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Abstract

The eigenvalues of a graph are those of its adjacency matrix. Recently,
Cioabă, Haemers and Vermette characterized all graphs with all but two
eigenvalues equal to −2 and 0. In this article, we extend their result by
characterizing explicitly all graphs with all but two eigenvalues in the interval
[−2, 0]. Also, we determine among them those that are determined by their
spectrum.
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1. Introduction

Throughout the paper, assume that all graphs are simple, finite and undirected.
We denote a graph by G = (V,E), where V (G) is the vertex set such that
|V (G)| = n and E(G) is the edge set. The adjacency matrix of G, denoted
by A(G) = [aij ], is the (0, 1)-matrix with entries aij = 1 if {vi, vj} ∈ E(G)
and aij = 0 otherwise, for i, j = 1, . . . , n. Let fM (x) = det(xI − M) be the
characteristic polynomial of a matrix M. The characteristic polynomial of the
graph G is the one of its adjacency matrix A(G) and is denoted by fG(x). The
zeros of fG(x) are said to be the eigenvalues of G. Since A(G) is a real sym-
metric matrix, all eigenvalues of G are real. We arrange the eigenvalues of G
in non-increasing order and denote them by λ1(G) ≥ · · · ≥ λn(G). The multi-
set of eigenvalues of A(G) is the spectrum of G and is denoted by spec(G) =
{

λ
(m(λ1))
1 , λ

(m(λ2))
2 , . . . , λ

(m(λs))
s

}

, where m(λj) is the multiplicity of the eigen-

value λj , for 1 ≤ j ≤ s. The second largest eigenvalue of a graph G, λ2(G),
has been intensively studied in the literature. In particular, many papers have
addressed the problem of characterizing graphs G such that λ2(G) ≤ r for a real
r, where r ∈ {1/3,

√
2− 1, (

√
5− 1)/2, 1,

√
2,
√
3, (

√
5 + 1)/2, 2} as one can see in

[2, 5, 7, 12, 13, 14, 15, 16, 18]. Here, we consider a more general problem:

“For given real numbers r1 and r2, find all graphs G such that
λ2(G) ≤ r2 and λn−1(G) ≥ r1”.

Some work has been done for the case r2 = −r1 = 1. Cioabă, Haemers,
Vermette and Wong in [4] determined the connected non-bipartite graphs with
all but two eigenvalues in {−1, 1} and de Lima, Mohammadian and Oliveira in [9]
obtained all connected nonbipartite graphs with all but two eigenvalues in [−1, 1].
For r1 = −2 and r2 = 0, Cioabă, Haemers and Vermette [3] determined all graphs
with all but two eigenvalues equal to −2 or 0. We present a generalization of their
results by characterizing all graphs such that λi ∈ [−2, 0], for i = 2, . . . , n − 1,
and λn < −2. For simplicity, we group all graphs satisfying that property in the
set C.

In the light of Proposition 1.1, due to Smith [17].

Proposition 1.1 [17]. Let G be a non-complete graph. Then

λ2(G) ≥ 0

with equality if and only if G is a complete r-partite graph.
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All graphs in C should be complete r-partite possibly with some isolated
vertices. However, not all complete r-partite graphs are in C, and we impose
some constraints on the size of their parts.

In this paper, we prove that there are infinitely many families of complete
multipartite graphs that belong to C. Also, adding isolated vertices to any such
graph yields to a graph that belongs to C. Besides, we solve the problem of charac-
terizing all complete multipartite graphs that are determined by their spectrum,
which was posed by Ma and Ren in [11]. In particular, we prove that a complete
r-partite graph in C with r ≥ 3 is determined by its spectrum, i.e., is a DS Graph.

