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Universidad Católica del Norte, Antofagasta, Chile

e-mail: germain.pasten@ucn.cl
orojo@ucn.cl

Abstract

Given a graph G, its adjacency matrix A(G) and its diagonal matrix of
vertex degrees D(G), consider the matrix Aα(G) = αD(G) + (1 − α)A(G),
where α ∈ [0, 1). The Aα-spectrum of G is the multiset of eigenvalues of
Aα(G) and these eigenvalues are the α-eigenvalues of G. A cluster in G

is a pair of vertex subsets (C, S), where C is a set of cardinality |C| ≥ 2
of pairwise co-neighbor vertices sharing the same set S of |S| neighbors.
Assuming that G is connected and it has a cluster (C, S), G(H) is obtained
from G and an r-regular graph H of order |C| by identifying its vertices
with the vertices in C, eigenvalues of Aα(G) and Aα(G(H)) are deduced and
if Aα(H) is positive semidefinite, then the i-th eigenvalue of Aα(G(H)) is
greater than or equal to i-th eigenvalue of Aα(G). These results are extended
to graphs with several pairwise disjoint clusters (C1, S1), . . . , (Ck, Sk). As
an application, the effect on the energy, α-Estrada index and α-index of
a graph G with clusters when the edges of regular graphs are added to G

are analyzed. Finally, the Aα-spectrum of the corona product G ◦ H of a
connected graph G and a regular graph H is determined.
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1. Introduction and Preliminaries

We deal with simple undirected graphs G = (V (G), E(G)) on n vertices with
vertex set V (G) and edge set E(G). The complement of G is the graph G with
the same vertex set as G in which any two distinct vertices are adjacent if and
only if they are non-adjacent in G. The complete graph on n vertices is denoted
by Kn (therefore, Kn has no edges, that is, all its vertices are isolated). The
complete bipartite graph on p+ q vertices is denoted by Kp,q (in particular, K1,s

is a star on s+ 1 vertices).

Throughout the text, Nk denotes the set of positive integers not greater than
k, the identity matrix of order m and the transpose of a matrix A are denoted by
Im and AT , respectively. Furthermore, 0 is the zero matrix of appropriate order,
1n is the all-one column vector of size n and Jp,q is the all-one matrix of order
p×q. The remainder notation is standard. However for the reader’s convenience,
as it follows, the fundamental concepts and their notation is briefly recalled.

Let D(G) be the diagonal matrix of order n whose (i, i)-entry is the degree
of the i-th vertex of G and let A (G) be the adjacency matrix of G. The matrices
L(G) = D(G)− A(G) and Q(G) = D(G) + A(G) are the Laplacian and signless
Laplacian matrix of G, respectively. The matrices L(G) and Q(G) are both
positive semidefinite and (0,1) is an eigenpair of L (G). Fiedler [7] proved that
G is a connected graph if and only if the second smallest eigenvalue of L(G) is
positive. This eigenvalue is called the algebraic connectivity of G. Moreover, it
is known that for any bipartite graph G, the characteristic polynomials of L(G)
and Q(G) coincide [6, Prop. 2.3]. For a connected graph G, the least eigenvalue
of Q(G) is positive if and only if G is non-bipartite [6, Proposition 2.1].

In [13] Nikiforov introduced the family of matrices

Aα (G) = αD (G) + (1− α)A (G)

where α ∈ [0, 1]. We see that Aα(G) is a convex combination of the matrices
A(G) and D(G). The multiset of eigenvalues of Aα(G) is called the Aα-spectrum
of G.

Since Aα(G) is a real symmetric matrix, its eigenvalues are real numbers.
Observe that A0 (G) = A (G) and 2A1/2 (G) = Q (G). Thus, the family Aα(G)
extends both A(G) and Q (G). Since A1(G) = D(G), from now on, we take
α ∈ [0, 1).

