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Abstract

Let A(G) and D(G) be the adjacency matrix and the degree matrix
of a graph G, respectively. For any real α ∈ [0, 1], we consider Aα(G) =
αD(G) + (1− α)A(G) as a graph matrix, whose largest eigenvalue is called
the Aα-spectral radius of G. We first show that the smallest limit point for
the Aα-spectral radius of graphs is 2, and then we characterize the connected
graphs whose Aα-spectral radius is at most 2. Finally, we show that all such
graphs, with four exceptions, are determined by their Aα-spectra.
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1. Introduction

All graphs considered here are simple, undirected and connected. Let G =
(V (G), E(G)) be such a graph with the order |V (G)| = n and size |E(G)| = m.
Let M = M(G) be a corresponding graph matrix defined in some prescribed way.
The M -polynomial of G is defined as φM (G,λ) = det(λI −M), where I is the
identity matrix. The M-eigenvalues of G are those of its graph matrix M , and
constitute the M -spectrum of G. The M -index of G is its largest M -eigenvalue,
which often is also the M -spectral radius, denoted by ρM (G). In the literature,
M takes the role of several matrices, as the adjacency matrix A, the Laplacian
matrix L, the signless Laplacian matrix Q, the distance matrix D, among others.

Usually, the M -index of a graph increases with the complexity of the graph
structure. Therefore, graphs showing a simple structure get a relatively small M -
index. The first results in this direction were obtained for M = A, the adjacency
matrix. It was Smith in [19], who detected all connected graphs whose A-index
is equal to 2 (see also [8, 15] for a generalization), such graphs are known as the
Smith graphs. In [9] Hoffman proved that 2 is the smallest limit point for the
spectral radius of sequences of vertex-increasing graphs, and he found all limit

values up to
√

2 +
√

5. Finally, Hoffman and Smith in [10] proved that adding
infinitely many vertices of degree 2 (by subdividing all edges) in any graph whose
maximum degree is ∆, then the corresponding A-index converges to ∆√

∆−1
.

The seminal papers of Hoffman and Smith inspired similar investigations,
as the complete characterization of connected graphs whose A-index does not

exceed
√

2 +
√

5 [2, 4], and of connected graphs whose A-index does not exceed
3√
2

[3, 23, 24]. Analogous investigations were conducted for the Laplacian and

signless Laplacian matrices [20–22], as well.
Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of G, where di = d(vi)

is the degree of vertex vi ∈ V (G). For any α ∈ [0, 1] and for any graph G, the
Aα matrix of G is defined as

Aα(G) = αD(G) + (1− α)A(G).

Here, we study M = Aα (recall, α ∈ [0, 1]), and our aim is to characterize the
graphs G getting a small Aα-index (in fact, the Aα-spectral radius) for the graph
matrix Aα. For the sake of readability, we shall use Aα-index instead of Aα-
spectral radius, and we denote the characteristic polynomial |λI − Aα(G)| by
φα(G,λ). The matrix Aα was first defined in [16] by Nikiforov as an unifying
approach to study the graph matrices A = A0, D = A1, Q = 2A1/2 and L =
Aα−Aβ
α−β . This matrix has attracted the attention of several scholars, and there is

already an interesting literature covering this graph matrix [11,13,14,17,18].
As usual, let Pn, Cn, K1,n−1 and Wn be the path, the cycle, the star and the

double-snake of order n, respectively. Let Ta,b,c stand for a T -shaped tree defined
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as a tree with a single vertex u of degree 3 such that Ta,b,c − u = Pa ∪ Pb ∪ Pc
(a ≤ b ≤ c); when a = b = 1, the tree T1,1,n−3 is also called a snake. Both snake
T1,1,n−3 and double-snake Wn are depicted in Figure 1.

✉ ✉ q q q ✉ ✉ ✉
✉✑

✑✑
◗
◗◗

✉ ✉ q q q ✉ ✉ ✉
✉

✉
✉

✑
✑✑

◗
◗◗

◗
◗◗
✑

✑✑
T1,1,n−3 Wn

Figure 1. The snake and the double-snake.

The main results of this paper are stated as follows. The first one is about
the smallest limit point for the Aα-index of graphs.

Theorem 1.1. The smallest limit point of the Aα-index ρAα(G) of graphs is 2.