2. All Graphs in C

LetKn1,n2,...,nr be the complete r-partite graph with class sizes n1 ≤ n2 ≤ · · · ≤ nr.
A subgraph H is forbidden if H /∈ C and any other graph G that contains H as
an induced subgraph also does not belong to C. We start by finding one forbidden
subgraph among many. Considering the graph K2,3,3, its second smallest eigen-

value is given by λ7(K2,3,3) =
3−

√
57

2 ≈ −2.275 < −2 and thus K2,3,3 is not in C.
By using the well-known Interlacing Theorem, it is possible to confirm that if a
graph G has K2,3,3 as an induced subgraph, then G does not belong to C. There-
fore, that K2,3,3 is a forbidden subgraph. As a consequence, we obtain that any
complete r-partite graph G ∈ C cannot have three or more classes of size greater
than or equal to 3, since otherwise it is a supergraph of K2,3,3. Also, by explicit
enumeration, it is easy to check that none of the subgraphs of K2,3,3 belongs to
C except K1,2,3. These facts imply that our investigation should be reduced to
graphs with classes of size 1, 2 and 3 such that not more than two classes are of
the size greater than or equal to 3. These observations can be summarized in the
following three cases.

(A) r = 2,

(B) r ≥ 3, nr−1 ≤ 2,

(C) r ≥ 3, nr−1 ≥ 3, and ni = 1, for i = 1, . . . , r − 2.

The general statements (A), (B) and (C) have been proved in Propositions
2.1, 2.2, 2.3, 2.4 and 2.5. Our results show that there are some infinite families
of complete r-partite graphs belonging to C and most of them are DS.

Next, we consider the case where G is a complete bipartite graph.

Proposition 2.1. Let G be a graph isomorphic to the complete bipartite graph

Kn1,n2
. Then G ∈ C if and only if G is not isomorphic to one of the following

graphs: K2,K1,2,K1,3,K1,4 and K2,2.

Proof. It is well-known that spec(Kn1,n2
) =

{

−√
n1n2, 0

(n1+n2−2),
√
n1n2

}

. So,
λn1+n2

(G) ≥ −2 if and only if n1n2 ≤ 4 and the result follows.
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Proposition 2.2. Let G be a graph isomorphic to Kn1,...,nr such that r ≥ 3 and

nr−1 = 1. Then G ∈ C if and only if either r = 3 and nr ≥ 4 or r ≥ 4 and nr ≥ 3.

Proof. The graph G can be written as a join of two regular graphs, that is,
G ≃ Kr−1 ∨ nrK1. According to [6], the characteristic polynomial of G is given
by

fG(λ) = λnr−1(λ+ 1)r−2(λ2 − (r − 2)λ− (r − 1)nr).

Since λn(G) =
r−2−

√
(r−2)2+4(r−1)nr

2 , we obtain λn(G) < −2 if and only if (r −
1)(nr − 2) > 2, and the result follows.

Proposition 2.3. Let G be a complete r-partite graph with parts n1 = np = 1
and np+1 = nr−1 = 2 such that p ≥ 1 and r − p ≥ 2. Then G ∈ C if and only if

nr ≥ 3.

Proof. Let G ∼= K1,...,1,2,...,2,nr , where the number of ones and twos are p ≥ 1 and
r − p ≥ 2, respectively. With a convenient vertex labeling, A(G) can be written
in the following form

A(G) =





Jp − Ip Jp×2(r−p−1) Jp×nr

J2(r−p−1)×p R2(r−p−1) J2(r−p−1)×nr

Jnr×p Jnr×2(r−p−1) 0nr



 ,

where R2(r−p−1) is the adjacency matrix of the subgraph induced by partitions of
size 2. We find that en−nr+1−ej , for j = n−nr+2, . . . , n and ep+2k+1−ep+2k+2,
for k = 0, . . . , r−p−2 are eigenvectors for the eigenvalue 0 which has multiplicity
at least nr + r− p− 2. Also, we find that e1− ej for j = 2, . . . , p are eigenvectors
for the eigenvalue −1 which has multiplicity at least p− 1. If r − p ≥ 3, ep+1 +
ep+2−ep+2k+2−ep+2k+3 are eigenvectors for −2 with multiplicity at least r−p−2
for k = 1, . . . , r − p − 2. Since A(G) has an equitable partition, the remaining 3
eigenvalues of A(G) are the eigenvalues of the matrix

M =





p− 1 2(r − p− 1) nr

p 2(r − p− 1)− 2 nr

p 2(r − p− 1) 0



 .

