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Abstract

The complementary spectrum of a connected graph G is the set of the
complementary eigenvalues of the adjacency matrix of G. In this note, we
discuss the possibility of representing G using this spectrum. On one hand,
we give evidence that this spectrum distinguishes more graphs than other
standard graph spectra. On the other hand, we show that it is hard to
compute the complementary spectrum. In particular, we see that computing
the complementary spectrum is equivalent to finding all connected induced
subgraphs.
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1. Introduction

One of the main goals of spectral graph theory consists in giving information
about a graph G by just looking at its spectrum. For this, we associate a graph
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G to a matrix M and analyze the eigenvalues or eigenvectors of M . These eigen-
values are called the spectrum of G with respect to the matrix M and its multiset
will be denoted by M -spectrum(G).

We say that two graphs are cospectral with respect to the matrix M , or that
are M -cospectral, if their M -spectra are equal. A graph G is determined by its

M -spectrum, M -DS for short, if only isomorphic graphs are cospectral with G.
Is there a matrix M for which all graphs are M -DS? The answer is no.

For all known matrices M associated to graphs, there exist many examples of
non isomorphic graphs that share the same M -spectrum. The smallest example
known for the adjacency matrix is given in Figure 1.

Figure 1. Nonisomorphic graphs with the same spectrum, but distinct complementary
spectrum.

This missing feature is unfortunate for the area of spectral graph theory
because it means the spectrum of a graph G is not enough to determine all
properties of G. Important motivation for our question comes from complexity
theory. It is still undecided whether graph isomorphism is an NP-hard problem.
Since checking whether two graphs are M -cospectral can be done in polynomial
time, the isomorphism problem concentrates on checking isomorphism between
cospectral graphs.

A main research topic in this direction is to study if there is a matrix M (say
adjacency, Laplacian, signless Laplacian, etc.) that distinguishes more graphs.
We will make this concept more precise in the next section, but in general, the
idea is to verify whether the portion of graphs that have an M -cospectral mate
is smaller for a particular matrix M .

The main purpose of this note is to underscore and to understand a recent
new proposal for representing a graph using complementary eigenvalues. Instead
of changing the matrix associated with G, the suggestion is to modify the concept
of eigenvalue. In order to explain the new proposal and its consequences, we will
recall here a few facts.

Definition 1. Let A be a real matrix of order n. A real number λ is called a
complementary eigenvalue of A if there exists a nonzero vector x ∈ R

n satisfying
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the complementarity system

0 ≤ x ⊥ (Ax− λx) ≥ 0

where ⊥ stands for orthogonality and x ≥ 0 means that every entry of vector x
is non-negative.

Fernandes et al. [6], studied the complementary eigenvalues of matrices asso-
ciated to graphs (Laplacian, adjacency, etc.) and we say that the complementary

spectrum of a graph G is the set of complementary eigenvalues of its adjacency
matrix. Seeger [13] proposes to represent a graph by its complementary spectrum.
As an example, the smallest pair of two nonisomorphic A-cospectral graphs of
Figure 1 have different complementary spectrum.

Indeed, the spectrum of both graphs is the multiset {−2, 0, 0, 0, 2}, whereas
the complementary spectrum of the graph on the left is {0, 1,

√
2,
√
3, 2} and the

complementary spectrum of the graph on right is {0, 1,
√
2, 2}. (See Section 3

how to compute the complementary spectrum of graphs).
In this paper, we shall reason that this new spectral way of representing a

graph may do a better job in distinguishing them. For this, we formalize the
proper definitions. Two graphs are said to be complementary cospectral if they
have the same complementary spectrum.

Definition 2. We say that a connected graph G is determined by its complemen-

tary spectrum—DCS for short—if any cospectral graph H is either isomorphic to
G or the number of vertices of H and G are distinct.

Throughout the paper, while reviewing some well known facts about spectra
of graphs, we pose research questions that seem to be relevant in light of this
new look on the spectra of graphs. In particular, we address the question of
whether there exist pairs of non isomorphic graphs with the same complementary
spectrum. We advance this by saying that we have found no examples of non
isomorphic graphs with the same complementary spectrum.

