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Abstract

A regular graph is co-edge regular if there exists a constant µ such that
any two distinct and non-adjacent vertices have exactly µ common neighbors.
In this paper, we show that for integers s ≥ 2 and n large enough, any co-
edge-regular graph which is cospectral with the s-clique extension of the
triangular graph T (n) is exactly the s-clique extension of the triangular
graph T (n).
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1. Introduction

All graphs in this paper are simple and undirected. For definitions related to
distance-regular graphs, see [1,11]. Before we state the main result, we give more
definitions.

Let G be a simple connected graph on vertex set V (G), edge set E(G) and ad-
jacency matrix A. The eigenvalues ofG are the eigenvalues of A. Let λ0, λ1, . . . , λt

be the distinct eigenvalues of G and mi be the multiplicity of λi (i = 0, 1, . . . , t).
Then the multiset {λm0

0 , λm1
1 , . . . , λmt

t } is called the spectrum of G. Two graphs
are called cospectral if they have the same spectrum. Note that a graph H
cospectral with a k-regular graph G is also k-regular.

Recall that a regular graph is called co-edge-regular, if there exists a constant
µ such that any two distinct and non-adjacent vertices have exactly µ common
neighbors. Our main result in this paper is as follows.

Theorem 1. Let Γ be a co-edge-regular graph with spectrum
{
(2sn− 3s− 1)1, (sn− 3s− 1)n−1, (−s− 1)

n
2
−3n
2 , (−1)

(s−1)n(n−1)
2

}
,

where s ≥ 2 and n ≥ 1 are integers. If n ≥ 48s, then Γ is the s-clique extension

of the triangular graph T (n).

This paper is a follow-up paper of Hayat, Koolen and Riaz [4]. They showed
a similar result for the square grid graphs. In that paper, they gave the following
conjecture.

Conjecture 2 [4]. Let Γ be a connected co-edge-regular graph with four distinct

eigenvalues. Let t ≥ 2 be an integer and |V (Γ)| = n(Γ). Then there exists a

constant nt such that, if θmin(Γ) ≥ −t and n(Γ) ≥ nt both hold, then Γ is the

s-clique extension of a strongly regular graph for some 2 ≤ s ≤ t− 1.

This conjecture is wrong as the p × q-grids (p > q ≥ 2) show. So we would
like to modify this conjecture as follows.

Conjecture 3. Let Γ be a connected co-edge-regular graph with parameters (n,
k, µ) having four distinct eigenvalues. Let t ≥ 2 be an integer. Then there exists

a constant nt such that, if θmin(Γ) ≥ −t, n ≥ nt and k < n − 2 − (t−1)2

4 , then

either Γ is the s-clique extension of a strongly regular graph for 2 ≤ s ≤ t− 1 or

Γ is a p× q-grid with p > q ≥ 2.

The reason for the valency condition is, that in [12], it was shown that for
λ ≥ 2, there exist constants C(λ) such that a connected k-regular co-edge-regular
graph with order v and smallest eigenvalue at least −λ satisfies one of the fol-
lowing conditions.
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(i) v − k − 1 ≤ (λ−1)2

4 + 1, or;

(ii) Every pair of distinct non-adjacent vertices has at most C(λ) common neigh-
bours.

Koolen et al. [8] improved this result by showing that one can take C(λ) =
(λ − 1)λ2 if k is much larger than λ. This paper is part of the project to show
the conjecture for t = 3.

Another motivation comes from the lecture notes [9]. In these notes, Ter-
williger shows that any local graph of a thin Q-polynomial distance-regular graph
is co-edge-regular and has at most five distinct eigenvalues. So it is interesting
to study co-edge-regular graphs with a few distinct eigenvalues.

We mainly follow the method of Hayat et al. [4]. The main difference is that
we simplify the method of Hayat et al. when we show that every vertex lies on
exactly two lines. This leads to a better bound for which we can show this. This
will also improve the bound given in the result of Hayat et al.