The characteristic polynomial of M is given by

g(x) = x3 + (p− 2 r + 5)x2 + (nrp− 2nrr + 2nr − 2 r + 4)x+ 2nr − 2nrr

and the characteristic polynomial of G is

fG(x) = x(r−p)+nr−2(x+ 1)p−1(x+ 2)(r−p)−2g(x).

By Proposition 1.1, g(x) has exactly one positive root which is the index of G.
Next, we localize the other two roots. Suppose that nr = 2. The polynomial g(x)
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can be rewritten as g(x) = (x+2)h(x), where h(x) = x2+(p− 2 r + 3)x−2 r+2.
Since h(−2) = 2(r− p) > 0 and h(−1) = −p < 0, there is a root in (−2,−1). So,
if nr = 2, G /∈ C. Now, suppose that nr ≥ 3. Since g(−2) = 2(nr−2)(r−p−1) > 0
and g(−1) = −p(nr − 1) < 0, we obtain that g(x) has one root in (−∞,−2) and
another root in (−2,−1). So, G ∈ C whenever nr ≥ 3. If r − p = 2, A(G) has an
equitable partition and the remaining 3 eigenvalues of A(G) are the eigenvalues
of the matrix

M1 =





p− 1 2 nr

p 0 nr

p 2 0



 .

The characteristic polynomial of M1 is given by

fM1
(x) = −x3 + (p− 1)x2 + (2p+ p nr + 2nr)x+ 2nr p+ 2nr

and the characteristic polynomial of G is

fG(x) = xnr(x+ 1)p−1fM1
(x).

By Proposition 1.1, fM1
(x) has exactly one positive root which is the index of G.

If nr = 2, then

fM1
(x) = (x+ 2)h1(x),

where h1(x) = −x2+(p+1)x+2p+2. Since h1(−2) = −4 and h1(−1) = p, G /∈ C.
Now suppose nr ≥ 3. Since fM1

(−nr) = nr(nr − 1)(nr − 2), fM1
(−2) = 4 − 2nr

and fM1
(−1) = p(nr − 1), we conclude that G ∈ C for nr ≥ 3 and the result

follows.

Proposition 2.4. Let G be a complete r-partite graph such that r ≥ 3 and

n1 = nr−1 = 2. Then G ∈ C if and only if nr ≥ 3.

Proof. Let nr = 2. In this case, G ∼= K2,...,2 is a cocktail party graph with the
eigenvalues 2r− 2, 0 and −2 with multiplicities 1, r and r− 1, respectively which
implies that G /∈ C. Let nr ≥ 3. In this case, G ∼= K2,2,...,2 ∨ nrK1. From [6] on
page 72 and the equitable partition properties, on page 25 of [1], the characteristic
polynomial of G is

fG(x) = xr+nr−2(x+ 2)r−2g(x),

where g(x)=x2−(2r−4)x−2(r−1)nr with roots
(

2r − 4±
√

4(r − 2)2 − 8(nr−rnr)
)

/2. It is easy to verify that λn ∈ (−nr,−2) and therefore G ∈ C, which completes
the proof.
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Proposition 2.5. Let G be a graph isomorphic to Kn1,...,nr such that r ≥ 3,
nr−2 = 1 and nr−1 ≥ 3. Then G ∈ C if and only if one of the following holds.

(i) r = 3,

(ii) r = 4 and either n3 ∈ {3, 4} or (n3 = 5 and n4 ∈ {5, 6, 7, 8}) or n4 = n3 = 6,

(iii) r = 5 and either n4 = 3 or n4 = n5 = 4,

(iv) r = 6 and (n5 = 3 and n6 ∈ {3, 4}),
(v) r = 7 and n7 = n6 = 3.

Proof. Corresponding to the vertex sets of Kr−2, nr−1K1 and nrK1, the adja-
cency matrix of G can be written in the following form

A(G) =





Jr−2 − Ir−2 J(r−2)×nr−1
J(r−2)×nr

Jnr−1×(r−2) 0nr−1
Jnr−1×nr

Jnr×(r−2) Jnr×nr−1
0nr



 .