Next, in Theorem 1.2 we characterize the connected graphs with Aα-index
at most 2.

Theorem 1.2. Let G be a connected graph with order n. Then, for α ∈ [0, 1],

(i) ρAα(G) < 2 if and only if G is one of the following graphs.

(a) Pn (n ≥ 1) for α ∈ [0, 1),

(b) T1,1,n−3 (n ≥ 4) for α ∈ [0, s1),

(c) T1,2,2 for α ∈ [0, s2), T1,2,3 for α ∈ [0, s3) and T1,2,4 for α ∈ [0, s4).

(ii) ρAα(G) = 2 if and only if G is one of the following graphs.

(a) Cn, n ≥ 3,

(b) Pn (n ≥ 3) for α = 1,

(c) Wn (n ≥ 6) for α = 0,

(d) T1,1,n−3 for α = s1, where s1 = 4

n+1+
√

(n+1)2−16
,

(e) T1,2,2 for α = s2, T1,2,3 for α = s3, T1,2,4 for α = s4,

(f) T1,3,3 for α = 0, T1,2,5 for α = 0, K1,4 for α = 0 and T2,2,2 for α = 0,

where s2 = 0.2192+ is the solution of 2α3 − 11α2 + 16α − 3 = 0, s3 = 0.1206+
is the solution of α3 − 6α2 + 9α − 1 = 0 and s4 = 0.0517+ is the solution of
2α3 − 13α2 + 20α− 1 = 0.

Finally, we study the spectral determination of graphs with Aα-index at
most 2. We mention some basic notions. Two non-isomorphic graphs G and H
with the same M -spectrum are called M -cospectral graphs. A graph G is said to
be determined by its M -spectrum if there is no other non-isomorphic graph with
the same M -spectrum. There are dozens of papers on this problem, especially
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for the adjacency matrix; a good starting point are the excellent surveys [5, 6].
For M = Aα there is already some literature. In [12], it is proved that the path
Pn and the cycle Cn are determined by their Aα-spectra. Our result reads as
follows.

Theorem 1.3. Let α ∈ [0, 1] and G be a connected graph with Aα-index at most 2.
Then

(i) Pn (n ≥ 1) and Cn (n ≥ 3) are determined by their Aα-spectra for α ∈ [0, 1],

(ii) T1,1,n−3 (n ≥ 4) for α ∈ [0, s1] and T1,2,c (c ∈ {2, 3, 4}) for α ∈ [0, sc] are
determined by their Aα-spectra,

(iii) T1,3,3 and T1,2,5 are determined by the A0-spectrum,

(iv) T1,1,1 and K1 ∪ C3 are A 1
2
-cospectral,

(v) Wn and C4 ∪ Pn−4 (n ≥ 6), T2,2,2 and K1 ∪ C6, K1,4 and K1 ∪ C4 are
A0-cospectral.

The rest of the paper is organized as follows. In Section 2, the smallest limit
point of Aα-index of graphs is determined. In Section 3, all the connected graphs
with the Aα-index at most 2 are characterized, and we also study their spectral
determination. In Section 4, some concluding remarks about this topic are given.

2. The Limit Points of Aα-Index of Graphs

In this section, we investigate the smallest limit point of Aα-index of graphs.

Lemma 2.1 [16]. Let α ∈ [0, 1]. Then the Aα-index of K1,n−1 is

ρAα(K1,n−1) =
1

2

(
αn+

√
α2n2 + 4(n− 1)(1− 2α)

)
.

Lemma 2.2 [17]. The spectral radius of Aα(Pn) satisfies

ρAα(Pn) ≤
{

2α+ 2(1− α) cos
(

π
n+1

)
, α ∈ [0, 1/2),

2α+ 2(1− α) cos
(
π
n

)
, α ∈ [1/2, 1].

Equality holds if and only if α = 0, α = 1/2, α = 1.

Lemma 2.3 [17]. The spectral radius of Aα(Pn) satisfies

ρAα(Pn) ≥
{

2α+ 2(1− α) cos
(
π
n

)
, α ∈ [0, 1/2),

2α+ 2α cos
(
π
n

)
− 2(2α− 1) cos

(
π
n+1

)
, α ∈ [1/2, 1].