2. Preliminaries

2.1. Definitions

For two distinct vertices x and y, we write x ∼ y (respectively, x ≁ y) if they
are adjacent (respectively, nonadjacent) to each other. For a vertex x of G, we
define NG(x) = {y ∈ V (G) | y ∼ x}, and NG(x) is called the neighborhood of x.
The graph induced by NG(x) is called the local graph of G with respect to x and
is denoted by G(x). We denote the number of common neighbors between two
distinct vertices x and y by λx,y (respectively, µx,y) if x ∼ y (respectively, x ≁ y).

A graph is called regular if every vertex has the same valency. A regular graph
G with n vertices and valency k is called co-edge-regular with parameters (n, k, µ)
if any two nonadjacent vertices have exactly µ = µ(G) common neighbors. In
addition, if any two adjacent vertices have precisely λ = λ(G) common neighbors,
then G is called strongly regular with parameters (n, k, λ, µ). A graph G is called
walk-regular if the number of closed walks of length r from a given vertex x is
independent of the choice of x for all r, that is to say, for any x, Ar

xx is constant
for all r, where A is the adjacency matrix of G.

Let X be a set of size t. The Johnson graph J(t, d) (t ≥ 2d) is a graph
with vertex set

(
X
d

)
, the set of d-subsets of X, where two d-subsets are adjacent

whenever they have d − 1 elements in common. J(t, 2) is the triangular graph

T (t). Recall that a clique (or a complete graph) is a graph in which every pair
of vertices is adjacent. A coclique is a graph that any two distinct vertices are
nonadjacent. A t-clique is a clique with t-vertices and is denoted by Kt. The
line graph of Kt is also the triangular graph T (t) which is strongly regular with
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parameters (
(
t
2

)
, 2t− 4, t− 2, 4) and spectrum {(2t− 4)1, (t− 4)t−1, (−2)

t
2
−3t
2 }.

The Kronecker product M1 ⊗M2 of two matrices M1 and M2 is obtained by
replacing the ij-entry of M1 by (M1)ijM2 for all i and j. Note that if τ and η
are eigenvalues of M1 and M2, respectively, then τη is an eigenvalue of M1⊗M2.

2.2. Interlacing

Lemma 4 ([6], Interlacing). Let N be a real symmetric n×n matrix with eigen-

values θ1 ≥ · · · ≥ θn and R be a real n ×m (m < n) matrix with RTR = I. Set

M = RTNR with eigenvalues µ1 ≥ · · · ≥ µm. Then

(i) the eigenvalues of M interlace those of N , i.e.,

θi ≥ µi ≥ θn−m+i, i = 1, 2, . . . ,m,

(ii) if the interlacing is tight, that is, there exists an integer j ∈ {1, 2, . . . ,m}
such that θi = µi for 1 ≤ i ≤ j and θn−m+i = µi for j + 1 ≤ i ≤ m, then

RM = NR.

In the case that R is permutation-similar to

(
I O
O O

)
, then M is just a

principal submatrix of N .

Let π = {V1, . . . , Vm} be the partition of the index set of the columns of N
and let N be partitioned according to π as




N1,1 . . . N1,m
...

. . .
...

Nm,1 . . . Nm,m


 ,

where Ni,j denotes the block matrix of N formed by rows in Vi and columns in
Vj . The characteristic matrix P is the n × m matrix whose jth column is the
characteristic vector of Vj (j = 1, . . . ,m). The quotient matrix of N with respect
to π is the m×m matrix Q whose entries are the average row sum of the blocks
Nij of N , i.e.,

Qi,j =
1

Vi

(
P TNP

)
i,j

.

The partition π is called equitable if each block Ni,j of N has constant row (and
column) sum, i.e., PQ = NP . The following lemma can be shown by using
Lemma 4.

Lemma 5 [5]. Let N be a real symmetric matrix with π as a partition of the

index set of its columns. Suppose Q is the quotient matrix of N with respect to

π, then the following hold.
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(i) The eigenvalue of Q interlace the eigenvalues of N .