We find that en−nr−1−nr+1 − ej , for j = n − nr−1 − nr + 2, . . . , n − nr and
en−nr+1 − ej , for j = n − nr + 2, . . . , n are the eigenvectors for the eigenvalue
0 which has multiplicity at least nr−1 + nr − 2. Also, we find that e1 − ej for
j = 2, . . . , n − nr − nr−1 are the eigenvectors for the eigenvalue −1 which has
multiplicity at least n − nr−1 − nr − 1. The remaining 3 eigenvalues are the
eigenvalues of the matrix M

M =





r − 3 nr−1 nr

r − 2 0 nr

r − 2 nr−1 0



 ,

with characteristic polynomial

fr,nr−1,nr(x) = x3−(r−3)x2−(nr−1nr+(r−2)nr−1+(r−2)nr)x−(r−1)nr−1nr.

Consequently, the characteristic polynomial of G is

fG(x) = xnr−1+nr−2(x+ 1)n−nr−1−nr−1fr,nr−1,nr(x).

Now, let nr−1 ≥ 3. Under this assumption, we get fr,nr−1,nr(−nr) = −nr(nr −
1)(nr − nr−1) ≤ 0 and fr,nr−1,nr(−1) = −(r − 2)(nr−1 − 1)(nr − 1) ≤ 0. In order
to obtain λn(G) < −2 ≤ λn−1(G), we find values for r, nr and nr−1 such that

fr,nr−1,nr(−2) = −(r − 2)(nr−1 − 2)(nr − 2) + nr−1nr − 4 ≥ 0.

We consider the following cases.

Case 1. Let r = 3. Then, f3,n2,n3
(−2) = 2(n2 + n3 − 4) > 0 and the proof of

item (i) is completed.
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Case 2. Let r = 4. Then, f4,n3,n4
(−2) = (n4 − 4)(4 − n3) + 4 is posi-

tive for n3 ≤ 4 and so K1,1,2,n4
,K1,1,3,n4

and K1,1,4,n4
∈ C for any n4 ≥ 3. If

n3 = 5, then f4,5,n4
(−2) = −n4 + 8 ≥ 0 when 5 ≤ n4 ≤ 8. So, the graphs

K1,1,5,5,K1,1,5,6,K1,1,5,7,K1,1,5,8 ∈ C. If n3 = 6, then f4,n3,n4
(−2) = −2n4+12 ≥ 0

since n4 ≥ n3 = 6. Then, the graph K1,1,6,n4
∈ C for n4 = 6. If n3 ≥ n4 ≥ 7, it is

easy to see that f4,n3,n4
(−2) < 0 and this completes the proof of Case (ii).

Case 3. Let r = 5. Then, f5,n4,n5
(−2) = −(n5 − 3)(n4 − 3) + 1 is positive

when (n5 − 3)(n4 − 3) ≤ 1. Accordingly, n4 = 3 or n4 = n5 = 4.

Case 4. Let r = 6. If n5 = 3, f6,3,n6
(−2) > 0 whenever n6 ∈ {3, 4}. If

n5 = 4+ k for k ≥ 0, then f6,n5,n6
(−2) > 0 if and only if n6 ≤ (8k+12)/(3k+4).

The latter inequality and n6 ≥ 4+ k, imply that 3k2+8k+4 ≤ 0 is not possible.
Hence, f6,n5,n6

(−2) is never positive and the proof of (iv) is complete.

Case 5. Let r = 7. If n6 = 2, then f7,2,n7
(−2) = 2n7 − 4 > 0. If n6 = 3, then

f7,3,n7
(−2) = −2n7 + 6, which is non-negative for n7 ≤ 3, and then n7 = 3. If

n6 = 4 + k for k ≥ 0, we get f(7, 4 + k, n7) ≥ 0 when n7 ≤ (10k + 16)/(4k + 6).
Since 4 + k ≤ n7, it follows that k

2 + 3k+ 2 ≤ 0, which is not possible for k ≥ 0.
So, there is no n7 such that f7,4+k,n7

(−2) ≥ 0 and this completes the proof of
(v).

Case 6. Let r = 8 + k for k ≥ 0. If nr−1 = 3 + t for t ≥ 0, we obtain
f8+k,3+t,nr

(−2) = −(5nr−12)k−((nr−2)k + nr−2)t−3nr+8. So, f8+k,3+t,nr
(−2)

≥ 0 implies

nr ≤
12k + 2kt+ 2t+ 8

5k + kt+ t+ 3
.

