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Abstract

Let A be a real symmetric matrix. If after we delete a row and a column
of the same index, the nullity increases by one, we call that index a P-vertex
of A. When A is an n × n singular acyclic matrix, it is known that the
maximum number of P-vertices is n − 2. If T is the underlying tree of A,
we will show that for any integer number k ∈ {0, 1, . . . , n − 2}, there is a
(singular) matrix whose graph is T and with k P-vertices. We will provide
illustrative examples.
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1. Introduction

In 1960, Parter published a groundbreaking research [16] which led into fertile
problems in both pure and applied mathematics, on the relation between the
multiplicities of eigenvalues of real symmetric matrices and the structure of the
corresponding underlying graph. One of the main problems was the relation
between the multiplicities of an eigenvalue of a matrix and the submatrix obtained
from the deletion of a row and a column of the same index, based on a given
underlying graph. A special emphasis was given to trees.

For an undirected graph G, let S(G) denote the set of all real symmetric
matrices sharing G. Each entry of main diagonal of these matrices can assume
any real number value.

When studying the multiplicity of 0 as an eigenvalue of a matrix A in S(G), or
in another word, the nullity, we may wonder what are the vertices whose deletion
will increase such multiplicity by one. Such vertices are known in the literature
as P-vertices of A, and the number of such vertices is denoted by Pν(A).

In 2005, Kim and Shader proposed in [15] several problems on P-vertices and
some related results for matrices whose graphs were paths, i.e., for tridiagonal
matrices. These questions were mainly answered in [1,2,12] and fully extensions
to trees were considered in [4–11].

One of the problems we can find in [15] is to prove that

{Pν(A) | A is an n× n nonsingular tridiagonal matrix}

=

{

{0, 1, . . . , n}, for even n,
{0, 1, . . . , n− 1}, for odd n.

This question was fully answered in [2] and, for general trees, in [10]. Basically
we have an inverse problem asking to find a tridiagonal matrix whose number of
P-vertices is a given nonnegative integer of a certain interval.

For trees, we were able to develop different techniques in order to characterize
the type of trees where the maximum number of P-vertices was attained.

Theorem 1 [10, Theorem 3.1]. Let T be a tree on n > 2 vertices. Then the

following statements are equivalent.

(a) There exists a nonsingular matrix A ∈ S(T ) such that Pν(A) = n.

(b) T is a tree obtained from P2 by a sequence of adding pendant P2 operations,

where adding pendant P2 operation is referred to the addition of the path P2

to a vertex of a tree.

Moreover, we were able to solve a related problem.

Theorem 2 [10, Theorem 7.2]. Let T be a tree on n > 2 vertices. If there exists

a nonsingular matrix B ∈ S(T ) such that Pν(B) = n, then

{Pν(A) | A is a nonsingular matrix in S(T )} = {0, 1, . . . , n}.
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Consequently, as in the answer to the problem to tridiagonal matrices, com-
bining Theorems 1 and 2, we have the following.

Theorem 3. Let T be a tree on n > 2 vertices. If T can be obtained from P2 by

a sequence of adding pendant P2 operations, then

{Pν(A) | A is a nonsingular matrix in S(T )} = {0, 1, . . . , n}.

The problems involving singular matrices are in general more difficult to
tackle. One of the main issues that one faces is regarding the exact multiplicity
of zero, while for nonsingular matrices the multiplicity is exact zero. Nevertheless,
we were able in [11] to provide a full characterization of the trees for which there
are singular matrices with maximum number of P-vertices.

Theorem 4 [11, Theorem 3.6]. Let T be a tree on n > 3 vertices. The following

two conditions are equivalent.

(a) There exists a singular matrix A ∈ S(T ) such that Pν(A) = n− 2.

(b) T is a tree obtained from the star S3 by a sequence of adding pendant P2

operations, and each terminal vertex of S3 is still a terminal vertex of T .

In the spirit of [15], in this note we aim to consider the following inverse
problem. Let A be an n × n singular matrix whose graph is a tree T , and with
maximum number of P-vertices, which is n−2, show that for any integer number
k ∈ {0, 1, . . . , n − 2}, there is a singular matrix whose graph is T and with k
P-vertices. We will provide examples of our results. First we will recall and
establish new auxiliary results.

2. Preliminaries

We start this section with a result which relates P-vertices with the zero-nonzero
pattern of any eigenvector of a singular symmetric matrix associated with 0.

Lemma 5 [14, Theorem 2.1]. Let A be a singular symmetric matrix. If i is a

P-vertex of A, then the ith entry of x is 0, for every eigenvector x of A associated

with eigenvalue 0.

The next result is also of great importance. Here mA(0) denotes the nullity
of A and A(i, j) the principal submatrix of A obtained by deleting the i and j
rows and columns of A. Similarly, we will use A(i) to represent the principal
submatrix of A obtained by deleting the i row and column of A later.

Proposition 6 [14, Proposition 4.7]. Let T be a tree. For the matrix A ∈ S(T ),
if i and j are both P-vertices of A, then mA(i,j)(0) 6= mA(0) + 1.
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Let A[v] represent precisely the diagonal entry of A corresponding to v.

Another useful observation states that if v is a terminal vertex of a tree
adjacent to u, and the diagonal entry corresponding to v, of a matrix associated
to a given tree, is equal to 0, then u is a P-vertex of such matrix.

Theorem 7 [13, Theorem 8]. Suppose that T is a tree, and v is a terminal vertex

of T with unique neighbor u. For A ∈ S(T ), if A[v] = 0, then u is a P-vertex

of A.

Now, let T be the tree as shown in Figure 1, where Ti is a tree obtained
from P2 by a sequence of adding pendant P2 operations, for each 1 6 i 6 k. Set
|V (Ti)| = ni, for 1 6 i 6 k. For each 1 6 i 6 k and 0 6 ti 6 ni, from Theorem
3, there exists a nonsingular matrix Ai ∈ S(Ti) such that Pν(Ai) = ti.
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Figure 1. A tree T with extremal number of P-vertices.

Let ⊕ denote the direct sum of matrices.

Lemma 8. Let T be the tree as shown in Figure 1, and A1, A2, . . . , Ak be the

nonsingular matrices defined as above. Set A to be the matrix in S(T ) satisfying
the following two requirements:

(a) A[v] = A[w] =
(

0
)

;

(b) A(u) =
(

0
)

⊕
(

0
)

⊕A1 ⊕A2 ⊕ · · · ⊕Ak.

Then A is a singular matrix and

Pν(A) = 1 + t1 + t2 + · · ·+ tk.

Proof. We will prove this result based on three claims.

Claim 1. u is a P-vertex of A.
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Proof. Since A[v] =
(

0
)

, from Theorem 7, u is a P-vertex of A, i.e., mA(u)(0) =
mA(0) + 1. Moreover, notice that mA(u)(0) = 2, from the construction of A. So
mA(0) = 1, and the singularity of A follows. 2

Claim 2. Neither v nor w is a P-vertex of A.

Proof. The proofs about v and w are similar. So we only prove that v is not a
P-vertex of A. Since A[w] =

(

0
)

, from Theorem 7, u is a P-vertex of A(v), i.e.,
mA(u,v)(0) = mA(v)(0) + 1. Note that mA(u,v)(0) = 1, thus mA(v)(0) = 0, which
implies that v is not a P-vertex of A. Similarly, we could show that w is not a
P-vertex of A, either. 2

Claim 3. For any j ∈ V (Ti), j is a P-vertex of Ai if and only if j is a P-vertex
of A, where 1 6 i 6 k.

Proof. First suppose that j is a P-vertex of Ai. Recall that u is a P-vertex of
A, then {u, j} would form a P-set of A. In particular, j is a P-vertex of A.

Next suppose that j is not a P-vertex of Ai. Recall that Ai is nonsingular,
which means that Ai(j) is still nonsingular and, equivalently, mA(u,j)(0) = 2 =
mA(0)+1. Now it follows that j is not a P-vertex of A either, otherwise, it would
lead to a contradiction to Proposition 6. 2

Finally, combining Claims 1, 2, and 3, we may deduce that

Pν(A) = 1 + t1 + t2 + · · ·+ tk,

as desired.

3. Main Result

From the previous discussion, we may establish now our main result.

Theorem 9. Let T be a tree on n > 2 vertices. If there exists a singular matrix

B ∈ S(T ) such that Pν(B) = n− 2, then

{Pν(A) | A is a singular matrix in S(T )} = {0, 1, . . . , n− 2}.

Proof. For each 0 6 t 6 n − 2, we will present a method for constructing a
singular matrix A ∈ S(T ) such that Pν(A) = t.

If t = 0, then we may set A to be the Laplacian matrix of T . This im-
plies Pν(A) = 0 from Lemma 5, since it is well-known that (1, 1, . . . , 1)T is an
eigenvector associated with eigenvalue 0 [3, p. 185].

Suppose in the following that 1 6 t 6 n− 2. By Theorem 4, we know that T
is a tree obtained from the star S3 by a sequence of adding pendant P2 operations,
and each terminal vertex of S3 is still a terminal vertex of T , i.e., T is a tree of the
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form depicted in Figure 1, where each Ti is a tree obtained from P2 by a sequence
of adding pendant P2 operations, for 1 6 i 6 k. In particular, set ni = |V (Ti)|,
for 1 6 i 6 k. So

n1 + n2 + · · ·+ nk = n− 3.

Let t1, t2, . . . , tk be the integers satisfying 0 6 ti 6 ni for each 1 6 i 6 k, and

t1 + t2 + · · ·+ tk = t− 1.

Now by Lemma 8, we may construct a singular matrix A ∈ S(T ) such that

Pν(A) = 1 + t1 + t2 + · · ·+ tk = t,

as desired.

4. Examples

Let us consider the following tree

t t t
t t t t

t t

3 5 6

2 1 4 7

8 9

Figure 2

According to Figure 1, T1 is the tree with vertices 4, 5, 6, 7, T2 with vertices
8, 9, and the vertices u, v, w correspond, respectively, to 1, 2, 3. Suppose that we
want a matrix whose graph is depicted in Figure 2 with 5 P-vertices. Then we
may consider the submatrices

A1 =









−2/3 1 0 1
1 −2 1 0
0 1 −2 0
1 0 0 0









and A2 =

(

0 1
1 0

)

.

In case we want a singular matrix with 6 P-vertices, we have for example

A1 =









0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0









and A2 =

(

1 1
1 0

)

.
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Then, the matrices





























1 1 1 1 0 0 0 1 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

1 0 0 −2/3 1 0 1 0 0
0 0 0 1 −2 1 0 0 0
0 0 0 0 1 −2 0 0 0
0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0





























and




























1 1 1 1 0 0 0 1 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0





























will have, respectively, the required number of P-vertices. In fact the P-vertices
of the first matrix are 1, 4, 7, 8, 9, while of the second 1, 4, 5, 6, 7, 8, all in the main
diagonals in bold.
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