The remainder of the paper is organized as follows. In the next Section 2
we review and discuss the issue of distinguishing graphs by their spectra. In
Section 3 we show how to compute the complementary spectrum of a graph
G—an interesting interplay between algebraic and combinatorial problems. We
also explain Seeger’s proposal for determining graphs from their complementary
spectra. In Section 4 we show that some graphs are DCS. The path, the cycle,
the complete and the star are DCS. We also show that all graph with less than 8
vertices are DCS. In section 5 we find several classes of graphs G whose elements
have unique complementary spectrum in G. Finally, in Section 6, we discuss
the advantages and disadvantages of the proposal representation of the graphs.
Particularly, we address the question of the cardinality of the complementary
spectrum of a graph.
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2. Distinguishing Graphs by Their Spectra

When a graph G is M -DS? This means that G has a unique M -spectrum over all
the graphs having the same number of vertices of G. As van Dam and Haemers
[14] point out, it is very hard to prove that a graph G is M -DS, for any matrix M .
In fact it seems easier to find families of graphs that have M -cospectral mates.

The milestone work of Schwenk [12] shows that almost all trees have an
A-spectral mate, meaning that hardly any tree can be characterized by its A-
spectrum. This result has been extended to Laplacian, signless Laplacian and
distance matrix by McKay in [10]. In 1982, Godsil and Mckay [7] introduced an
operation, now called the GM-switching, that has been used to construct families
of cospectral graphs with respect to the adjacency and other matrices associated
to a graph.

These developments seem to go against the conjecture that almost all graphs
are DS. This conjecture has been forged by van Dam and Haemers in the papers
[8, 14, 15]. The conjecture means, if true, that among all non-isomorphic graphs
on at most n vertices, the fraction that is DS goes to 1 when n goes to infinity. We
observe that since the number of trees compared to the number of all graphs is
negligible, the fact that almost all trees have a cospectral mate does not interfere
with the general conjecture. This conjecture appears to be formulated for any
matrix M associated to graphs (Laplacian, Adjacency, signless Laplacian, etc.).
However, it is our understanding that the conjecture is far from being settled.
We noticed that there even exist a few arguments against the validity of the
conjecture [8].

Before the conjecture was firmly stated, there was a debate whether any
particular matrix would distinguish more graphs than other matrices. More pre-
cisely, it was discussed whether the portion of DS graphs among all graphs on
at most n vertices is larger for a particular matrix M associated to a graph. In
2009, Cvetković and Simić, in the beautiful series of papers [3, 4, 5], introduced
many properties of the signless Laplacian matrix for graphs and, in particular,
advocate that the signless Laplacian matrix would distinguish more graphs. From
the table

n 4 5 6 7 8 9 10 11

rn 0 0.059 0.064 0.105 0.139 0.186 0.213 0.211
sn 0 0 0.026 0.125 0.143 0.155 0.118 0.090
qn 0.182 0.118 0.103 0.098 0.097 0.069 0.053 0.038

where rn, sn and qn are the spectral uncertainty associated with the adjacency,
Laplacian and signless Laplacian, respectively, that is the portion of graphs on
n vertices that have a cospectral mate among graphs on n vertices. Quoting the
authors: “We see that numbers qn are smaller than the numbers rn and sn for
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n ≥ 7. In addition, the sequence qn is decreasing for n ≤ 11 while the sequence
rn is increasing for n ≤ 10. This is a strong basis for believing that studying
graphs by Q-spectra is more efficient than studying them by their (adjacency)
spectra.”

Even though it is no longer clear that the Q matrix distinguishes more graphs
than other matrices, it is a fact that these computational results were used for a
long time by many authors to justify the use of this matrix. It is worth mentioning
a somewhat unexpected result by Carvalho et al. [2] which shows the existence
of exponentially many Q-cospectral threshold graphs.

Nevertheless, the series of papers by Cvetković and Simić presented the Q-
theory for graphs. The signless Laplacian matrix is now considered an important
matrix that determines many structural properties of graphs. The following ques-
tion still remains.

Problem 3. Is there a matrix M associated to graphs such that the M -spectra
distinguish more graphs than other matrices?

3. Computing the Complementary Spectrum of a Graph

Let G be a connected graph with n vertices. The largest eigenvalue of the adja-
cency matrix A(G) of G, denoted by λ(A(G)), is called the spectral radius or the
index of G. The most important information about computing the complemen-
tary spectrum is the following result [6].

Theorem 4. Let G be a connected graph with n vertices. The complementary

spectrum CS(G) of G is the set composed by the spectral radius of all induced

connected subgraphs of G.

