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e-mail: nikola5000@gmail.com

and

Damir Vukičević
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1. Introduction

In the forthcoming sections we review selected problems, mostly in spectral graph
theory, that were either posed in literature or that we came across in our research.
Their common property is that they are all only partially resolved, despite our
best efforts. Hopefully, readers of this special issue will find them interesting and
will help to solve them completely.

To avoid repetition in the following sections, we give here some common
definitions. All graphs considered are simple and connected. The vertex and
edge sets of a simple graph G are denoted by V (G) and E(G), respectively, while
the adjacency matrix of G is denoted by A(G). If the graph G is known from the
context, we will drop it as the argument and write just V , E, A, etc. The degree
of a vertex v ∈ V is denoted by dv, with δ and ∆ denoting the minimum and the
maximum vertex degree in G, respectively. For a graph G with n vertices, we
denote by λ1 ≥ · · · ≥ λn the eigenvalues of A, and with x1, . . . , xn corresponding
eigenvectors which form an orthonormal basis. The largest eigenvalue λ1 is also
the spectral radius of A. We denote by Kn, Pn and Sn the complete graph, the
path and the star on n vertices, respectively. The broom graph Br,s is obtained
by identifying an endvertex of the path Pr with the center of the star Ss+1, so
that Br,s has r + s vertices.

2. Communicability Distance

Let us deal with counterexamples first. With eA =
∑

k≥0
Ak

k! , Estrada [13] defined
the communicability distance between vertices u and v of a graph G as

ξuv =
√

(eA)uu + (eA)vv − 2(eA)uv

and further introduced the communicability distance sum Υ, an analogue of the
Wiener index, as

Υ(G) =
1

2

∑
u6=v

ξuv.

Estrada then posed the following conjectures.

Conjecture 1 [13]. If G 6∼= Kn is a simple connected graph on n vertices, then
Υ(Kn) < Υ(G).

Conjecture 2 [13]. If T is a tree on n vertices, then Υ(Sn) ≤ Υ(T ) ≤ Υ(Pn).

The lollipop graph Lr,s is obtained by identifying a vertex of the complete
graph Kr and an endvertex of the path Ps+1, so that the resulting graph has r+s
vertices.
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Conjecture 3 [13]. If G is a simple connected graph on n > 5 vertices, then
Υ(G) ≤ Υ(Ln−2,2).

We will disprove Conjecture 2 by showing that Υ(Pn) < Υ(Sn) holds for all
sufficiently large n. To show this, we first need to represent Υ(G) more directly
in terms of the eigenvalues and the eigenvectors of G. Let Λ = diag(λ1, . . . , λn)
and Q = [x1 · · ·xn], so that A = QΛQT is a spectral decomposition of A. Since
eA = QeΛQT we have

(1)
(
eA
)
uv

=

n∑
j=1

xj,uxj,ve
λ
j

for all u, v ∈ V , so that

Υ(G) =
1

2

∑
u6=v

ξu,v =
1

2

∑
u6=v

√
(eA)uu + (eA)vv − 2(eA)uv

=
1

2

∑
u6=v

√√√√ n∑
j=1

(
x2
j,u + x2

j,v − 2xj,uxj,v

)
eλj(2)

=
1

2

∑
u6=v

√√√√ n∑
j=1

(xj,u − xj,v)2eλj .

This representation enables us to get bounds on Υ(G) in terms of λ1.

Theorem 4. If G is a simple connected graph on n vertices, then

(3) Υ(G) ≤ n(n− 1)
√

2n

2
e
λ1
2 .

Proof. Since the eigenvectors x1, . . . , xn are normalized, for each u, v ∈ V we
have 2|xj,uxj,v| ≤ x2

j,u + x2
j,v ≤ 1, so that

(
xj,u − xj,v

)2 ≤ x2
j,u + x2

j,v + 2|xj,uxj,v| ≤ 1 + 1 = 2.

Then

Υ(G) ≤ 1

2

∑
u6=v

√√√√ n∑
j=1

2eλj ≤ n(n− 1)

2

√√√√ n∑
j=1

2eλ1 =
n(n− 1)

√
2n

2
e
λ1
2 ,

where in the second inequality above we used eλj ≤ eλ1 for j = 1, . . . , n.
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Theorem 5. If G is a simple connected graph on n vertices, then

(4) Υ(G) ≥

 1√
n− 1 + δ

∆

− 1√
n

 e
λ1
2 .

If G is not regular, then further

(5) Υ(G) ≥ 1

2n2
√
n
e
λ1
2 .

