left\{1, \frac{n+1-\sqrt{(n+1)^{2}-16}}{4}\right\}
$$

If $\alpha=1$, then $A_{1}\left(T_{1,1, n-3}\right)=D\left(T_{1,1, n-3}\right)=\operatorname{diag}(1,1,1,2, \ldots, 2,3)$ with $\rho_{A_{1}}\left(T_{1,1, n-3}\right)=3>2$. Hence, the left work is to show $\rho_{A_{s_{1}}}\left(T_{1,1, n-3}\right)=2$ when

$$
s_{1}=\alpha=\frac{n+1-\sqrt{(n+1)^{2}-16}}{4}=\frac{4}{n+1+\sqrt{(n+1)^{2}-16}}
$$

Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the eigenvector associated to the eigenvalue 2 . Without loss of generality, set $x_{1}=1$. By $A_{s_{1}}\left(T_{1,1, n-3}\right) \mathbf{x}=2 \mathbf{x}$ we get

$$
s_{1} d_{i} x_{i}+\left(1-s_{1}\right) \sum_{j \backsim i} x_{j}=2 x_{i}
$$

As labelled in Figure 3, we get $x_{2}=\frac{2-s_{1}}{1-s_{1}}>0$ and $2 x_{i}=x_{i-1}+x_{i+1}(i=2$, $\ldots, n-3)$. Thereby,

$$
x_{i+1}-x_{i}=x_{i}-x_{i-1}=\cdots=x_{2}-x_{1}=\frac{1}{1-s_{1}}
$$

which leads to

$$
x_{i+1}=x_{i}+\frac{1}{1-s_{1}}>0(i=2,3, \ldots, n-3)
$$

and

$$
x_{n-3}=x_{n-4}+\frac{1}{1-s_{1}}=x_{n-5}+\frac{2}{1-s_{1}}=\cdots=x_{2}+\frac{n-5}{1-s_{1}}=\frac{n-3-s_{1}}{1-s_{1}}>0
$$

For x_{n-2}, x_{n-1} and x_{n}, solving the following equations

$$
\left\{\begin{array}{l}
3 s_{1} x_{n-2}+\left(1-s_{1}\right)\left(x_{n-3}+x_{n-1}+x_{n}\right)=2 x_{n-2} \\
s_{1} x_{n-1}+\left(1-s_{1}\right) x_{n-2}=2 x_{n-1} \\
s_{1} x_{n}+\left(1-s_{1}\right) x_{n-2}=2 x_{n}
\end{array}\right.
$$

we get $x_{n-2}=\frac{\left(n-s_{1}-3\right)\left(2-s_{1}\right)}{s_{1}^{2}-4 s_{1}+2}$ and $x_{n-1}=x_{n}=\frac{\left(n-s_{1}-3\right)\left(1-s_{1}\right)}{s_{1}^{2}-4 s_{1}+2}$. Note, it is not difficult to obtain $s_{1} \leq 0.5<2-\sqrt{2}$ (which is the least root of $s^{2}-4 s+2=0$). Thus, for $n \geq 4$ we get $n-s_{1}-3>0,2-s_{1}>0,1-s_{1}>0$ and $s_{1}^{2}-4 s_{1}+2$ >0. Hence, $x_{n-2}, x_{n-1}, x_{n}>0$, which indicates \mathbf{x} is a non-negative eigenvector. Thereby, $\rho_{A_{\alpha}}\left(T_{1,1, n-3}\right)=2$ by Lemma $3.2(\mathrm{v})$.

This completes the proof.
With similar methods as above, we next check up the A_{α}-index of three small trees.

Proposition 3.7. Let $G \in\left\{T_{1,2,2}, T_{1,2,3}, T_{1,2,4}\right\}$. For $\alpha \in[0,1]$,
(i) $\rho_{A_{\alpha}}\left(T_{1,2,2}\right) \begin{cases}<2, & \alpha \in\left[0, s_{2}\right), \\ =2, & \alpha=s_{2}, \\ >2, & \alpha \in\left(s_{2}, 1\right],\end{cases}$
where $s_{2} \in[0,1 / 2]$ is the solution of the equation $2 \alpha^{3}-11 \alpha^{2}+16 \alpha-3=0$,
(ii) $\rho_{A_{\alpha}}\left(T_{1,2,3}\right) \begin{cases}<2, & \alpha \in\left[0, s_{3}\right), \\ =2, & \alpha=s_{3}, \\ >2, & \alpha \in\left(s_{3}, 1\right],\end{cases}$
where $s_{3} \in[0,1 / 2]$ is the solution of the equation $\alpha^{3}-6 \alpha^{2}+9 \alpha-1=0$,
(iii) $\rho_{A_{\alpha}}\left(T_{1,2,4}\right) \begin{cases}<2, & \alpha \in\left[0, s_{4}\right), \\ =2, & \alpha=s_{4}, \\ >2, & \alpha \in\left(s_{4}, 1\right],\end{cases}$
where $s_{4} \in[0,1 / 2]$ is the solution of the equation $2 \alpha^{3}-13 \alpha^{2}+20 \alpha-1=0$.