We observe that the complementary spectrum has only nonnegative and no
repeated values. Moreover, because the complementary spectrum of a discon-
nected graph is the union of the complementary spectrum of its components, we
may consider, without loss of generality, only connected graphs.

We refer to [13] for several important properties of the complementary spec-
trum CS(G) of G, but recall here a few facts that are relevant to this paper. Let
us denote by ̺ = ̺(G) the largest complementary eigenvalue and by ̺2 = ̺2(G)
its second largest complementary eigenvalue.

Fact 1. 0 is the smallest complementary eigenvalue of any graph G.

Fact 2. ̺ = λ(A(G)) is the spectral radius of A(G).

Fact 3. ̺2 = max {λ(G− v) : v ∈ V (G) and v is not a cut vertex of G}.
Theorem 4 is an interplay between a combinatorial problem—the determi-

nation of connected induced subgraphs—an algebraic problem—the computation
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of spectral radii of principal submatrices of the adjacency matrix—and an opti-
mization problem—the computation of complementary eigenvalues.

We will see further in this note that the cardinality of the set CS(G) plays an
important role. Only as an observation, we point out that two graphs with the
same number of vertices may have a different number of complementary eigen-
values. As an example the cycle C4 on 4 vertices has CS(C4) = {0, 1,

√
2, 2},

while the graph H composed by a triangle with a pendent vertex has CS(H) =
{0, 1,

√
2, 2, λ(H)}, where λ(H) ≈ 2.17009. Additionally, there may exist noniso-

morphic subgraphs of G having the same index, hence the following holds [6].

Corollary 5. Let G be a connected graph with n vertices and b(G) be the number

of induced nonisomorphic connected subgraphs of G. Then

|CS(G)| ≤ b(G) and n ≤ b(G) ≤ 2n − 1.

The lower bound of Theorem 4 is nicely settled by Seeger [13] as follows. For
a given n, we say that the complete graph Kn, the star Sn, the path Pn and the
cycle Cn, all with n vertices, are elementary graphs.

Theorem 6. Let G be a connected graph with n vertices. Then

n ≤ |CS(G)|.

Equality holds if and only if G is an elementary graph.

4. Graphs Determined by the Complementary Spectrum

The number of complementary eigenvalues of a graph G is not determined by the
number of vertices of G, instead it depends on the number of different spectral
radii of the induced subgraphs of G. Hence, an interesting strategy to characterize
graphs or classes of graphs by this spectral property is to study the cardinality of
the complementary spectrum. For example, if we show that a graph G with n ver-
tices is the only graph among all graphs on n vertices that has k complementary
eigenvalues, we will have shown that this graph is DCS.

Let Kn, Cn, Pn and Sn be, respectively, the complete graph, the cycle, the
path and the star on n vertices. Following Seeger, we will call them elementary
graphs.

Theorem 7. Elementary graphs are DCS.

Proof. Let S(G) denote the set of all induced connected subgraphs of G and
CS(G) denote the set of complementary spectrum of G. We know that
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S(Kn) = {K1,K2, . . . ,Kn−1,Kn},
S(Cn) = {P1, P2, . . . , Pn−1, Cn},
S(Pn) = {P1, P2, . . . , Pn−1, Pn},
S(Sn) = {S1, S2, . . . , Sn−1, Sn}.

So, we have
CS(Kn) = {0, 1, 2, . . . , n− 1},
CS(Cn) = {ω1, ω2, . . . , ωn−1, 2},
CS(Pn) = {ω1, ω2, . . . , ωn−1, ωn},
CS(Sn) = {0, 1,

√
2, . . . ,

√
n− 1},

where ωi = 2 cos
(

π
i+1

)

. As we know the set of all induced subgraphs of the

elementary graphs, we also know that their complementary spectra are different
from each other. Actually, except for C5 and S5, we just need to compute the
spectral radius of the elementary graphs to see this. And for C5 and S5, we
just need to compute the second largest complementary eigenvalue to see that
̺2(C5) 6= ̺2(S5), in spite of ̺(C5) = ̺(S5).

Moreover, by Theorem 6, these are the only graphs G having |CS(G)| = n,
hence their complementary spectrum is different from any other graph with n
vertices. This proves the result.

