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Abstract

In this paper, we completely characterize the connected forbidden sub-
graphs and pairs of connected forbidden subgraphs that force a 2-edge-
connected (2-connected) graph to be collapsible. In addition, the charac-
terization of pairs of connected forbidden subgraphs that imply a 2-edge-
connected graph of minimum degree at least three is supereulerian will
be considered. We have given all possible forbidden pairs. In particular,
we prove that every 2-edge-connected noncollapsible (or nonsupereulerian)
graph of minimum degree at least three is Z3-free if and only if it is K3-
free, where Z; is a graph obtained by identifying a vertex of a K3 with an
end-vertex of a P;11.
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1. INTRODUCTION

For the notation or terminology not defined here, see [1]. A graph is called
trivial if it has only one vertex, montrivial otherwise. All graphs involved in
the conclusion considered in this paper are simple graphs. Let G be a connected
graph. We use k(G), £'(G) and ¢g(G) to denote the connectivity, edge-connectivity
and girth of G, respectively. Let u be a vertex of G and S be a subset of V(G)
(or E(G)). The induced subgraph of G is denoted by G[S]. We use Ng(u) to
denote the neighborhood and dg(u) to denote the degree of u. We use 6(G) and
A(G) to denote the minimum degree and maximum degree of G, respectively. The
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neighbors of S'in G is defined as Ng(S) = U, cg Na(2)\S and Ng[S] = Ng(S)US.
Define N7 (S) = Ng(S)NT for T C V(G). Let Vi(G) = {u € V(G) : dg(u) =i}
and V>;(G) = {u € V(Q) : dg(u) > i}. If F,G are graphs, we write ' C G if F
is a subgraph of G and F = G if F and G are isomorphic. For z,y € V(G) and
H CG,let E(u,H) ={uwv € E(G) : v e V(H)}, da(x,y) = |E(P(x,y))|, where
P(z,y) is the shortest path between x and y, dg(z, H) = min{dg(z,y) : y €
V(H)} and N*(H) = {x : dg(z, H) = i}. Let H be a set of connected graphs. A
graph G is said to be H-free if G does not contain H as an induced subgraph for
all H € H, and we call each graph H of ‘H a forbidden subgraph. In particular,
if {H} = H, then we simply say that G is H-free and we call H a forbidden pair
if |H| =2. For two sets H; and Ha of connected graphs, we write H; =< Ha if
for every graph Hs in Ho, there is a graph H; in H; such that H; is an induced
subgraph of Ho. By the definition of the relation “<”  if H; < Ho, then every
‘H1-free graph is also Hs-free.

Let K, denote the complete graph of order n, and K,,, denote the com-
plete bipartite graph with partition sets of size m and n, and P, denote the
path of order n, and C), denote the cycle of order n. Use T;;; to denote
the tree of three paths of length i, 7,k with one common vertex. The graphs

Zi, B; j, Nj j, Hy1, M1, Ma are depicted in Figure 1.
AL X O A
K V4 B N H, M, M,
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Figure 1. The common induced subgraphs.

A graph is supereulerian if it has a connected spanning subgraph such that
each vertex has even degree. Lv and Xiong characterized all forbidden pairs for
a 2-connected graph to be supereulerian.

Theorem 1 (Lv and Xiong [9, 10]). Let R, S (# P3) be connected graphs of order
at least 3 and let G be a 2-connected graph of order at least 7. Then {R,S}-free
graph G is supereulerian if and only if {R,S} < {Ki4, Ps},{K13,N113}, {Ki3,
Zy}, {K13, Pr}, {Cy, P5}.

Afterwards, Cada et al. [3] revealed how the forbidden subgraphs change
when the minimum degree was increased slightly. They characterized two forbid-
den subgraphs forcing a 2-connected K 3-free graph G with §(G) > 3 excepting
two families of counterexamples to be supereulerian. We may restate their results
as follows. In fact, they gave more general results with some exceptions.
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Theorem 2 (Cada et al. [3]). If a 2-connected K1 3-free graph G with §(G) > 3
is R-free for R € {Na24, Zg}, respectively, then G is supereulerian.

Motivated by these two results above, in this paper, we shall consider the
forbidden pairs that force a 2-edge-connected graph of minimum degree at least
three to be supereulerian.

Theorem 3. Let G be a 2-edge-connected graph with 6(G) > 3 such that it satis-
fies one of the following.

(1) G is {Tr21,S}-free for any S € {N224,Bog, B34, Z3},

(2) G 18 {P7,T27272}—f7’66,

(3) G is {Ps,S}-free other than the Petersen graph for any S € { My, M},

(4) G is {211, Hy}-free.

Then G is supereulerian.

Comparing Theorems 2 and 3(1), we know that if we keep S € {N2 24, Zg},
then we may extend the other one of the pair, the K13 (i.e., T11,1), to To21 (a
little wider). For a graph G, let O(G) denote the set of odd degree vertices in G.
In [4], Catlin defined collapsible graphs. Given a subset R C V(@) with |R| even,
a subgraph I' of G is an R-subgraph if both O(I') = R and G—E(I") are connected.
A graph G is collapsible if for any even subset R of V(G), G has an R-subgraph.
Catlin [4] shows that every collapsible graph is supereulerian. We then study a
characterization of connected forbidden graphs to assure collapsibility.

Theorem 4. Let r > 4 be an integer and H be a connected forbidden pair. Then
(1) every 2-edge-connected H-free graph G of order at least r + 3 implies that it
is collapsible if and only if H < {K13,Ps}, {K1,, Pa} or {C4, P},
(2) every 2-connected H-free graph G of order at least r + 3 implies that it is
collapsible if and only if H =< {K27(T/21,P5}.
Theorem 5. Let H be a connected graph of order at least 3. Then H-free 2-
edge-connected graph G with 6(G) > 3 implies G is collapsible (supereulerian) if
and only if H is an induced subgraph of Ps.
The proofs of Theorems 4, 5 and Theorem 3 are placed in Sections 2 and 3,

respectively. In the last section, we will exhibit a theorem to show the forbidden
pairs in Theorem 3 except the pair {P7,T>22} are sharp and leave a conjecture.

2. FORBIDDEN SUBGRAPHS GUARANTEEING A 2-EDGE-CONNECTED GRAPH
To BE COLLAPSIBLE

For a subset X C F(G), the contraction G/X is the graph obtained from G by
identifying the ends of each edge in X and then deleting the resulting loops. Note
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that the edges in F(G/X) can be regarded as edges in E(G). If H is a subgraph,
then we use G/H for G/E(H). Note that by this definition, if H is a connected
subgraph of G, then G/H = G/G[V (H))].