Proof. By dropping nonnegative summands for j = 2, . . . , n in the expression
(3) for Υ(G) we get

Υ(G) =
1

2

∑
u6=v

√√√√ n∑
j=1

(xj,u − xj,v)2eλj

≥ 1

2

∑
u6=v

√
(x1,u − x1,v)2eλ1 =

e
λ1
2

2

∑
u6=v
|x1,u − x1,v|.

If x1,min = minu∈V x1,u and x1,max = maxu∈V x1,u denote the minimum and the
maximum principal eigenvector component of G, respectively, then we can drop
further nonnegative summands from the above inequality to obtain

(6) Υ(G) ≥ (x1,max − x1,min)e
λ1
2 .

Since 1 =
∑n

j=1 x
2
1,j ≥ nx2

1,min, we have x1,min ≤ 1√
n

. Cioaba and Gregory [4,

Lemma 3.3] showed that

(7) x1,max ≥
1√

n− 1 + δ(G)
∆(G)

,

with a stronger bound if G is not regular

(8) x1,max >
1√

n− 1
∆(G)

≥ 1√
n− 1

n−1

.

Combining (6), x1,min ≤ 1√
n

and (7), we directly obtain (4). If G is not regular,

then combining x1,min ≤ 1√
n

and (8) yields
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x1,max − x1,min ≥
1√

n− 1
n−1

− 1√
n

=
1√

n(n2−n− 1)
(√

n2 − n+
√
n2−n−1

)
≥ 1
√
n · n2

(√
n2 +

√
n2
) =

1

2n2
√
n
,

which in combination with (6) yields (5).

Now we can disprove Conjecture 2 for all sufficiently large n.

Theorem 6. There exists n0 ∈ N such that Υ(Pn) < Υ(Sn) for all n ≥ n0.

Proof. The eigenvalues of Pn are equal to 2 cos πj
n+1 for j = 1, . . . , n, so that

λ1(Pn) < 2 and the upper bound (3) gives

Υ(Pn) ≤ n(n− 1)
√

2n

2
e.

On the other hand, the largest eigenvalue of Sn is
√
n− 1 and the lower bound (5),

since Sn is not regular for n ≥ 3, yields

Υ(Sn) ≥ 1

2n2
√
n
e
√
n−1
2 .

Since

lim
n→∞

1
2n2
√
n
e
√
n−1
2

n(n−1)
√

2n
2 e

= lim
n→∞

e
√
n−1
2
−1

n4(n− 1)
√

2
=∞,

there exists n0 such that Υ(Sn) > Υ(Pn) for all n ≥ n0.

Numerical results show that the smallest n for which Υ(Pn) < Υ(Sn) is
n = 43. However, the path ceases to have the largest value of Υ among trees on
a much smaller number of vertices. The double broom graph DBr,s,t is obtained
by identifying one endvertex of Pr with the center of the star Ss+1 and the other
endvertex of Pr with the center of the star St+1, so that DBr,s,t has r + s + t
vertices. Then the three largest Υ values among trees on 15 vertices are

Υ(P15) ≈ 199.60736, Υ(B13,2) ≈ 199.62532, Υ(DB11,2,2) ≈ 199.64285.

As both paths and stars are special instances of brooms, our opinion is that it
may be worthwhile to study further the behaviour of Υ(Br,s) and Υ(DBr,s,t),
although that could not do much to save Conjecture 2 anyway.

On the other hand, we could not find any counterexample for Conjectures 1
and 3. Conjecture 1 makes sense, as Kn is a regular graph with the all-one vector
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as the principal eigenvector, so that the summand corresponding to en−1 vanishes
from (3), leaving only the summands corresponding to e−1 which make the value
of Υ(Kn) smaller than Υ for many graphs whose eigenvalues are not bounded by
a constant. The appearance of Ln−2,2 as the extremal graph in Conjecture 3 is
somewhat unusual, despite a reasonable explanation provided by Estrada in [13].
As Kn is a special case of a lollipop as well, it would be worthwhile to study the
behaviour of Υ(Lr,s) to confirm Conjectures 1 and 3 among lollipops at least.

3. Nikiforov’s Problem on Numbers of Walks and Spectral Radius

Let wk(G) denote the number of walks containing k vertices, and consequently
having length k − 1, in a graph G. The fact that wk is the sum of entries of
Ak−1 relates it to the eigenvalues of G, and there are many results connecting
numbers of walks and the spectral radius λ1, with a thorough overview provided
by Täubig in [34]. Nikiforov proved in [25] that the inequality

λr1 ≥
ws+r
ws

holds for all odd s > 0 and all r > 0. Using complete bipartite graphs as the
example, he showed that λr1 can be smaller than ws+r/ws for even s and odd r
and then posed the following problem.