If G is a graph of order n, we denote by

ν1 (G) ≤ ν2 (G) ≤ · · · ≤ νn (G)

the eigenvalues of Aα(G). If necessary, these eigenvalues are also denoted by
ν1(Aα(G)), ν2(Aα(G)), . . . , νn(Aα(G)).
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In particular, νn(G) is called the α-index of G. From the Perron-Frobenius
Theory for nonnegative matrices, it follows that

• for a connected graph G, the α-index of G (Perron root) is a simple eigenvalue
of Aα(G) that has a positive eigenvector (Perron vector),

• for a connected graph G, the α-index of G increases if any entry of Aα(G)
increases,

• if G is a proper subgraph of a connected graph H, then νn(G) < νn(H), and

• if G is an r-regular graph of order n, then Aα(G) = rαIn + (1− α)A(G) and
νn(G) = r with eigenvector 1n.

Now, we recall the concept of cluster which appears first in [11] and more
recently in [5].

Definition 1.1. A cluster of order c and degree s in a graph G is a pair of vertex
subsets (C, S), where C is a set of cardinality |C| = c ≥ 2 of pairwise co-neighbor
vertices sharing the same set S of s neighbors.

A pendent vertex is a vertex of degree 1 and a quasi-pendent vertex is a
vertex adjacent to at least one pendent vertex. For the star K1,s, C is the set
of the pendent vertices and S = {v} where v is the root vertex and a complete
bipartite graph Kp,q has the clusters (Kp,Kq) and (Kq,Kp). Also, note that
each quasi-pendent vertex adjacent with more than one pendent vertex define a
cluster (C, S) in which |S| = 1. In [4], among other results, it was proved that
α is an eigenvalue of Aα(G) with multiplicity at least p(G) − q(G), when G has
p(G) > 0 pendent vertices and q(G) quasi-pendent vertices. It is easy to prove
that any set of pairwise co-neighbor vertices is an independent set.

Definition 1.2. Let G be a connected graph of order n with a cluster (C, S)
and let H be a graph of order |C|. Assuming that V (H) = C, then G(H) is the
graph with vertex set V (G(H)) = V (G) and edge set E(G(H)) = E(G) ∪E(H).

From Definition 1.2, G(H) is the graph obtained from G and H adding the
edges of H to the edges of G by identifying the vertices of H with the vertices
in C.

Example 1.3. Let G be the graph below depicted which has the cluster (C, S),
where C = {1, 2, 3} and S = {4, 5}. Let H be the cycle on 3 vertices, V (H) =
{1, 2, 3}. Then the graphs G and G(H) are displayed, respectively, below.

Definition 1.4. Let (C1, S1) and (C2, S2) be clusters in a graph G. We say that
(C1, S1) and (C2, S2) are disjoint if C1 ∩ C2 = ∅ and S1 ∩ S2 = ∅.

The Laplacian and signless Laplacian spectra of a graph G with a cluster
(C, S) are studied in [1]. The effects on the Laplacian spectral radius and algebraic
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connectivity of a graph perturbed by adding edges between its pendent vertices
are considered in [9] and [17], respectively. Moreover, the effects on others spectral
invariants are determined in [15] and [16].
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Definition 1.5. Let G be a connected graph with pairwise disjoint clusters
(C1, S1), . . . , (Ck, Sk). For i = 1, . . . , k, let Hi be a graph of order |Ci|. Let
G(Hi : i ∈ Nk) be the graph obtained from G and the graphs Hi when the edges
of Hi are added to the edges of G by identifying the vertices of Hi with the
vertices in Ci for i = 1, . . . , k.

From this definition, we have V (Hi) = Ci, for i = 1, . . . , k,

V (G(Hi : i ∈ Nk)) = V (G)

and
E(G(Hi : i ∈ Nk)) = E(G) ∪ E(H1) ∪ · · · ∪ E(Hk).

Observe that the graph G(Hi : i ∈ Nk) can be constructed as follows.