Since nr ≥ 3 + k, we obtain

3 + k ≤ nr ≤
12k + 2kt+ 2t+ 8

5k + kt+ t+ 3
,

which does not hold for t, k ≥ 0 and the proof of the proposition follows.

Remark 1. Note that if H ∈ C, then G = H ∪ sK1 is also in C for any integer
s ≥ 1.

3. Graphs in C Determined by Their Spectrum

Esser and Harary [10] proved that all complete multipartite graphs are DS among
all connected graphs, i.e., such graphs have no cospectral mate amongst the
complete multipartite graphs. In order to find all DS graphs in C, including the
disconnected ones, we should consider the complete multipartite graphs with some
additional isolated vertices. For instance, K1,35 ∈ C is not DS since the graph
K5,7∪24K1 is its cospectral mate. The characteristic polynomial of any complete
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multipartite graph can be written using the following well-known elementary
symmetric function

Sj(x1, . . . , xk) =
∑

1≤i1<···<ij≤k

j
∏

l=1

xil , 1 ≤ j ≤ k,

where S0 = 1.

Proposition 3.1 [8]. The characteristic polynomial of Kn1,...,nk
is given by

fKn1,...,nk
(λ) =

k
∑

i=0

(1− i)Siλ
n−i,

where n = n1 + · · ·+ nk and Si is the elementary symmetric function of order i
of the numbers n1, . . . , nk.

From [8, 11], we have that two graphs Kn1,...,nk
∪ sK1 and Km1,...,mk

∪ rK1

are cospectral if and only if

n1 + · · ·+ nk + s = m1 + · · ·+mk + r,(1)

Sj(n1, . . . , nk) = Sj(m1, . . . ,mk), 2 ≤ j ≤ k.(2)

This is summarized in the following lemma.

Lemma 3.2. Let G be a graph isomorphic to Kn1,...,nk
∪ sK1. If the system

Sj(x1, . . . , xk) = Sj(n1, . . . , nk), 2 ≤ j ≤ k(3)

has only one positive integer solution, then G is a DS graph.

In [11], the authors proposed the problem of characterizing all complete mul-
tipartite graphs that are DS. Our next result is a solution for this problem for
a given sequence of integers. Before presenting this result, we need the follow-
ing: let n1, . . . , nk be positive integers and define L to be the set of all positive
integer solutions (x1, . . . , xk) of the system Sj(x1, . . . , xk) = Sj(n1, . . . , nk), for
each 2 ≤ j ≤ k. Next, let M = {a1 + a2 + · · · + ak | (a1, a2, . . . , ak) ∈ L}, p =
min(a1,a2,...,ak)∈LM and q = min(a1,a2,...,ak)∈L{M \ {p}}.

Theorem 3.3. Let n1, . . . , nk be positive integers and let L be the set of all

positive integer solutions of the system Sj(x1, . . . , xk) = Sj(n1, . . . , nk), for each

2 ≤ j ≤ k. Then the following properties are satisfied.

(i) If |L| = 1, then Kn1,...,nk
∪ sK1 is DS for any non-negative integer s;

(ii) If |L| ≥ 2, then there is at least one solution (x′1, . . . , x
′
k) ∈ L such that

Kx′

1
,...,x′

k
∪ sK1 is DS for each s ∈ {0, 1, . . . , q − p− 1}.
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Proof. If |L| = 1, the proof follows immediately from Lemma 3.2. Now, assume
|L| ≥ 2. Let (x′1, x

′
2, . . . , x

′
k) and (x′′1, x

′′
2, . . . , x

′′
k) be the solutions that realize p

and q, respectively. The corresponding graphs Kx′

1
,x′

2
,...,x′

k
∪ sK1 and Kx′′

1
,x′′

2
,...,x′′

k

are cospectral if and only if

s = x′′1 + x′′2 + · · ·+ x′′k −
(

x′1 + x′2 + · · ·+ x′k
)

= q − p.

Therefore, for s ∈ {0, . . . , q − p − 1} the graph Kx′

1
,x′

2
,...,x′

k
∪ sK1 is DS and the

result follows.