Problem 7 [25]. Let G be a connected bipartite graph. Is it true that

λr1 ≥
ws+r
ws

for every even s ≥ 2 and even r ≥ 2?

Nikiforov mentioned without a proof that the complete tripartite graph
K2t,2t,t satisfies λ2

1 < w4/w2 and thus provides a counterexample for s = r = 2.
Elphick and Réti [12] produced another infinite family of counterexamples for
s = r = 2 and further showed that the path P4 serves as a counterexample for
arbitrary even r. Thanks to the proposition put forward by one of the reviewers,
it will be shown here that any connected graph with two main eigenvalues, one
of which is negative and not equal in absolute value to the spectral radius, serves
as a counterexample for all even s ≥ 2 and r ≥ 2.

The spectral decomposition A = QΛQT yields Ak−1 = QΛk−1QT (recall that
that the columns of Q are the orthonormal eigenvectors of A), so that

(9) wk =

n∑
i=1

λk−1
i

 n∑
j=1

xi,j

2

.
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Evidently, only those eigenvalues for which the corresponding sum
∑n

j=1 xi,j is
not zero affect the value of wk. Such eigenvalues are called the main eigenvalues.
The spectral radius λ1 of a connected graph is always a main eigenvalue, due
to its strictly positive eigenvector x1. Regular graphs, for which x1 is propor-
tional to the all-one vector j, have exactly one main eigenvalue, as all their other
eigenvectors are orthogonal to j. The main angle βλ corresponding to the main
eigenvalue λ is defined as the cosine of the angle between j and the eigenspace
of λ. Thus, if the repetitions of λ in the spectrum are λp, . . . , λp+q−1 for some p
and q, then

β2
λ =

1

n

p+q−1∑
i=p

 n∑
j=1

xi,j

2

,

so that

(10) wk = n
n′∑
i=1

µk−1
i β2

µi ,

where µ1, . . . , µn′ are all distinct main eigenvalues of G.
One of the reviewers suggested the following proposition.

Proposition 8. Let G be a connected graph with two main eigenvalues µ1 and µ2,
such that µ1 > 0 > µ2 > −µ1. If s ≥ 2 and r ≥ 2 are even, then

µr1 <
ws+r
ws

.

Proof. Let n = |V (G)| and m = |E(G)|, and let β1 and β2 be the main angles
corresponding to µ1 and µ2, respectively. We have

(11) wk = n(µk−1
1 β2

1 + µk−1
2 β2

2)

by (10) (see also [10, Theorem 1.3.5]). From w1 = n we have β2
1 + β2

2 = 1, while
from w2 = 2m we get, by eliminating one of the main angles in turn from (11),

β2
1 =

2m− nµ2

n(µ1 − µ2)
and β2

2 = − 2m− nµ1

n(µ1 − µ2)
.

Hence

(12) wk =
2m(µk−1

1 − µk−1
2 )− nµ1µ2(µk−2

1 − µk−2
2 )

µ1 − µ2
,

so that µr1 < ws+r/ws if and only if

(2m− nµ1)µs−1
2 (µr1 − µr2)

µ1 − µ2
> 0.
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The last inequality is satisfied as the expression on the left-hand side is a product
of two positive and two negative factors: G is not regular, as it has two main
eigenvalues, so that µ1 >

2m
n (see [10, Theorem 3.2.1]) and 2m−nµ1 is negative;

µs−1
2 is negative as µ2 < 0 and s− 1 is odd; while µr1−µr2 and 1

µ1−µ2 are positive,
as µ1 > |µ2|.

Although Cvetković [5] proposed the problem of characterizing graphs with
k main eigenvalues already in 1978, results on graphs with two main eigenvalues
started to appear only after a seminal paper by Hagos in 2002 [16]. Hagos showed
that a graph has exactly k main eigenvalues if and only if k is the maximum
number such that j, Aj, . . . , Ak−1j are linearly independent. For k = 2 this
means that there exists α and β such that

(13) A2j = αAj + βj,

and that G is not regular. Graph G satisfying (13) is called a 2-walk (α, β)-linear
graph and its main eigenvalues are [16, Corollary 2.5]

(14) µ1, µ2 =
α±

√
α2 + 4β

2
.

