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Abstract

Let T4 = {±1,±i} be the subgroup of 4-th roots of unity inside T, the
multiplicative group of complex units. A complex unit gain graph Φ is
a simple graph Γ = (V (Γ) = {v1, . . . , vn}, E(Γ)) equipped with a map ϕ :
#–

E(Γ) → T defined on the set of oriented edges such that ϕ(vivj) = ϕ(vjvi)
−1.

The gain graph Φ is said to be balanced if for every cycle C = vi1vi2 · · · vikvi1
we have ϕ(vi1vi2)ϕ(vi2vi3) · · ·ϕ(vikvi1) = 1.

It is known that Φ is balanced if and only if the least Laplacian eigenvalue
λn(Φ) is 0. Here we show that, if Φ is unbalanced and ϕ(Φ) ⊆ T4, the
eigenvalue λn(Φ) measures how far is Φ from being balanced. More precisely,
let ν(Φ) (respectively, ǫ(Φ)) be the number of vertices (respectively, edges)
to cancel in order to get a balanced gain subgraph. We show that

λn(Φ) ≤ ν(Φ) ≤ ǫ(Φ).

We also analyze the case when λn(Φ) = ν(Φ). In fact, we identify the
structural conditions on Φ that lead to such equality.
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1. Introduction

Let Γ be a simple graph whose set of vertices is V (Γ) = {v1, v2, . . . , vn}. We
define

#–

E(Γ) to be the set of oriented edges; in such set we find two copies of each
edge of Γ with opposite directions. We write eij for the oriented edge from vi to
vj . Given any group G, a (G-)gain graph is a triple Φ = (Γ,G, ϕ) consisting of

an underlying graph Γ, the gain group G and a map ϕ :
#–

E(Γ) → G such that
ϕ(eij) = ϕ(eji)

−1 called the gain function.
Gain graphs are not only studied in pure mathematics, but also in physics,

operations research, psychology and several other research areas (see the anno-
tated bibliography [12] for an updated survey). Most of the basic notions on
graphs directly extends to gain graphs. For example, the order |Φ| of a gain
graph Φ = (Γ,G, ϕ) is simply |Γ|, the number of vertices of its underlying graph.

Let T denote the circle group, i.e., the multiplicative group of all complex
numbers with norm 1. In other words, T = {z ∈ C : zz̄ = 1} thought as a
subgroup of the multiplicative group C

× of all nonzero complex numbers. For
every fixed k ∈ N, the group T contains just one subgroups of order k, namely
the group of k-th roots of unity Tk = {z ∈ C : zk = 1}. For every pair of positive
integers (k, d), we have natural inclusions

ιk : z ∈ Tk 7→ z ∈ T, and ιdkk : z ∈ Tk 7→ z ∈ Tdk.

T-gain graphs are known in literature as complex unit gain graphs [7, 8, 10]
or weighted directed graphs [1, 6].

In [7], the third author extended some fundamental concepts from spectral
graph theory like the adjacency, incidence and Laplacian matrices to T-gain graph.
Moreover, he established in [8] a suitable setting for studying line graphs of T-gain
graphs.

Let Mm,n(C) be the set of m-by-n-complex matrices. The adjacency matrix

A(Φ) = (aij) ∈ Mn,n(C) is defined by

aij =

{

ϕ(eij) if vi is adjacent to vj ,

0 otherwise.

If vi is adjacent to vj , then aij = ϕ(eij) = ϕ(eji)
−1 = ϕ(eji) = āji. Therefore,

A(Φ) is Hermitian and its eigenvalues are real. The Laplacian matrix L(Φ) is
defined as D(Γ) − A(Φ), where D(Γ) is the diagonal matrix of vertex degrees.
Therefore, L(Φ) is also Hermitian. As a consequence of [7, Lemma 3.1], the ma-
trix L(Φ) is positive semidefinite, and therefore, its eigenvalues are nonnegative.
We shall always assume they are labeled and ordered according to the following
convention

0 ≤ λn(Φ) ≤ λn−1(Φ) ≤ · · · ≤ λ2(Φ) ≤ λ1(Φ).
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Let (k, d) be a fixed pair of positive integers. The three gain graphs

(1) Φ = (Γ,Tk, ϕ), Φ′ = (Γ,T, ι ◦ ϕ) and Φ′′ =
(

Γ,Tdk, ι
dk
k ◦ ϕ

)

give rise to the same adjacency and Laplacian matrices. This not only means
that every gain function ϕ :

#–

E(Γ) → Tk indirectly equips a simple graph Γ with
a Tdk-gain structure and a complex unit one, but also that the adjacency and
Laplacian spectral properties for the three gain graphs (1) are identical.