Catlin showed in [4] that every vertex of G lies in an unique maximal col-
lapsible subgraph of G and Cs, K3 are collapsible. The reduction of G, denoted
by G’, is obtained from G by contracting all maximal collapsible subgraphs of G.
A graph is reduced if it is the reduction of some graph.

The following result will be used to verify whether a graph is supereulerian.

Theorem 6 (Catlin [4]). Let G be a connected graph and let H be a collapsible

subgraph of G and let G' be the reduction of G. Then each of the following holds.

(a) G is collapsible (supereulerian) if and only if G/H is collapsible (super-
eulerian). In particular, G is collapsible if and only if G' is K;.

(b) G is supereulerian if and only if G' is supereulerian.

For two disjoint subsets V;, Vo and a 4-cycle Cy = x1x0x32411 Of graph G,
define G/m(V1, Vi) to be the graph obtained from G — E(G[V1UV3]) by identifying
V1 to form a vertex vy, by identifying V5 to form a vertex ve, and by adding a
new edge vi1vy and define G/7(Cy) = G/m({x1,x3}, {x2,24}).

Theorem 7 (Catlin [5]). For the graphs G and G/mw(Cy4) defined above. If
G/m(Cy) is collapsible, then G is collapsible.

In [8], the authors give a method to verify whether a subgraph of G is col-
lapsible. They construct a C-subpartition (X7, X2) of G starting with a 4-cycle
r1x073x421 C G as follows.

1. X1 = {1’1,:133}, X2 = {azg,x4}, {Z,j} = {1,2}.

2. While u € Ng(Xl UXQ) #* @, NGf(Xl)ﬂN(;(XQ) = () and Ng(u)ﬂNg[XlU
X2] 7& @ do

{Xl = X; U {u}, Xj = X]', if |E(U,Xl)| >2; X, =X; U (NG(Xz) N Ng[u]),

Xj = Xj, else if Ng(XZ) N NG[’LL] 75 @; X, =X, U (Ng(X]) N Ng(u)),Xj

= X; U{u}, else. }.

Although the C-subpartition of G is not unique, the following result is true
and would play an important role in the proofs in Section 3.

Lemma 8 (Liu et al. [8]). For a C-subpartition (X1, X2) of a graph G and any
nonempty set X129 C N (X1) N Ng(X2), G[X1 U X2 U X12] is collapsible.

Before presenting the proofs of Theorems 4 and 5, we need some preparations.

Lemma 9. Let G be a 2-edge-connected noncollapsible graph which has a mazximal
nontrivial collapsible subgraph H. Then

(1) |E(u,H)| =1 for any u € Ng(H),
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(2) Ng(H) is an independent set of G,
(3) if G is Ps-free, then |Ng(H'")NV(H)| =1 for any component H' of G — H.

Proof. (1) Let G* = G/H and vy € V(G*) be the contraction image of H.
If |E(u,H)| > 2 for some u € Ng(H), then G* has a collapsible subgraph Cy
containing vertices vy and u. Whence G[V (H) U {u}] is collapsible by Theorem
6(a), contradicting the maximality of H.

(2) Let G* = G/H and vy € V(G*) be the contraction image of H. If
there is an edge wv € E(G[Ng(H)]), then G* has a collapsible subgraph C3
containing vertices vy, u,v. Whence G|V (H) U {u,v}] is collapsible by Theorem
6(a), contradicting the maximality of H.

(3) By contradiction, assume that G — H has a component H' with [Ng(H')N
V(H)| > 2. Then H' has an induced path P(u,v) such that Ng(H)NV (P(u,v)) =
{u,v} and there are two vertices v’ € Ng(u) NV (H), v € Ng(v) NV (H). By
(1) and (2), |[E(P(u,v))| > 2. Note that |[V(H)| > 3. Then there is a vertex
v" € Np(v) such that uP(u,v)vv'v” is an induced path of order at least 5. =

The following results imply the sufficiency of Theorem 4(1).

Theorem 10. FEvery 2-edge-connected graph G is collapsible if it satisfies one of
the following.

(1) G is Py-free other than Koy for any t > 2,
(2) G is {K13,Ps}-free that is neither Cy nor Cs,
(3) G is {Cy, Ps}-free other than Cs.

Proof. By contradiction, assume that G is not collapsible. Choose a collapsible
subgraph H of G such that |V(H)| is maximized (possibly H is trivial). Then
No(H) # 0.

(1) We claim that G is reduced. Suppose otherwise. Then |[V(H)| > 3.
By Lemma 9(1),(2) and since &'(G) > 2, there is an edge hihs such that
E(hl,H) = () and |E(h2,H)’ = 1. Then G[{hl,hQ,hg,h4}] &~ P, for some hg €
Ng(ha) NV (H) and hy € Ng(hs), a contradiction. Choose a vertex u € V(G)
such that d(u) = A(G) > 2. Let Ng(u) = {z1,...,7a(@)}. Since Ng(u) is an
independent set of G and k'(G) > 2, there is a vertex v € Ng(x1)\{u}. Then
va; € E(G) fori € {2,...,A(G)} since G[{v,x1,u,z;}] 2 Py. If there is a vertex
w € Ng({71,...,2a)})\{u, v}, by symmetry, then wr; € E(G) and A(G) >
dg(z;) > 3 for i € {1,...,A(G)}, and hence G[{u,v,w,x1,...,2a)] = K3 Aq)
is collapsible, a contradiction. This implies that Ng({z1,...,7a()}) = {u,v},
and hence G = K3 5 (@), a contradiction.

(2) Then G is reduced; for otherwise, there are two edges uw, vw € E(G) such
that w € V(H) and u,v € Ng(H) by Lemma 9(3) and then G[{u,v,w,w'}] =
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K 3 for some w’ € Ny (w), a contradiction. Furthermore, A(G) = 2 since G is
{Cs, K 3}-free. Hence G € {Cy, Cs} since G is Ps-free, a contradiction.