Rowlinson [27] observed that both cone over a regular graph and a strongly
regular graph with one vertex deleted have two main eigenvalues. Hayat et al.
[17] provided a general construction of equitable biregular graphs with two main
eigenvalues, while further constructions were provided by Chen and Huang [3] for
two main eigenvalues and by Huang et al. [22] for arbitrary fixed number of main
eigenvalues. Unicyclic, bicyclic and tricyclic graphs with two main eigenvalues
are characterized in a series of papers [14, 19–21, 29], while integral graphs with
spectral radius 3 and two main eigenvalues are characterized in [33].

Graphs satisfying the requirements of Proposition 8 can be found in most of
these papers, and the counterexample we initially found is a particular instance
of a general construction described by Hayat et al. [17]. Our counterexample,
denoted by Gp,q, consists of the complete bipartite graph Kp,p with q pendant
vertices attached to each of the 2p vertices of Kp,p, so that the resulting graph
has n = 2p(1 + q) vertices. It is a 2-walk (p, q)-linear graph, so that its main
eigenvalues are µ1, µ2 = (p ±

√
p2 + 4q)/2 by (14), which satisfy requirements

of Proposition 8. As a matter of fact, if one resorts to combinatorial instead
of analytical counting of walks in Gp,q, then an even stronger inequality can be
obtained in a simple way for q = p4,

lim
p→∞

ws+r(Gp,p4)

λr1(Gp,p4)ws(Gp,p4)
=
s+ r − 2

s− 2
.

Details are given in the Appendix.



A Few Examples and Counterexamples in ... 645

4. Smallest Integral Graph with a Given Diameter

After these counterexamples, we can now move on to a few interesting examples.
DS met Simone Severini at a workshop in Aveiro back in 2006, and he asked
then a few questions stemming from his studies of state transfer in quantum spin
networks. One question, translated to the usual terminology of spectral graph
theory, reduced to the following.

What is the smallest integral graph with a given diameter?

Let us recall that a graph is integral if all its eigenvalues are integers. Circulant
integral graphs, whose study became popular after Wasin So’s characterization
of them appeared about that time in [30], were not good candidates as examples
had shown that their expected diameter is too low. Instead, natural candidates
are the graphs that generalize paths in the sense that each vertex v of the path Pk
is replaced by a set Bv of independent vertices with two new vertices a ∈ Bu and
b ∈ Bv adjacent in the new, expanded graph if u and v are adjacent in Pk. We
will call such expanded graphs the superpaths and denote by SP (a1, . . . , an) the
superpath obtained by replacing the vertices of the path Pn with independent
sets having, respectively, a1, . . . , an vertices. Figure 1 shows, for example, the
superpath SP (4, 1, 3, 2, 2, 3, 1, 4).

Figure 1. The superpath SP (4, 1, 3, 2, 2, 3, 1, 4) is integral, with spectrum consisting of
simple eigenvalues ±4,±3,±2,±1 and eigenvalue 0 with multiplicity 12.

A few quick experiments with Octave suggested that integral superpaths
should be those whose cardinalities of independent sets either form a sequence

n, 1, n− 1, 2, . . . , 2, n− 1, 1, n,

or represent multiples of this sequence. We will prove here this observation.

Theorem 9. The superpath SP (n, 1, n−1, 2, . . . , 2, n−1, 1, n) is integral for each
natural number n. Its spectrum consists of the simple eigenvalues ±n,±(n− 1),
. . . ,±1 and the eigenvalue 0 with multiplicity n(n− 1).
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Proof. Let us first deal with the eigenvalue 0. Denote by B1, . . . , B2n the con-
stituent independent sets of the superpath SP (n, 1, n− 1, 2, . . . , 2, n− 1, 1, n). It
is easy to see that a vector x is an eigenvector corresponding to 0 if and only if
the components of x in each set Bi sum to 0, i = 1, . . . , 2n. Thus, the dimension
of this eigenspace is equal to n(n− 1).

Next, we show that SP (n, 1, n− 1, 2, . . . , 2, n− 1, 1, n) has 2n more distinct
nonzero eigenvalues, which consequently must all be simple. So, suppose that λ is
an eigenvalue of SP (n, 1, n−1, 2, . . . , 2, n−1, 1, n) having an eigenvector x whose
components are equal within each set Bi, i = 1, . . . , 2n. Let xi be the component
of x corresponding to the vertices within set Bi. The eigenvalue equations for the
vertices of this superpath then become

λx1 = x2,

λx2 = nx1 + (n− 1)x3,

. . .