(ii) If the interlacing is tight (as defined in Lemma 4(ii)), then the partition π
is equitable.

By an equitable partition of a graph, we always mean an equitable partition
of its adjacency matrix A.

2.3. Clique extensions of T (n)

In this subsection, we define s-clique extensions of graphs and we will give some
specific results for the s-clique extension of triangular graphs.

Recall an s-clique is a clique with s vertices, where s is a positive integer. The
s-clique extension of a graph G with |V (G)| vertices is the graph G̃ obtained from
G by replacing each vertex x ∈ V (G) by a clique X̃ with s vertices, satisfying
x̃ ∼ ỹ in G̃ if and only if x ∼ y in G, where x̃ ∈ X̃, ỹ ∈ Ỹ . If G̃ is an s-clique
extension of G, then the adjacency matrix of G̃ is (A + I|V (G)|) ⊗ Js − Is|V (G)|,
where Js is the all-ones matrix of size s and I|V (G)| is the identity matrix of size
|V (G)|. In particular, if G has t+ 1 distinct eigenvalues and its spectrum is

θm0
0 , θm1

1 , . . . , θmt

t ,(2.1)

then the spectrum of G̃ is

(2.2)

{
(s(θ0 + 1)− 1)m0 , (s(θ1 + 1)− 1)m1 , . . . ,

(s(θt + 1)− 1)mt , (−1)(s−1)(m0+m1+···+mt)
}
.

Note that if the adjacency matrix A of a connected regular graph G with |V (G)|
vertices and valency k has four distinct eigenvalues {θ0 = k, θ1, θ2, θ3}, then A
satisfies the following equation (see [7]):

A3 −

(
3∑

i=1

θi

)
A2 +

(
∑

1≤i<j≤3

θiθj

)
A− θ1θ2θ3I =

∏3
i=1(k − θi)

|V (G)|
J.(2.3)

This implies that G is walk-regular, see [10].

Now we assume Γ is a cospectral graph with the s-clique extension of the
triangular graph T (n), where s ≥ 2 and n ≥ 4 are integers. Then by (2.1) and
(2.2), the graph Γ has spectrum

(2.4)

{
θm0
0 , θm1

1 , θm2
2 , θm3

3

}

=
{
(s(2n− 3)− 1)1, (s(n− 3)− 1)n−1, (−s− 1)

n
2
−3n
2 , (−1)(s−1)

n(n−1)
2

}
.
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Note that Γ is regular with valency k, where k = (s−1)+2(n−2)s = s(2n−3)−1.
Using (2.3), we obtain

A3 + (3 + 4s− sn)A2 + ((3− n)s2 + (8− 2n)s+ 3)A

+ (1− (n− 4)s− (n− 3)s2)I = 4s2(2n− 3)J.

Therefore,

(2.5) A3
xy =





2s2n2 − 2s2n− 6sn− 3s2 + 9s+ 2, if x = y,

9s2n+ 2sn− 15s2 − 8s− 3− (3 + 4s− sn)λxy, if x ∼ y,

8s2n− 12s2 − (3 + 4s− sn)µxy, if x ≁ y.

The following result is known as the Hoffman bound.

Lemma 6 (Cf. [2], Theorem 3.5.2). Let X be a k-regular graph with least eigen-

value τ . Let α(X) be the size of maximum coclique in X. Then

α(X) ≤
|X|(−τ)

k − τ
.

If equality holds, then each vertex not in a coclique of size α(X) has exactly −τ
neighbours in it.

Applying Lemma 6 to the complement of Γ, we obtain the following lemma.

Lemma 7. For any clique C of Γ with order c, we have

c ≤ s(n− 1).

If equality holds, then every vertex x ∈ V (Γ) \ V (C) has exactly 2s neighbors

in C.

3. Lines in Γ

Recall that Γ is a graph that is cospectral with the s-clique extension of the
triangular graph T (n), where s ≥ 2 and n ≥ 1 are integers. This implies that Γ
is walk-regular. Now we assume that Γ is also co-edge-regular, i.e., there exist
precisely µ = µ(Γ) common neighbors between any two distinct nonadjacent
vertices of Γ. Note that for Γ, we have µ = 4s from the spectrum of the s-clique
extension of T (n).

Fix a vertex, denoted by ∞ and let Γ(∞) be the local graph of Γ at vertex ∞.
Let V (Γ(∞)) = {x1, x2, . . . , xk}, where k = s(2n− 3)− 1. Let xi have valency di
inside Γ(∞) for i = 1, 2, . . . , k. Because Γ is walk-regular, the number of closed
walks through a fixed vertex ∞ of length 3 and 4 only depends on the spectrum.
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This means that the number of edges in Γ(∞) is determined by the spectrum
and as Γ is co-edge-regular, we also see that the number of walks of length 2 in
Γ(∞) is determined by the spectrum of Γ. This implies these numbers are the
same as in a local graph of the s-clique extension of T (n).

Let ∆ be the s-clique extension of T (n). Fix a vertex u of ∆. Then there are
s− 1 vertices with valency (s− 2)+2s(n− 2) and 2s(n− 2) vertices with valency
s(n−2)+2(s−1) in the local graph of T (n) with respect to a fixed vertex. Using
(2.5), this implies that the sum of valencies and the sum of square of valencies of
vertices in Γ(∞) are constant, and are given by the following equations.

k∑

i=1

di = 2ε = 2s2n2 − 2s2n− 6sn− 3s2 + 9s+ 2,(3.1)

k∑

i=1

(di)
2 = 2sn(s2n2 − 6sn− 6s2 + 10s+ 8) + 9s3 + 3s2 − 24s− 4,(3.2)

where ε is the number of edges inside Γ(∞). By (3.1) and (3.2), we obtain

k∑

i=1

(di − (sn− 2))2 = (s− 1)s2(n− 3)2.(3.3)

It turns out that (3.3) is of crucial importance in proving our main result.
Now we show the following lemma that will be used later.

Lemma 8. Fix a vertex ∞ of Γ and let Γ(∞) be the local graph of Γ at ∞. Define

E = {y ∼ ∞ | dy > 3
4s(n−1)} and let e = |E|. Let F = {y ∼ ∞ | dy ≤ 3

4s(n−1)}
and f = |F |. If n ≥ 55, then the following hold.

(1) f ≤ 16(s− 1).

(2) The subgraph of Γ induced on E is not complete.

(3) The subgraph of Γ induced on E does not contain a coclique of order three.

Proof. Note that f = k − e. As 3
4s(n− 1) + 1 ≤ 3

4(sn− 2), by (3.3), we obtain

(s− 1)s2(n− 3)2 =
∑

y∼∞

(dy − (sn− 2))2 ≥
∑

y∈F

(
dy − (sn− 2)

)2

≥
∑

y∈F

(
1

4
(sn− 2)

)2

(3.4)

=
1

16
f(sn− 2)2 ≥

1

16
f(sn− s)2.

So
f ≤ 16(s− 1),
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which implies f < 1
2(sn− 2) if n ≥ 55 (and s ≥ 2). This means

e = k − f > sn.

By Lemma 7, we obtain that e is greater than the order of a maximum size clique
and hence the subgraph induced on E is not complete.

Now we show that E does not contain a coclique of order three. Suppose
X ⊂ E is a coclique in Γ(∞) with vertices {x1, x2, x3}. Define Ai (i = 1, 2, 3)
such that

Ai = {y ∼ ∞ | y ∼ xi, y ≁ xj for all xj ∈ X, j 6= i} ∪ {xi}.

Since Γ is co-edge-regular, the vertices xi and xj (i 6= j) have at most 4s − 1
common neighbours. By the inclusion-exclusion principle, we have

3× (34s(n− 1) + 1)− k

3
≤ 4s− 1.

This gives n < 54. This shows the lemma.

A maximal clique of Γ is called a line if it contains more than 3
4s(n − 1)

vertices. We show the existence of lines of Γ in the following.

Proposition 9. If n ≥ 48s ≥ 96, then for every vertex ∞, there are exactly

two lines through ∞, say C1 and C2. Denote m = |V (C1) ∩ V (C2) \ {∞}| and
ℓ = k + 1− |V (C1) ∪ V (C2)|. Then m ≤ 4s− 1 and ℓ ≤ 16(s− 1).

Proof. Fix a vertex ∞ of Γ, let E = {y ∼ ∞ | dy > 3
4s(n − 1)}. By Lemma 8,

a maximum coclique in E has order two as n ≥ 48s ≥ 55. Let x1, x2 be distinct
nonadjacent vertices in E and let y ∈ E. Then y has at least one neighbour in
{x1, x2}.

Let Ai = {y ∈ E | y ∼ xi, y ≁ xj for j = 1, 2, j 6= i} for i = 1, 2. Then
the subgraph induced on Ai is complete for i = 1, 2. Let Ci be a maximal clique
containing the vertex set {∞} ∪ Ai for i = 1, 2. Note that C1 6= C2 as x1 ≁ x2.
Let M = V (C1) ∩ V (C2) \ {∞} and L = V (Γ(∞)) \ (V (C1) ∪ V (C2)). Let
m = |M | and ℓ = |L|. By the co-edge-regularity of Γ, we have m ≤ 4s − 1.
Let F = {y ∼ ∞ | dy ≤ 3

4s(n − 1)} and f = |F |. We have, by Lemma 8, that
f ≤ 16(s− 1).

Suppose x ∈ E \ (V (C1) ∪ V (C2)). Then x has at least (34s(n − 1) − (4s −
2)− 16(s− 1))/2 neighbours in at least one of C1 and C2. If n ≥ 48s ≥ 96, then
this number is at least 4s, which is a contradiction. Hence E ⊆ V (C1) ∪ V (C2).
So, L ⊆ F and hence ℓ ≤ f ≤ 16(s− 1) by Lemma 8. This shows that |V (C1)|+
|V (C2)| ≥ k − ℓ ≥ k − 16(s− 1). Assume |V (C1)| ≥ |V (C2)|, then we see that

|V (C2)| ≥ k − 16(s− 1)− s(n− 1) >
3

4
s(n− 1),

as n ≥ 48s ≥ 96. This gives that there are exactly two lines through ∞.
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Now we prove the following property for lines through a vertex.

Lemma 10. Fix a vertex ∞ of Γ and let C1 and C2 be the two lines through

∞ with respective orders c1 and c2. Let L = V (Γ(∞)) \ (V (C1) ∪ V (C2)) and

M = V (C1) ∩ V (C2) \ {∞}, and ℓ = |L|, m = |M | ≥ 0. If n ≥ 48s ≥ 96, then
ℓ+m = s− 1 and

s(n− 3) + 1 ≤ ci ≤ s(n− 1)

for i = 1, 2.

Proof. Let Q = V (C1)∆V (C2), where ∆ means “symmetric difference”. Then,
by Lemma 7, |Q| ≤ |V (C1)|+ |V (C2)| ≤ 2s(n− 1).

Note that Q is the complement of L ∪M inside V (Γ(∞)).

For y ∈ M , we have

(3.5) 2sn− 19s ≤ k − 1− ℓ ≤ dy ≤ k − 1 = 2sn− 3s− 2,

by Proposition 9.

Now let y ∈ L. Then y has at least 4s − 1 neighbors in each of C1 and C2.
Hence, by Proposition 9, we obtain

(3.6) dy ≤ 2× (4s− 1) + ℓ− 1 ≤ 2(4s− 1) + 16(s− 1)− 1 ≤ 24s.