(3) If G is reduced, then g(G) = 5 since G is {C4, Ps}-free and then G = Cj
since G is Ps-free, a contradiction. Thus |V(H)| > 3 and there is a vertex
v € V(H) and two vertices uj,us € Ng_pg(v) by Lemma 9(3). Then uq,us
have no common neighbor in G — H since G is Cy-free. Let w1 € Ng_pg(u1)
and we € Ng_p(u2). Then E({wi,ws}, H) = 0 and hence wiwy € F(G) since
G{wi,u1,v,uz, we}] 2 Ps. However, G[{w1, w2, us,v,v'}] = P5 for some v' €
N (v), a contradiction. |

Let t1,t2 be two positive integers and let u1,v; be two nonadjacent vertices
of degree t1 in Ka;, and let ug,v2 be two nonadjacent vertices of degree t2 in
Ks t,. Define Sy, 4, be the graph obtained from K»;, and Ks, by identifying v;
and vz, and by adding a new edge ujug. Let K33 = K33 —efor any e € E(K33).
Catlin shows that K3 5 is collapsible. The following result implies the sufficiency
of Theorem 4(2).

Theorem 11. FEvery 2-connected Ps-free graph G is either collapsible or G €
{Kg’t it > 2} U {Stl,tz it >t > 1}

Proof. Assume that G is not collapsible. Then G is reduced. If not, then by
Lemma 9(3), G has a maximal non-trivial collapsible subgraph H such that G—H
has a component H' with Ng(H')NV (H) = {up} for some uy € V(H), and hence
ug is a cut vertex of G, a contradiction. Then g(G) > 4 since K3 is collapsible.
If A(G) = 2, then G € {C4,C5} since G is Ps-free. Therefore, assume that
A(G) > 3. Let u € V(G) with d(u) = A(G) and V; = N(u). Then |V4| > 3 and
E(G[Vi]) = 0. If V3 # 0, then G has an induced path wujugus such that u; € V;.
For any «' € Vi\{u1}, by the definition of V;, v'us ¢ E(G). Then ugu’ € E(G)
since G[{u, u1,us,us,u'}] 2 Ps. Since k(G) > 2, |Va| > 2 and there is a vertex
ub, € Va such that E(ub,V3) # (. By symmetry, ubu' € E(G) for any v’ € Vi,
and so K33 C G[{u,us,uy} U V] is collapsible, a contradiction.

Then V3 = 0, and let ¢ = A(G). If |Va| = 1, then G = Ksy;. So assume
that |Va| > 2. Let Vi = {uq,...,us}. Since k(G) > 2, there are two ver-
tices v1,vy € Vi such that wjvy,ugvy € E(G). If E(G[V3]) = 0, then vivy ¢
E(G). Since G[{v1,u1,u,us,v2}] 2 Ps, {uive,ugv1} N E(G) # (. By symme-
try, assume that ujve € E(G). Then viug ¢ E(G). Suppose otherwise. Since
K33 € G[{ui,u,u1,uz,v1,v2}] for any i € {3,...,t}, E(u;, {v1,v2}) = 0, and so
u; has a neighbor v; in V. Since G[{v;, uj, u,u1,v1}] Z Ps, u1v; € E(G). Then
dg(ui) > t+ 1, a contradiction. So viu; € E(G) for some j € {3,...,t} and
either G[{v1, uj, u, ug, vo}] = Ps if ujvg ¢ E(G) or K33 C G[{v1,uj,u,uz,va}] if
ujve € E(G), a contradiction.

Hence E(G[V2]) # 0. Assume that v1v9 € E(G). Since g(G) > 4, uyve, ugvy ¢
E(G). Then fori € {3,...,t}, E(u;, {v1,v2}) # 0 since G[{u;, u, u1,v1,v2}] & Ps.
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Without loss of generality, assume that {viu,...v1Uy, VoUy 41, .-, V2UL +15 ) C
E(G) for some integers t1,ty with t; + to = t. If [Va| > 3, then there is a vertex
vg € Vi such that E(vs, V1) # (0. Furthermore, E(vs,{vi,v2}) # 0. Suppose
otherwise. Assume that vsu; € E(G) for some i € {1,...,t1}. Then for any j €
{ti1+1,...,t}and k € {1,...,t:}\{3}, vsu; € E(G) since G[{vs, u;, v1,v2,u;}| &
Ps, and hence vzuy € E(G) since G[{ug, v1,v2,uj,v3}] 2 P5. Then either Kj 3 C
G[{w,uy,ug,us,v1,vs3}] ift; > 2 or K;3C G[{w,uy,uz, us, va,v3}] if t; = 1, a con-
tradiction. By symmetry, assume that vovs € E(G). Since G[{vs, va, v, u;, u}] 2
Ps for any i € {1,...,t1}, {vsu1,...,v3uy } € E(G). Then ¢; > 2, since other-
wise, dg(ve) > tg + 2 > t1 + to, a contradiction. Then there is a C-subpartition
(X1,X2) = ({u, V1, V2, U3, . .. ,’U,t}, {ul,uQ}) with v3 € Ng(X1) N Ng(X2). By
Lemma 8, G[X; U X5 U {vs}] is collapsible, a contradiction. Therefore, |Va| = 2
and G = Stl,tg- |

Corollary 12. Every 2-connected Ps-free graph G of order at least A(G) + 4 is
collapsible.

We construct some graphs as follows. The graph L; is obtained from a
complete graph K, and a path zixez3 by adding the edges x1y1, z3ys for some
y1,ys € V(K,). The graph Lo is obtained from a complete graph K, and a
path xjzoxs by adding the edges xiy1,x3y1 for some y; € V(K,). Since the
reduction of L and Lo are isomorphic to Cy which is noncollapsible, L1 and Lo
are noncollapsible.

Proof of Theorem 4. By Theorems 10 and 11, the sufficiency clearly holds. It
remains to show the necessity. Let H = {R,S}. Note that Ky (t > 2), Cj
(k> 4) and Sy, ¢, (t2 > t; > 1) are noncollapsible.

(1) Since L1, L, Ko, C), are 2-edge-connected, each graph contains at least
one of R,S as an induced subgraph. Without loss of generality, assume that
K¢ contains R as an induced subgraph. If R contains cycle Cy as a subgraph,
note that L; and C} are Cy-free and their maximal common induced subgraph
is Ps, then S C P5. On the other hand, Ly is {Ps, K2 3}-free, then R C Cy and
{R7 S} = {047P5}'

If R contains K3 as a subgraph, note that L; and Cj, are Kj 3-free, then
S C Ps. On the other hand, Ly is { Ps, K1 4, T51 1 }-free, then {R, S} < {K) 3, P5}.