λx2i = (n− i+ 1)x2i−1 + (n− i)x2i+1,

λx2i+1 = ix2i + (i+ 1)x2i+2,

. . .

λx2n−1 = (n− 1)x2n−2 + nx2n,

λx2n = x2n−1.

The determinant of this linear system is

DN (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1
−n λ −n+ 1

−1 λ −2
−n+ 1 λ −n+ 2

−2 λ −3
−n+ 2 λ . . .

−3 . . .
. . .
. . . −1
. . . λ −n

−1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It is easy to see that the precise arrangement of the terms on the subdiagonals
is not important. To be precise, one can change entries along the subdiagonals
as long as the product of pairs (A,B) of entries located like

λ A
B λ
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remains invariant. In particular,

DN (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 1
n λ 1

n− 1 λ 2
n− 1 λ 2

n− 2 λ 3
n− 2 λ . . .

n− 3 . . .
. . .
. . . n− 1
. . . λ n

1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For the next step, we apply first the row transformations

row1 + row3 + row5 + . . .
row2 + row4 + row6 + . . .
row3 + row5 + row7 + . . .
. . . . . . . . .

and then the column transformations

col2n − col2n−2

col2n−1 − col2n−3

col2n−2 − col2n−4

. . . . . . .

After the row transformations, we get

DN (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ n λ n λ n . . . λ n
n λ n λ n λ . . . n λ

n− 1 λ n λ n . . . λ n
n− 1 λ n λ . . . n λ

n− 2 λ n . . . λ n
n− 2 λ . . . n λ

n− 3 . . . λ n
. . .
. . . n λ
. . . λ n

1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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while after the column transformations, we get

DN (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ n
n λ

n− 1 λ 1
n− 1 λ 1

n− 2 λ 2
n− 2 λ . . .

n− 3 . . .
. . .
. . . n− 2
. . . λ n− 1

1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

From here, it follows that

DN (λ) =

∣∣∣∣ λ n
n λ

∣∣∣∣ ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 1
n− 1 λ 1

n− 2 λ 2
n− 2 λ . . .

n− 3 . . .
. . .
. . . n− 2
. . . λ n− 1

1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(
λ2 − n2

)
Dn−1(λ).

From this reccurence formula and D1(λ) = (λ− 1)(λ+ 1) we easily get that

Dn(λ) =
n∏
j=1

(
λ2 − j2

)
.

Thus, the nonzero eigenvalues of the superpath SP (n, 1, n−1, 2, . . . , 2, n−1, 1, n)
are n, . . . , 2, 1,−1,−2, . . . ,−n.

Remark 10. The transformation described above is essentially the same as the
one used in Mazza’s proof of evaluation of the Sylvester’s determinant found in
the historical treatise [23, p. 442]. We are grateful to Prof. Christian Kratten-
thaler for pointing us to Mazza’s proof. More recent articles on Sylvester-type
determinants are [1, 18].

The superpath SP (n, 1, n− 1, 2, . . . , 2, n− 1, 1, n) is thus integral with diam-
eter D = 2n− 1 and n2 + n = (D + 1)(D + 3)/4 vertices. Now we can rephrase
our original question as the following problem.
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Problem 11. Does there exist an integral graph of diameter D with fewer than
(D + 1)(D + 3)/4 vertices?

5. Maximum Wiener Index of Trees with Given Radius

While the large majority of research publications of Professor Slobodan Simić
belong to spectral graph theory, he has also published several results on graph
equations (mostly prior to 1983), some papers on graph algorithms and even one
paper on Szeged index [28], that officially belongs to mathematical chemistry. So,
the next interesting example could be considered to belong to Professor Simić’s
interests as well.

The Wiener index of a graph is the sum of distances between all pairs of
its vertices. A particular type of extremal problem on the Wiener index, that
does not allow an easy approach, is to characterize graphs or trees with given
diameter or radius. According to Das and Nadjafi-Arani [11], such problems
were first studied by Plesnik [26] back in 1984 and to this day there are only
a few results: Das and Nadjafi-Arani gave upper bounds on the Wiener index
for graphs and trees with given radius, and also for graphs and trees with given
radius and given maximum vertex degrees, but these bounds are sharp in very
special cases only, not allowing one to get a sense of the structure of extremal
graphs or trees. Mukwembi and Vetŕık [24], on the other hand, obtained upper
bounds on the Wiener index of trees with diameters at most six that are sharp in
many more cases and either characterize (for smaller diameters) or suggest (for
larger diameters) the structure of extremal trees.