• The graph G1 = G(H1) is obtained from G and H1 identifying the vertices of
H1 with C1, and

• for i = 2, . . . , k, the graph Gi = G(H1, . . . , Hi) is obtained from Gi−1 =
G(H1, . . . , Hi−1) and Hi identifying the vertices of Hi with Ci.

Example 1.6. Let G be the graph below depicted which has two disjoint clusters
(C1, S1) and (C2, S2) where C1 = {1, 2, 3}, S1 = {4, 5} and C2 = {6, 7}, S2 =
{8, 9, 10}. Let H1 be the cycle on 3 vertices, V (H1) = {1, 2, 3}, and H2 be the
path on 2 vertices, V (H2) = {6, 7}. Then the graphs G and G(H1, H2) are
displayed, respectively, below.

A unified approach to the determination of the spectra of adjacency, Lapla-
cian and signless Laplacian matrices of graphs with edge perturbation on their
clusters was presented in [5]. Moreover, the invariance of algebraic connectivity
and Laplacian index under those perturbation was proved.

In this article, using a methodology similar to the one followed in [5], new
results about the spectra of Aα(G) and Aα(G(H)) are deduced. Namely, in
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Section 2, assuming that G is a connected graph of order n with a cluster (C, S)
and G(H) is obtained according to Definition 1.2, the following results about the
spectra of Aα(G) and Aα(G(H)) are proven.

1. |S|α+ νj(H), 1 ≤ j ≤ |C| − 1, are eigenvalues of Aα(G(H)), where

ν1(H) ≤ · · · ≤ ν|C|−1(H) ≤ ν|C|(H) = r

are the eigenvalues of Aα(H). As direct consequence, |S|α is an eigenvalue of
Aα(G) with multiplicity at least |C|−1. In both cases, the remaining eigenvalues
can be computed from a special matrix, (5) and (8), respectively (Theorem 2.1
and Corollary 2.2).

2. If Aα(H) is a positive semidefinite matrix, then

νi(G) ≤ νi(G(H)),

for i = 1, . . . , n, where {νi(G) : 1 ≤ i ≤ n} and {νi(G(H)) : 1 ≤ i ≤ n} are the
Aα-spectra of G and G(H), respectively (Theorem 2.6).

3. Assuming that G has k ≥ 2 pairwise disjoint clusters (C1, S1), . . . , (Ck, Sk),
the above results are extended to the graph G(Hi : i = 1, . . . , k) (Theorem 2.7).

Finally, in Section 3, the obtained results are applied to study the effect on
the energy (Theorems 3.1 and 3.2), α-Estrada index (Theorems 3.3 and 3.4) and
α-index (Theorem 3.5) of a graphG with clusters when the edges of regular graphs
are added to G. Additionally, the Aα-spectrum of the corona product G ◦H of
a connected graph G and a regular graph H is determined (Theorem 3.7).

2. Effects by Adding the Edges of a Regular Graph

Consider G(H) as in Definition 1.2. Let |C| = c and |S| = s. We assume that H
is a connected r-regular graph of order |C| = c and that

ν1(H) ≤ · · · ≤ νc−1(H) < νc(H) = r
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are the eigenvalues of Aα(H) with an orthogonal basis of eigenvectors

x1,x2, . . . ,xc−1,xc =
1√
c
1c

in which, for 1 ≤ i ≤ c, Aα(H)xi = νi(H)xi. In particular

(1) Aα(H)1c = r1c.

Let
X =

[

x1 · · · xc−1
1√
c
1c

]

and

(2) U =

[

X

In−c

]

.