If R contains Kj4 as a subgraph, then S C P5. On the other hand, Lo
is {Ps, K1 4}-free, and then S C P;. Note that Koy is {K;,, Py}-free for r >
[V(Ka4)| =3, {R, S} 2 {K 1 vy, -2 Pa}

(2) Note that Ly, Ka, Ck, St 1, are 2-connected. Without loss of gener-
ality, assume that L; contains R as an induced subgraph. If R contains Cj
as a subgraph, then Ks; and C} are Cs-free and their maximal common in-
duced subgraph are P3, a contradiction. Thus R C P5. Since Sy, 4, is Ps-free
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and there maximal common induced subgraph is K27L(|V(St1,t2)|*3)/2J7 {R,S} =
{K27|_(|V(St1,t2)|—3)/2j7P5}- -

Theorem 13 (Lai [6]). If every edge of a 2-connected graph G lies in a cycle of
length at most 4 in G and 6(G) > 3, then G is collapsible.

Define kK7 be an empty graph with k vertices.

Theorem 14. Every 2-edge-connected Zs-free graph G with 6(G) > 3 is either
collapsible or Ks-free.

Proof. Assume that G has a triangle K. Choose an induced collapsible subgraph
H containing K with |V (H)| maximized. If H = G, then G is collapsible. We
then assume that V(G)\V(H) # (. Let G* = G/H and vy € V(G*) be the
contraction image of H, and let V; = N(vy). Then &/(G*) > 2, Va(G*) C {vy}.
By Lemma 9(2), G*[V1] = kK, for k = |V1] > 2. Since 6(G) > 3, | > 2 for
[ = |V3]. Since G is Zs-free, vy is not in an induced Py and V3 = ().

If there is an edge ujus € E(G[V2]), then ujvio € E(G*) for some v13 € V).
Since G*[{ug,u1,v12,v}] 2 Py, viou; € E(G*). Furthermore, Ng«({u1,u2}) N
Vi = {vi2}. Suppose otherwise. Assume that vou; € E(G) for some vy €
Vi. By symmetry, ugvy € E(G*), and so G*[{vg,vi2,v2,u1, uz}] is collapsible,
contracting the choice of H. Note that there is a vertex vsy € V5 such that
E(vsq,{u1,uz}) = 0. Then there are two edges vsqus, vsquy for some ug, uy € Va.
By symmetry, E({us,us},{u1,u2}) = 0. Since G*[{u;vss,vm,vi2}] 2 Py for
i € {3,4}, {ugvi2,uqvi2} C E(G*). Then Ng+(ug) € Vi and hence there is a
vertex vg € Ny, (u3). However, K3 C G*lvg, v12, V34, Vo, U3, ug] is collapsible,
contradicting the choice of H.

This implies that G*[Vo] = [K;. Then k > dg+«(u1) > 3. Hence G* is a
2-connected bipartite graph such that 6(G*) > 3 and each edge lies in an induced
Cy4. Then G* is collapsible by Theorem 13, which implies G is collapsible by
Theorem 6(a). |

Corollary 15. Let G be a 2-edge-connected noncollapsible (or nonsupereulerian)
graph with 6(G) > 3. Then G is Zs-free if and only if G is Ks3-free.

An edge of G is said to be subdivided when it is deleted and replaced by a path
of length 2 connecting its ends, the internal vertex of this path being a new vertex.
A subdivision of a graph G is a graph that can be obtained from G by a sequence
of edge subdivisions. We use 0(i,j,k) = 0(t1,t2, 213, Y1 yj, 21+~ 2k) to
denote the graph obtained from the Theta graph with 3-multiple edges and two
vertices t1, o by replacing the 3-multiple edges with three internal vertex-disjoint
paths t121 - - - xite, t1y1 - - - yjte and t121 - - - zita, respectively.
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Proof of Theorem 5. The sufficiency. It suffices to prove that G is collapsi-
ble. Let H be an induced collapsible subgraph of G with |V (H)| maximized.
On the contrary, we may choose a vertex v € Ng(H). Then |E(v,H)| = 1 and
E(w,H) = 0 for any w € Ng(v)\V(H). Since G is Ps-free and by Theorem
14, 4 < ¢g(G) < 5 and |V(H)| = 1, which means G is reduced. If ¢(G) = 5,
let C = z1x973747571 be an induced cycle of G, then |E(y;,C)| = 1 for y; €
Ng(z)\V(C) and Gly1, 1,22, x3,24] = Ps, a contradiction. Hence g(G) = 4.
Let C = zyxox3z4x1 be an induced cycle of G and y; € Ng(x;)\V(C). If y1x3 €
E(G), note that H' = G[{x1,z2,23,24,01}] = 6(1,1,1), then |E(ys, H")| =
|E(ys, H')| = |E(y', H')| = 1 and {y2ya, y2y', yay'} € E(G) for y' € N (y1)\V(C)
since G[V(H) U {y1, y2,v4,y’}] is not collapsible. By symmetry, assume yoys ¢
E(G), then G[{y2, x2, 3, T4, ys}] = Ps, a contradiction. This implies |E(y;, C)| =
1forie {1,2,3,4}. Then y1ys,yoys € E(G) since G[{y1,x1,x2,3,y3}] Z Ps and
Gl{y2, x2, 23, 24,y2}] 2 P5. Since G[{y1,y3, 23,22, 92}] Z 5, E(y2,{y1,y3} #
(. By symmetry, assume that y1y, € E(G). Then there is a C-subpartition
(Xl,XQ) = ({xl,x4,y2,y4}, {l‘g,yl}) with z3 € Ng(Xl) N Ng(XQ). By Lemma
8, G[{x1,x2,x3,24,Y1,Y2,ya}] is collapsible, a contradiction.

The necessity. All graphs in Figure 4 are 2-edge-connected noncollapsible
(nonsupereulerian). Especially, each graph in {G1,Gs,G11} contains H as its
induced subgraph. Note that Gg and G11 have no common induced Cj for any
k > 3 and Gg is Ky 3-free, H should be the subgraph of path. Since G is Ps-free,
H C P;. |

3. TFORBIDDEN SUBGRAPHS GUARANTEEING A 2-EDGE-CONNECTED GRAPH
To BE SUPEREULERIAN

Before presenting the proofs, we need to prepare some results. A graph H is a
minor of G if H is isomorphic to the contraction image of a subgraph of G. We
call H an induced minor of G if H is isomorphic to the contraction image of an
induced subgraph of G.

If a graph G has an induced minor H with V(H) = {v1,v2,...,v:}, then for
pair of {i,5} C {1,2,...,t}, v; is the contraction image of an induced subgraph
G, of G. Let X, be the minimal subset of V(G,,) such that G[X,,] is connected
and ‘E(XUNUke{1,2,...,t}\{i} V(Gy,))| = du(v;). Then ‘E(XW,XUJ.)‘ =1lifvw; €
E(H) and |E(X,,, Xy,)| = 0 otherwise. Note that H' = G[X,, UX,, U---UX,,]
is an induced subgraph of G, called the H -subgraph.