A variant of this problem that we were interested in is to characterize trees
with maximum Wiener index among trees with a given number of vertices and
radius. Early computer experiments, with Java programs that would later become
part of the graph6java framework [15], suggested that such extremal trees should
have an easily characterizable structure. Define the broom-fan BFn,r,k to be a tree
on n vertices with radius r having a vertex u of degree k such that each subtree
obtained after removing u is either a broom Br,bn−1

k
c−r or a broom Br,dn−1

k
e−r.

For all radii of trees with up to 23 vertices, a broom-fan is always a tree with
the maximum Wiener index for a given radius. However, we have a surprising
change in structure of extremal trees on 24 vertices, which are shown in Figures
2–13. As can be seen from this figures, extremal trees are still broom-fans except
for radius seven! In this particular case, the extremal tree in Figure 8 has Wiener
index 1836, while Wiener index of the broom-fan BF24,7,2 is 1835. This example
suggests that there may be similar surprises awaiting at even higher numbers
of vertices and that, despite the fact that the extremal tree for radius seven is
still formed by joining three brooms, a simple characterization of the structure
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of extremal trees will probably be out of our reach in some foreseeable future.

Figure 2. Tree on 24 vertices with the maximum Wiener index and radius 1.

Figure 3. Tree on 24 vertices with the maximum Wiener index and radius 2.
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Figure 4. Tree on 24 vertices with the maximum Wiener index and radius 3.

Figure 5. Tree on 24 vertices with the maximum Wiener index and radius 4.
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Figure 6. Tree on 24 vertices with the maximum Wiener index and radius 5.

Figure 7. Tree on 24 vertices with the maximum Wiener index and radius 6.
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Figure 8. Tree on 24 vertices with the maximum Wiener index and radius 7.

Figure 9. Tree on 24 vertices with the maximum Wiener index and radius 8.

Figure 10. Tree on 24 vertices with the maximum Wiener index and radius 9.
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Figure 11. Tree on 24 vertices with the maximum Wiener index and radius 10.

Figure 12. Tree on 24 vertices with the maximum Wiener index and radius 11.

6. Bounds on the Laplacian Spectral Radius of Graphs

We now shift our focus to conjectures that, in our opinion, deserve more attention.
Let µ(G) denote the spectral radius of the Laplacian matrix of G, and for v ∈
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Figure 13. Tree on 24 vertices with the maximum Wiener index and radius 12.

Figure 14. A counterexample for the conjectured bound µ ≤ maxvmv

√
1 + 3mv

dv
.

V (G), let mv denote the average degree of the neighbors of v. Observing that a
number of upper bounds on µ expressed in terms of dv and mv have a very similar
structure of their expressions, Brankov, Hansen and Stevanović [2] suggested a
few simple algebraic rules that can regenerate these expressions from scratch.
When we applied these rules to generate further such expressions and tested
them on connected graphs with up to nine vertices, we were surprised to find out
that more than half of them (190 out of 361 generated expressions) represented
valid upper bounds for the Laplacian spectral radius on this set of graphs. We
had further selected a subset of the strongest of these expressions in the sense that
for each connected graph on nine vertices at least one of the selected expressions
yields the smallest upper bound among all considered expressions when evaluated
for that graph. Except for Merris’ well-known bound µ ≤ maxv dv + mv, this
selection contains conjectured upper bounds that, being selected by computer,
do not always look intuitive,
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µ ≤ max
v

4m2
v

dv +mv
µ ≤ max

v

d2
v

mv
+
m3
v

d2
v

µ ≤ max
v

√
dv(dv + 3mv) µ ≤ max

v

√
dv(3dv + 5mv)

2

µ ≤ max
v

√
dv(5dv + 11mv)

2
µ ≤ max

v

√
7d2

v + 9m2
v

2

µ ≤ max
v

√
2d2

v +
2m3

v

dv
µ ≤ max

v

√
3m2

v +
d3
v

mv

µ ≤ max
v
mv

√
1 +

3mv

dv
µ ≤ max

v

√
m3
v(mv + 3dv)

dv

µ ≤ max
v

√
2mv

(
dv +

m3
v

d2
v

)
µ ≤ max

v

4
√

5d4
v + 11m4

v

µ ≤ max
v

4
√

6d4
v + 10m4

v µ ≤ max
v

4
√

4dv(d3
v + 3m3

v)

µ ≤ max
v

4
√
d2
v(2d

2
v + 14m2

v) µ ≤ max
v

4
√
d2
v(3d

2
v + 13m2

v).