Notice that we know all the induced connected subgraphs of Kn, Cn, Pn

and Sn. Hence, we not only determine these graphs by their complementary
spectrum, but we can also compute the whole complementary spectra of the
elementary graphs Kn, Cn, Pn and Sn.

4.1. Ordering of graphs

In this subsection, we give further details of the spectral representation of graphs
proposed by Seeger [13].

As a motivation, consider the set C6 of all graphs with n ≤ 6 vertices. Denote
by |G| the number of vertices of G. Define in C6 the following order

H � G ↔ (|H|, ̺(H), ̺2(H)) �lex (|G|, ̺(G), ̺2(G)),(1)

where �lex is the lexicographic order in R3.
Seeger has shown, by computing numerically the complementary spectrum,

that this lexicographic rule is a total ordering in C6, that is, all graphs with n ≤ 6
vertices can be distinguished either by the largest or the second largest comple-
mentary eigenvalue. According to our definition, this means that all graphs up
to 6 vertices are DCS.
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For graphs with 7 vertices, we report the following experiment. For the first
step, we computed the index of all 853 graphs on 7 vertices. Notice that when
the spectral radii of these graphs are different, it means that these graphs are de-
termined by their complementary spectrum once that the largest complementary
eigenvalue of them are all different.

In case two graphs G and H have ̺(G) = ̺(H), we compute the second
largest complementary eigenvalue. We removed all non-cut vertices of these
graphs obtaining all possible connected induced subgraphs (with 6 vertices), after
that we compute the spectral radii of all these connected induced subgraphs and
chose the largest one. In this second step we looked for the graphs with the same
̺2 and, for this set, it was necessary to compute ̺3.

In the third step we determined the candidate subgraphs to be ̺3 for these
graphs, based on the interlacing of eigenvalues. We then computed the ̺3 and,
for those where ̺3 was the same, we computed ̺4 in the same way we did for ̺3.
Finally, this was the final step. There is no pair of graphs that has the same ̺,
̺2, ̺3 and ̺4.

This means that the order given by equation 1 is not enough to distinguish
all graphs with 7 vertices. However, we only need to compute the first four largest
complementary eigenvalues to determine all graphs on 7 vertices. In any event,
we can state the following result.

Theorem 8. All graphs with n ≤ 7 vertices are DCS.

This may suggest that this complementary spectrum approach may be an
alternative spectral technique that defines a greater portion of graphs.

To finish this section, we give the complete ordering formulation given by
Seeger. For the set C of all connected graphs, define the function

G ∈ C −→ Ψq(G) = (|G|, ̺(G), ̺2(G), . . . , ̺q(G)),

where ̺k(G) = 0 if k > |CS(G)|. Define the order

H �q G ⇔ Ψq(H) � Ψq(G),(2)

a natural problem is to determine whether there exists q such that this defines a
total ordering in C.
Problem 9. Let C be the set of all connected graphs. Does there exist q such
that (2) defines a total order in C?

A positive answer to this question is equivalent to say that all graphs are DCS.

5. Classes with Unique Complementary Spectrum

Consider a class of graphs G in which each element G ∈ G has a unique comple-
mentary spectrum. More precisely, if for H,G ∈ G we have ̺(H) = ̺(G) ⇐⇒ H
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and G are isomorphic. We say in this case that the graphs of G are determined by
their complementary spectrum in G. For short we say that G is DCS. Notice that
the graphs of these classes are DCS just inside the class they belong to, which
may be a first step to show they are DCS.

It is well known that the largest complementary eigenvalue of a graph G is
the spectral radius of G. If a class G is such that each element G ∈ G has a
unique spectral radius, then by the above definition, we say that G is DCS.

In this section we find a few classes G which are DCS.

5.1. Complete bipartite graphs

We say that a graph G on n vertices is complete bipartite if the set of vertices
of G can be partitioned into two disjoint sets of cardinality r and s such that
none of the vertices in each set are adjacent and every vertex in one bipartition
is adjacent to every vertex in the other bipartition. We will denote this graph by
Kr,s. It is well known that

̺(Kr,s) =
√
rs.(3)

If we fix the number of vertices, we have r + s = n, in order to prove the
uniqueness of the spectral radius, we shall take two different partitions of n, say
n = p+ q = r + s, and show that if Kp,q and Kr,s have the same spectral radius
then they are isomorphic.