Clearly X and U are both orthonormal matrices.
Through this paper β = 1 − α and di is the degree of the vertex i of the

graph G.
We recall that G is a graph that has a cluster (C, S). The graphs G and

G(H) have the same set of vertices. We label the vertices of G as follows. The
labels 1, 2, . . . , c are for the vertices of C, the labels c+ 1, c+ 2, . . . , c+ s are for
the vertices in S and the labels c + s + 1, . . . , n are for the remaining vertices
of G. This labeling is illustrated in Example 1.3. For this labeling, Aα(G) and
Aα(G(H)) become as follows

(3) Aα(G) =





sαIc
[

β1c1
T
s 0

]

[

β1s1
T
c

0

]

R(α)





and

(4) Aα(G(H)) =





sαIc +Aα(H)
[

β1c1
T
s 0

]

[

β1s1
T
c

0

]

R(α)





where R(α) =

[

A B

BT Z

]

with submatrices A, B and Z of size s×s, s×(n−c−s)

and (n − c − s) × (n − c − s), respectively. The diagonal entries of the matrices
A and Z are αdi, c + 1 ≤ i ≤ n and the off-diagonal entries of A and Z as well
as the entries of B are β if the corresponding vertices of G are adjacent and 0
otherwise.

Theorem 2.1. Let G be a graph with a cluster (C, S) of order |C| = c and degree

|S| = s. If H is an r-regular graph of order c and G(H) is obtained according to
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Definition 1.2, then
sα+ νj(H), 1 ≤ j ≤ c− 1,

are eigenvalues of Aα(G(H)), where ν1(H) ≤ · · · ≤ νc−1(H) ≤ νc(H) = r are

the eigenvalues of Aα(H) and the remaining eigenvalues of Aα(G(H)) are the

eigenvalues of the matrix

(5) X =





sα+ r [β
√
c1Ts 0]

[

β
√
c1s
0

]

R(α)



 .

Proof. We use (4) and the orthogonal matrix U defined in (2) obtaining

UTAα(G(H))U

=

[

XT

In−c

]







sαIc +Aα(H) [β1c1
T
s 0]

[

β1s1
T

c

0

]

R(α)







[

X

In−c

]

=





sαIc +XTAα(H)X [βXT
1c1

T
s 0]

[

β1s1
T
c X

0

]

R(α)





=





























sα+ ν1(H)

. . .

sα+ νc−1(H)
sα+ r





















0 0
...

...
0 0

β
√

c1T
s 0











[

0 . . . 0 β
√

c1s

. . . 0 0

]

R(α)



















=

























sα+ ν1(H)

. . .

sα+ νc−1(H)











sα+ r [β
√

c1T
s 0]

[

β
√

c1s

0

]

R(α)























.

Then UTAα(G(H))U =

(6)







sα+ ν1(H)
. . .

sα+ νc−1(H)






⊕





sα+ r [β
√
c1T

s
0]

[

β
√
c1s

0

]

R(α)



 .

Therefore, the conclusion follows from (6).

Applying Theorem 2.1 to the particular case of H = Kc, it follows that
G(H) = G and

(7) UTAα(G)U =







sα
. . .

sα






⊕





sα [β
√
c1Ts 0]

[

β
√
c1s
0

]

R(α)



 .
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Thus the next corollary is immediate.

Corollary 2.2. Let G be a graph with a cluster (C, S) of order |C| = c and degree

|S| = s. Then sα is an eigenvalue of Aα(G) with multiplicity at least c − 1 and

the remaining eigenvalues are the eigenvalues of the matrix

(8) Y =





sα [β
√
c1Ts 0]

[

β
√
c1s
0

]

R(α)



 .

Taking into account that A0(G) = A(G) and 2A 1

2

(G) = Q(G), another

immediate corollary is the following.

Corollary 2.3. Let G be a graph with a cluster (C, S) of order |C| = c and degree

|S| = s. If H is an r-regular graph of order c and G(H) is obtained according to

Definition 1.2, then

(i) 0 is an eigenvalue of A(G) with multiplicity at least c− 1,

(ii) if λj(H) 6= r is an eigenvalue of A(H), then it is also an eigenvalue of

A(G(H)),

(iii) s is an eigenvalue of Q(G) with multiplicity at least c− 1, and

(iv) if qj(H) 6= 2r is an eigenvalue of Q(H), then qj(H) + s is an eigenvalue of

Q(G(H)).