Theorem 16 (Wang and Xiong [12]). H'[Ny/[Xy,]] has either an induced T ;
or an induced Ny ji o for some 1,5, k, 7, j' k' if dg(v;) > 3.

A wheel W, is the graph obtained from the n-cycle C,, = vivs - - - v,v1, where
n > 2, by adding an extra vertex v and new edges {vv; : 1 < ¢ < n}. The
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subdivided wheel W is the graph obtained from W,, by replacing v;v;4+1 by a path
vivivipr with {v], ..., }NV(W,) =0 (1 <i<n). Let W*={W}:n>2}.

Theorem 17 (Lai [7]). If G is 2-edge-connected and does not have an induced
minor isomorphic to a member in W*, then G is supereulerian.

For a cycle C, let C™ denote the graph obtained from C by adding one edge
between one pair non-adjacent vertices in C.

Lemma 18. Let G be a 2-edge-connected graph. If every W -subgraph (i >2)
H of G is in a subgraph H C G such that the reduction of H is K1, Cy or Clj
for some integer k > 4, then G is supereulerian.

Proof. Let G’ be the reduction of G. If G’ = K7, then G is supereulerian by
Theorem 6(a). We then assume that «'(G") > £/'(G) > 2. If G’ has an induced
minor W for some 49 > 2, then G’ has an induced W;-subgraph H’ and G has
a corresponding induced W -subgraph H such that H " is the reduction of H.
By hypothesis, G has a subgraph H such that H C H and the reduction of H,
say H', satisfies that H' € {K1,Cy, C’,j} for some integer k > 4. Note that H'
is an induced subgraph of H' and H' has three vertex-disjoint paths with length
at least 2 between any two vertices of degree 3. This is impossible. Therefore,
G’ has no induced minor W for any ¢ > 2. By Theorem 17, G’ is supereulerian,
and hence G is supereulerian by Theorem 6(b). |

Theorem 19 (Liu et al. [8]). Every 2-connected P;-free graph G with §(G) > 3
is supereulerian or P(10).

The following result extends Theorem 19 and serves for the proofs of Theorem

3(2), (3).

Theorem 20. Every 2-connected P;-free graph G with |Va(G)| < 1 is supereule-
rian or P(10).

Proof. Let G’ be the graph obtained from G by contracting all collapsible sub-
graph L of G such that g(G/L) > 3 and then either |Ng(L)| > 3 or V(L) N
Vo(G) # (0. Then G’ is a Njj j-free simple graph such that [V2(G’)] < 1 and
the vertex of degree 2 of G’ is not in a collapsible subgraph of G’. Since any
induced path of G’ can be extended to an induced path of G, G’ is Pr-free. By
Theorem 6(a), it suffices to prove that G’ is supereulerian or G = G’ = P(10).
By contradiction, assume that G’ is nonsupereulerian and G’ 2 P(10). Then
G’ is nontrivial and &'(G’) > k/(G) > 2. In the proof below, we need a set of
2-connected nonsupereulerian graphs F = {Fy, Fs,..., Fip} (see Figure 2).

Claim 21. Every induced W} -subgraph (i > 2) of G’ is isomorphic to a member
of F.
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Figure 2. The graphs that are nonsupereulerian.

Proof. Let F be the induced W -subgraph of G’. Then G’ has an induced minor
Wi . For any vertex v € V(W[), if dw»(v) = 2, then F[Ng[X,]] is isomorphic to
a path. By Theorem 16 and since G’ is Ny 1 1-free, if dy+(v) = 3, then F[Np[X,]]
is isomorphic to a Tj,,, for some integers [,m,n. As F' is Pr-free, i € {2,3}.
This implies that F' is isomorphic to the subdivision of W;*. Then F' € F. 0O

Claim 22. If G’ has a subgraph F = F; fori € {1,2,3}, then either G'|V(F)] 2 F
or G'|V(F)] is collapsible.

Proof. 1If F € {F}1, F»}, then we can verify that adding any edge between any
pair of nonadjacent vertices of F' results a collapsible graph.

Therefore, suppose that F' = F5. Then E(G'[V(F)])\E(L) # {vivs}, since
otherwise, |Ngs(tivivst)| > 3 and g(G'/tyvivsty) > 3, contradicting the con-
struction of G'. By symmetry, E(G'[V(F))\E(L) # {vovs}. If vivg € E(G'),
then there is a C-subpartition (X1, X2) = ({t1,2,v4,v5}, {vi,v3}) such that
v2 € Ngr(X71) N Ngr(X2), and hence G'[V (F)] is collapsible by Lemma 8. By
symmetry, G'[V(F)] is collapsible if vous € E(G’). If E(vs, {v1,va,v3,v4}) # 0,
E(tl,{vg,m}) 75 (Z), E(tz,{vl,vg}) 7& (Z), t1t2 S E(G,) or {U1U3,U2U4} g E(G/),
then we can verify that G'[V(F)] is collapsible. Hence either G'[V(F)] & F or
G'[V(F)] is collapsible. O
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Claim 23. If G’ has two induced subgraphs F and F = F; fori € {1,2,3} such
that F C F and the reduction of F is a cycle Cy or C,j for some k > 4, then F
is in a collapsible subgraph of G'.

Proof. Since the reduction of F is C} or C’,j , G’ has a collapsible subgraph
L C F such that either t1,to € V(L) or tity € E(G'/L). Since i € {1,2,3},
G'[V(L)UV(F)] is collapsible. O

Since G’ is nonsupereulerian and by Lemma 18, we can choose an induced
W -subgraph H of G’ such that for any integer k¥ > 4 and any graph H with
H C H C G', H is not collapsible and the reduction of H is not Cj, or C’,j . By
Claim 21, we assume that H = F}; for some jo € {1,...,10} with jo minimized.
Then every induced subgraph F' = F; of G’ with j < jo is in a subgraph F of G’
such that the reduction of F' is K or a cycle C or C*; in addition, by Claims 22
and 23, if j < min{jo — 1,3}, then F is not necessary induced in G’ and F' is in
a collapsible subgraph.

Claim 24. jy < 3.