The proof techniques known at the time of writing [2] could not be used to prove
any of the above conjectured bounds, and none of them appears to have been
proved or disproved in the meantime. This time we have tested the above con-
jectured bounds on all connected graphs with ten vertices as well. As a result we

have found a single graph, shown in Figure 14, for which µ > maxvmv

√
1 + 3mv

dv
,

while the remaining conjectured bounds are satisfied for all connected graphs
with ten vertices. This single counterexample on ten vertices suggests it is un-
likely that connected graphs on 11 or 12 vertices would provide counterexamples
for more than a few more of these conjectured bounds, and the largest benefit
would definitely be obtained by devising new proof techniques for the Laplacian
spectral radius that would be able to deal with upper bounds of the above form.

7. Almost Cospectrality of Components of NEPS

The non-complete extended p-sum (NEPS) of graphs is a very general graph
operation, introduced by Cvetković and Lučić [9]. Let B be a set of nonzero
binary n-tuples, i.e., B ⊆ {0, 1}n \ {(0, . . . , 0)}. The NEPS of graphs G1, . . . , Gn
with the basis B, denoted as NEPS(G1, . . . , Gn;B), is the graph with the vertex
set V (G1) × · · · × V (Gn) in which two vertices (u1, . . . , un) and (v1, . . . , vn) are
adjacent if and only if there exists (β1, . . . , βn) ∈ B such that ui is adjacent to vi
in Gi whenever βi = 1, and ui = vi whenever βi = 0. One of the most important
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properties of NEPS is that its eigenvalues can be represented via eigenvalues of
its factors: namely, the spectrum of NEPS(G1, . . . , Gn;B) consists of all possible

values Λ =
∑

β∈B λ
β1
1 · · ·λ

βn
n , where λi is an eigenvalue of Gi for i = 1, . . . , n (see,

e.g., [8, Theorem 2.23]).

Two graphs are said to be almost cospectral if their nonzero eigenvalues,
including multiplicities, coincide. Cvetković [6] conjectured in 1983 that the
components of NEPS of connected bipartite graphs are almost cospectral, and
proved it for the direct product of graphs in [6] and some further cases of NEPS
in [7]. On the other hand, we disproved this conjecture in 2000 by exhibiting a
small counterexample in [31] and then went on to determine for which bases of
NEPS almost cospectrality of components holds. For S ( {1, . . . , n} let

Ann(B, S) = {β ∈ B : (∀i ∈ S)βi = 0}

and for a matrix M with n columns, let M−S denote the matrix obtained from M
by removing the columns whose indices belong to S. Further, let rank2(M) denote
the rank of a binary matrix M over the two element field GF2. The following
results, that rely heavily on binary linear algebra, give one necessary and one
sufficient condition for almost cospectrality of the components of NEPS.

Theorem 12 [31]. Let B ⊆ {0, 1}n \ {(0, . . . , 0)}. If there exists S ( {1, . . . , n}
such that Ann(B, S) 6= ∅ and

(15) rank2(Ann(B, S)) > rank2(B)− |S|,

then there exist infinitely many sets of connected bipartite graphs whose NEPS
with the basis B has components that are not almost cospectral.

Theorem 13 [32]. Let G = NEPS(G1, . . . , Gn;B), where G1, . . . , Gn are con-
nected bipartite graphs. If for each S ( {1, . . . , n} such that Ann(B, S) 6= ∅ holds

(16) rank2(B−S) = rank2(B)− |S|,

then the components of G are almost cospectral.

The sufficient condition (16) implies the necessary condition

rank2(Ann(B, S)) ≤ rank2(B)− |S|,

because the S-indexed columns of Ann(B, S) are zero so that

rank2(Ann(B, S)) = rank2(Ann−S(B, S)) ≤ rank2(B−S),

as Ann−S(B, S) is a submatrix of B−S . Hence our next problem is as follows.
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Problem 14. Find a necessary and sufficient condition for the basis B such that
the components of NEPS of arbitrary connected bipartite graphs with the basis
B are almost cospectral. In particular, is rank2(Ann(B, S)) ≤ rank2(B)−|S| such
a necessary and sufficient condition?
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Christian Krattenthaler, Jelena Sedlar, Daniel Siladji, Valentina Stanković and
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Appendix

Number of Walks in Gp,q and Gp,p4

Let the vertices of Kp,p be denoted as type A and the pendant vertices as type B vertices.
From each type B vertex a walk can continue only to its unique neighbor of type A, while
from each type A vertex a walk can continue to either one of its p type A neighbors or
one of its q type B neighbors. Due to symmetry of vertices in Gp,q we can classify the
k-walks of Gp,q according to the sequence of types of vertices appearing along each walk.