Equality holds if and only if α = 1/2.
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In fact, the proof of Hoffman [9] given for α = 0 can be re-used for any
α ∈ [0, 1], so that Theorem 1.1 can be deduced. To keep the paper self-contained,
we provide the proof adapted to the general case.

Proof of Theorem 1.1. Let G1, G2, . . . be a sequence of graphs such that
ρAα(Gi) 6= ρAα(Gj) for i 6= j, and ρAα(Gn) → λ < 2. Suppose that G is a
connected graph on at least three vertices, the maximum degree of the vertices of
G is ∆(G), and the diameter of G is d(G). Then |V (G)| ≤ ∆d(G) + 1. Therefore,
max(∆(G), d(G)) ≥ (log |V (G)| − 1)1/2. But since the graphs Gi are different,
|V (G)| → ∞. Hence, for sufficiently large n, Gn contains as a subgraph an arbi-
trarily long path Pk or arbitrarily large star K1,t. But from Lemma 2.1 we know
ρAα(K1,t)→∞; while from Lemmas 2.2 and 2.3 it follows that ρAα(Pk)→ 2.

3. Graphs with Aα-Index at Most 2

In this section we characterize all the connected graph whose Aα-index does not
exceed 2. The graphs mentioned in Lemma 3.1(ii) are depicted in Figure 2.

Lemma 3.1 [19]. Let G be a connected graph with A-index ρA(G). Then

(i) ρA(G) < 2 if and only if

G ∈ G1 =
{
Pn(n ≥ 1), T1,1,n−3(n ≥ 4), T1,2,2, T1,2,3, T1,2,4

}
,

(ii) ρA(G) = 2 if and only if

G ∈ G2 =
{
Cn(n ≥ 3),Wn(n ≥ 6),K1,4, T2,2,2, T1,2,5, T1,3,3

}
.
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Figure 2. The Smith graphs.
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Some useful properties of Aα-matrix are summarized in the following lemma.

Lemma 3.2. Let G be a connected graph of order n and maximum degree ∆(G).

(i) [16] Then ρAα(G) ≥ ρA(G) for α ∈ [0, 1],

(ii) [16] Then ρAα(G) ≥ ρAβ(G) for 0 ≤ β < α ≤ 1, where inequality is strict,

unless G is regular.

(iii) [17] For α ∈ [0, 1],

(a) if α = 1, then ρAα (G) = ∆(G),

(b) if α ∈ [0, 1), then ρAα (G) ≥ ρAα (Pn), where the equality holds if and
only if G = Pn.

(iv) [16] If H is a proper subgraph of G, then ρAα (H) < ρAα (G).

(v) [16] If λ is an eigenvalue of Aα(G) with a nonnegative eigenvector, then
λ = ρAα (G).

Let α ∈ [0, 1]. We now pick up the connected graphs G with ρAα(G) ≤ 2.
Assume that ρA(G) > 2. Then by Lemma 3.2(i) we get ρAα(G) ≥ ρA(G) > 2.
Hence, ρA(G) ≤ 2, and thus G ∈ G1 ∪ G2 by Lemma 3.1. It is easy to check
that if G is k-regular, then Aα(G) has constant row sum equal to k, and we
get ρAα (G) = k (cf. also [16]). Consequently, we have ρAα (Cn) = 2, and then
ρAα (Pn) < 2 for α ∈ [0, 1) and ρAα (Pn) = 2 (n ≥ 3) for α = 1 by Lemma 3.2(iii).
Thereby, the left work is to discuss the graphs in the set (G1 ∪ G2)\{Pn, Cn}. If
G ∈ G2\{Cn |n ≥ 3}, by Lemmas 3.1 and 3.2(ii) we obtain ρAα(G) ≥ ρA0

(G) = 2
with equality if and only if α = 0. Thus, we have shown the following proposition.

Proposition 3.3. Let G be a connected graph with order n. For α ∈ [0, 1],

(i) if ρAα(G) ≤ 2, then G ∈ G1 ∪ G2,

(ii) ρAα(Pn) = 2 (n ≥ 3) for α = 1, and ρAα(Pn) < 2 (n ≥ 1) for α ∈ [0, 1);

(iii) ρAα(Cn) = 2 (n ≥ 3),

(iv) if G ∈ G2\{Cn |n ≥ 3}, then ρAα(G) = 2 for α = 0.