Proof. By contradiction, assume that 4 < jo < 10. Suppose that H = Fj.
Then [{vi,v2,v3} N V>3(G’)| > 2. By symmetry, assume that vy, vy have neigh-
bors wuy,ug outside V(H), respectively. Note that H has two C-subpartitions
({t, V1, 1)3}, {tl, tz, ts3, ’Ug}), ({Ul, tl, to, tg}, {t, V2, Ug}). Then |E(’LL1, H)’ = 1, since
otherwise, G'[V(H) U {u1}] is collapsible by Lemma 8, contradicting the choice
of H. This implies that u; # ue and |F(ug, H)| = 1. Thus either ujvitsvstavous
(if uyug ¢ E(G')) or uyuguatittsvs (if uyue € F(G')) would be an induced P; in
G', a contradiction.

Suppose that H = Fy. Then {vs,v3} N V>3(G’) # 0. By symmetry, assume
that ve has a neighbor uy outside V(H). Note that there is a C-subpartition
({t,vo,v3}, {t1,t2,t3,v1,v4}). Then E(ug, {t1,t2,t3,v1,v4}) = (), since otherwise,
G'[V(H)U{uz}] is collapsible by Lemma 8, a contradiction. As G'[{ug,v2, t2,t,t3,
vg, 1} Z Pr, ugt € E(G'). Then Fi C G'[{t1,t2,t,v2,us}] is in a collapsible
subgraph of G’ by the choice of H, and hence G'[V (H) U {ug}] is in a collapsible
subgraph of G’, a contradiction.

Suppose that H 2 Fg. Then {v1,v2} N V>3(G’) # 0. By symmetry, assume
that v1 has a neighbor u; outside V(H). Note that there is a C-subpartition
({v1,va}, {t,v3,t1,t2,t3,v}). By Lemma 8, E(uy,{t,vs, t1,t2,t3,0}) = 0 and
hence G'[{u1,v1,t1,v,t,t2,v3}] = P7, a contradiction.

Suppose that H = Fr. Then {vs,vs} N V>3(G’) # 0. By symmetry, assume
that vg has a neighbor ug outside V(H). By the choice of H, G'[{t1, t2, vs, V¢, ug }]
is not in a collapsible subgraph, and hence E(ug,{t1,t2,v5}) = 0. In addition,
E(ug, {ve,v3}) = (. Suppose otherwise. By symmetry, assume that ugve €
E(G"). Since G'[V(H) U {ug}] is not collapsible, {ugvi,usvs} ¢ E(G’). Since
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G,[{UG, V9, U1, tl, Vs, tg, 1)4}] ;7§ P7 and G,[{UG, V9, U3, V4, tg, Vs, tl}] ;7_3 P7, Uglg €
E(G"). Note that there is a C-subpartition (X1, X2) = ({v2, v, v5, 06}, {t1, t2, v3,
ug}) such that v; € Ng(X1) N Ngr(X2). Then G'[V(H) U {ug}] is collapsible by
Lemma 8, a contradiction. Then one of ugvgtivivavsvy (if {ugvi, ugva} NE(G') =
@), 1)21)3U4u61)6t11)5 (lf {u6v1,uﬁv4} g E(G,)), u61)11)21)3?}4t21)5 (lf {uﬁvl,ugm} N
E(G") = {ugv1}) and ugvsvsvavitivs (if {ugvi, ugva} N E(G’) = {ugvs}) would be
an induced P; in G’, a contradiction.

Suppose that H = Fg. Then {v4,v5} N V>3(G’) # 0. By symmetry, assume
that v4 has a neighbor uy outside V(H). By the choice of H, G'[{t1, t2, v4, vs5, Vs, U4 }]
is not in a collapsible subgraph, then {usti, uqvs} € E(G’) and Fy € G'[{t1, t2, v4, v5,
ve, u4}], and hence E(ug,{t2,v6}) = 0. Then uqvs ¢ E(G’), since otherwise,
usty ¢ E(G'), dgr(ua) > 3, |Ner(uavavsug)l > 3 and g(G'/(usvavsug)) > 3,
contracting the construction of G'. By symmetry, ust; ¢ E(G). In addition,
{ugv1,ugvs} € E(G'), since otherwise, there is a C-subpartition (X7, X2) =
({t1,t2,v2,us}, {v1,v3,v4,v6}) such that v5 € Ng/(X1)NNgr (X2), then G'[V (H)U
{u4}] is collapsible by Lemma 8, a contradiction. Then uqve € E(G’); for oth-
erwise, one of uqvstivgtavsve (if {ugvi, ugvs} N E(G') = 0), vjugvivovstove (if
ugvy € E(G")) and vgtavgugvgtivy (if ugvs € E(G’)) would be an induced P; in
G’, a contradiction. Thus F(ug, {v1,v3}) = 0 by the construction of G’, and then
uqv2v1t1vgtavs would be an induced P; in G’, a contradiction.