Notice that rs = rn − r2 and pq = np − p2. Suppose pq = rs, so that Kp,q

and Kr,s have the same spectral radius. Then (r− p)n = (r− p)(r+ p). If p = r,
then q = s and Kp,q and Kr,s are isomorphic. If p 6= r, then n = p + r. But
n = p+ q, so q = r and, consequently, p = s. We conclude once again that Kp,q

and Kr,s are isomorphic.

This means that the class of the complete bipartite graphs is DCS.

In this class of graphs, we can actually compute the spectral radius of the
graphs. We notice there are methods of ordering a whole class of graphs by their
spectral radius, without computing them. This will also allows one to conclude
that this class is DCS without really knowing what the spectral radius is.

5.2. Lollipops

A lollipop with n vertices, denoted by Hn,k, is a graph obtained by pending in a
vertex of the cycle Ck, a terminal vertex of the path Pn−k, where 3 ≤ k ≤ n.

In order to prove that the class of lollipop graphs is DCS, we need the following
concept.

An internal path in a graph G, denoted by v1v2 · · · vr−1vr, is a path beginning
at v1 and ending at vr, where v1 and vr both have degree bigger than two, while
all other vertices have degree two. The vertices v1 and vr are not necessarily
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distinct. We denote by Wn the tree with n vertices where two vertices have
degree three and the distance between them is n− 5. In the following we denote
by λ the spectral radius of the graph we are considering. The following result,
according to Belardo [1], appears in the work by Hoffman and Smith [9].

Lemma 10. Let G be a graph with n vertices, G 6= Cn,Wn. Let G′ be the graph

with n+1 vertices obtained from G by inserting a new vertex of degree two in an

edge e. Then

(i) if e lies on an internal path, then λ(G′) < λ(G),

(ii) if e does not lie on an internal path, then λ(G′) > λ(G).

Theorem 11. Given n, if we take 3 ≤ k ≤ n− 1, then λ(Hn,k+1) < λ(Hn,k).

Proof. Consider the graph Hn,k. By Lemma 10, if we add a vertex in an edge of
Ck, we have λ(Hn+1,k+1) < λ(Hn,k). If we delete the end vertex of the path Pn−k

in Hn+1,k+1, we obtain λ(Hn,k+1) < λ(Hn+1,k+1), because Hn,k+1 is a proper
subgraph of Hn+1,k+1. This proves the result.

From this result we conclude that lollipops with n vertices are determined
by their spectral radius. Hence they the class is DCS.

5.3. Starlike trees

A starlike tree is a tree having a unique vertex of degree greater than 2. In [11],
the authors prove that, for a fixed n, all starlike trees with n vertices have distinct
spectral radius. In the next paragraph, we explain the result in a more precise
way.

A starlike tree with n vertices may be represented as a partition of n−1, say
T = [m1,m2, . . . ,mk], where mi ≥ 1, n− 1 = m1 +m2 + · · ·+mk, k ≥ 3 and the
paths Pmi

are attached to common vertex v. Moreover, without loss of generality
we assume that 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk. In the paper [11], it is proven that
the lexicographic order of the k-tuple [m1,m2, . . . ,mk] gives a total ordering of
the spectral radii of the starlike trees with n vertices.

This shows that the class of starlike trees is DCS.

5.4. Trees—computational results

A tree T is a connected graph without cycles. With respect to the complementary

spectrum of a tree, we have performed some experiments and the following results
arise.

Considering all trees up to 14 vertices, we observe that there are no cospectral
pairs if we consider the complementary spectrum. The experiment consists in
fixing n and computing the spectral radii of all trees on n vertices. For trees with
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the same spectral radius, we further compute the second largest complementary
eigenvalue taking all non-cut vertices and compute the spectral radii of all possible
induced subgraphs.

For n up to 6 vertices, no tree has the same spectral radius. For n ≤ 10 there
are no pairs of cospectral trees with respect to the complementary spectrum.
More than that, they are determined just by ̺ and ̺2. We summarize the results
in Table 1 and notice that we need only ̺, ̺2 and ̺3 to distinguish all trees up to
14 vertices. In Seeger notation, it means that Ψ3(G) = (|G|, ̺(G), ̺2(G), ̺3(G))
is a total order in the class of trees up to 14 vertices.