2.1. The nonnegative Aα-spectrum case

In this subsection we study the Aα-spectrum of G(H) when Aα(H) is a positive
semidefinite matrix.

Among the basic results on Aα(G) obtained in [13] we recall the following
theorem.

Theorem 2.4 [13, Proposition 4]. Let 1 ≥ α > β ≥ 0. Then

(9) νj(Aα(G)) ≥ νj(Aβ(G))

for j = 1, 2, . . . , n. If G is connected, then inequality (9) is strict, unless j = n

and G is regular.

The function fG (α) = ν1(Aα(G)) is continuous and, from (9) with j = 1, it
is nondecreasing in α. Moreover, fG(0) = ν1(A0(G)) < 0. Therefore, there is a
smallest value α ∈

(

0, 12
]

such that ν1(Aα(G)) = 0. Hence, denoting this value
by α0 (G), Aα(G) is a positive semidefinite matrix if and only if α0 (G) ≤ α ≤ 1.

Now, we restate a problem proposed in [13, Problem 8] as follows: given a

graph G, find α0(G).
Some advances on this problem obtained in [14] are presented in the next

proposition.
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Proposition 2.5 [14, Proposition 5]. If H is an r-regular graph, then

(10) α0(H) =
−νmin(A(H))

r − νmin(A(H))

where νmin(A(H)) is the least eigenvalue of A(H).

Theorem 2.6. Let G be a graph with a cluster (C, S) of order |C| = c and degree

|S| = s. If H is an r-regular graph of order c, α ≥ α0(H), where α0(H) is given

by (10), and G(H) is obtained according to Definition 1.2, then

νi(G) ≤ νi(G(H)),

for i = 1, . . . , n, where {νi(G) : 1 ≤ i ≤ n} and {νi(G(H)) : 1 ≤ i ≤ n} are the

Aα-spectra of G and G(H), respectively.

Proof. Since α ≥ α0(H) with α0(H) given by (10), Aα(H) is a positive semidef-
inite matrix and then its eigenvalues are nonnegative. Thus the result follows
from (6) and (7) applying the Weyl’s inequalities for eigenvalues of Hermitian
matrices ([10], p. 181).

2.2. The multiple pairwise disjoint clusters case

In this subsection the graphs with more than one cluster are analyzed.

Theorem 2.7. Let G be a graph with a set of pairwise disjoint clusters {(Ci, Si) :
i ∈ Nk}, with k ≥ 2, and let |Ci| = ci and |Si| = si, for i ∈ Nk. Assuming that

each Hi is an ri-regular graph of order ci and G(Hi : i ∈ Nk) is obtained according

to Definition 1.5, it follows, for each p ∈ Nk, that

(i) spα is an eigenvalue of Aα(G) with multiplicity at least cp − 1,

(ii) spα+ νj(Hp), 1 ≤ j ≤ cp− 1, is an eigenvalue of Aα(G(Hi : i ∈ Nk)), where

ν1(Hp) ≤ · · · ≤ νcp−1(Hp) ≤ νcp(Hp) = rp

are the eigenvalues of Aα(Hp),

(iii) if

α ≥ −αmin(A(Hp))

rp − αmin(A(Hp))

where αmin(A(Hp)) is the least eigenvalue of A(Hp), then the j-th eigenvalue

of Aα(G(Hi : i ∈ Nk)) is greater or equal to the j-th eigenvalue of Aα(G).

Proof. Considering p ∈ Nk, since

G(Hi : i ∈ Nk \ {p})(Hp) = G(Hi : i ∈ Nk),

the results are immediate from Theorems 2.1 and 2.6.
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As a consequence, we have the following corollary.