Remark 2. Note that if s = q− p+ 1, then Kx′

1
,x′

2
,...,x′

k
∪ sK1 is cospectral with

Kx′′

1
,x′′

2
,...,x′′

k
∪K1, which explains why s cannot be greater than q − p.

Lemma 3.4. Let Kn1,...,nr and Km1,...,mr be two r-complete multipartite graphs

with the same non-null eigenvalues. Then {n1, . . . , nr} ∩ {m1, . . . ,mr} = ∅ or

Kn1,...,nr and Km1,...,mr are isomorphic.

Proof. SinceKn1,...,nr andKm1,...,mr have the same non-null eigenvalues, we have
that

Sj(n1, . . . , nr) = Sj(m1, . . . ,mr) = aj , 2 ≤ j ≤ r.(4)

Working towards a contradiction, suppose that w ∈ {n1, . . . , nr} ∩ {m1, . . . ,mr}
6= ∅ and that Kn1,...,nr and Km1,...,mr are not isomorphic. Let us say that w =
n1 = m1. Then

Sj(n2, . . . , nr) =

r−j
∑

i=1

−Sj+i(n1, . . . , nr)

(−w)i
=

r−j
∑

i=1

− aj+i

(−w)i
, 1 ≤ j ≤ r − 1(5)

and

Sj(m2, . . . ,mr) =

r−j
∑

i=1

−Sj+i(m1, . . . ,mr)

(−w)i
=

r−j
∑

i=1

− aj+i

(−w)i
, 1 ≤ j ≤ r − 1.(6)

Both systems (5) and (6) are of the same form and have the same unique solution
ni = mi, for i = 2, . . . , r. Since m1 = n1, we have that Kn1,...,nr and Km1,...,mr

are isomorphic, which is a contradiction and the result follows.

In [11], the complete bipartite graphs which are DS were characterized as
showed in Proposition 3.5.

Proposition 3.5 [11]. Let s, t be the positive integers. The complete bipartite

graph Ks,t is DS if and only if the equality n = st is the decomposition of two

factors s and t with the smallest sum s+ t.
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From Proposition 3.5, we can conclude that for r = 2, there are many graphs
in C which are not DS. For instance, K1,35 ∈ C is not DS since K5,7 ∪ 24K1 is its
cospectral mate. Next, for r ≥ 3, we prove that all complete r-partite graphs in
C are DS.

Lemma 3.6. The graph K1,n2,n3
is DS.

Proof. For the sake of simplicity, take n2 = p and n3 = q. Suppose that there
exist positive integers x1, x2, x3, s such that Kx1,x2,x3

∪sK1 and K1,p,q are cospec-
tral. By the equations (1) and (2) the following hold

x1 + x2 + x3 < 1 + p+ q(7)

x1x2 + x1x3 + x2x3 = p+ q + pq(8)

x1x2x3 = pq.(9)

By dividing (8) by (9) we obtain

1

x1
+

1

x2
+

1

x3
= 1 +

1

q
+

1

p
.(10)

We distinguish three cases.

Case 1. If p = q = 1, then K1,1,1 = K3 which is DS.

Case 2. Let p = 1 and q ≥ 2. Assume that x1 = 1. By (7), we get x2 + x3 <
q + 1. Since x2 + x3 = q + 1 by equation (10), we get a contradiction. Now,
let x1 ≥ 2. Note that 1

x1
+ 1

x2
+ 1

x3
≤ 3

2 . Since 2 + 1
q
= 1

x1
+ 1

x2
+ 1

x3
, we get a

contradiction. So, K1,1,q is DS.

Case 3. Let q ≥ p ≥ 2 and let x1 = 1. From (7), x2 + x3 < p + q. By
(10), x2 + x3 = p + q, which is a contradiction. Now, let x1 = 2. From (7),
x2 + x3 < p+ q − 1 and by (8) and (9), we obtain

2x2 + 2x3 + x2x3 = p+ q + pq(11)

2x2x3 = pq.(12)

Subtracting (12) from (11), we get

(2− x2)(x3 − 2) = p+ q − 4.