n Trees Cospectral Trees ̺ equal same ̺, ̺2 same ̺, ̺2, ̺3
7 11 0 2 graphs 0 0

1 pair
8 23 2 graphs 4 graphs 0 0

1 pair 2 pairs
10 graphs 18 graphs

9 47 5 pairs 7 pairs 0 0
1 quartet

8 graphs 24 graphs
10 106 4 pairs 9 pairs 0 0

2 triples
60 graphs 106 graphs 2 graphs

11 235 27 pairs 31 pairs, 9 triples, 1 pair 0
2 triples 3 quartets and 1 quintet

119 graphs 197 graphs 8 graphs
12 551 49 pairs 57 pairs, 48 triples, 4 pairs 0

7 triples 2 quartets and 5 quintets
29 graphs

13 1301 192 sets 662 graphs 10 pairs 0
3 triples
51 graphs

14 3159 390 sets 1245 graphs 24 pairs 0
1 triple

Table 1. Experiment.

6. Final Remarks

In this note, following the ideas of [6] and [13], we have shown how to use com-
plementary eigenvalues of the adjacency matrix to represent the spectrum of a
graph. We have defined the notion of a connected graph being defined by the

complementary spectrum—DCS—when it has a unique complementary spectrum
among all graphs with the same order. We show that the elementary graphs
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(the path, the cycle, the star and the complete graph) are DCS. We show, by
computing the complementary spectra, that all graphs with less than 8 vertices
are DCS. Additionally, we have not found two non isomorphic connected graphs
with the same complementary spectrum.

As we have seen, the complementary spectrum of a graph G is the set com-
posed by the spectral radii of all connected induced subgraphs of G. This result
may be seen as a nice relationship between the algebraic problem of computing
the complementary eigenvalues of the adjacency matrix and the combinatorial
problem of determining the connected induced subgraphs of G. On the other
hand, it also may be seen as an evidence of the difficulty of the problem. Which
is harder? Computing the complementary eigenvalues of an adjacency matrix or
to find all connected induced subgraphs?

The difficulty of these problems is related to the cardinality |CS(G)| of the
complementary spectrum of a graph G. Moreover, we notice that |CS(G)| can
be related to the isomorphism problem in the following way. If |CS(G)| were
bounded by a polynomial in n, the order of G, then the complementary spectrum
could be computed in polynomial time. In this case, if all graphs were DCS, the
conclusion would be that the isomorphism problem is polynomial. Clearly, this
line of reasoning is very speculative and perhaps the only merit is to show that
proving that a graph G is DCS, or computing the complementary spectrum of
G or merely bounding its cardinality are very hard problems. Indeed, as we see
next, the cardinality |CS(G)| is not bounded by a polynomial.

Let Gn be the set of all connected graphs of order n. Corollary 5 shows that
forG ∈ Gn, |CS(G)| ≤ 2n−1. Can we find a better than exponential upper bound?
In [6], the authors determined that |CS(G)| grows faster than any polynomial in
n. More precisely, they showed that, for fixed n, there is a starlike tree T with n
vertices whose

|CS(T )| ∼ expπ
√

2
√
n/3

4
√
3n

.

This means that |CS(G)| cannot be bounded by a polynomial in n. It is still
unknown whether there is an upper bound whose growth is smaller than an
exponential. We finish this note by posing the following question.

Problem 12. Is there a function of n bounding the cardinality |CS(G)| for all
G ∈ Gn whose growth is smaller than exponential?
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[5] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on the

signless Laplacian III, Appl. Anal. Discrete Math. 4 (2010) 156–166.
doi:10.2298/AADM1000001C

[6] R. Fernandes, J. Judice and V. Trevisan, Complementary eigenvalues of graphs,
Linear Algebra Appl. 527 (2017) 216–231.
doi:10.1016/j.laa.2017.03.029

[7] C.D. Godsil and B.D. McKay, Constructing cospectral graphs, Aequationes Math.
25 (1982) 257–268.
doi:10.1007/BF02189621

[8] W.H. Haemers, Are almost all graphs determined by their spectrum ?, Not. S. Afr.
Math. Soc. 47 (2016) 42–45.

[9] A.J. Hoffman and J.H. Smith, On the spectral radii of topologically equivalent graphs,
in: Proc. Second Czechoslovak Sympos., Prague, 1974, Recent Advances in Graph
Theory (Academia, Prague, 1975) 273–281.

[10] B.D. McKay, On the spectral characterisation of trees, Ars Combin. 3 (1977)
219–232.
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