Suppose that H 2 F5. Then {vg,v5} N V>3(G') # 0. By symmetry, assume
that v4 has a neighbor uy outside V(H). By the construction of G’ and by the
choice of H, E(ug4,{t1,t2,v5}) = 0. In addition, uqvy ¢ E(G’); for otherwise,
F5 C G'[{t1,t2,v1,v2,v3,v4,u4}] is in a collapsible subgraph of G’ by the choice
of H, and then G'[V(H) U {u4}] is in a collapsible subgraph, a contradiction.
And {uqvi,uqvs} € E(G'); for otherwise, there is a C-subpartition (X1, X2) =
({tl, V1, U3, 04}, {tg, V2, U4}> with vs € Ng/(X1) N Ngr(X2), then G/[V(H) U {U4}]
is collapsible by Lemma 8, a contradiction. Then {u4v1,usvs} NE(G") = 0. Sup-
pose otherwise. Without loss of generality, assume that uqv; € E(G’). Then
{vs,us} N V>3(G’) # 0. By symmetry, assume that vs has a neighbor us out-
side V(H) U {us} with E(us, {t1,t2,v2,v4}) = 0. Then usuy ¢ E(G'); for oth-
erwise Iy C G'[{v4,vs,t1,t2,us,us}] is in a collapsible subgraph of G’ and then
G'[V(H)U{u4,us}] is in a collapsible subgraph of G’, a contradiction. In addition,
usvy ¢ E(G'); for otherwise, F3 C G'[{v1,v4, u4,us,v2,v3,v4}] is in a collapsible
subgraph of G’ and then G'[V (H) U {u4, us}] is in a collapsible subgraph of G’, a
contradiction. Thus usvstovstivive would be an induced Py in G’, a contradiction.
This implies |E(u4, H)| = 1 and u4 has a neighbor ) outside V/(H)U{u4}. Since
G'[V (H)U{ug,u}}] is not collapsible and by the construction of G, ujvy ¢ E(G"),
{ujva, wjv;} € E(G') for i € {1,3} and G'[{t1, t2, v4, V5, us, u} }] is not collapsible.
Then ujvs ¢ E(G') since Fo € G'[{t1,ta,v4,v5, us, uy}| and {ujt1,ujta} € E(G")
since Fy  G'[{t1,t2,v4,v5,u}}]. By symmetry, assume that u)t; ¢ E(G’). Then
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{ujv,ujvs} € E(G') since F5 € G'[{t1,ta,v1,v3,v4, us,uy}] and {ujvy, ujta} &
E(G@) since F3 € G'[{v1,t2,va,v3,t1,u)}]. Thus {ujvs, ujte} C E(G'); for other-
wise, one of ugujvivevstovs (if ujvy € E(G)), usujvsvavitivs (if ujvs € E(G"))
and uqulvovstavsty (if ujve € E(G’) and ujjts ¢ E(G’)) would be an induced Pr in
G, a contradiction. Note that {vs, v5}NV>3(G’) # 0. By symmetry, assume that
us € Ngr(vs)\V(H) with |E(us, H)| = 1. Since Fy € G'[{t1,t2,v4,v5, us, us}|,
ugus ¢ E(G'). Since G'[{us,vs,t1,v1,ve,u),us}] 2 Pr, usuy € E(G'). Note
that {us,us} NV>3(G’) # 0. By symmetry, assume that there is a vertex uj €
Ner(us)\(V(H) U {u}}) with ufvy € E(G). However there is a C-subpartition
(X1, X2) = ({t1,t2,v1,v2,us},{vs, v4, v5, us, uﬁl}) with u’5 € Ng/(X1) N N (X2),
then G'[V(H) U {u4, us, u}y, us}| is collapsible by Lemma 8, a contradiction.
Suppose finally that H = Fy. Then [{v1,...,v6} N V>3(G’)| > 5. By symme-
try, assume that {vi,...,v5} C V>3(G’). Let uy € Ng/(v1)\V(H). Then uit; ¢
E(G). In addition, ujvy ¢ E(G’). Suppose otherwise. If uity ¢ E(G'), then ei-
ther |Ng/(ujvivaur)| > 3 or dgr(ur) = 2; if uite € E(G’), then G'[{u1, v1,v2,t2}]
is collapsible and |Ng/({u1,v1,v2,t2})| > 3, contracting the construction of G.
Furthermore, {ujvs,ujvs} € E(G'); for otherwise, E(uj,{va,vs,v6}) # 0 and
Fy C G'[{t1,v1,v3,v5,u1}] is in a collapsible subgraph of G’, and then G'[V (H)U
{u1}] is in a collapsible subgraph of G’ a contradiction. By symmetry, assume
that wyvs ¢ E(G'). Since F3 € G'[{t1,t2,v1,u1,v2,v,v;—1}] for i € {4,6},
E(uy,{vs,v6}) = 0. Then uite € E(G') since G'[{uq,v1,t1,v3,v4,t2,v6}] 2 Pr.
By symmetry, v; has a neighbor u; outside V/(H) and u;t;mod 2)4+1 € E(G") for
Jj € 42,...,5}. Note that {uj,us} N V>3(G’) # (. By symmetry, assume that
u; has a neighbor u} outside V(H). Since there is a C-subpartition ({t2,v1,
U3, U5, U1, Ug }, {t1, V2, V4, V6, u3}), by Lemma 8, E(u}, {t1,vs,v4,v6,us}) = 0. By
symmetry, E(u}, {u1,t2}) = 0. Then vjvs ¢ E(G’); for otherwise, Fy C G'[{t2, v3,
v4, u3, u1, ) }] is in a collapsible subgraph of G’ and then G'[V (H)U{uq,u}}] is in
a collapsible subgraph of G’, a contradiction. Since G'[{u}, u1, t2, ve, 5,11, v3}] Z
P;, vwjvs € E(G"). However, there is a C-subpartition (X1, Xo) = ({t1, v2, v4, vs,
Ui, u/l}, {tg, V1, U3, UQ}) with vg € Ng(X1)NNgr(X2), then G/[V(H) U {’U,l, ug, u’l}]
is collapsible by Lemma 8, a contradiction. 0

For jo < 3, we shall distinguish the following three cases.

Case 1. H = Fy. Since G'[V(H) U {u}] is not collapsible, |E(u, H)| = 1 for
any u € Ngr({v1,v2,v3}) \ V(H) by Lemma 8.

Claim 25. There is an induced path P(v;,v;) between v; and vj outside H for
some {i,7} C {1,2,3}.

Proof. Note that [{vi,ve,v3} N V>3(G’)| > 2. By symmetry, vi,ve have neigh-
bors uy,uy outside V(H) with |E(uy, H)| = |E(ug, H)] = 1. Then uy,uy have
neighbors v}, v, outside V/(H) U{u1, ug} with Ng{u},us} C{t1,t2}. In addition,
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|Ner(u)) N {t1,t2}] < 1; for otherwise G'[V(H) U {u;,u,}] is collapsible for i €
{1,2}. Then either ujujvit1(t2)vauguly (if Ngr(u)) U Ngr(uh) = {t2}({t1})) or
uru)tivstoubug (if Ngv(u)) U Ngr(uh) = {t1,t2} and {u)t1,ubte} C E(G’)) would
be an induced P; in G’, a contradiction. 0

By Claim 25, we may choose a longest induced path P(wvy,v9) satisfying
|E(V(P(vi,v2)), V(H))| = 2. Then 3 < |E(P(v1,v2))| < 4 since G’ is Pr-free.

Suppose firstly that P(vi, v2) = viujugva. Note that {u1,us} NV>3(G’) # 0.
By symmetry, assume that ug has a neighbor v} outside V(H) U {u;,us}. Note
that there are two C-subpartitions ({1, t2, v3}, {v1, ve, u1, us}) and ({t1, t2, v1,uz},
{va,v3,u1}). Then E(ul, {t1,t2,v2,v3}) = 0 since G'[V(H) U {uy,uz,ub}] is not
collapsible and by Lemma 8. In addition, ubu; ¢ E(G), since otherwise, either
uhvr € E(G"), G'[{v1, va, u1,ug, ub}] is collapsible and | Ngs ({v1, va, u1, ug, ub})| >
3 or uhvy ¢ E(G'), contracting the construction of G’. We then claim that
ubvy ¢ E(G"). Suppose otherwise. Note that {uy,ub} N V>3(G') # 0. By sym-
metry, assume that u; has a neighbor u) outside V(H) U {uy, ug,ub}. Then
E(uy, {vi,us}) = 0. Since G'[V(H)U{u1,uz, u},ub}] is not collapsible, E(u}, {t1,
to,va,v3,ub}) = 0. Thus u} has a neighbor v/ outside V(H) U {u1, ug, u}, ub}.
By the choice of P(v1,v2), E(uf,{vs,vs}) = (. Since G'[V(H) U {u]}] is not col-
lapsible, {uft;,ufta} € E(G"). Assume that ujt; ¢ E(G’). Then ufus ¢ E(G")
since G'[V(H) U {uq, u}, ua, uby, u'}] is not collapsible, and hence uu}uiugvativs
would be an induced P; in G’, a contradiction.