At this stage, we need only discuss the graphs in G1\{Pn |n ≥ 1}. Recall
that φα(G,λ) = det(λI −Aα(G)) is the Aα-polynomial of a graph G. Let

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2− α 0 α− 1
0 2− α α− 1

α− 1 α− 1 2− 3α α− 1
α− 1 2− 2α α− 1

. . .

α− 1 2− 2α α− 1
α− 1 2− 2α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Lemma 3.4. For n ≥ 4, Dn = (−1)n(α− 2)(α− 1)n−3(α2 − (n+ 1)α+ 2).

Proof. We prove the lemma by induction on the order n. For n = 4, a direct
calculation shows that the lemma holds. Suppose that the lemma is true when
n ≤ k−1. For n = k, by expanding the determinant obtained by the last column
we arrive at

Dk = (2− 2α)Dk−1 − (α− 1)2Dk−2

= (2− 2α)((−1)k−1(α− 2)(α− 1)k−4(α2 − kα+ 2))

− (α− 1)2((−1)k−2(α− 2)(α− 1)k−5(α2 − (k − 1)α+ 2))

= (−1)k−2(α− 2)(α− 1)k−5[(2α− 2)(α− 1)(α2 − kα+ 2)

− (α− 1)2(α2 − (k − 1)α+ 2)]

= (−1)k−2(α− 2)(α− 1)k−5((α− 1)2(α2 − (k + 1)α+ 2))

= (−1)k(α− 2)(α− 1)k−3(α2 − (k + 1)α+ 2).

Hence, the result follows.

Lemma 3.5. The Aα-polynomial of T1,1,n−3, for n ≥ 4, computed at 2 is

φAα(T1,1,n−3, 2) = (−1)n+1(α− 2)(α− 1)n−4(2α2 − (n+ 1)α+ 2).

Proof. Clearly, the Aα-polynomial of T1,1,n−3 when λ = 2 is

φAα(T1,1,n−3, 2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2− α 0 α− 1
0 2− α α− 1

α− 1 α− 1 2− 3α α− 1
α− 1 2− 2α α− 1

. . .

α− 1 2− 2α α− 1
α− 1 2− α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

From Lemma 3.4, expanding the above determinant obtained by the last column
we obtain that

φAα(T1,1,n−3, 2) = Dn + αDn−1

= (−1)n(α− 2)(α− 1)n−3(α2 − (n+ 1)α+ 2)

+ α((−1)n−1(α− 2)(α− 1)n−4(α2 − nα+ 2))

= (−1)n−1(α− 2)(α− 1)n−4(α(α2 − nα+ 2)

− (α− 1)(α2 − (n+ 1)α+ 2))

= (−1)n+1(α− 2)(α− 1)n−4(2α2 − (n+ 1)α+ 2).

This completes the proof.
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Figure 3. The labeled trees T1,1,n−3 and T1,2,n−4.

Proposition 3.6. Let T1,1,n−3 be a tree (n ≥ 4) and α ∈ [0, 1]. Then

ρAα(T1,1,n−3)


< 2, α ∈ [0, s1),

= 2, α = s1,

> 2, α ∈ (s1, 1],

where s1 =
4

n+ 1 +
√

(n+ 1)2 − 16
.

Proof. To obtain the results, in view of Lemma 3.2(ii) we only need to show
ρAα(T1,1,n−3) = 2 if and only if α = s1. From Lemma 3.5 and α ∈ [0, 1], it follows
that 2 is an Aα-eigenvalue of T1,1,n−3 if and only if φα(T1,1,n−3, 2) = 0, that is

α ∈
{

1,
n+ 1−

√
(n+ 1)2 − 16

4

}
.

If α = 1, then A1(T1,1,n−3) = D(T1,1,n−3) = diag(1, 1, 1, 2, . . . , 2, 3) with
ρA1

(T1,1,n−3) = 3 > 2. Hence, the left work is to show ρAs1(T1,1,n−3) = 2 when

s1 = α =
n+ 1−

√
(n+ 1)2 − 16

4
=

4

n+ 1 +
√

(n+ 1)2 − 16
.

Let x = (x1, x2, . . . , xn) be the eigenvector associated to the eigenvalue 2.
Without loss of generality, set x1 = 1. By As1(T1,1,n−3)x = 2x we get

s1dixi + (1− s1)
∑
jvi

xj = 2xi.

As labelled in Figure 3, we get x2 = 2−s1
1−s1 > 0 and 2xi = xi−1 + xi+1 (i = 2,

. . . , n− 3). Thereby,

xi+1 − xi = xi − xi−1 = · · · = x2 − x1 =
1

1− s1
,

which leads to

xi+1 = xi +
1

1− s1
> 0 (i = 2, 3, . . . , n− 3)
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and

xn−3 = xn−4 +
1

1− s1
= xn−5 +

2

1− s1
= · · · = x2 +

n− 5

1− s1
=
n− 3− s1

1− s1
> 0.

For xn−2, xn−1 and xn, solving the following equations
3s1xn−2 + (1− s1)(xn−3 + xn−1 + xn) = 2xn−2,

s1xn−1 + (1− s1)xn−2 = 2xn−1,

s1xn + (1− s1)xn−2 = 2xn,

we get xn−2 = (n−s1−3)(2−s1)
s21−4s1+2

and xn−1 = xn = (n−s1−3)(1−s1)
s21−4s1+2

. Note, it is not

difficult to obtain s1 ≤ 0.5 < 2−
√

2 (which is the least root of s2 − 4s+ 2 = 0).
Thus, for n ≥ 4 we get n − s1 − 3 > 0, 2 − s1 > 0, 1 − s1 > 0 and s2

1 − 4s1 + 2
> 0. Hence, xn−2, xn−1, xn > 0, which indicates x is a non-negative eigenvector.
Thereby, ρAα(T1,1,n−3) = 2 by Lemma 3.2(v).

This completes the proof.

With similar methods as above, we next check up the Aα-index of three small
trees.

Proposition 3.7. Let G ∈ {T1,2,2, T1,2,3, T1,2,4}. For α ∈ [0, 1],

(i) ρAα(T1,2,2)


< 2, α ∈ [0, s2),

= 2, α = s2,

> 2, α ∈ (s2, 1],

where s2 ∈ [0, 1/2] is the solution of the equation 2α3− 11α2 + 16α− 3 = 0,

(ii) ρAα(T1,2,3)


< 2, α ∈ [0, s3),

= 2, α = s3,

> 2, α ∈ (s3, 1],

where s3 ∈ [0, 1/2] is the solution of the equation α3 − 6α2 + 9α− 1 = 0,

(iii) ρAα(T1,2,4)


< 2, α ∈ [0, s4),

= 2, α = s4,

> 2, α ∈ (s4, 1],

where s4 ∈ [0, 1/2] is the solution of the equation 2α3− 13α2 + 20α− 1 = 0.
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Proof. If α ∈ (1/2, 1], from Lemma 3.2(iv) we obtain for n = 6, 7, 8 that

ρAα(T1,2,n−4) > ρAα(T1,1,1) = 2α+
√

3− 6α+ 4α2 > 2.

Therefore, α ∈ [0, 1/2]. By calculations we arrive at

φα(T1,2,2, 2) = −(α− 1)2(2α3 − 11α2 + 16α− 3),(1)

φα(T1,2,3, 2) = 2(α− 1)3(α3 − 6α2 + 9α− 1),(2)

φα(T1,2,4, 2) = −(α− 1)4(2α3 − 13α2 + 20α− 1),(3)

which implies that 2 is, respectively, an Aα-eigenvalue of T1,2,2, T1,2,3 and T1,2,4

if and only if s2 = α = 0.2192+ in (1), s3 = α = 0.1206+ in (2) and s4 = α =
0.0517+ in (3). Let x = (x1, x2, . . . , xn) (n = 6, 7, 8) be the eigenvector associated
to the eigenvalue 2. Without loss of generality, set x1 = 1. By Asn−4(T1,2,n−4)x =
2x we get

sn−4dixi + (1− sn−4)
∑
jvi

xj = 2xi.

As labelled in Figure 3, we get x2 = 2−sn−4

1−sn−4
> 0 and 2xi = xi−1 + xi+1 (i =

2, . . . , n− 4). Thereby,

xi+1 − xi = xi − xi−1 = · · · = x2 − x1 =
1

1− sn−4
,

which results in

xi+1 = xi +
1

1− sn−4
> 0 (i = 2, 3, . . . , n− 4)

and

xn−4 = xn−5 +
1

1− sn−4
= xn−6 +

2

1− sn−4

= · · · = x2 +
n− 6

1− sn−4
=
n− 4− sn−4

1− sn−4
> 0.

For xn−3, xn−2, xn−1 and xn, solving the next equations
3sn−4xn−3 + (1− sn−4)(xn−4 + xn−2 + xn−1) = 2xn−3,

sn−4xn−2 + (1− sn−4)xn−3 = 2xn−2,

2sn−4xn−1 + (1− sn−4)(xn−3 + xn) = 2xn−1,

sn−4xn + (1− sn−4)xn−1 = 2xn,

we get
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xn−3 =
(sn−4 + 4− n)(sn−4 − 2)(sn−4 − 3)

s3
n−4 − 7s2

n−4 + 13sn−4 − 5
> 0,

xn−2 =
(sn−4 + 4− n)(sn−4 − 1)(sn−4 − 3)

s3
n−4 − 7s2

n−4 + 13sn−4 − 5
> 0,

xn−1 =
(sn−4 + 4− n)(sn−4 − 2)2

s3
n−4 − 7s2

n−4 + 13sn−4 − 5
> 0,

xn =
(sn−4 + 4− n)(sn−4 − 1)(sn−4 − 2)

s3
n−4 − 7s2

n−4 + 13sn−4 − 5
> 0.

So, x is a positive eigenvector associated to the eigenvalue 2. By Lemma 3.2(v)
we obtain ρAα(T1,2,n−4) = 2 (n = 6, 7, 8). Consequently, the desired result follows
from Lemma 3.2(ii).

This completes the proof.

Proof of Theorem 1.2. The proof comes as a consequence of Propositions 3.3,
3.6 and 3.7.

To conclude this section, we study the Aα-spectral determination of the
graphs so far considered.

Proof of Theorem 1.3. Let G be one of graphs in Theorem 1.2. Let H be any
graph such that H and G are Aα-cospectral.

If ρAα(G) < 2, then ρAα(H) < 2, and thus H is one of graphs in Theo-
rem 1.2(i). Recall that the path Pn (0 ≤ α < 1) is determined by the Aα-
spectrum (see [12]). By Lemma 3.5 and Proposition 3.7, it follows that the
graphs T1,1,n−3, T1,2,2, T1,2,3 and T1,2,4 are not pairwise Aα-cospectral. Hence, if
G = T1,1,n−3, then H = T1,1,t−3. By |V (G)| = |V (H)| we get n = t and thus
H ∼= G. Clearly, T1,2,a (a = 2, 3, 4) is determined by the Aα-spectrum.

If ρAα(G) = 2, then ρAα(H) = 2, and thus H is one of graphs in Theorem
1.2(ii). Recall that the cycle Cn is determined by the Aα-spectrum (see [12]),
and Ghareghani [7] proved for α = 0 that T1,3,3 and T1,2,5 are determined by A0-
spectra, but Wn, T2,2,2 and K1,4 are not. Moreover, K1,3 is A 1

2
-cospectral with

K1 ∪ C3 [20].
So, the left work is to check the remaining graphs. Using the same method

as above, we can prove that Pn for α = 1, T1,1,n−3 (n ≥ 4) for α = s1, and T1,2,c

(c = 2, 3, 4) for α = sc are determined by their Aα-spectra, as well.

4. Concluding Remarks

Fifty years after the publication of the paper of Smith, his research is still inspiring
investigations in Spectral Graph Theory. The work presented in this paper is a
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generalization of Smith’s results, but it can be seen as a first step towards a more
general problem, which is known in the literature as the Hoffman Program. The
Hoffman Program consists in the classification and identification of graphs with
small index, where the term ‘small’ means that the index does not exceed the
Hoffman limit value, that is, the limit value of indices for the sequence of cycles
with a pendant vertex and increasing girth. Such value in the adjacency theory

is the well-studied number
√

2 +
√

5 = τ1/2+τ−1/2

2 , where τ is the golden mean.
For details about the Hoffmann Program for the (signless) Laplacian matrix we
refer the reader to [1].

Next step of this research is the study of the Hoffman limit value and the
corresponding graphs in the context of the Aα-matrix of graphs.
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