Corollary 2.8. Let G be a graph with a set of pairwise disjoint clusters {(Ci, Si) :
i ∈ Nk}, with k ≥ 2, and let |Ci| = ci and |Si| = si, for i ∈ Nk. Assuming

that each Hi is an ri-regular graph of order ci and G(Hi : i ∈ Nk) is obtained

according to Definition 1.5, then 0 is an eigenvalue of A(G) with multiplicity at

least
∑k

i=1 ci − k. Moreover, for each p ∈ Nk,

(i) if λj(Hp) 6= rp is an eigenvalue of A(Hp), then it is also an eigenvalue of

A(G(Hi : i ∈ Nk)),

(ii) sp is an eigenvalue of Q(G) with multiplicity at least cp − 1,

(iii) if qj(Hp) 6= 2rp is an eigenvalue of Q(Hp), then qj(Hp)+sp is an eigenvalue

of Q(G(Hi : i ∈ Nk)).

3. Some Applications

In this section, the energy, α-Estrada index, and α-index of graphs with clusters
are considered, and the Aα-spectrum of the corona of a connected graph G and
a regular graph H is determined.

We recall that the energy of a graph G is E(G) =
∑n

i=1 |λi(G)| and the
Estrada index of G is EE(G) =

∑n
i=1 e

λi(G), where

λ1 (G) ≤ λ2 (G) ≤ · · · ≤ λn−1 (G) ≤ λn (G)

are the eigenvalues of A(G). Similarly, the signless Laplacian Estrada index of G
is defined as SLEE(G) =

∑n
i=1 e

qi(G), where

q1 (G) ≤ q2 (G) ≤ · · · ≤ qn−1 (G) ≤ qn (G)

are the eigenvalues of Q(G).
The coronaG◦H of two graphsG andH (where |V (G)| = n and |V (H)| = m)

introduced by Frucht and Harary [8] is defined as the graph obtained by taking
one copy of G and n copies of H and then joining by an edge the i-th vertex of
G to every vertex of the i-th copy of H. It is immediate that the corona graph
operation is not commutative, that is, in general G ◦H 6= H ◦G.

3.1. The energy of graphs with clusters

Let M be an m× n complex matrix, q = min {m,n} and

σ1 (M) ≥ σ2 (M) ≥ · · · ≥ σq (M)

be the singular values of M. Nikiforov [12] defines the energy of M as E(M) =
∑q

j=1 σj (M) . Since A (G) is symmetric, its singular values are the modulus of
its eigenvalues. Then E(G) = E(A(G)).
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Given a natural number k such that 1 ≤ k ≤ n, the Ky Fan k-norm of
a matrix M of order n × n is the sum of the k largest singular values of M ,
that is, assuming that σ1(M), . . . , σk(M) are the k largest singular values of M ,
‖M‖k =

∑k
i=1 σi(M). In particular, ‖M‖n = E(M).

Theorem 3.1. Let G be a graph with a cluster (C, S) of order |C| = c and degree

|S| = s. Let H be an r-regular graph of order c. Let G(H) as in Definition 1.2.
Then

E(G(H))− E(G) ≤ E(H).

Proof. We apply Theorem 2.1 with α = 0. From (6) and (7), using the fact that
the singular values are invariant under unitary transformations, we have

(11) E(G(H)) = E(A(G(H))) =
c−1
∑

i=1

|νi(H)|+ E(C),

where C =





r [
√
c1Ts 0]

[ √
c1s
0

]

R(0)



 and E(G) = E(A(G)) = E(D), where D =





0 [
√
c1Ts 0]

[ √
c1s
0

]

R(0)



 . Then C = D + F , where

(12) F =





r 0 0
0 0 0
0 0 0



 .

Hence E(C) = ‖C‖n−c+1 ≤ ‖D‖n−c+1+ ‖F‖n−c+1 = E(D)+ r = E(G)+ r. Using
this inequality in (11), we obtain

E(G(H))− E(G) ≤
c−1
∑

i=1

|νi(H)|+ r =

c
∑

i=1

|νi(H)| = E(H).

Theorem 3.2. Let G be a graph with a set of clusters {(Ci, Si) : i ∈ Nk}, k ≥ 2.
For i ∈ Nk, let |Ci| = ci, |Si| = si and Hi be an ri-regular graph of order ci. Let

G(Hi : i ∈ Nk) as in Definition 1.5. Then

E(G(Hi : i ∈ Nk))− E(G) ≤
k
∑

i=1

E(Hi).

Proof. The result follows easily by a repeated application of Theorem 3.1.
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3.2. The α-Estrada index of graphs with clusters

In [16], for a graph with pendent vertices, the effects on the energy, Estrada index
(α = 0) and signless Laplacian Estrada index (essentially, α = 0.5) are obtained
when the edges of regular graphs are added among the pendent vertices. In this
subsection, we extend these results to a graph with clusters, for all α ∈ [0, 1).

Since A0(G) = A(G), it seems natural to define the α-Estrada index of G,
denoted by EEα(G), as

EEα(G) =
n
∑

i=1

eνi(G)

where

ν1 (G) ≤ ν2 (G) ≤ · · · ≤ νn−1 (G) ≤ νn (G)

are the eigenvalues of Aα(G). Hence EEα(G) = trace(eAα(G))
Next, we study the effect on the α-Estrada index.

Theorem 3.3. Let G be a graph with a cluster (C, S) of order |C| = c and degree

|S| = s. Let H be an r-regular graph of order c. Let G(H) be as in Definition

1.2. Then

EEα(G(H))− EEα(G) ≥ esαEEα(H)−
[

(c− 1)esα + er
(

esα − 1
)]

.

Proof. We use again the fact that the singular values under unitary transforma-
tions to obtain, from (6) and (7), that

(13) EEα(G(H)) =
c−1
∑

i=1

e(sα+νi(H)) + trace
(

eX
)

and

(14) EEα(G) =
c−1
∑

i=1

esα + trace
(

eY
)

where X and Y are as in Theorem 2.1. From the series-expansion of eN , we have

eX =
∞
∑

j=0

1

j!
Xj =

∞
∑

j=0

1

j!
(Y + F )j =

∞
∑

j=0

1

j!

(

Y j + · · ·+ F j
)

,

where F is given in (12). Since Y and F are nonnegative matrices, it follows that

trace
(

eX
)

≥ trace

( ∞
∑

j=0

1

j!
Y j

)

+ trace

( ∞
∑

j=0

1

j!
F j

)

.
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Hence,

trace
(

eX
)

≥ trace
(

eY
)

+
∞
∑

j=0

1

j!
rj = trace

(

eY
)

+ er.

Using this inequality in (13), we get

EEα(G(H)) ≥
c−1
∑

i=1

e(sα+νi(H)) + trace
(

eY
)

+ er

= esα
c−1
∑

i=1

eνi(H) + EEα(G)−
c−1
∑

i=1

esα + er.

Finally,

EEα(G(H))− EEα(G) ≥ esα
c−1
∑

i=1

eνi(H) −
c−1
∑

i=1

esα + er

= esα
c−1
∑

i=1

eνi(H) − (c− 1)esα + er + esαer − esαer

= esαEEα(H)− (c− 1)esα − er
(

esα − 1
)

.

Therefore,

EEα(G(H))− EEα(G) ≥ esαEEα(H)−
[

(c− 1)esα + er
(

esα − 1
)]

.

A repeated application of Theorem 3.3 yields to the following result.

Theorem 3.4. Let G be a graph with a set of clusters {(Ci, Si) : i ∈ Nk}, k ≥ 2.
For i ∈ Nk, let |Ci| = ci, |Si| = si and Hi be an ri-regular graph of order ci. Let

G(Hi : i ∈ Nk) as in Definition 1.5. Then

EEα(G(Hi : i ∈ Nk))−EEα(G) ≥
k
∑

i=1

(

esiαEEα(Hi)− (ci−1)esiα−eri
(

esiα−1
))

.

3.3. The α-index of graphs with a cluster

Now, we study the effect on the α-index. We remember that νn(G) and νn(G(H))
denote the α-index of G and G(H), respectively. We denote by ρ(X) and ρ(Y )
the spectral radius of the matrices X and Y given in (5) and (8), respectively.

Theorem 3.5. Let G be a graph with a cluster (C, S) of order |C| = c and degree

|S| = s. Let H be an r-regular graph of order c. Let G(H) be as in Definition

1.2. Then

0 < νn(G(H))− νn(G) < r.
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Proof. Clearly, from Theorem 2.1, νn(G(H)) = ρ(X) and νn(G) = ρ(Y ). We
have X = Y + F with F as in (12). Since X − Y ≥ 0 with strict inequality in
the entry (1,1), we get that 0 < ρ(X) − ρ(Y ). Moreover, applying the Weyl’s
inequalities for eigenvalues of Hermitian matrices ([10], p. 181) and the conditions
for the equality [18], we obtain that ρ(X)− ρ(Y ) < r.

3.4. The corona product

In [2, Theorem 3.1] the authors compute the entire spectrum of the adjacency
matrix of G ◦H (α = 0), when H is regular. In this subsection we extend this
result to all α ∈ [0, 1), when H is regular. Before that, it is worth mention the
following lemma which is an immediate consequence of Lemma 2.3.1 in [3].

Lemma 3.6. If {X1, X2, . . . , Xm} is a partition of X = {1, 2, . . . , n} which is

equitable for the square matrix A whose rows and columns are indexed by the

elements of X, then each eigenvalue of the corresponding quotient matrix is an

eigenvalue of A.

Let V (G) = {v1, . . . , vn}. Observe that G ◦H = (G ◦Km)(Hi : 1 ≤ i ≤ n)
where Hi = H. Each pair of vertex subsets (Ci, Si), with Ci = V (Km) and
Si = {vi} is a cluster, for i = 1, . . . , n.

Theorem 3.7. If G is a connected graph of order n and H is a r-regular graph

of order m, then G◦H is a graph of order n(m+1) and its Aα-spectrum includes

the eigenvalues

(15) α+ νj(H) for 1 ≤ j ≤ m− 1,

each one with multiplicity n.

The remaining 2n eigenvalues of Aα(G ◦H) are the eigenvalues of the matrix

(16) B =

[

Aα(G) +mαIn mβIn
βIn (α+ r)In

]

.

Proof. Let V (G) = {v1, . . . , vn}. We recall that G ◦H = (G ◦Km)(Hi : 1 ≤ i ≤
n) with Hi = H for all i. Applying Theorem 2.7(ii) to (G ◦Km)(Hi : 1 ≤ i ≤ n),
it follows that, for 1 ≤ i ≤ n and 1 ≤ j ≤ m − 1, α + νj(H) is an eigenvalue of
Aα(G ◦H) with multiplicity n. Therefore, the expression (15) follows. We label
the vertices of G ◦H as follows: 1, . . . , n for the vertices of G and, for 1 ≤ i ≤ n,
the labels n+(i−1)m+1, . . . , n+im for the vertices of Hi. Let X = {1, . . . , n, n+
1, . . . , n+mn}. Consider the partition {X1, . . . , Xn, Xn+1, . . . , X2n} of X where
X1 = {1}, . . . , Xn = {n} and, for 1 ≤ i ≤ n, Xn+i = {n+(i−1)m+1, . . . , n+im}.
For this partition Aα (G ◦H) becomes a 2n × 2n - block matrix such that the
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row sum of each of the blocks is constant. Hence {X1, . . . , X2n} is an equitable
partition. The corresponding quotient matrix is the matrix B given in (16).
Therefore, by Lemma 3.6, the eigenvalues of B are eigenvalues of Aα(G ◦H).
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