Then u}, has a neighbor u} outside V(H) U {u1,u2,u5}. By the choice of
P(vi,v2), E(uf,{v1,ve,us,ub}) = 0. Since G'[V(H) U {uf}] is not collapsible,
{uft1,ulfta} € E(G"). Assume that uity ¢ E(G’). Then ufju; € E(G’) since
G'[{uf, ub, ug,ur,v1,t1,v3}] 2 Pr. Note that {u), uf} N V>3(G’) # 0. By sym-
metry, assume that u4 has a neighbor w4’ outside V(H) U {u1, ug, ub, uy}. Then
EWy, V(H)U{uy,us, uy,ul}) = 0 and uf'ufubugvetivy would be an induced Py
in G’, a contradiction.

It remains to consider the case when |E(P(vi,v2))] = 4. Assume that
P(v1,v2) = viujuugvy. Note that {uy,us} NV>3(G’) # 0. By symmetry, assume
that ug has a neighbor u}, outside V(H)U{u1,u2}. Then E(u), {ve,u}) = 0. Since
G'|V(H) U {uh}] is not collapsible, {ubti,ubte} € E(G’). Assume that ubt; ¢
E(G"). Then {ubvy,ubvs, ubui} N E(G") # 0 since G'[{uf, ug, u,u1,v1,t1,vs|] 2
P;. We claim that uhv; ¢ E(G’). Suppose otherwise. If vs has a neighbor
ug outside V(H) U {uy, ug, u,ub}, then |E(ug, V(H) U {ui,us,u,ub})| = 1 and
then wusvstoviuiuus would be an induced P; in G’, a contradiction. Hence
dg'(v3) = 2. Then u has a neighbor u' outside V(H) U {u1,ug2,u,ub} such
that E(u/, {t1,t2, v2,v3,u1,u2,u}) = 0. Since G'[{v/,u,us,ub,v1,t1,v3}] 2 Pr,
uw'v; € E(G"). Then «’ has a neighbor u” outside V(H) U {u1, ug, u, v’} such that
EW", V(H) U {ug,u}) = 0 and v"u'uusvativs would be an induced Pr in G, a
contradiction. We then claim that ubvs ¢ E(G’). Suppose otherwise. Note that



432 X. Livu anD L. XIONG

{u1,ub} N V>3(G") # 0. If ufy has a neighbor uf outside V(H) U {uy, ug, u, ub},
then E(ul, V(H) U {u,us}) = 0 since G'[V(H) U {u, ug,ul}] is not collapsible,
and hence either ujubusuuivity (ujur ¢ E(G')) or ujujuugvativs (ujur € E(G"))
would be an induced Pr in G’, a contradiction. Then dgr(ub) = 2 and uy has a
neighbor «) outside V(H) U {u1,ug, u, ub} such that E(u},{t1,te,v1,v2,u}) =0
and {ujvs,vjub} € E(G') since G'|V(H) U {u1,u2,u,u},u}] is not collapsi-
ble. Then ujug € E(G'); for otherwise, either ujujuusvativs or u)juivitivausul,
would be an induced P; in G’, a contradiction. Note that u has a neighbor u’
outside V(H) U {u1, ug, u}, ub} such that E(u/, V(H) U {u1, ug, uf,us}) = 0 since
G'[V(H) U{u,u1,ug, v uj,ub}] is not collapsible. Then u'uusubvstivy would be
an induced P; in G’, a contradiction.

Then uhu; € E(G'), {u, u4}NV>3(G") # 0. By symmetry, assume that v has a
neighbor v outside V (H)U{u1, ug, ub,u}. Then |E(v', V(H)U{ui, ua, uh,u})| =1
and v’ has a neighbor u” outside V(H) U {u1,ug, ub, u,u'}. Since G'[V(H) U
{u1,ug,u,uhy,u"}] is not collapsible, {u"t;,u"t2} ¢ E(G') and {u"ui,v"us} €
E(G'). By symmetry, assume that {u”t1,v”"u1} N E(G') = 0. Then u"u ¢
E(G"). Since G'[{v", v, u,us,v1,t1,v2}] 2 P; and G'[{u", v/, u,uy,v1,t1,v3}] 2
P;, u"vi € E(G"). However, uguu/u"vit1v3 would be an induced P; in G/, a
contradiction.

Case 2. H = Fy. Note that {vs,v4} N V>3(G’) # 0. By symmetry, assume
that vg has a neighbor uy outside V(H). By the choice of H, uqvs ¢ E(G’).
Since there is a C-subpartition ({t1,t2, v1,va}, {vs, v4}), E(ug, {t1,t2,v1,v2}) =0
by Lemma 8. This implies |E(uy4, H)| = 1 and then Ng/(ug) \ V(H) # 0.

Claim 26. uy has a neighbor outside V(H) that is adjacent to exactly one of
{v1,v9}.

Proof. By contradiction, assume that {ujvi,ujve} N E(G") = 0 for any u), €
Ner(ug)\V(H). Since {v1,v2} NV>3(G’) # 0, by symmetry, assume that ve has a
neighbor ug outside V (H)U{u4, v} }. By the choice of H, E(ug, {t2,v1,v3,v4,u}) =
0 and w'vy ¢ E(G'). Since G'[V (H)U{ug, u4,u} }] is not collapsible, {u}t1, ujus} &
E(G") and {u}t1,ujvs} € E(G’). Then ust; € E(G"); for otherwise, exactly one
of ujugvgtivivaug (if {ugul, ult1} NE(G') = 0), vougujusvstivs (if uguy € E(G"))
and ugvatovstiujuy (if ujty € E(G")) would be an induced P; in G’, a contradic-
tion. Since {v1,u2} N V>3(G’') # 0, by symmetry, assume that v; has a neighbor
uy outside V(H) U {ug,us,uy}. By symmetry, ujte € E(G’). Then there is
a C-subpartition (X7, Xo) = ({t1,t2,v1,v3,v4}, {us,va}) with us € