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Abstract

We consider the problem of maximizing the distance spectral radius and
a slight generalization thereof among all trees with some prescribed degree
sequence. We prove in particular that the maximum of the distance spectral
radius has to be attained by a caterpillar for any given degree sequence. The
same holds true for the terminal distance matrix. Moreover, we consider a
generalized version of the reverse distance matrix and also study its spectral
radius for trees with given degree sequence. We prove that the spectral
radius is always maximized by a greedy tree. This implies several corollaries,
among them a “reversed” version of a conjecture of Stevanović and Ilić. Our
results parallel similar theorems for the Wiener index and other invariants.
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1. Introduction and Preliminaries

Let G be a connected graph whose vertices are v1, v2, . . . , vn. The distance matrix

of G, denoted by D(G), is the symmetric matrix whose ij-th entry is the length
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of the shortest path from vertex vi to vertex vj ; it is one of the classical matrices
associated with a graph. Its study in the context of spectral graph theory traces
back to the work of Graham and Pollak [13]. Among other things, they proved
a very elegant formula for the determinant of the distance matrix of a tree: we
have

det(D(T )) = (n− 1)(−1)n−12n−2,

where n is the number of vertices. Notably, the determinant depends only on
the number of vertices of the tree, but not its structure. This was generalized
in several different directions. Collins [10] and Bapat [2] (the latter for matrix
weights) extended the result to a weighted tree T on n vertices with edge weights
αi (i = 1, . . . , n − 1). They proved that the determinant of the distance matrix
(where distance is now defined as the sum of the edge weights along the shortest
path) is given by

det(D(T )) = (−1)n−12n−2

(

n−1
∏

i=1

αi

)(

n−1
∑

i=1

αi

)

,

which is still independent of the tree structure and the assignment of the weights
to the edges, but depends on the edge weights and the number of vertices.

Furthermore, Bapat, Kirkland and Neumann proved in [4] that for a weighted
tree T on n vertices with edge weights αi (i = 1, . . . , n−1) and any real constant
c, the determinant of the matrix Hc(T ) = D(T ) + cJ , where J is a matrix with
all entries equal to 1, is

(1) det(Hc(T )) = (−1)n−12n−2

(

n−1
∏

i=1

αi

)(

2c+
n−1
∑

i=1

αi

)

.

In particular, if all weights are equal to 1, then we have

det(Hc(T )) = (−1)n−12n−2(2c+ n− 1),

which again is independent of the structure of the tree.

In analogy to the matrix Hc(T ), let us also consider the matrix Mc(T ) =
cJ −D(T ). By a simple substitution, one finds that

det(Mc(T )) = (−1)n det(D(T )− cJ)

= (−1)n
(

(−1)n−12n−2(−2c+ (n− 1))
)

= 2n−2(2c− n+ 1)

for every tree T with n vertices, which is also independent of the structure of
the tree, but only depends on the constant c and the number of vertices n. The
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reverse distance matrix is usually defined as the matrix diam(T )J −D(T ), where
diam(T ) is the diameter of T [1]. This is clearly a special case of the matrix Mc,
where c = diam(T ). Note that diam(T ) is also the smallest possible choice of c
for which we obtain a matrix with non-negative entries.

The spectrum of the distance matrix only depends on the graph G, not the
ordering of its vertices, as it is the case for other classical matrices (e.g. adjacency
matrix, Laplacian matrix). Since D(G) is symmetric, all its eigenvalues are real,
and they sum to 0 since the trace of D(G) is 0. Moreover, all entries except for
those on the diagonal are positive, so by the Perron-Frobenius theorem there is
a unique eigenvalue with an eigenvector whose entries are all positive, and this
eigenvalue is also equal to the spectral radius of D(G), which is also called the
distance spectral radius of G. When G is a tree, the spectral radius is in fact the
only positive eigenvalue, all the others are negative [3, p. 104].

The Perron-Frobenius theorem also applies to Hc(G) if c is non-negative, and
to Mc as long as c is greater than or equal to the diameter, so that all entries are
positive. In this paper, we will be interested in the spectral radius of matrices of
the form Hc(G) or Mc(G), specifically its maximum value for trees with a given
degree sequence. The spectral radius of Hc(G) will be denoted by ηc(G), and
the spectral radius of Mc(G) by µc(G). Clearly, the distance spectral radius is
precisely the special case η0(G).

The distance spectral radius is closely related to other distance-based graph
invariants, the Wiener index being a notable example. The Wiener index of a
graph is defined as the sum of the distances between all (unordered) pairs of
vertices, which is exactly half of the sum of all the entries in the distance matrix.
The following inequality is a consequence of this fact.

Theorem 1 [17]. Let ρ(G) be the distance spectral radius of a graph G of order

n. Then

ρ(G) ≥
2W (G)

n
.

The proof of this theorem is based on the concept of a Rayleigh quotient,
which will also play a major role in this paper.

Recall that the Rayleigh quotient of a vector f with respect to a matrix A is
the quotient

fTAf

fTf
.

If f is a unit vector, this simply reduces to fTAf . It is well known that the largest
eigenvalue of a symmetric matrix is the maximum of the Rayleigh quotient, taken
either over all nonzero vectors or just all unit vectors. Thus the spectral radius
of D(G) is bounded below by the Rayleigh quotient associated with the vector 1
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whose entries are all equal to 1:

ρ(G) ≥
1TD(G)1

1T1
=

2W (G)

n
.

Equality in Theorem 1 holds if and only if the total distance
∑

w d(v, w) has the
same value for every vertex v of G; for example, this is trivially the case for all
vertex-transitive graphs. With this connection in mind, it is not surprising that
the results we obtain in this paper also have known analogues for the Wiener
index.

As mentioned before, the matrices we are dealing with here are non-negative
matrices to which the Perron-Frobenius theorem applies: each such matrix has a
unique non-negative unit eigenvector, which is associated with its spectral radius.
This unit eigenvector is called the Perron vector.

There is already a large amount of literature on the problem of maximizing
or minimizing the distance spectral radius in some family of graphs. Trees are a
fundamental and natural family of graphs to consider, and indeed there are many
results on various types of trees, such as trees with given matching number [16,22],
domination number [29], number of leaves [22, 23], number of odd vertices [18],
maximum degree [19–21,25], or diameter [31] and some particular classes of trees
[30]. See also [6–8,28].

As mentioned earlier, our main focus in this paper will be on trees with a
prescribed degree sequence. There is a simple characterization of finite sequences
that are degree sequences of trees: the trivial identity that stems from the hand-
shake lemma is both necessary and sufficient.

Proposition 2. A sequence (d1, d2, . . . , dn) of positive integers is a degree se-

quence of a tree of order n if and only if

n
∑

i=1

di = 2(n− 1).

We will call a sequence that satisfies the condition of Proposition 2 a tree

degree sequence. For such a tree degree sequence, we are interested in the trees
that maximize the spectral radii ηc and µc. Greedy trees and caterpillars will
play a major role in our study. Let us first present their formal definitions.

Definition [27]. The greedy tree G(α), also known as BFD-tree [5], is a rooted
tree obtained from a degree sequence α by the following ”greedy algorithm”:

(i) assign the largest degree to the root r;

(ii) label the neighbors of r as v1, v2, . . . , vd(r), from left to right, and assign the
largest degrees available to them such that d(v1) ≥ d(v2) ≥ · · · ≥ d(vd(r));
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(iii) label the neighbors of v1 (except r) as v11, v12, . . . , and assign degrees as in
(ii);

(iv) repeat (iii) for v2, v3, . . . , vd(r), then the vertices at distance 2 from the root,
and so on, from top to bottom and left to right; at each step, the next vertex
is assigned the largest degree in the sequence that has not been assigned yet.

Example 3. We construct a greedy tree for the degree sequence:

α = (4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1).

The degree of the root r is 4, and it has the neighbors v1, v2, v3, v4. We therefore
assign the next largest available degree, which is 3, to v1 and repeat the procedure
for the other vertices. Following the algorithm yields Figure 1.

r

v111

v1 v2 v3 v4

v11 v12 v21 v22 v31 v41

Figure 1. A greedy tree G(α).

The greedy tree is known to maximize, among others, the spectral radius [5]
and Laplacian spectral radius [32]. It is also known that the minimum of the
Wiener index among all trees with degree sequence α is the greedy tree G(α),
see [27]. An important special case is the so-called Volkmann tree. In [11], it is
shown that the Volkmann tree minimizes the Wiener index among trees with n

vertices and maximum degree ∆.

Definition. The Volkmann tree Vn,∆ is a special case of a greedy tree; it is
characterized by its order n and maximum degree ∆. Its degree sequence is α =
(∆, . . . ,∆, r, 1, . . . , 1), where r ∈ {1, 2, . . . ,∆− 1} satisfies r ≡ n− 1 mod ∆− 1.

Figure 2 shows the Volkmann tree V20,3, whose degree sequence is

α = (3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
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A conjecture of Stevanović and Ilić in [25] states that among all trees with
order n and maximum degree ∆, the Volkmann tree minimizes the spectral radius
of the distance matrix. A special case was proven by Luo and Zhou [21] and Lin
et al. [20]. See also [12]. While we will not be able to prove this conjecture, we
will add evidence in its favour by proving a “reversed” version (see Corollary 20).

Figure 2. The Volkmann tree V20,3.

It is harder to characterize the trees for which the maximum is attained, but
one can show that they are always so-called caterpillars.

Definition. A caterpillar is a tree with the property that removing its leaves
yields a path. This path will be called the backbone of the caterpillar. In partic-
ular, a path is also a caterpillar (and we will even consider a path with only one
or two vertices a caterpillar).

Figure 3 shows an example of a caterpillar whose degree sequence is α =
(5, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1).

• • • • •

• • • •

• •

Figure 3. A caterpillar.

In the following section, we prove that the maximum distance spectral radius
among all trees with a given degree sequence is always attained by a caterpillar,
paralleling similar results e.g. for the Wiener index. In fact, we prove a slightly
more general statement on the spectral radius of matrices of the form Hc(T ) =
cJ + D(T ). While we cannot describe the precise shape of this maximizing
caterpillar in general, a partial characterization can be given.

Thereafter, we look at a “reversed” problem. For a fixed real number c,
we consider matrices of the form Mc(T ) = cJ − D(T ). For sufficiently large c,
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this is still a non-negative matrix, and we will show that the maximum spectral
radius of Mc(T ), given the degree sequence of T , is always attained by a greedy
tree. One can also deduce results on trees with a given number of leaves or given
maximum degree from this general theorem by a technique based on majorization
of sequences.

2. The Spectral Radius of a Generalized Distance Matrix

In this section, we consider the problem of maximizing the distance spectral
radius (and more generally the spectral radius of Hc(T )) of trees whose degree
sequence is given. Our main result reads as follows.

Theorem 4. Let c ≥ 0 be a constant, and let α be a fixed tree degree sequence.

Let Tmax be a tree that maximizes the spectral radius of Hc(T ) = cJ + D(T )
among all trees with degree sequence α. Then Tmax is a caterpillar.

The proof will follow the lines of [24] (which dealt with the Wiener index and
other distance-based graph invariants) in many ways; however, there are some
subtleties that require us to modify the argument. Before we begin the proof, let
us state a few definitions.

Definition. A caterpillar branch of a tree T is a maximal induced subgraph B

of T that is a non-trivial caterpillar (i.e., a caterpillar with more than one vertex)
and has the property that T \B is still a tree.

The proof of Theorem 4 is by contradiction: for every non-caterpillar, we
construct a tree with the same degree sequence for which the spectral radius is
greater. To this end, we consider the Perron vector f and show that the Rayleigh
quotient of the same vector with respect to the newly constructed tree is greater.

Let us consider c as fixed in the following. The Rayleigh quotient of the
matrix Hc(T ) = cJ +D(T ) of a tree T on a unit vector f , which we denote by
RT (f), is given by

RT (f) =
∑

u∈V (T )

∑

v∈V (T )

(c+ dT (u, v))f(u)f(v)

= c

(

∑

u∈V (T )

f(u)

)2

+ 2
∑

{u,v}⊆V (T )

dT (u, v)f(u)f(v),

where f(u) is the entry of f associated with the vertex u. If f is the Perron
vector of Hc(T ) (which is what we will generally assume in the following), then
we have ηc(T ) = RT (f). For a subset S of the vertices of T , we set

|S|f =
∑

u∈S

f(u)
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and call it the weight of S (with respect to f). Since f has only positive entries,
it is clear that |S|f > 0 for every nonempty vertex set S.

Proof of Theorem 4. Let Tmax be an optimal tree (i.e., a tree that maximizes
the spectral radius ofHc(T ) for some fixed c) among all trees with some prescribed
degree sequence, and let f be the associated Perron vector. Suppose that Tmax

is not a caterpillar. We consider pairs B1, B2 of caterpillar branches in Tmax that
are attached to the same vertex v (see Figure 4); such pairs must always exist
if the tree is not a caterpillar. To see why this is the case, consider the tree
Tred that results when all leaves are removed. Since the original tree is not a
caterpillar, the result is not a path. Now fix any leaf and consider the branching
vertex (vertex of degree at least 3) in Tred whose distance is greatest. At least two
of the branches going out from this vertex are paths in Tred and thus caterpillar
branches in Tmax, since there would otherwise be a branching vertex at a greater
distance.

• • •• •

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

v

A

B1

B2

w1

w2

wk−1

wk

u1

u2

ul−1

ul

Figure 4. B1, B2 and A in an optimal tree Tmax that is not a caterpillar.

Among all such pairs of two caterpillar branches attached to the same ver-
tex, we choose the pair B1, B2 for which |B1|f + |B2|f is minimal. Let P =
vw1w2 · · ·wk and P ′ = vu1u2 · · ·ul be the longest paths (backbones) of the cater-
pillar branches B1 and B2 respectively, as indicated in the figure. Furthermore,
we denote Tmax \ (B1 ∪B2) by A. Without loss of generality, we can assume that
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|B2|f ≥ |B1|f . Note that |A|f > |B2|f by our choice of the pair B1, B2. If this
was not the case, then we could reach a contradiction in one of two ways:

• If A \ v is a caterpillar branch, then consider the pair B1, A \ v instead of
B1, B2; since |B1|f + |A \ v|f < |B1|f + |A|f ≤ |B1|f + |B2|f , we would have
a contradiction to the choice of B1, B2.

• Otherwise, we can find a pair B′
1, B

′
2 of caterpillar branches inside of A, and

their combined weight would be |B′
1|f + |B′

2|f ≤ |A|f < |B1|f + |B2|f , again
with a contradiction.

We form a new tree T ′ from Tmax by exchanging B2 and wk. That is, we
remove the edges wk−1wk and vu1, and add the edges wk−1u1 and vwk. Clearly,
this does not change the degree sequence. Note that this operation only changes
the distance between two vertices x and y if x ∈ A or x ∈ B1 \wk and y ∈ B2 or
y = wk (or vice versa). Let us now compute

RT ′(f)−RTmax
(f) = 2

(

∑

{x,y}⊆V (Tmax)

(

dT ′(x, y)− dTmax
(x, y)

)

f(x)f(y)

)

.

There are four different cases to consider for x and y.

Case 1. One of the two lies in A, the other in B2. The contribution of all
such pairs to RT ′(f)−RTmax

(f) is

2
∑

x∈A
y∈B2

(

dT ′(x, y)− dTmax
(x, y)

)

f(x)f(y)

= 2
∑

x∈A
y∈B2

(

dTmax
(x, v) + dTmax

(v, wk) + dTmax
(u1, y)

− dTmax
(x, v)− dTmax

(v, u1)− dTmax
(u1, y)

)

f(x)f(y)

= 2
∑

x∈A
y∈B2

(dTmax
(v, wk)− 1) f(x)f(y) = 2(k − 1)|A|f |B2|f .

Case 2. One of the two lies in A, the other is wk. The contribution of all
such pairs to RT ′(f)−RTmax

(f) is

2
∑

x∈A

(

dT ′(x,wk)− dTmax
(x,wk)

)

f(x)f(wk)

= 2
∑

x∈A

(

dTmax
(x, v) + 1− dTmax

(x, v)− dTmax
(v, wk)

)

f(x)f(wk)

= 2(1− k)|A|ff(wk).
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Case 3. One of the two lies in B1 \ {wk}, the other in B2. The contribution
of all such pairs to RT ′(f)−RTmax

(f) is

2
∑

x∈B1\{wk}
y∈B2

(

dT ′(x, y)− dTmax
(x, y)

)

f(x)f(y)

= 2
∑

x∈B1\{wk−1,wk}
y∈B2

(

dTmax
(x,wk) + dTmax

(u1, y)− dTmax
(x, v)− 1− dTmax

(u1, y)
)

f(x)f(y)

+ 2
∑

y∈B2

(

1 + dTmax
(u1, y)− dTmax

(wk−1, v)− 1− dTmax
(u1, y)

)

f(wk−1)f(y)

= 2
∑

x∈B1\{wk−1,wk}

(

dTmax
(x,wk)− dTmax

(x, v)− 1
)

f(x)|B2|f + 2(1− k)f(wk−1)|B2|f .

Case 4. One of the two lies in B1 \ {wk}, the other is wk. The contribution
of all such pairs to RT ′(f)−RTmax

(f) is

2
∑

x∈B1\{wk}

(

dT ′(x,wk)− dTmax
(x,wk)

)

f(x)f(wk)

= 2
∑

x∈B1\{wk−1,wk}

(

dTmax
(x, v) + 1− dTmax

(x,wk)
)

f(x)f(wk)

+ 2
(

dTmax
(wk−1, v) + 1− 1

)

f(wk−1)f(wk)

= 2
∑

x∈B1\{wk−1,wk}

(

dTmax
(x, v) + 1− dTmax

(x,wk)
)

f(x)f(wk)

+ 2(k − 1)f(wk−1)f(wk).

Combining the last two cases, we obtain

2
∑

x∈B1\{wk−1,wk}

(

dTmax
(x,wk)− dTmax

(x, v)− 1
)

f(x)(|B2|f − f(wk))

+ 2f(wk−1)(1− k)(|B2|f − f(wk)).

Observe that |B2|f − f(wk) > |B2|f − |B1|f ≥ 0 by the assumption that |B2|f ≥
|B1|f . Note also that dTmax

(x,wk) ≥ 2 for all x ∈ B1 \ {wk−1, wk}. Moreover,
dTmax

(x, v) ≤ dTmax
(wk, v) = k for all x ∈ B1\{wk}. Using these simple estimates,

we find that the contribution of Cases 3 and 4 to RT ′(f) − RTmax
(f) is greater

than or equal to

2
∑

x∈B1\{wk−1,wk}

f(x)(2− 1− k)(|B2|f − f(wk)) + 2f(wk−1)(1− k)(|B2|f − f(wk))

= 2(1− k)|B1 \ {wk}|f (|B2|f − f(wk)).
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Together with Cases 1 and 2, we obtain

RT ′(f)−RTmax
(f)

≥ 2(k − 1)
(

|A|f (|B2|f − f(wk))− |B1 \ {wk}|f (|B2|f − f(wk))
)

= 2(k − 1)
(

|A|f − |B1 \ {wk}|f
)(

|B2|f − f(wk)
)

,

which is positive since |A|f > |B2|f ≥ |B1|f > f(wk). Hence we have

ηc(T
′) ≥ RT ′(f) > RTmax

(f) = ηc(Tmax).

This contradicts the optimality of Tmax.

Example 5. Figure 5 shows the respective extremal trees for the degree se-
quences

α1 = (5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1),

α2 = (8, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

α3 = (10, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

α4 = (8, 4, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

• • • • • •

• • • • • •

• • • • • •

• • • • • • •

• • •

(a) T1. (b) T2.

• • • • • • •

• • • • • • •

• • • •

• • • • • • •

• • • • • • • • • •

• • •

(c) T3. (d) T4.

Figure 5. Extremal trees T1, T2, T3 and T4.

Note that Theorem 4 does not uniquely determine Tmax except for some very
special cases (e.g. trees whose vertices only have degree 1 or d for some fixed
d). Characterizing Tmax in general appears to be a difficult problem, and even
the analogous problem for the Wiener index does not have a simple solution (an
efficient algorithm is available, however—see [9]).

However, we can prove the following general statement about the shape of
the extremal caterpillar: its vertex degrees form a “V-pattern”.
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Theorem 6. Let c ≥ 0 be a constant, and let α be a fixed tree degree sequence.

Let Tmax be a caterpillar that maximizes the spectral radius of Hc(T ) = cJ+D(T )
among all trees with degree sequence α, and let the degrees of the internal vertices

along its backbone be d1, d2, . . . , dk, in this order. There exists an index m such

that

(2) d1 ≥ d2 ≥ · · · ≥ dm ≤ · · · ≤ dk−1 ≤ dk.

Proof. Let f denote the Perron vector as in the proof of Theorem 4, and let Si

be the subtree induced by the i-th vertex on the backbone and its leaf neighbors
(1 ≤ i ≤ k). Clearly, the Si are disjoint, and their union is the entire tree Tmax.
Choose j to be the largest index for which

∑

i<j

|Si|f <
∑

i>j

|Si|f .

Since this inequality is trivially satisfied for j = 1, and trivially not satisfied for
j = k (unless k = 1, in which case there is nothing to prove), such an index must
exist.

We claim that the degrees satisfy the inequality (2) either for m = j or for
m = j + 1. Let us assume for contradiction that di < di+1 for some i < j, and
consider the tree T ′ obtained by moving di+1−di leaves from Si+1 to Si. This set
of leaves will be denoted by L. Observe that T ′ and Tmax have the same degree
sequence. We also note that the only distances that change are those between
the leaves in L and the other vertices, and that all these distances change by
precisely 1. Now consider the difference

RT ′(f)−RTmax
(f) = 2

(

∑

{x,y}⊆V (Tmax)

(

dT ′(x, y)− dTmax
(x, y)

)

f(x)f(y)

)

of the Rayleigh quotients. This difference simplifies to

RT ′(f)−RTmax
(f) = 2

∑

x∈L

∑

y∈(Si+1\L)∪Si+2∪···∪Sk

f(x)f(y)−2
∑

x∈L

∑

y∈S1∪···∪Si

f(x)f(y)

= 2|L|f

(

|Si+1|f − |L|f +
k
∑

h=i+2

|Sh|f −
i
∑

h=1

|Sh|f

)

> 2|L|f

(

k
∑

h=j+1

|Sh|f −

j−1
∑

h=1

|Sh|f

)

,

which is positive by our choice of j. Thus we have

ηc(T
′) ≥ RT ′(f) > RTmax

(f) = ηc(Tmax),
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contradicting the choice of Tmax. So we can conclude that

d1 ≥ d2 ≥ · · · ≥ dj .

By maximality of j, we have

∑

i<j+1

|Si|f ≥
∑

i>j+1

|Si|f .

So repeating the same argument, we find that

dj+1 ≤ dj+2 ≤ · · · ≤ dk.

Combining the two chains of inequalities, we obtain (2), either with m = j or
with m = j + 1.

It is worth pointing out that the results of this section also apply to a slightly
different matrix known as the terminal distance matrix (see [15] for some recent
results on the spectral radius of the terminal distance matrix of trees). Its formal
definition reads as follows.

Definition. Let P(T ) = {w1, w2, . . . , wk} be the set of leaves of a tree T . The
terminal distance matrix (or reduced distance matrix) TD(T ) is a symmetric
matrix whose ij-th entry is d(wi, wj).

Theorem 7. Let c ≥ 0 be a constant, and let α be a fixed tree degree sequence.

Let Tmax be a tree that maximizes the spectral radius of cJ + TD(T ) among all

trees with degree sequence α. Then Tmax is a caterpillar, and its vertex degrees

follow the pattern described in Theorem 6.

Proof. The proof is analogous to the proofs of Theorems 4 and 6.

3. The Spectral Radius of a Generalized Reverse Distance Matrix

It is natural to also consider the minimization problem for the distance spectral
radius or generally the spectral radius of Hc(T ). Indeed, as pointed out in the
introduction, there are concrete conjectures in this regard, and since greedy trees
are often extremal with respect to distance-based graph invariants (such as the
Wiener index), one would expect that this is the case for the distance spectral
radius as well. While this appears to be the case, we have been unable to prove
it, but we provide evidence in this direction. Minimizing the spectral radius of
D(T ) is similar to maximizing the spectral radius of a “reversed” matrix of the
form Mc(T ) = cJ −D(T ), as defined earlier. For the latter problem, we succeed
in proving that the greedy trees are extremal.
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The matrix Mc(T ) has only non-negative entries if c is greater than or equal
to the diameter of T . If we let ν denote the number of internal vertices (non-
leaves) of T , then the diameter is at most equal to ν+1, since any diametral path
starts and ends at a leaf and otherwise only contains internal vertices, thus at
most ν+2 vertices in total. For a caterpillar, this value is actually attained. If the
entries of Mc(T ) are non-negative, then the Perron-Frobenius theorem applies,
which will be important for us in our analysis of the spectral radius. Let us now
formulate the main theorem of this section.

Theorem 8. Let α be a tree degree sequence, and let ν be the number of entries

greater than 1 (number of non-leaves) in α. For every constant c ≥ ν + 1, the
greedy tree G(α) is the unique tree with degree sequence α that maximizes the

spectral radius of the matrix Mc(T ) = cJ −D(T ).

The proof of Theorem 8 is based on similar results for the Wiener index as
obtained by Wang in [27]. The basic idea is to analyze the behaviour of the
spectral radius of Mc(T ) under certain operations on the tree T . We first need
some definitions and lemmas. The following lemma gives a characterization of a
greedy tree.

Lemma 9 [27]. A rooted tree T is a greedy tree if

(i) the root r has the largest degree;

(ii) the heights of any two leaves differ by at most 1; here, the height hT (v) of a
vertex v is the distance from v to the root r;

(iii) for any two vertices v and w, if hT (v) < hT (w), then d(v) ≥ d(w);

(iv) for any two vertices v and w of the same height, if d(v) > d(w), then d(v′) ≥
d(w′) for any successors v′ of v and w′ of w of the same height;

(v) for any two vertices v and w of the same height, if d(v) > d(w), then d(v′) ≥
d(w′) and d(v′′) ≥ d(w′′) for any siblings v′ of v and w′ of w or successors

v′′ of v′ and w′′ of w′ of the same height.

Now let T be a tree of order n with vertex set V (T ), and let f be an n × 1
unit vector. The Rayleigh quotient of Mc(T ) on the vector f is given by

RT (f) =
fTMf

fTf
= fTMf =

∑

u∈V (T )

∑

v∈V (T )

(c− dT (u, v))f(u)f(v),

where f(u) is the component of f associated with the vertex u. We know that the
spectral radius µc(T ) of Mc(T ) is the maximum of RT (f) over all unit vectors,
and this maximum is attained when f is the Perron vector, which is the unit
eigenvector corresponding to µc(T ). In the following, we assume that T = Tmax
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is a tree with degree sequence α that maximizes the spectral radius of Mc(T ),
and we will always let f denote the Perron vector of Mc(Tmax).

Next, we describe a decomposition of a tree T taken from [27] which will aid
us in the proof of some technical lemmas that will lead us to Theorem 8. Consider
two vertices x and y in the tree T . Let the path PT (x, y) from the vertex x to
the vertex y be given by

PT (x, y) = xkxk−1 · · ·x2x1y1y2y3 · · · yk−1yk

when its length is odd, or

PT (x, y) = xkxk−1 · · ·x2x1zy1y2 · · · yk−1yk

when its length is even, where xk = x, yk = y. Furthermore, we let Xi, Yi and
Z denote the components that contain xi, yi and z respectively when the edges
of the path PT (x, y) are removed. Also, we let X>k (respectively, Y>k) be the
subtree of the tree induced by the vertices in Xk+1 ∪ Xk+2 ∪ · · · (respectively,
Yk+1 ∪Yk+2 ∪ · · · ). This decomposition is shown in Figure 6 for odd path length.
As in the previous section, we set

|S|f =
∑

u∈S

f(u)

for every set S of vertices. Since f has only positive entries, we have |S|f > 0
for all nonempty sets S again.

X>k Y>k

Xk Xk−1 Yk−1 YkX2 X1 Y1 Y2

xk+1 yk+1
x2 x1 y1 y2xk xk−1 ykyk−1

Figure 6. Labelling of a path and the components.

Lemma 10. Let Tmax be decomposed as depicted in Figure 6. If |Xi|f ≥ |Yi|f
for i = 1, 2, . . . , k − 1 and |X>k−1|f ≥ |Y>k−1|f , then d(xk) ≥ d(yk).

Proof. We assume (for contradiction) that d(xk) < d(yk), so that d(yk)−d(xk) =
a > 0. We let ui (i = 1, . . . , a) be neighbors of yk other than yk−1 and yk+1

(chosen arbitrarily). We increase the degree of xk by removing all the edges
ykui (i = 1, . . . , a) and adding all edges xkui (i = 1, . . . , a) instead. Note that
this operation does not change the degree sequence; we want to show that it
increases the Rayleigh quotient RTmax

(f). Let T ′ be the new tree obtained after
performing this operation and A be the set of vertices in the components of
Tmax \ {ykui : i = 1, . . . , a} that contain u1, u2, . . . , ua.
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We compute the difference RT ′(f)−RTmax
(f):

RT ′(f)−RTmax
(f) = 2

∑

{u,v}⊆V (Tmax)

(c− dT ′(u, v))f(u)f(v)

− 2
∑

{u,v}⊆V (Tmax)

(c− dTmax
(u, v))f(u)f(v)

= 2
∑

{u,v}⊆V (Tmax)

(dTmax
(u, v)− dT ′(u, v))f(u)f(v).

We observe that the distance between two vertices u and v only changes if u ∈ A

and v ∈ Tmax\A (or vice versa). We will consider the case when the path shown in
Figure 6 has odd length, the other case being similar. There are four possibilities
for the vertices u and v.

Case 1. One of the two lies in Xi for some i ≤ k− 1, and the other lies in A.
In this case, the distance between the vertices decreases by 2i− 1 in T ′. Thus we
get

2
∑

u∈A
v∈Xi

(

dTmax
(u, v)− dT ′(u, v)

)

f(u)f(v) = 2
∑

u∈A

f(u)
k−1
∑

i=1

(2i− 1)|Xi|f

= 2
k−1
∑

i=1

(2i− 1)|Xi|f |A|f .

Case 2. If one of the two lies in Yi for some i and the other lies in A, the
distance increases by 2i− 1. This gives us

2
∑

u∈A
v∈Yi

(

dTmax
(u, v)− dT ′(u, v)

)

f(u)f(v) = −2
∑

u∈A

f(u)
k−1
∑

i=1

(2i− 1)|Yi|f

= −2
k−1
∑

i=1

(2i− 1)|Yi|f |A|f .

Case 3. One of the two lies in X>k−1, and the other lies in A. In this case,
the distance between the vertices decreases by 2k − 1. Thus we get

2
∑

u∈A
v∈X>k−1

(

dTmax
(u, v)− dT ′(u, v)

)

f(u)f(v) = 2
∑

u∈A

f(u)(2k − 1)|X>k−1|f

= 2(2k − 1)|X>k−1|f |A|f .

Case 4. If one of the two lies in Y>k−1\A and the other lies in A, the distance
increases by 2k − 1. This gives us
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2
∑

u∈A
v∈Y>k−1\A

(

dTmax
(u, v)− dT ′(u, v)

)

f(u)f(v)

= −2
∑

u∈A

f(u)(2k − 1)
(

|Y>k−1|f − |A|f
)

= −2(2k − 1)|A|f
(

|Y>k−1|f − |A|f
)

.

Combining the four cases, we find that RT ′(f)−RTmax
(f) is equal to

2|A|f

(

k−1
∑

i=1

(2i− 1)(|Xi|f − |Yi|f ) + (2k − 1)(|X>k−1|f − |Y>k−1|f + |A|f )

)

if the length of the path PT (x, y) is odd, and similarly equal to

2|A|f

(

k−1
∑

i=1

(2i)(|Xi|f − |Yi|f ) + (2k)(|X>k−1|f − |Y>k−1|f + |A|f )

)

if the length of the path is even.

We are assuming that |Xi|f ≥ |Yi|f for 1 ≤ i ≤ k − 1 and |X>k−1|f ≥
|Y>k−1|f , so RT ′(f)−RTmax

(f) > 0. It follows that

µc(T
′) ≥ RT ′(f) > RTmax

(f) = µc(Tmax),

which contradicts the assumption that Tmax maximizes the spectral radius of
Mc(T ).

Lemma 11. Let P be a path of an optimal tree Tmax whose end vertices are leaves.

If the length of P is odd (2l − 1), we label the vertices of P as ulul−1 · · ·u1w1w2

· · ·wl and denote by Ui,Wi the components that contain ui, wi respectively (i ∈
{1, 2, . . . , l}), when the edges of P are removed. Assume (without loss of gener-

ality, reversing the labelling if necessary) that |Uj |f > |Wj |f for the first index j

for which |Uj |f 6= |Wj |f . Then we have

|U1|f ≥ |W1|f ≥ |U2|f ≥ |W2|f ≥ · · · ≥ |Ul|f ≥ |Wl|f .

If the length of P is even (2l), we label the vertices as ul+1ulul−1 · · ·u1w1w2

· · ·wl. Again, we have

|U1|f ≥ |W1|f ≥ |U2|f ≥ |W2|f ≥ · · · ≥ |Wl|f ≥ |Ul+1|f ,

reversing the labelling if necessary.
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In order to prove Lemma 11, we first find an equivalent representation for
the Rayleigh quotient of Mc(T ) on its Perron vector f .

Proposition 12. For every tree T , we can write

(3)
∑

{u,v}⊆V (T )

dT (u, v)f(u)f(v) =
∑

uv∈E(T )

∑

u′∈C(u,v)

f(u′)
∑

v′∈C(v,u)

f(v′),

where E(T ) is the set of edges of T and C(u, v) is the set of all vertices closer to

the vertex u than to the vertex v.

Therefore the Rayleigh quotient of Mc(T ) on its Perron vector f can be writ-

ten as

RT (f) =
∑

u∈V (T )

∑

v∈V (T )

cf(u)f(v)− 2
∑

{u,v}⊆V (T )

dT (u, v)f(u)f(v)

= c

(

∑

u∈V (T )

f(u)

)2

− 2
∑

uv∈E(T )

∑

u′∈C(u,v)

f(u′)
∑

v′∈C(v,u)

f(v′).

Proof. We only have to prove equation (3); the second statement follows im-
mediately. Firstly, the right hand side of the equation, when multiplied out, is
equal to the sum over unordered pairs of vertices {u′, v′}, each with its weight
f(u′)f(v′), such that the unique path between u′ and v′ contains the edge uv,
where u′ is closer to u and v′ is closer to v (u′ might coincide with u, and v′ might
coincide with v). Therefore, for each pair {u′, v′} the weight f(u′)f(v′) occurs
precisely d(u′, v′) times in the sum, which means that the sums coincide.

For our next step, we need a general inequality on rearrangements, see the
book of Hardy, Littlewood and Pólya [14]. For a sequence s of the form

s−l, s−l+1, . . . , s−1, s0, s1, . . . , sl−1, sl,

we obtain the sequence s+ by rearranging the elements so that

s+0 ≥ s+1 ≥ s+−1 ≥ s+2 ≥ s+−2 ≥ · · · ≥ s+l ≥ s+−l.

Theorem 13 (see [14], Theorem 371). Let p, q, and r be non-negative sequences.

Suppose the sequence r is symmetrically increasing, that is

r0 ≤ r1 = r−1 ≤ r2 = r−2 ≤ · · · ≤ r2k = r−2k,

and the sequences p and q have no prescribed order. Then the bilinear form

k
∑

a=−k

k
∑

b=−k

ra−bpaqb

attains its minimum among all possible orders of p and q when p is p+ and q

is q+.
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Proof of Lemma 11. We will only prove the statement for odd path length;
the proof for even path length is similar. We set

S−l+1 = |Ul|f , S−l+2 = |Ul−1|f , . . . , S0 = |U1|f ,

S1 = |W1|f , S2 = |W2|f , . . . , Sl = |Wl|f .

We look at all possible permutations of the branches U1, . . . , Ul,W1, . . . ,Wl

and show that a permutation for which the maximum value of the Rayleigh quo-
tient RT (f) is attained must have the property stated in the lemma. We now con-
sider the total contribution C of all edges of the path P to the Rayleigh quotient
RT (f) as described in our Proposition 12, because the contribution of all other
edges remains the same when the order of the branches U1, . . . , Ul,W1, . . . ,Wl is
changed. We get

C = S−l+1(S−l+2 + · · ·+ Sl)

+ (S−l+1 + S−l+2)(S−l+3 + · · ·+ Sl)

...

+ (S−l+1 + S−l+2 + · · ·+ Sl−1)Sl.

It can be seen that the summands of C are all of the form SaSb, it remains to
count how often each such term occurs. To obtain a specific product SaSb, we
must have Sa and Sb occurring in different parentheses, which happens |a − b|
times. Thus we define coefficients as follows:

ra−b = rb−a =
|a− b|

2
.

Moreover, we add S−l = 0 as a dummy variable to achieve symmetry (this is not
needed in the case where the path length is even). Then we have

C =

l
∑

a=−l+1

l
∑

b=−l+1

ra−bSaSb =

l
∑

a=−l

l
∑

b=−l

ra−bSaSb,

where r is symmetrically increasing, namely

r0 = 0 ≤ r1 = r−1 =
1

2
≤ · · · ≤ r2l = r−2l = l.

Therefore, by Theorem 13, C attains its minimum if S is S+, so

S+
0 ≥ S+

1 ≥ S+
−1 ≥ S+

2 ≥ S+
−2 ≥ · · · ≥ S+

−l+1 ≥ S+
l ≥ S+

−l = 0,

or in other words

(4) |U1|f ≥ |W1|f ≥ |U2|f ≥ |W2|f ≥ · · · ≥ |Ul|f ≥ |Wl|f .
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Note that the right hand side of (3) attains its minimum under permutations
of the branches U1, . . . , Ul,W1, . . . ,Wl when C does. Equivalently, the Rayleigh
quotient RT (f) attains its maximum value by Proposition 12. Therefore, the
optimal tree has to satisfy (4).

Lemma 14. Let Tmax be an optimal tree. For a path P with labelling as described

in Lemma 11, we have

d(u1) ≥ d(w1) ≥ d(u2) ≥ d(w2) ≥ · · · ≥ d(ul) = d(wl) = 1

if the path length is odd and

d(u1) ≥ d(w1) ≥ d(u2) ≥ d(w2) ≥ · · · ≥ d(ul) ≥ d(wl) = d(ul+1) = 1

if the path length is even.

Proof. Again we will show the proof for odd path length, the other case is treated
in a similar manner. From Lemma 11 we have

|U1|f ≥ |W1|f ≥ |U2|f ≥ |W2|f ≥ · · · ≥ |Ul|f ≥ |Wl|f .

We will now apply Lemma 10, each time with an appropriate choice of the vertices
yi and xi.

Step 1. Let xi = ui and yi = wi for i = 1, 2, . . . , l; then we obtain d(ui) ≥ d(wi)
by Lemma 10.

Step 2. Let y1 = ui+1, y2 = ui+2, . . . and x1 = ui, x2 = ui−1, . . . , xi = u1, xi+1 =
w1, . . .. Then we get

|Y>1|f =
l
∑

k=i+2

|Uk|f and |X>1|f =
l
∑

k=1

|Wk|f +
i−1
∑

k=1

|Uk|f ,

implying |X>1|f > |Y>1|f , so by Lemma 10 we get d(x1) = d(ui) ≥ d(y1) =
d(ui+1). That is, we have

d(u1) ≥ d(u2) ≥ d(u3) ≥ · · · ≥ d(ul).

Step 3. Let y1 = wi, y2 = wi−1, . . . , yi+1 = u1, . . . and x1 = wi+1, x2 = wi+2, . . ..
Then we get

|X>1|f =
l
∑

k=i+2

|Wk|f and |Y>1|f =
l
∑

k=1

|Uk|f +
i−1
∑

k=1

|Wk|f ,
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implying |X>1|f < |Y>1|f , so by Lemma 10 we get d(y1) = d(wi) ≥ d(x1) =
d(wi+1). That is, we have

d(w1) ≥ d(w2) ≥ d(w3) ≥ · · · ≥ d(wl).

Step 4. Let z = u1 and yi = ui+1, xi = wi for i = 1, 2, . . . , l. Since

|X>i|f =
l
∑

k=i+1

|Wk|f and |Y>i|f =
l
∑

k=i+2

|Uk|f ,

we have |X>i|f > |Y>i|f and thus d(xi) = d(wi) ≥ d(ui+1) = d(yi) by Lemma
10. Combining all these results, we get

d(u1) ≥ d(w1) ≥ d(u2) ≥ d(w2) ≥ · · · ≥ d(ul) = d(wl) = 1.

Definition. We say that a function g defined on the vertices of a path x1x2 · · ·xl
is concave if g(xk+1)− g(xk) < g(xk)− g(xk−1) for all k.

Lemma 15. Let T be a tree, and let f be the Perron vector corresponding to

Mc(T ). For a vertex u, we set

Nf (u) =
∑

v∈V (T )

(c− dT (u, v))f(v),

which is the coordinate corresponding to u in Mc(T )f , thus equal to µc(M)f(u).
This expression is concave along paths. It follows that the maximum of Nf is

attained either at one or two adjacent points (vertices) in the tree T .

Proof. Let P1 = x1x2 · · ·xl be a path in a tree T and let A≤i and B≥i+1 be
the components of T \ xixi+1 that contain the vertices x1 · · ·xi and xi+1 · · ·xl,
respectively. We have

Nf (xi+1)−Nf (xi) =
∑

v∈V (T )

(

dT (xi, v)− dT (xi+1, v)
)

f(v)

=
∑

v∈A≤i

(−1)f(v) +
∑

v∈B≥i+1

f(v) = −|A≤i|f + |B≥i+1|f .

It is easy to see that when i increases, |A≤i|f increases and |B≥i+1|f decreases and
hence Nf (xi+1)−Nf (xi) decreases. So Nf is concave, thus reaches its maximum
either at one vertex xk, or two adjacent vertices xk, xk+1 along the path P1.

Now, let y, z be any two distinct vertices in the tree T for which Nf (y) and
Nf (z) are both equal to the maximum of Nf in the tree. We know that Nf is
concave along the path that passes through the two vertices y and z, so they
have to be adjacent. It is important to note that there cannot be more than two
vertices where the maximum of Nf is attained since they would form a triangle,
which is impossible in a tree. Therefore we obtain that the maximum of Nf is
attained either at one or two adjacent vertices in the tree T .
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Now, using all the auxiliary results, we prove Theorem 8 by showing that the
optimal tree satisfies all the properties of the greedy tree as in Lemma 9. Again,
the steps are essentially following [27].

Proof of Theorem 8. Consider a path as described in Lemma 11. We have

Nf (u1)−Nf (u2) =
∑

v∈V (T )

(

dT (u2, v)− dT (u1, v)
)

f(v)

=
∑

v∈U>1

(−1)f(v) +
∑

v∈W≥1∪U1

f(v) = −|U>1|f + |W≥1 ∪ U1|f ,

which is greater than 0 by Lemma 11. It follows that Nf (u1) > Nf (u2). Also,

Nf (u1)−Nf (w1) =
∑

v∈V (T )

(

dT (w1, v)− dT (u1, v)
)

f(v)

=
∑

v∈U≥1

f(v) +
∑

v∈W≥1

(−1)f(v) = |U≥1|f − |W≥1|f ,

which is greater than or equal to 0 by Lemma 11. Thus Nf (u1) ≥ Nf (w1).
From Lemmas 11 and 14, we know that for an optimal tree labelled as in

those lemmas, d(u1) and |U1|f are the respective maxima among all vertices
along the path. We also know that the function Nf is concave along the path,
Nf (u1) > Nf (u2) and Nf (u1) ≥ Nf (w1), so Nf (u1) is the maximum along the
path.

We recall from Lemma 15 that Nf is maximal at either only one vertex,
which we then label r (this vertex will become the root), or two adjacent vertices
in the tree Tmax, which we then label r and v1. We will present the proof for
the case when Nf is maximal at only one vertex r, and otherwise it follows in a
similar manner.

Now we consider the optimal tree Tmax to be a rooted tree with root r, so
since Nf (r) > Nf (z) for every vertex z in Tmax by assumption, r must be the
vertex u1 in any path containing it, and thus have the largest degree by Lemma
14. Thus (i) in Lemma 9 is satisfied.

Suppose we have a path from a leaf u passing through r to another leaf v
in Tmax such that the only ancestor of u and v is r. By Lemma 11 we have
|dT (u, r) − dT (v, r)| = 0 if the path length is even and |dT (u, r) − dT (v, r)| = 1
if the path length is odd. This remains true if the first common ancestor of u
and v is a vertex s other than the root: since Nf is concave along paths with its
maximum at r, it must be decreasing along the paths from r to u through s and
from r to v through s. Thus the maximum of Nf on the path from u to v occurs
at s, and Lemma 11 applies again. Hence the heights of any two leaves differ by
at most 1, which yields (ii) in Lemma 9.
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Let hTmax
(y) and hTmax

(z) be the heights of two vertices y and z for which
hTmax

(y) < hTmax
(z). These heights are with respect to the root vertex r of the

optimal tree. If z is a successor of y and we consider the path from a leaf u to a
leaf v passing through y, z, then we get d(y) ≥ d(z) by Lemma 14. Now, suppose
z is not a successor of y. We consider a path from a leaf y′ to a leaf z′ passing
through the vertices y, s, z, where s is the first common ancestor of y, z.

Since Nf is concave along paths and attains its maximum at r by our choice
of r its values are decreasing on the paths from r to y′ and to z′, respectively. In
particular, it decreases on the paths from s to y′ and z′, which means that the
maximum of Nf on the path from y′ to z′ is attained at s. Thus we can set s = u1
in Lemma 11 when the path from y′ to z′ is considered. Let i = hTmax

(y)−hTmax
(s)

and j = hTmax
(z)− hTmax

(s) be the heights of y and z with respect to the vertex
s. We get two possible labellings of the path, namely either y = ui+1, z = wj or
y = wi, z = uj+1. If we consider the first labelling then we get i + 1 ≤ j, which
by Lemma 14 implies that d(y) ≥ d(z). Note that this is also true for the second
labelling. Thus (iii) in Lemma 9 is also satisfied.

Next, let y, z be on the same level, thus hTmax
(y) = hTmax

(z), such that d(y) >
d(z), and let y′, z′ be their respective successors such that hTmax

(y′) = hTmax
(z′).

Consider the longest path that passes through y′, y, s, z, z′, where s is the first
ancestor of y and z. Again we can set s = u1 in Lemma 11 with y = wi, y

′ =
wj , z = ui+1, z

′ = uj+1 where i = hTmax
(y) − hTmax

(s), j = hTmax
(y′) − hTmax

(s).
Then by Lemma 14, we see that d(y) > d(z) implies d(y′) ≥ d(z′). This yields
(iv) in Lemma 9.

Finally, let y1, z1 be the respective parents of y, z, let y
′, z′ be their respective

siblings and y′′, z′′ successors of y′, z′ at the same level. We let Y denote the
subtree induced by the vertices v ∈ V (Tmax) for which PTmax

(v, r) contains y and
hTmax

(v) ≥ hTmax
(y);Y1, Z, Z1 are defined in an analogous way. Assuming again

that d(y) > d(z), we consider a path from one leaf to another that passes through
y, z and their common ancestor s. Applying Lemma 11 and Lemma 14 (where s

becomes u1) to this path now shows that

|Y |f ≥ |Z|f and |Y1 \ Y |f ≥ |Z1 \ Z|f ,

thus |Y1|f ≥ |Z1|f . Applying Lemmas 11 and 14 once again, now to a path from
one leaf to another that passes through y′′, y′, y1, s, z1, z

′, z′′ in this order, we find
that d(y′) ≥ d(z′) and d(y′′) ≥ d(z′′). Thus (v) in Lemma 9 is also satisfied. In
conclusion, we have proven the optimal tree Tmax to be the greedy tree.

In the following we compare the greedy trees associated with different degree
sequences, paralleling results on other graph invariants (such as the Wiener index,
see [33]). We first introduce the concept of majorization for this purpose.
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Definition. Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be sequences of non-
negative numbers with

∑n
i=1 xi =

∑n
i=1 yi. If for all 1 ≤ k ≤ n we have

k
∑

i=1

xi ≤
k
∑

i=1

yi

then we say that Y majorizes X. Let Sn be the set of all permutations of
{1, . . . , n}. If for any σ ∈ Sn the sequence Y still majorizes

(

xσ(1), . . . , xσ(n)
)

,
then we write X � Y .

The set Sn consists of n! permutations. However, one does not need to check
all of them in order to show that X � Y . This is because, if we let σ ∈ Sn be a
permutation for which xσ(1) ≥ · · · ≥ xσ(n), then we can see that

(

xσ′(1), . . . , xσ′(n)

)

is majorized by
(

xσ(1), . . . , xσ(n)
)

for all other σ′ ∈ Sn. So proving that X � Y

is equivalent to showing that
(

xσ(1), . . . , xσ(n)
)

is majorized by Y .

Remark 16. It is important to note that majorization is transitive. That is, if
X � Y and Y � Z, then we also have X � Z.

The following lemma on majorizing degree sequences has been used repeat-
edly in similar contexts, see for instance [33]. We present its proof for complete-
ness.

Lemma 17. Let X = (x1, . . . , xn) and X ′ = (x′1, . . . , x
′
n) be two non-increasing

tree degree sequences. If X � X ′, then there exists a sequence of k tree degree

sequences X1, . . . , Xk such that X � X1 � · · · � Xk � X ′, where exactly two

entries of Xi and Xi+1 differ by 1. Namely, for two indices p > q, the entries

xp, xq of Xi and the entries x∗p, x
∗
q of Xi+1 satisfy x∗p = xp − 1, x∗q = xq + 1.

Proof. Suppose X � X ′ and X 6= X ′. Now, we let p be the first index for which
xp > x′p and let q be the last index less than p for which xq < x′q, so that xr = x′r
for all q < r < p. Note that by the definition of majorization such positions exist.
Now we construct the sequence Xk from X ′ by replacing x′q by x′q − 1 and x′p by
x′p + 1. So we get Xk = (x′1, . . . , x

′
q − 1, . . . , x′p + 1, . . . , x′n), which is still a valid

degree sequence of a tree. We have X � Xk � X ′. Now, we can apply the same
procedure to X and Xk to obtain Xk−1. Repeated application of this process
yields the result.

Lemma 18. Let G(α) be the greedy tree for the degree sequence α. Let x and

y be two vertices of G(α) satisfying the inequality dG(α)(x) ≥ dG(α)(y) ≥ 2. If

dG(α)(x) = dG(α)(y), we assume that y comes after x in the ordering of vertices

in the greedy tree. Let s be a successor of y and let T ′ be the tree obtained from

G(α) by deleting the edge ys and adding the edge xs. Then

µc(G(α)) < µc(T
′).
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Proof. We consider a longest path that contains the vertices x, y, z such that
z is the common ancestor of x and y. We will present the proof for odd path
length, the other case is similar. We can set z = u1 in the labelling described in
Lemma 11. In view of our assumption that d(x) ≥ d(y) (and that x comes first
in the ordering in case of equality), we can set x = up, y = wq, where p ≤ q, or
x = wp, y = uq, where p < q (depending on whether the part of the path from z

to a leaf through x or the part from z to a leaf through y is the longer one). We
only consider the first possibility, the calculations in the second case are similar.

Let S be the subtree induced by the vertex s and its successors, and let f

be the Perron vector of G(α). It can be observed that the distance between two
vertices v and w will only change from G(α) to T ′ if v ∈ S and w ∈ G(α) \ S

(or vice versa). We compute RT ′(f) − RG(α)(f) by distinguishing the following
cases.

Case 1. The contribution to the difference between RG(α)(f) and RT ′(f) of
vertex pairs where one vertex is in S and the other in some Ui is

2
l
∑

i=1

∑

v∈S
w∈Ui

(

(c− dT ′(v, w))− (c− dG(α)(v, w))
)

f(v)f(w)

= 2
l
∑

i=1

∑

v∈S
w∈Ui

(

dG(α)(v, w)− dT ′(v, w)
)

f(v)f(w)

= 2

l
∑

i=1

∑

v∈S
w∈Ui

(

(

dG(α)(s, v) + i+ q + dG(α)(ui, w)
)

−
(

dG(α)(s, v) + |i− p|+ 1 + dG(α)(ui, w)
)

)

f(v)f(w)

= 2
l
∑

i=1

|S|f
∑

w∈Ui

(

i+ q − |i− p| − 1
)

f(w)

= 2

p
∑

i=1

(2i− 1 + q − p)|S|f
∑

w∈Ui

f(w) + 2
l
∑

i=p+1

(p+ q − 1)|S|f
∑

w∈Ui

f(w)

= 2

p
∑

i=1

(2i− 1 + q − p)|Ui|f |S|f + 2
l
∑

i=p+1

(p+ q − 1)|Ui|f |S|f .

Case 2. The contribution to the difference between RG(α)(f) and RT ′(f) of
vertex pairs where one vertex is in S and the other in some Wi (but not in S if
i = q) is
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2
l
∑

i=1

∑

v∈S
w∈Wi\S

(

dG(α)(v, w)− dT ′(v, w)
)

f(v)f(w)

= 2

q−1
∑

i=1

(−2i+ 1 + q − p)|Wi|f |S|f

− 2(p+ q − 1)(|Wq|f − |S|f )|S|f − 2
l
∑

i=q+1

(p+ q − 1)|Wi|f |S|f .

Summing the two cases, we get

RT ′(f)−RG(α)(f)

= 2

p
∑

i=1

(2i− 1)(|Ui|f − |Wi)|f )|S|f + 2

p
∑

i=1

(q − p)(|Wi|f + |Ui|f )|S|f

+ 2

q−1
∑

i=p+1

(p+ q − 1)(|Ui|f − |Wi|f )|S|f + 2

q−1
∑

i=p+1

(2q − 2i)|Wi|f |S|f

+ 2
l
∑

i=q+1

(p+ q − 1)(|Ui|f − |Wi|f )|S|f

+ 2(p+ q − 1)(|Uq|f − |Wq|f + |S|f )|S|f .

By Lemma 18, we have |Ui|f ≥ |Wi|f for all i, and we also note that q ≥ p and
2q ≥ 2i for i ≤ q − 1. Therefore, each term in the summation is non-negative.
Also, we know that |S|f > 0, so RT ′(f) − RG(α)(f) > 0 because of the term
2(p+ q − 1)|S|2f . Therefore,

µc(G(α)) = RG(α)(f) < RT ′(f) ≤ µc(T
′).

Theorem 19. Let X and Y be two tree degree sequences of the same length.

Suppose X � Y ; then
µc(G(X)) ≤ µc(G(Y )),

with equality only if X = Y .

Proof. In view of Lemma 17, it is sufficient to prove the statement in the case
that the degree sequences differ in exactly two places, with a difference of 1 in each
place. The general case follows inductively. So take two non-increasing sequences
X = (x1, x2, . . . , xi, . . . , xj , . . . , xn) and Y = (x1, x2, . . . , xi+1, . . . , xj−1, . . . , xn).
Let v, w be two vertices in the greedy tree G(X) such that dG(X)(v) = xi and
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dG(X)(w) = xj . We have xi ≥ xj ≥ 2. If xi = xj , we can assume (without loss of
generality) that w comes after v in the ordering of vertices in the greedy tree. If
xi > xj , this follows from the definition of a greedy tree. Let s be a neighbor of
w. If we remove the edge ws and add the edge vs to G(X) then we obtain a new
tree T ′ with degree sequence Y . From Lemma 18, we obtain µc(T

′) > µc(G(X)).
Also, by Theorem 8, we have µc(T

′) ≤ µc(G(Y )). So

µc(G(Y )) ≥ µc(T
′) > µc(G(X)).

This completes the proof.

We obtain the following corollaries using Theorems 8 and 19.

Corollary 20. Among trees of order n with maximum degree ∆, the Volkmann

tree Vn,∆ maximizes the spectral radius of Mc(T ) for every constant c ≥ n−∆+1.

Proof. It is easy to see that the degree sequence (∆, . . . ,∆, r, 1, . . . , 1) of the
Volkmann tree majorizes the degree sequence of every other tree with the same
number of vertices whose maximum degree is ∆. Therefore, the statement follows
from Theorem 8, combined with Theorem 19. Note here that the maximum
number of internal nodes in a tree with n vertices and maximum degree ∆ is
n−∆, so the diameter is at most n−∆+ 1.

Corollary 21. Among all trees of order n with k leaves, the greedy tree corre-

sponding to the degree sequence α = (k, 2, . . . , 2, 1, . . . , 1) maximizes the spectral

radius of Mc(T ) for every constant c ≥ n− k + 1.

Proof. This corollary follows in the same way as the previous one, by observ-
ing that the sequence (k, 2, . . . , 2, 1, . . . , 1) majorizes every other possible degree
sequence of a tree with the same number of vertices and the same number of
leaves.

One might ask whether a result analogous to Theorem 8 also holds when
we replace the distance matrix D(T ) by the terminal distance matrix TD(T ).
For comparison, it is known that the greedy tree has minimum terminal Wiener
index (sum of distances between leaves), see [26]. Goubko [12] considered the
problem of minimizing the terminal distance spectral radius for trees with given
degree sequence and provided evidence that the greedy tree is always extremal.
However, this is not always the case for the maximum spectral radius of Mc(T ),
as the following examples show.

Example 22. Let us consider the matrix M4(T ) = 4J −TD(T ). Figure 7 shows
the respective extremal trees for the degree sequences

α1 = (3, 2, 2, 1, 1, 1),

α2 = (3, 3, 2, 1, 1, 1, 1).
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• • • •

•

• • • •

• • •

•

(a) T1. (b) T2.

Figure 7. Extremal trees T1 and T2.

It can be observed that the extremal tree T2 is the greedy tree, but T1 is
not. Hence the greedy tree is extremal for some, but not all possible tree degree
sequences.
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