By (3.3), we obtain

(3.7)

(s− 1)s2(n− 3)2 =
∑

y∼∞

(dy − (sn− 2))2

≥
∑

y∈L

(dy − (sn− 2))2 +
∑

y∈M

(dy − (sn− 2))2

≥ ℓ((sn− s)− 24s)2 +m((2sn− 19s)− sn)2

= ℓs2(n− 25)2 +ms2(n− 19)2 ≥ (ℓ+m)s2(n− 25)2.

So

ℓ+m ≤
(s− 1)(n− 3)2

(n− 25)2
< s

if n ≥ 48s. Hence

(3.8) ℓ+m ≤ s− 1.

This gives for y ∈ L ∪M , using (3.5), (3.6) and l ≤ s− 1, that

dy − (sn− 2) ≤ k − 1− (sn− 2) = sn− 3s.
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Note that by (3.8),

(3.9)
s(n− 1) ≥ |V (Cj)| ≥ 1 + k − s(n− 1)− l

≥ 2sn− 3s− s(n− 1)− (s− 1) = s(n− 3) + 1

for j = 1, 2.

For y ∈ V (Γ(∞)) \ (L ∪M), we obtain

sn− 4s ≤ |V (C2)| −m− 2 ≤ dy ≤ |V (C2)| − 1 + 4s− 1 + ℓ ≤ sn+ 4s− 3.

Hence |dy − (sn− 2)| ≤ 4s.

Now (3.3) gives us

(3.10)

(s− 1)s2(n− 3)2 =
∑

y∼∞

(dy − (sn− 2))2

≤
∑

y∈L∪M

(dy − (sn− 2))2 +
∑

y∈Q

(dy − (sn− 2))2

≤ (ℓ+m)s2n2 + 2s(n− 1)(4s)2.

So

ℓ+m ≥
(s− 1)(n− 3)2 − 32s(n− 1)

n2
> s− 2,

if n ≥ 48s ≥ 96. This implies ℓ+m = s− 1. This shows the lemma.

We obtain the following lemma immediately.

Lemma 11. Fix a vertex ∞ of Γ and let C1 and C2 be the two lines through ∞
with respective orders c1 and c2. Assume m = |V (C1)∩V (C2)\{∞}|. If n ≥ 48s,
then c1 + c2 = 2s(n− 2) + 2(m+ 1).

Proof. Let ℓ = |V (Γ(∞)) \ (V (C1) ∪ V (C2))|. Then we have

(c1 −m− 1) + (c2 −m− 1) +m+ ℓ = k = 2sn− 3s− 1.

If n ≥ 48s, then we have ℓ + m = s − 1 by Lemma 10, hence c1 + c2 = 2s(n −
2) + 2(m+ 1).

In the next two sections, we will follow the method as used in Hayat et al. [4].

4. The Order of Lines

In this section, we will show the following lemma on the order of lines.
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Lemma 12. Let s ≥ 2 and n ≥ 1 be integers. Let Γ be a co-edge-regular graph

that is cospectral with the s-clique extension of the triangular graph T (n). Let qi
be the number of lines with order s(n − 3) + i for i = 1, . . . , 2s and δ =

∑2s
i=1 qi

be the number of lines in Γ. Assume n ≥ 48s. Then

(4.1)
2s∑

i=1

(s(n− 3) + i)qi = sn(n− 1)

holds, and the number δ satisfies

(4.2) n ≤ δ ≤ n+ 2.

If δ = n, then qi = 0 for all i < 2s, and q2s = n.

Proof. Assume n ≥ 48s. By Proposition 9, any vertex of Γ lies on exactly two
lines. Now consider the set

W = {(x,C)| x ∈ V (C), where C is a line}.

Then, by double counting, the cardinality of the set W , we see (4.1). Moreover,
we see that

δ =
2s∑

i=1

qi <
2s∑

i=1

s(n− 3) + i

s(n− 3)
qi = n+ 2 +

6

n− 3
.

Thus, if n > 10, we obtain

δ ≤ n+ 2.

On the other hand, we have

δ =
2s∑

i=1

qi ≥
2s∑

i=1

s(n− 3) + i

s(n− 1)
qi = n.