In this paper we are particularly interested in T4-gain graphs. Keeping in
mind the remark above, a T4-gain graph can be seen as a complex unit gain graphs
with gains in the set {±1,±i}; moreover every spectral result concerning T4-gain
graphs applies as well to T2-gain graphs, which many readers probably know
under the name of signed graphs. We point out that the spectral theory of T4-
gain graphs also includes the one of digraphs and mixed graphs as developed, for
instance, in [4]. In other words, digraphs and mixed graphs can be re-interpreted
as T4-gain graphs Φ = (Γ, ϕ) such that ϕ(

#–

E(Γ)) ⊆ {1,±i}.
As for the more general theory of biased graphs, balancedness plays a pivotal

role for gain graphs (see [11]). Recall that an oriented edge eihik ∈ #–

E(Γ) is
said to be neutral for Φ = (Γ,G, ϕ) if ϕ(eihik) = 1. Similarly, the walk W =
ei1i2ei2i3 · · · eil−1il is said to be neutral if its gain

ϕ(W ) = ϕ(ei1i2)ϕ(ei2i3) · · ·ϕ(eil−1il)

is equal to 1. An edge set S ⊆ E is balanced if every cycle C ⊆ S is neutral. A
subgraph is balanced if its edge set is balanced.

By [7, Lemma 2.1(2)] or [10, Theorem 2.8], it follows that a connected T4-gain
graph Φ is balanced if and only if the least Laplacian eigenvalue λn(Φ) is 0.

Since any unbalanced T4-gain graph surely contains a balanced gain subgraph,
as in the signed case (see [2]) it makes sense to consider the frustration number

ν(Φ) (respectively, the frustration index ǫ(Φ)), i.e., the smallest number of vertices
(respectively, edges) whose deletion leads to a balanced gain graph.

Here is the remainder of the paper. In Section 2 we give some basic re-
sults in order to keep the paper self-contained. In Section 3 we shall prove that
λn(Φ) ≤ ν(Φ) ≤ ǫ(Φ) for every T4-gain graph Φ. In the same section we iden-
tify conditions on Φ ensuring that λn(Φ) = ν(Φ), and study how such conditions
somehow simplify under some more restrictive structural constraints.

For the reasons explained above, it is not surprising to discover that conditions
of our Theorems 3.3 and 3.9 are consistent with those required in [2, Theorems
3.3 and 3.7], where the correspondent problems for T2-gain graphs are solved.
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2. Preliminaries

From now on, a T4-gain graph will be simply denoted by Φ = (Γ, ϕ). We write
(Γ, 1) for the T4-gain graph will all neutral edges.

A switching function is any map ζ : V (Γ) → T4. Switching the T4-gain
graph Φ = (Γ, ϕ) means replacing ϕ by ϕζ , the map defined by ϕζ(eij) =
ζ(vi)

−1ϕ(eij)ζ(vj) producing the T4-gain graph Φζ = (Γ, ϕζ). We say that
Φ1 = (Γ, ϕ1) and Φ2 = (Γ, ϕ2) (and their gain functions as well) are switch-

ing equivalent when there exists a switching function ζ such that Φ2 = Φζ
1. By

writing Φ1 ∼ Φ2 or ϕ1 ∼ ϕ2 we mean that Φ1 and Φ2 are switching equiva-
lent. A potential function for ϕ is a function θ : V (Γ) → T4, such that for every
eij ∈

#–

E(Γ), θ(vi)
−1θ(vj) = ϕ(eij).

The following lemma is known to the scholars and holds in the more general
context of complex unit gain graphs.

Proposition 2.1. Let Φ = (Γ, ϕ) be a T4-gain graph. Then the following are

equivalent.

(1) Φ is balanced.

(2) Φ ∼ (Γ, 1).

(3) ϕ has a potential function.

Proof. The equivalence (1)⇔(2) is guaranteed by [11, Lemma 5.3]. Let now ζ
be any switching function. The double implication

(Γ, ϕ) = (Γ, 1)ζ ⇐⇒ the map ζ is a potential function for ϕ

shows that (2)⇔(3).

As usual, we denote by A∗ the conjugate transpose of A ∈ Mm,n(C). Like
[5], we follow the convention that elements of Cn are always presented as column
vectors.

Proposition 2.2. Let Φ = (Γ, ϕ) be a T4-gain graph.

λn(Φ) = min
x∈Cn\{0}

x∗L(Φ)x
x∗x

,(2)

and

(3) x∗L(Φ)x =
∑

eij∈
#–

E(Γ)
i<j

|xi − ϕ(eij)xj |2.