Proof. If $\alpha \in(1 / 2,1]$, from Lemma 3.2(iv) we obtain for $n=6,7,8$ that

$$
\rho_{A_{\alpha}}\left(T_{1,2, n-4}\right)>\rho_{A_{\alpha}}\left(T_{1,1,1}\right)=2 \alpha+\sqrt{3-6 \alpha+4 \alpha^{2}}>2
$$

Therefore, $\alpha \in[0,1 / 2]$. By calculations we arrive at

$$
\begin{align*}
& \phi_{\alpha}\left(T_{1,2,2}, 2\right)=-(\alpha-1)^{2}\left(2 \alpha^{3}-11 \alpha^{2}+16 \alpha-3\right) \tag{1}\\
& \phi_{\alpha}\left(T_{1,2,3}, 2\right)=2(\alpha-1)^{3}\left(\alpha^{3}-6 \alpha^{2}+9 \alpha-1\right) \tag{2}\\
& \phi_{\alpha}\left(T_{1,2,4}, 2\right)=-(\alpha-1)^{4}\left(2 \alpha^{3}-13 \alpha^{2}+20 \alpha-1\right) \tag{3}
\end{align*}
$$

which implies that 2 is, respectively, an A_{α}-eigenvalue of $T_{1,2,2}, T_{1,2,3}$ and $T_{1,2,4}$ if and only if $s_{2}=\alpha=0.2192+$ in (1), $s_{3}=\alpha=0.1206+$ in (2) and $s_{4}=\alpha=$ $0.0517+$ in (3). Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)(n=6,7,8)$ be the eigenvector associated to the eigenvalue 2. Without loss of generality, set $x_{1}=1$. By $A_{s_{n-4}}\left(T_{1,2, n-4}\right) \mathbf{x}=$ 2 x we get

$$
s_{n-4} d_{i} x_{i}+\left(1-s_{n-4}\right) \sum_{j \backsim i} x_{j}=2 x_{i}
$$

As labelled in Figure 3, we get $x_{2}=\frac{2-s_{n-4}}{1-s_{n-4}}>0$ and $2 x_{i}=x_{i-1}+x_{i+1} \quad(i=$ $2, \ldots, n-4)$. Thereby

$$
x_{i+1}-x_{i}=x_{i}-x_{i-1}=\cdots=x_{2}-x_{1}=\frac{1}{1-s_{n-4}}
$$

which results in

$$
x_{i+1}=x_{i}+\frac{1}{1-s_{n-4}}>0(i=2,3, \ldots, n-4)
$$

and

$$
\begin{aligned}
x_{n-4} & =x_{n-5}+\frac{1}{1-s_{n-4}}=x_{n-6}+\frac{2}{1-s_{n-4}} \\
& =\cdots=x_{2}+\frac{n-6}{1-s_{n-4}}=\frac{n-4-s_{n-4}}{1-s_{n-4}}>0
\end{aligned}
$$

For $x_{n-3}, x_{n-2}, x_{n-1}$ and x_{n}, solving the next equations

$$
\left\{\begin{array}{l}
3 s_{n-4} x_{n-3}+\left(1-s_{n-4}\right)\left(x_{n-4}+x_{n-2}+x_{n-1}\right)=2 x_{n-3} \\
s_{n-4} x_{n-2}+\left(1-s_{n-4}\right) x_{n-3}=2 x_{n-2} \\
2 s_{n-4} x_{n-1}+\left(1-s_{n-4}\right)\left(x_{n-3}+x_{n}\right)=2 x_{n-1} \\
s_{n-4} x_{n}+\left(1-s_{n-4}\right) x_{n-1}=2 x_{n}
\end{array}\right.
$$

we get

$$
\begin{aligned}
x_{n-3} & =\frac{\left(s_{n-4}+4-n\right)\left(s_{n-4}-2\right)\left(s_{n-4}-3\right)}{s_{n-4}^{3}-7 s_{n-4}^{2}+13 s_{n-4}-5}>0 \\
x_{n-2} & =\frac{\left(s_{n-4}+4-n\right)\left(s_{n-4}-1\right)\left(s_{n-4}-3\right)}{s_{n-4}^{3}-7 s_{n-4}^{2}+13 s_{n-4}-5}>0 \\
x_{n-1} & =\frac{\left(s_{n-4}+4-n\right)\left(s_{n-4}-2\right)^{2}}{s_{n-4}^{3}-7 s_{n-4}^{2}+13 s_{n-4}-5}>0 \\
x_{n} & =\frac{\left(s_{n-4}+4-n\right)\left(s_{n-4}-1\right)\left(s_{n-4}-2\right)}{s_{n-4}^{3}-7 s_{n-4}^{2}+13 s_{n-4}-5}>0
\end{aligned}
$$

So, \mathbf{x} is a positive eigenvector associated to the eigenvalue 2. By Lemma 3.2(v) we obtain $\rho_{A_{\alpha}}\left(T_{1,2, n-4}\right)=2(n=6,7,8)$. Consequently, the desired result follows from Lemma 3.2(ii).

This completes the proof.
Proof of Theorem 1.2. The proof comes as a consequence of Propositions 3.3, 3.6 and 3.7.

To conclude this section, we study the A_{α}-spectral determination of the graphs so far considered.

Proof of Theorem 1.3. Let G be one of graphs in Theorem 1.2. Let H be any graph such that H and G are A_{α}-cospectral.

If $\rho_{A_{\alpha}}(G)<2$, then $\rho_{A_{\alpha}}(H)<2$, and thus H is one of graphs in Theorem 1.2(i). Recall that the path $P_{n}(0 \leq \alpha<1)$ is determined by the $A_{\alpha^{-}}$ spectrum (see [12]). By Lemma 3.5 and Proposition 3.7, it follows that the graphs $T_{1,1, n-3}, T_{1,2,2}, T_{1,2,3}$ and $T_{1,2,4}$ are not pairwise A_{α}-cospectral. Hence, if $G=T_{1,1, n-3}$, then $H=T_{1,1, t-3}$. By $|V(G)|=|V(H)|$ we get $n=t$ and thus $H \cong G$. Clearly, $T_{1,2, a}(a=2,3,4)$ is determined by the A_{α}-spectrum.

If $\rho_{A_{\alpha}}(G)=2$, then $\rho_{A_{\alpha}}(H)=2$, and thus H is one of graphs in Theorem 1.2(ii). Recall that the cycle C_{n} is determined by the A_{α}-spectrum (see [12]), and Ghareghani [7] proved for $\alpha=0$ that $T_{1,3,3}$ and $T_{1,2,5}$ are determined by $A_{0^{-}}$ spectra, but $W_{n}, T_{2,2,2}$ and $K_{1,4}$ are not. Moreover, $K_{1,3}$ is $A_{\frac{1}{2}}$-cospectral with $K_{1} \cup C_{3}[20]$.

So, the left work is to check the remaining graphs. Using the same method as above, we can prove that P_{n} for $\alpha=1, T_{1,1, n-3}(n \geq 4)$ for $\alpha=s_{1}$, and $T_{1,2, c}$ $(c=2,3,4)$ for $\alpha=s_{c}$ are determined by their A_{α}-spectra, as well.

4. Concluding Remarks

Fifty years after the publication of the paper of Smith, his research is still inspiring investigations in Spectral Graph Theory. The work presented in this paper is a
generalization of Smith's results, but it can be seen as a first step towards a more general problem, which is known in the literature as the Hoffman Program. The Hoffman Program consists in the classification and identification of graphs with small index, where the term 'small' means that the index does not exceed the Hoffman limit value, that is, the limit value of indices for the sequence of cycles with a pendant vertex and increasing girth. Such value in the adjacency theory is the well-studied number $\sqrt{2+\sqrt{5}}=\frac{\tau^{1 / 2}+\tau^{-1 / 2}}{2}$, where τ is the golden mean. For details about the Hoffmann Program for the (signless) Laplacian matrix we refer the reader to [1].

Next step of this research is the study of the Hoffman limit value and the corresponding graphs in the context of the A_{α}-matrix of graphs.

Acknowledgements

The research presented in this paper was supported by National Natural Science Foundation of China (No. 11971274). The authors are grateful to the anonymous referees for a number of helpful comments and suggestions, which have improved the results presentation.

References

[1] F. Belardo, E.M. Li Marzi, S.K. Simić and J.F. Wang, Graphs whose signless Laplacian spectral radius does not exceed the Hoffman limit value, Linear Algebra Appl. 435 (2011) 2913-2920. doi:10.1016/j.laa.2011.05.006
[2] A.E. Brouwer and A. Neumaier, The graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$, Linear Algebra Appl. 114/115 (1989) 273-276. doi:10.1016/0024-3795(89)90466-7
[3] S.M. Cioabă, E.R. van Dam, J.H. Koolen and J.-H. Lee, Asymptotic results on the spectral radius and the diameter of graphs, Linear Algebra Appl. 432 (2010) 722737. doi:10.1016/j.laa.2009.09.016
[4] D.M. Cvetković, M. Doob and I. Gutman, On graphs whose spectral radius does not exceed $(2+\sqrt{5})^{1 / 2}$, Ars Combin. 14 (1982) 225-239.
[5] E.R. van Dam and W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241-272. doi:10.1016/S0024-3795(03)00483-X
[6] E.R. van Dam and W.H. Haemers, Developments on spectral characterizations of graphs, Discrete Math. 309 (2009) 576-586. doi:10.1016/j.disc.2008.08.019
[7] N. Ghareghani, G.R. Omidi and B. Tayfeh-Rezaie, Spectral characterization of graphs with index at most $\sqrt{2+\sqrt{5}}$, Linear Algebra Appl. 420 (2007) 483-489. doi:10.1016/j.laa.2006.08.009
[8] K. Guo and B. Mohar, Digraphs with Hermitian spectral radius below 2 and their cospectrality with paths, Discrete Appl. 340 (2017) 2616-2632.
doi:10.1016/j.disc.2017.01.018
[9] A.J. Hoffman, On limit points on spectral radii of non-negative symmetric integral matrices, in: Graph Theory and Applications, Y. Alavi, D.R. Lick, A.T. White $(\operatorname{Ed}(\mathrm{s}))$, Lecture Notes in Math. 303 (Springer-Verlag, Berlin, 1972) 165-172.
[10] A.J. Hoffman and J.H. Smith, On the spectral radii of topologically equivalent graphs, in: Recent Advances in Graph Theory, M. Fiedler (Ed(s)), (Academia Praha, Prague, 1975) 273-281.
[11] H.Q. Lin, X. Huang and J. Xue, A note on the A_{α}-spectral radius of graphs, Linear Algebra Appl. 557 (2018) 430-437. doi:10.1016/j.laa.2018.08.008
[12] H.Q. Lin, X.G. Liu and J. Liu, Graphs determined by their A_{α}-spectra, Discrete Math. 342 (2019) 441-450. doi:10.1016/j.disc.2018.10.006
[13] H.Q. Lin, J. Xue and J.L. Shu, On the A_{α}-spectra of graphs, Linear Algebra Appl. 556 (2018) 210-219.
doi:10.1016/j.laa.2018.07.003
[14] X.G. Liu and S.Y. Liu, On the A_{α}-characteristic polynomial of a graph, Linear Algebra Appl. 546 (2018) 274-288. doi:10.1016/j.laa.2018.02.014
[15] L. Lu and S. Man, Connected hypergraphs with small spectral radius, Linear Algebra Appl. 509 (2016) 206-227. doi:10.1016/j.laa.2016.07.013
[16] V. Nikiforov, Merging the A-and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017) 81-107. doi:10.2298/AADM1701081N
[17] V. Nikiforov, G. Pastén, O. Rojo and R.L. Soto, On the A_{α}-spectra of trees, Linear Algebra Appl. 520 (2017) 286-305. doi:10.1016/j.laa.2017.01.029
[18] V. Nikiforov and O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl. 519 (2017) 156-163. doi:10.1016/j.laa.2016.12.042
[19] J.H. Smith, Some properties of the spectrum of a graph, in: Combinatorial Structures and their Applications, R. Guy, H. Hanani, N. Sauer, J. Schonheim (Ed(s)), (Gordon and Breach, New York, 1970) 403-406.
[20] J.F. Wang and F. Belardo, Spectral characterizations of graphs with small spectral radius, Linear Algebra Appl. 437 (2012) 2408-2416.
doi:10.1016/j.laa.2012.06.028
[21] J.F. Wang, F. Belardo, Q.X. Huang and E.M. Li Marzi, On graphs whose Laplacian index does not exceed 4.5, Linear Algebra Appl. 438 (2013) 1541-1550. doi:10.1016/j.laa.2011.02.043
[22] J.F. Wang, Q.X. Huang, F. Belardo and E.M. Li Marzi, On graphs whose signless Laplacian index does not exceed 4.5, Linear Algebra Appl. 431 (2009) 162-178. doi:10.1016/j.laa.2009.02.017
[23] J.F. Wang, Q.X. Huang, X. An and F. Belardo, Some notes on graphs whose spectral radius is close to $\frac{3}{2} \sqrt{2}$, Linear Algebra Appl. 429 (2008) 1606-1618. doi:10.1016/j.laa.2008.04.034
[24] R. Woo and A. Neumaier, On graphs whose spectral radius is bounded by $\frac{3}{2} \sqrt{2}$, Graphs Combin. 23 (2007) 713-726.
doi:10.1007/s00373-007-0745-9
Received 4 October 2019
Revised 28 November 2019
Accepted 12 December 2019

[^0]: ${ }^{1}$ Corresponding author.