This shows δ ≥ n, and δ = n implies that all lines have order s(n − 1), which
means qi 6= 0 if and only if i = 2s. This completes the proof.

5. The Neighborhood of a Line

In this section we will show the following proposition.

Proposition 13. Let Γ be a co-edge-regular graph that is cospectral with the s-
clique extension of the triangular graph T (n), where s ≥ 2, n ≥ 1 are integers. If

n ≥ 48s, then Γ contains exactly n lines.
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Proof. In Lemma 12, we have seen that the number δ of lines satisfies n ≤ δ ≤
n+2. Now we assume that n+1 ≤ δ ≤ n+2, in order to obtain a contradiction.
Let qi be the number of lines of order s(n−3)+ i in Γ, where i = 1, . . . , 2s. Let h
be minimal such that qh 6= 0. Then clearly, 1 ≤ h ≤ 2s. Fix a line C with exactly
s(n− 3) + h vertices. Let q′i be the number of lines C ′ with s(n− 3) + i vertices
that intersect C in at least one vertex. So qi ≥ q′i. By Lemma 11, we obtain

(5.1) |V (C) ∩ V (C ′)| =
h+ i− 2s

2
.

By Proposition 9, every vertex lies on exactly two lines, and hence we obtain

(5.2)
2s∑

i=1

qi

(
h+ i− 2s

2

)
≥

2s∑

i=1

q′i

(
h+ i− 2s

2

)
= s(n− 3) + h.

Now multiply (5.2) by 2 and subtract (4.1) from obtained equation, we find

(5.3) δ(h+ s(1− n)) =

2s∑

i=1

qi(h+ s(1− n)) ≥ s(−n2 + 3n− 6) + 2h

as δ =
2s∑
i=1

qi. This gives

h(δ − 2) ≥ 2s(n− 3) + (δ − n)s(n− 1).

As n+ 1 ≤ δ ≤ n+ 2, we see

(5.4) hn ≥ h(δ−2) ≥ 2s(n−3)+(δ−n)s(n−1) ≥ 2s(n−3)+s(n−1) = 3sn−7s.

Since n ≥ 48s, (5.4) implies that h ≥ 3s. This contradicts to h ≤ 2s. This
completes the proof.

6. Proof of the Main Result

In this section we show our main result, Theorem 1.

Proof of Theorem 1. Assume n ≥ 48s. By Propositions 9 and 13 and Lemma
12, we find that there are exactly n lines, each of order s(n−1), and every vertex
x in Γ lies on exactly two lines. Moreover, by Lemma 11, the two lines through
any vertex x have exactly s vertices in common, and every neighbor of x lies in
one of the two lines through x. Now consider the following equivalence relation
R on the vertex set V (Γ): xRx′ if and only if {x}∪NΓ(x) = {x′}∪NΓ(x

′), where
x, x′ ∈ V (Γ).
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Every equivalence class under R contains s vertices and it is the intersection
of two lines. Let us define the graph Γ̂ whose vertices are the equivalent classes
and two classes, say S1 and S2, are adjacent in Γ̂ if and only if any vertex in S1

is adjacent to any vertex in S2. Then Γ̂ is a regular graph with valency 2n − 4,
and Γ is the s-clique extension of Γ̂. Note that the spectrum of Γ̂ is equal to

{
(2n− 4)1, (n− 4)n−1, (−2)

n
2
−3n
2

}
,

by the relation of the spectra of Γ and Γ̂, see (2.1) and (2.2). Since Γ̂ is a connected
regular graph with valency 2n−4, and it has exactly three distinct eigenvalues, it
follows that Γ̂ is a strongly regular graph with parameters

((
n
2

)
, 2n− 4, n− 2, 4

)
.

As proved in [3], the triangular graphs are determined by the spectrum except
when n = 8. Since we assume that n is large enough, the graph Γ̂ is the triangular
graph T (n). This completes the proof.
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