Proof. Since L(Φ) is Hermitian, Equation (2) essentially comes from [5, Theorem
4.2.2]. Equation (3) specializes [7, Lemma 5.3] to T4-gain graphs.
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We end this section by introducing some further notation. Given two graphs
Γ1 and Γ2, the graphs Γ1+Γ2 and Γ1∨Γ2, respectively, denote the disjoint union
and the complete join of Γ1 and Γ2. We shall often omit the subscript to the
identity matrix In, to the all-1 matrix Jn, and to the null matrix On in Mn,n(C)
when the size of the matrices is clear from the context. Let A and B be two
Hermitian matrices; A⊕B denotes a diagonal block matrix whose diagonal blocks
are A and B. If A and B both belong to Mn,n(C), we say that A � B if A − B
is positive semidefinite. Finally A† denotes the Moore-Penrose pseudo-inverse.
Recall that A† is the unique Hermitian matrix such that

(i) A†AA† = A†, (ii) AA†A = A, (iii) A†A = AA†.

Obviously, if A is nonsingular then A† = A−1.

3. Algebraic Frustration

Let Φ = (Γ, ϕ) be a T4-gain graph. For each set of edges E′ ⊆ E(Γ), Φ−E′ denotes
the T4-gain subgraph of Φ obtained by deletion of edges in E′. More precisely,
once defined Γ−E′ as the graph with V (Γ−E′) = V (Γ) and E(Γ−E′) = E(Γ)−E′,
by definition

Φ− E′ =
(

Γ− E′, ϕ| #–

E(Γ)− #–

E ′

)

.

Proposition 3.1. Let Φ = (Γ, ϕ) be a T4-gain graph of order n. Then

(4) λn(Φ) ≤ ǫ(Φ).

Proof. If Φ is balanced, then λn(Φ) = ǫ(Φ) = 0 and the assertion holds. We
assume for the rest of the proof that Φ is unbalanced and Γ is connected.

Case 1. n ≥ 4. Let F ⊂ E(Γ) = E, with |F | = ǫ(Γ) > 0, be a minimum set
of edges for which Φ−F is balanced. By Proposition 2.1, there exists a potential
function

θ : V (Γ− F ) = V (Γ) −→ T4

for ϕ| #–

E(Γ)− #–

F
.

Consider now the n-complex vector x ∈ C
n defined as follows

xT = (x1, . . . , xn) = (θ(v1), . . . , θ(vn)).

It is easy to see that x∗x = n. By Proposition 2.2, it follows that

(5) λn(Φ) ≤
x∗L(Φ)x

x∗x
=

1

n
·











∑

eij∈
#–

E(Γ)
i<j

|xi − ϕ(eij)xj |2











.
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We first claim that

(6)
∑

eij∈
#–

E(Γ)− #–

F
i<j

∣

∣xi − ϕ(eij)xj
∣

∣

2
= 0.

In fact, for each eij ∈ #–

E(Γ) − #–

F , by definition of x and the defining property of
the potential function we get

∣

∣xi − ϕ(eij)xj
∣

∣

2
=

∣

∣θ(vi)− θ(vi)θ(vj)
−1θ(vj)

∣

∣

2
= 0.

Suppose now eij ∈
#–

F . In this case

∣

∣xi − ϕ(eij)xj
∣

∣

2
=

∣

∣θ(vi)− ϕ(eij)θ(vj)
∣

∣

2

= 2− 2Re(θ(vi)θ(vj)ϕ(eij)) ≤ 4.
(7)

By gathering (5), (6) and (7), we finally get

λn(Φ) ≤
x∗L(Φ)x

x∗x
=

1

n
·











∑

eij∈
#–

E(Γ)− #–

F
i<j

|xi − ϕ(eij)xj |2 +
∑

eij∈
#–

F
i<j

|xi − ϕ(eij)xj |2











=
1

n
·











0 +
∑

eij∈
#–

F
i<j

|xi − ϕ(eij)xj |2











≤ 4|F |
n

=
4ǫ(Φ)

n
≤ ǫ(Φ).

Case 2. n ≤ 3. Since Φ = (Γ, ϕ) is unbalanced, then n = 3 and Γ is a triangle.
Being an unoriented cycle, Γ has a gain ϕ(Γ) = ϕ(e12)ϕ(e23)ϕ(e31) defined up to
complex conjugation. A direct computation shows that

(8) λ3(Φ) =











0 if ϕ(Γ) = 1,

2−
√
3 if ϕ(Γ) ∈ {±i},

1 if ϕ(Γ) = −1.

In all cases λ3(Φ) ≤ 1 = ǫ(Φ). This completes the proof.

Let Cn be the (unoriented) cycle of order n. Dealing with complex unit gain
graphs, in [10, Section 2] the authors distinguish balanced, real unbalanced, and
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imaginary unbalanced cycles, depending whether ϕ(Cn) = 1, ϕ(Cn) = −1 or
ϕ(Cn) ∈ {±i}. According to [10, Corollary 2.3],

det(L(Cn, ϕ)) =

{

2 if Cn is imaginary unbalanced,

4 if Cn is real unbalanced.

Such result suggests that an imaginary unbalanced gain cycle lies somehow be-
tween a balanced cycle and a real unbalanced one. Our Equation (8), confirms
such conceptual claim. More generally, by [7, Theorem 6.1] it follows that

λn(Cn, ϕ) =











0 if Cn is balanced,

2− cos(π/2n) if Cn is imaginary unbalanced,

2− cos(π/n) if Cn is real unbalanced,

and obviously 0 < 2− cos(π/2n) < 2− cos(π/n).

The inequality

(9) ν(Φ) ≤ ǫ(Φ)

is not hard to prove. In fact, let F be a subset of edges such that Φ − F is
balanced. By removing from Γ one ending point of each edge in F , we obtain a
gain graph Φ′ which is surely balanced, being a gain subgraph of Φ − F . This
argument proves (9), where the equality holds if and only if F is a matching.

In the next theorem, we prove that λn(Φ) ≤ ν(Φ) for every T4-gain graph
Φ. It is surely instructive to compare the proof of Proposition 3.1 with those
of [2, Lemma 3.1] and [9, Corollary 2.3], where Inequality (4) is proved to hold
for signed graphs. Alternatively, Inequality (4) could be deduced from (9) and
Theorem 3.2.

Before stating our two main theorems, we now describe a particularly con-
venient way to label vertices of any unbalanced gain graph Φ = (Γ, ϕ) with
ν(Φ) = k > 0.

We assume that the graph Λ = Γ[v1, . . . , vk] induced by the ‘first’ k vertices
of Γ is such that relative complement

Φ−
(

Λ, ϕ| #–

E(Λ)

)

=
(

Γ− Λ, ϕ| #–

E(Γ−Λ)

)

is balanced. Denoted by B1, B2, . . . , Bm the connected components of Γ−Λ, the
remaining n− k vertices of Γ lies in B1 + · · ·+Bm. We label them in such a way
that

(10) vi ∈ Bp, vj ∈ Bq, p < q =⇒ i < j.
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Let np = |Bp|. According to (10), the integers corresponding to vertices in Bp are

k + n1 + · · ·+ np−1 + 1, . . . , k + n1 + · · ·+ np.

We introduce a lighter notation for elements in V (Bp), by setting

w
(p)
j = vk+n1+···+np−1+j for all j = 1, . . . , np.

Therefore, V (Λ) = {v1, . . . , vk} and V (Bp) =
{

w
(p)
1 , . . . , w

(p)
np

}

.

Throughout the rest of the paper, we tacitly assume to have chosen for any
unbalanced gain graph Φ a vertex labeling satisfying the above rules. Given two
gain subgraphs S and T of Γ, we will sometimes consider the following subset of
oriented edges

#–

EΓ(S, T ) =
{

eij ∈
#–

E(Γ) | vi ∈ S, vj ∈ T
}

,

where S or T could possibly have a single vertex.

Theorem 3.2. Let Φ = (Γ, ϕ) be a T4-gain graph of order n. Then λn(Φ) ≤ ν(Φ).

Proof. To avoid trivial cases, we assume that ν(Γ) = k > 0. We are considering
a vertex labeling for Γ such that

Φ−
(

Λ, ϕ| #–

E(Λ)

)

=
(

Γ− Λ, ϕ| #–

E(Γ−Λ)

)

is balanced, where Λ = Γ[v1, . . . , vk]. Let B1, B2, . . . , Bm be the connected com-
ponents of Γ− Λ.

In the sequel of the proof, it will come in handy the n-by-m complex matrix
Y = (yjp), where

yjp =

{

1 if the vertex vj belongs to V (Bp),

0 otherwise.

Note that the columns of Y , being mutually orthogonal, are linearly independent.
Up to possibly replacing ϕ with a switching equivalent gain function, we can

assume that all edges in
#–

E(Γ− Λ) are neutral.
Let Φ̃ = (Γ̃, ϕ̃) be the T4-gain graph defined as follows. Γ̃ is the join Λ∨(Γ−Λ),

and ϕ̃ :
#–

E(Γ̃) → T4 is any fixed map such that ϕ̃| #–

E(Γ) = ϕ. By construction, Φ is

a gain subgraph of Φ̃. Let now yh be the h-th column of the matrix Y . Observe
that

(11)
∣

∣yih − ϕ̃(eij)yjh
∣

∣

2
=

{

1 if eij ∈
#–

E Γ̃(Λ, Bh) ∪
#–

E Γ̃(Bh,Λ),

0 otherwise.
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Hence, we have

λn(Φ) ≤
y∗
hL(Φ)yh

y∗
hyh

≤ y∗
hL(Φ̃)yh

y∗
hyh

=
1

|Bh|
·











∑

eij∈
#–

E(Γ̃)
i<j

|yih − ϕ(eij)yjh|2











=
1

|Bh|
·







∑

eij∈
#–

E
Γ̃
(Λ,Bh)

|yih − ϕ(eij)yjh|2






=

|Λ||Bh|
|Bh|

= k,(12)

where the first equality on the third row comes from (11).

Our Theorem 3.2 extends [2, Theorem 3.2] to all T4-gain graphs. Since, for
every T4-gain graph Φ = (Γ, ϕ), λn(Φ) is a lower bound for both the frustration
number ν(Φ) and the frustration index ǫ(Φ), in such larger context too it makes
sense to call algebraic frustration the least Laplacian eigenvalue.

A subgraph T of Γ, a gain z ∈ T4, and a vertex vh of Γ determine the following
subsets of oriented edges

#–

Ez
Φ(vh, T ) =

#–

EΓ(vh, T ) ∩ ϕ−1(z).

Clearly
#–

EΓ(vh, T ) =
⋃

z∈T4

#–

Ez
Φ(vh, T ).

The next theorem identifies conditions required on a T4-gain graph Φ to achieve
λn(Φ) = ν(Φ). The proof of [3, Theorem 2.1] served as source of inspiration.

Theorem 3.3. Let Φ = (Γ, ϕ) be an unbalanced T4-gain graph of order n with

ν(Φ) = k; suppose Λ = Γ[v1, . . . , vk] is such that Φ−
(

Λ, ϕ| #–

E(Λ)

)

is balanced.

Assuming that all edges in
#–

E(Γ− Λ) are neutral, the equality

λn(Φ) = ν(Φ)

holds if and only if the following conditions are satisfied.

(i) Γ = Λ ∨ (B1 + B2 + · · · + Bm), where B1, B2, . . . , Bm are the connected

components of Γ− Λ,

(ii) for any vq ∈ V (Λ) and any h = 1, . . . ,m,

(13)
∣

∣

#–

E1
Φ(vq, Bh)

∣

∣ =
∣

∣

#–

E−1
Φ (vq, Bh)

∣

∣ and
∣

∣

#–

Ei
Φ(vq, Bh)

∣

∣ =
∣

∣

#–

E−i
Φ (vq, Bh)

∣

∣,

(iii) K(Φ,Λ) := L
(

Λ, ϕ| #–

E(Λ)

)

+ (n− 2k)I −∑m
p=1 S

∗
p L(Bp, 1)

† Sp � O,
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where L(Bp, 1)
† denotes the Moore-Penrose pseudo-inverse of L(Bp, 1), and Sp

is the |Bp| × k matrix whose rs-th entry is −ϕ
(

w
(p)
r vs

)

, with w
(p)
r ∈ V (Bp) and

vs ∈ V (Λ).

Proof. Assume first that λn(Φ) = ν(Φ) = k. Then in (12) all inequalities are
equalities, in particular Γ = Λ∨ (B1 +B2 + · · ·+Bm). In addition, columns yh’s
of the matrix Y defined along the proof of Theorem 3.2 form a set of indepen-
dent eigenvectors for the eigenvalue k. On the q-th row, the eigenvalue equation
L(Φ)yh = kyh says

(14) k yqh = deg(vq) yqh −
∑

eqj∈
#–

E(Γ)

ϕ(eqj)yjh (q is fixed).

If vq belongs to V (Λ), then yqh = 0 for all h’s, and Equation (14) becomes

∑

eqj∈
#–

EΓ(vq ,Bh)

ϕ(eqh) = 0,

and this is only possible if Equation (13) holds.
We now use the hypothesis that k is the least eigenvalue. Let us consider the

matrix L′ = L(Φ)− kIn. Clearly

Spec(L′) = {λ− k |λ ∈ Spec(L(Φ))}.

In particular, λn(L
′) = 0 and L′ is positive semidefinite. According to the chosen

vertex labeling, the matrix L′ can be described as follows in terms of blocks

L′ =















L(Λ) + (n− 2k)Ik S∗
1 · · · S∗

m

S1 L(B1)
...

. . .

Sm L(Bm)















,

where L(Λ) and L(Bp) stand for L
(

Λ, ϕ| #–

E(Λ)

)

and L(Bp, 1), respectively. Note

that Sp is the np × k matrix whose j-th column Sj
p contains the opposite of gains

of oriented edges connecting the several vertices of Bp to the vertex vj ∈ V (Λ);
namely Sp =

(

S1
p |S2

p | · · · |Sk
p

)

, with

Sj
p = −

(

ϕ
(

w
(p)
1 vj

)

, ϕ
(

w
(p)
2 vj

)

, . . . , ϕ
(

w(p)
np

vj

))⊤
.

We now look for a nonsingular matrix C such that C∗L′C is block diagonal. To
this purpose, we have to find suitable matrices Zp, for p = 1, . . . ,m, such that
Sp − L(Bp)Zp = O.
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Let 1q ∈ C
q be the all-ones vector. Since ϕ|Bp

= 1, then 1np belongs to the

kernel of L(Bp). The already proved Condition (ii) implies that Sj
p is orthogonal

to 1np . That is why Sj
p surely belongs to the column space of L(Bp), and conse-

quently there exists a non-zero vector Zj
p such that Sj

p = L(Bp)Z
j
p . Hence, the

matrix Zp =
(

Z1
p |Z2

p | · · · |Zk
p

)

satisfies Sp − L(Bp)Zp = O, as wanted.

Let Spec(L(Bp)) =
{

µ1, . . . , µnp−1, µnp = 0
}

. The Hermitian matrix L(Bp)
is unitarily diagonalizable; in other words

L(Bp) = U diag
(

µ1, . . . , µnp−1, 0
)

U∗,

where U is a unitary matrix whose j-th column consists of a normalized eigenvec-
tor of µi. We can suppose that the last column of U is 1√

np
1np . The Moore-Penrose

pseudo-inverse of L(Bp) has the following form

L(Bi)
† = U diag

(

µ−1
1 , µ−1

2 , . . . , µ−1
np−1, 0

)

U∗.

Thus,

L(Bp)
†L(Bp) = U diag(1, . . . , 1, 0)U∗ = U

(

Inp − diag(0, . . . , 0, 1)
)

U∗

= Inp −
1

np
Jnp .

Recall now that
(

Sr
p

)∗ · Jnp = Onp . It follows that the complex number (Sr
p)

∗ ·Zs
p

is equal to

(15)
(

Sr
p

)∗
(

Inp −
1

np
Jnp

)

Zs
p =

(

Sr
p

)∗
L(Bp)

†L(Bp)Z
s
p =

(

Sr
p

)∗
L(Bp)

†Ss
p.

Consider the following block defined matrix

C =















Ik O · · · O

−Z1 In1

...
. . .

−Zm Inm















.

It is straightforward to check that C⊤L′C is a block diagonal matrix given by

C∗L′C =

[

L(Λ) + (n− 2k)I −
m
∑

p=1

S∗
pZp

]

⊕ L(B1)⊕ · · · ⊕ L(Bm).

Since L′ is positive semidefinite, then C⊤L′C is positive semidefinite as well. In
particular, we get

L(Λ) + (n− 2k)I −
m
∑

p=1

S∗
pZp � O,
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which is equivalent to Condition (iii) by (15).
The ‘if’ part of the proof is much shorter. Assume that Φ is a T4-gain

graph satisfying (i)–(iii). Since, for every h = 1, . . . ,m, L(Φ)yh = kyh, surely
k ∈ Spec(L(Φ)) with at least multiplicity m. Condition (iii) ensures that k =
min Spec(L(Φ)).

It remains to prove that ν(Γ) = k. According to Theorem 3.2, we have that
k ≤ ν(Γ). However, by deleting the vertices of Λ we obtain a balanced gain graph,
hence we also have ν(Γ) ≤ k. This completes the proof.

Remark 3.4. In the statement of Theorem 3.3, the assumption ϕ|Bh
= 1 for

each j = 1, . . . ,m is not really restrictive. In fact, because of balancedness of the
several Bh’s, given any gain function ϕ : V (Γ) → T4 there always exists a map ϕ′

such that ϕ′ ∼ ϕ and ϕ′|Bh
= 1 for each j = 1, . . . ,m.

The matrices Sp’s defined in the statement of Theorem 3.3 deserve a comment.

If all oriented edges in
#–

EΓ(Λ,Γ−Λ) sharing a same ending vertex have the same
gain, we have S1

p = · · · = Sk
p := Ep, and the matrix K(Φ,Λ) assumes a slightly

more treatable form. Namely,

K(Φ,Λ) = L
(

Λ, ϕ| #–

E(Λ)

)

+ (n− 2k)I −





m
∑

p=1

E∗
p L(Bp, 1)

† Ep



 Jk.

The following corollary is useful to quickly exclude the possibility for a T4-gain
graphs to satisfy Condition (ii) of Theorem 3.3.

Corollary 3.5. Let Φ = (Γ, ϕ) be an unbalanced T4-gain graph of order n with

ν(Φ) = k; let Λ ⊂ Γ with |Λ| = k such that Φ−
(

Λ, ϕ| #–

E(Λ)

)

is balanced. If λn(Φ)

= ν(Φ), then each connected component of Γ−Λ has an even number of vertices.

Proof. Let B a connected component of Γ− Λ. From Conditions (i) and (ii) in
Theorem 3.3, it immediately follows that

|B| = 2 ·
∑

vq∈V (Λ)

(

| #–E1
Φ(vq, B)|+ | #–Ei

Φ(vq, B)|
)

.

Example 3.6. Consider the gain graph Φ depicted in Figure 1. Each continuous
(respectively, dashed) thick undirected line represents two opposite oriented edges
with gain 1 (respectively, gain −1); whereas the arrows detect the oriented edges
uv such that ϕ(uv) = i.

We have that

L(Φ) =





L(S) + 8I2 S∗
1 S∗

2

S1 L(B1) + 2I4 O
S2 O L(B2) + 2I4



 .
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B1 B2

Λ

Figure 1. A gain graph Φ with λn(Φ) = ν(Φ) = 2.

Since Conditions (i) and (ii) of Theorem 3.3 hold, then 2 ∈ Spec(L(Φ)) with
multiplicity at least 2. Now min (Spec(L(Φ))) = 2 if and only if Condition (iii)
of Theorem 3.3 holds as well. Now, we must check whether the matrix K(Φ, λ)
is positive semidefinite. A suitable vertex labeling for B1 and B2 gives

(S1
1)

∗ = (S2
1)

∗ := (E1)∗ = (−1, 1, i,−i),

and
(S1

2)
∗ = (S2

2)
∗ := (E2)∗ = (−i, i,−i, i).

After some computations we find that

L(B1)
† = L(B2)

† =
1

16
·









5 −1 −3 −1
−1 5 −1 −3
−3 −1 5 −1
−1 −3 −1 5









,

Hence, E∗
1 L(B1)

† E1 = 3/2 and E∗
2 L(B1)

† E2 = 1.
Finally, we compute

K(Φ,Λ) = L
(

Λ, ϕ| #–

E(Λ)

)

+ 6I −





2
∑

p=1

E∗
p L(Bp, 1)

† Ep



 J2 =
1

2
·
(

9 −7
−7 9

)

,

which is positive definite. Through a MATLAB computation we get

Spec(L(Φ)) =
{

2(3); 4(3); 8−
√
8; 6; 10; 8 +

√
8
}

,

confirming that λ10(Φ) = 2.

The next example will convince the reader that Condition (iii) in Theorem
3.3 is really independent from Conditions (i) and (ii).
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Example 3.7. We consider the two non-switching equivalent gain graphs Φ =
(Γ, ϕ) and Φ′ = (Γ, ϕ′) depicted in Figure 2, where Γ is the wheel graph {s}∨C6.
Once again, each continuous (respectively, dashed) thick undirected line represents
two opposite oriented edges with gain 1 (respectively, gain −1); arrows identify
instead the oriented edges uv such that ϕ(uv) = i.

s

Φ Φ′

s

Figure 2. Two gain graphs Φ and Φ′ of order 7 such that

λ7(Φ) < ν(Φ) = 1 = ν(Φ′) = λ7(Φ
′).

Note first that ϕ|C6

= ϕ′|C6

= 1, hence ν(Φ) = ν(Φ′) = 1. In order to make

our notation consistent with Theorem 3.3, we set {s} = Λ and C6 = B1 = B. In
particular

∣

∣

#–

E1
Φ(s,B)

∣

∣ =
∣

∣

#–

E−1
Φ (s,B)

∣

∣ = 1 =
∣

∣

#–

E1
Φ′(s,B)

∣

∣ =
∣

∣

#–

E−1
Φ′ (s,B)

∣

∣,

and
∣

∣

#–

Ei
Φ(s,B)

∣

∣ =
∣

∣

#–

E−i
Φ (s,B)

∣

∣ = 2 =
∣

∣

#–

Ei
Φ′(s,B)

∣

∣ =
∣

∣

#–

E−i
Φ′ (s,B)

∣

∣.

In the cases at hand, it turns out that

K(Φ,Λ) = −0.5 6� 0 and K(Φ′,Λ) = 3.5 � 0.

Hence, Theorem 3.3 predicts that

λ7(Φ) < ν(Φ) = 1 = ν(Φ′) = λ7(Φ
′),

which is confirmed by MATLAB computations. In fact, the Laplacian spectra of
the two gain graphs turn out to be

Spec(L(Φ)) = {0.9161; 1; 2; 4(2); 4.7868; 7.2971},

and
Spec(L(Φ′)) = {1; 1.506; 2; 3; 4; 4.8901; 7.6039}.

Let Φ and Φ′ be the two gain graphs considered in Example 3.7. Sharp-eyed
readers may already spotted that, for all z ∈ T4, endpoints of oriented edges in
#–

Ez
Φ′(s,B) are never adjacent. On the contrary

#–

Ei
Φ(s,B) = {su, sv} and uv ∈ E(Γ).
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The authors believe that, in the set {Φ,Φ′}, only Φ′ fulfills Condition (iii)
of Theorem 3.3 precisely for the just mentioned structural difference. In fact we
state the following conjecture.

Conjecture 3.8. Let B be a regular graph of order 2q, and let Λ consist of a

single vertex s. Suppose ϕ : Γ → T4 is a gain function defined on the cone graph

Γ = Λ ∨B satisfying

(i) all oriented edges in
#–

E(B) are neutral;

(ii)
∣

∣

∣

#–

E1
(Γ,ϕ)(s,B)

∣

∣

∣
=

∣

∣

∣

#–

E−1
(Γ,ϕ)(s,B)

∣

∣

∣
and

∣

∣

∣

#–

Ei
(Γ,ϕ)(s,B)

∣

∣

∣
=

∣

∣

∣

#–

E−i
(Γ,ϕ)(s,B)

∣

∣

∣
;

(iii) for all z ∈ T4, the endpoints of oriented edges in
#–

Ez
(Γ,ϕ)(s,B) form an inde-

pendent set.

Then, the algebraic frustration λ2q+1(Γ, ϕ) is equal to the frustration number

ν(Γ, ϕ) = 1.

Anyway Conjecture 3.8 claims that Conditions (i)–(iii) are sufficient to get
λ2q+1(Γ, ϕ) = ν(Φ), but certainly they are not necessary. There are gain graphs of
type Φ = ({s}∨B;ϕ), the graph B being regular of order 2q, for which Condition
(iii) of Conjecture 3.8 fails, but nevertheless λ2q+1(Φ) = ν(Φ) = 1. Examples of
such gain graphs can be provided with the aid of our last theorem.

Theorem 3.9. Let K4t and Λ denote the complete graph of order 4t and any

graph of order k ≤ 2t, respectively. Consider a T4-gain graph Φ = (Γ, ϕ) such

that

• Γ = Λ ∨K4t,

• all oriented edges in
#–

E(K4t) are neutral,

•
(

Λ, ϕ| #–

E(Λ)

)

is the smallest gain subgraph such that the relative complement

Φ−
(

Λ, ϕ| #–

E(Λ)

)

is balanced,

• for every fixed vertex w ∈ V (K4t), and for every pair v, v′ ∈ V (Λ), we have

ϕ(vw) = ϕ(v′w) and

∣

∣

#–

E1
Φ(v,K4t)

∣

∣ =
∣

∣

#–

E−1
Φ (v,K4t)) =

∣

∣

#–

Ei
Φ(v,K4t))

∣

∣ =
∣

∣

#–

E−i
Φ (v,K4t))

∣

∣ = t.

Then, the algebraic frustration λ4t+k(Φ) is equal to the frustration number

ν(Φ) = k.

Proof. Under the hypotheses of the statement, a gain graph Φ clearly satisfies
Conditions (i) and (ii) of Theorem 3.3. We now label the vertices w1, . . . , w4t of
K4t in such a way that, for every v ∈ V (Λ),

ϕ(vwct+d) = e
cπ
2 (c ∈ {0, 1, 2, 3} and d = 1, . . . , t).
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We have now to check that Condition (iii) of Theorem 3.3 holds. In our case

K(Φ,Λ) = L
(

Λ, ϕ| #–

E(Λ)

)

+ (4t− k)Ik −
(

E∗L(K4t, 1)
†E

)

Jk,

where E∗ = (−1, . . . ,−1, i, . . . , i, 1, . . . , 1,−i, . . . ,−i).
It can be proved that L(K4t, 1)

† = (lij), where

16t2 · lij =
{

4t− 1 if i = j,

− 1 if i = j.

Hence, E∗L(K4t, 1)
†E = 1.

Note now that (4t − k)Ik − Jk is symmetric diagonally dominant, since we
are supposing k ≤ 2t. This implies that

K(Φ,Λ) = L
(

Λ, ϕ| #–

E(Λ)

)

+ ((4t− k)Ik − Jk) � 0.

Since the gain graph Φ satisfies all hypotheses of Theorem 3.3, we have λ4t+k(Φ) =
ν(Φ) = k.
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