For a given k-sequence of letters A and B, the number of the corresponding k-walks
can be determined by choosing the first vertex of a walk and then by considering pairs
of successive letters:

• each pair AA yields p choices for the second A after the vertex corresponding to the
first A is chosen;

• each pair AB yields q choices for B after the vertex for A is chosen;

• each pair BA yields a unique choice for A after the vertex for B is chosen.

For example, the sequence BAABA encodes (2pq) · 1 · p · q · 1 = 2p2q2 walks of length 5,
while AABAABA encodes (2p) · p · q · 1 · p · q · 1 = 2p3q2 walks of length 7.

The fact that a feasible type sequence does not contain the pair BB means that
each letter B may occupy either a single position between any two consecutive letters A,
or a single position prior to the first A or after the last A. Since the number of walks of
length k with a given type sequence is influenced by the first and the last type appearing
in the sequence, we will count them separately, working out in detail the first possibility
only.

Hence suppose that a given type sequence starts and ends with the letter A and that
it contains l letters B (and consequently k − l letters A). There are k − l − 1 feasible
positions for letters B between consecutive letters A, so that the number of such type
sequences is

(
k−l−1

l

)
. The initial letter A yields 2p choices for the initial vertex of a

k-walk. Each letter B appearing in the type sequence produces one pair AB and one
pair BA, which together yield q choices for two corresponding vertices along a k-walk.
This leaves a total of k − 1− 2l pairs AA remaining in the type sequence, each of which
yields p choices for the corresponding vertex in a k-walk. Hence each type sequence
starting and ending with A corresponds to a total of 2p · ql · pk−1−2l = 2pk−2lql walks of
length k, and the number of k-walks corresponding to all such type sequences is equal to∑

l≥0

(
k − l − 1

l

)
2pk−2lql.

Following the similar argument, we can get that the number of k-walks corresponding
to type sequences starting with A and ending with B is equal to∑

l≥1

(
k − l − 1

l − 1

)
2pk−2l+1ql,

which is also equal to the number of k-walks corresponding to type sequences start-
ing with B and ending with A. Finally, the number of k-walks corresponding to type
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sequences starting and ending with B is equal to∑
l≥2

(
k − l − 1

l − 2

)
2pk−2l+2ql.

Summing up these four cases we see that the total number of k-walks in Gp,q is

wk(Gp,q) =
∑
l≥0

(
k − l − 1

l

)
2pk−2lql + 2

∑
l≥1

(
k − l − 1

l − 1

)
2pk−2l+1ql

+
∑
l≥2

(
k − l − 1

l − 2

)
2pk−2l+2ql.

Upper limits for the three sums above can be determined from the corresponding binomial
coefficients:

• nonzero summands in the first sum are obtained for k− l− 1 ≥ l, i.e., for l ≤
⌊
k−1
2

⌋
;

• nonzero summands in the second sum are obtained for k − l − 1 ≥ l − 1, i.e., for
l ≤

⌊
k
2

⌋
;

• nonzero summands in the third sum are obtained for k − l − 1 ≥ l − 2, i.e., for
l ≤

⌊
k+1
2

⌋
.

If we now set q = p4, then

wk(Gp,p4) =

b k−1
2 c∑

l=0

(
k − l − 1

l

)
2pk+2l + 2

b k
2 c∑

l=1

(
k − l − 1

l − 1

)
2pk+2l+1

+

b k+1
2 c∑

l=2

(
k − l − 1

l − 2

)
2pk+2l+2.

Thus, wk(Gp,p4) is a polynomial in p, whose leading term is obtained by setting l =
⌊
k+1
2

⌋
in the third sum and is equal to(

k −
⌊
k+1
2

⌋
− 1⌊

k+1
2

⌋
− 2

)
2pk+2b k+1

2 c+2 =

{
2p2k+3, if k is odd,

(k − 2)p2k+2, if k is even.

Recalling from (14) that λ1(Gp,p4) =
p+
√

p2+4p4

2 = p2
(√

1 + 1
4p2 + 1

2p

)
, we get that for

every even s ≥ 2 and even r ≥ 2

lim
p→∞

ws+r

λr1ws
= lim

p→∞

ws+r

p2(s+r)+2

p2r

λr1

p2s+2

ws
=
s+ r − 2

s− 2
.
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