If x2 = 2, then p + q = 4 which implies p = q = 2 and x3 = 1, and we get a
contradiction since x3 ≥ 2.

If x1 ≥ 3, then
1

x1
+

1

x2
+

1

x3
≤ 1 ≤ 1 +

1

p
+

1

q
,

which is a contradiction by (10). The proof is complete.
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Proposition 3.7. Let G be a complete r-partite graph with n1 = · · · = nr−2 = 1.
Then G is DS.

Proof. Let K1,...,1,nr−1,nr and Kx1,...,xr ∪ sK1 be cospectral graphs. Note that
(1) and (2) hold. In particular, from the last two equations, we get:

Sr−1 =
∑

1≤i1<···<ir−1≤r

xi1xi2 · · ·xir−1
= p+ (r − 2)pq,(13)

x1x2 · · ·xr = nr−1nr.(14)

Dividing (13) by (14),

1

x1
+ · · ·+ 1

xr
=

1

nr

+ r − 2.

If r = 3, then G is DS from Lemma 3.6. For r ≥ 4 and x1 ≥ 2, we get

1

x1
+ · · ·+ 1

xr
≤ r

2
≤ r − 2 < r − 2 +

1

nr

=
1

x1
+ · · ·+ 1

xr
,

which is a contradiction. Now, let r ≥ 4 and x1 = 1. Since K1,...,1,nr−1,nr , and
Kx1,x2,...,xr ∪ sK1 are cospectral graphs, by Lemma 3.4, we may conclude that
those graphs are isomorphic with s = 0, which means that K1,...,1,nr−1,nr is DS.

Theorem 3.8. Let G be a complete r-partite graph with n1 = np = 1 and

np+1 = nr−2 = 2 such that p ≥ 1 and r − p ≥ 3. Then G is DS.

Proof. Let K1,...,1,2,...,2,nr−1,nr , and Kx1,...,xr ∪ sK1, x1 ≤ · · · ≤ xr be cospectral
graphs. Note that (1) and (2) hold. In particular, from the last two equations,
we get

Sr−1 =
∑

1≤i1<···<ir−1≤r

xi1xi2 · · ·xir−1

= nr−12
r−p−2 + pnr−1nr2

r−p−2 + (r − p− 2)2r−p−3nrnr−1 + nr2
r−p−2,(15)

x1x2 · · ·xr = 2r−p−2nr−1nr.(16)

Dividing (15) by (16),

1

x1
+ · · ·+ 1

xr
= p+

1

nr

+
r − p− 2

2
+

1

nr−1
.

If x1 ≥ 3, then

1

x1
+ · · ·+ 1

xr
≤ r

3
≤ p+

r − p− 2

2
< p+

r − p− 2

2
+

1

nr−1
+

1

nr

=
1

x1
+ · · ·+ 1

xr
,
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which is a contradiction. So, x1 ∈ {1, 2}. Since K1,...,1,2,...,2,nr−1,nr and Kx1,x2,...,xr

∪ sK1 are cospectral graphs, by Lemma 3.4, we may conclude that those graphs
are isomorphic with s = 0, which means that K1,...,1,2,...,2,nr−1,nr is DS.

As a consequence of Theorem 3.8, the graphs K1,...,1,2,...,2,nr−1,nr ∪ sK1 with
exactly p ≥ 1 parts of size 1 and r − p ≥ 3 parts of size 2 are DS for any non
negative integer s.

Proposition 3.9. Let r ≥ 3, s ≥ 0, H be a complete r-partite graph with n1 =
nr−1 = 2 and nr ≥ 3. Then G = H ∪ sK1 is DS.

Proof. From Proposition 2.4 and Remark 1, G ∈ C. Any graph G′ cospectral to
G also belongs to C, so G′ is a complete multipartite graph with isolated vertices.
Therefore G′ = Kx1,...,xr ∪ s′K1. According to Theorem 3.8, if x1 = 1, then G′ is
DS. So x1 ≥ 2. From Propositions 2.1 to 2.5 there is no graphs in C such that
x1 ≥ 3. Therefore, x1 = 2 and from Lemma 3.4, we conclude that G and G′ are
isomorphic, which implies that G is DS.
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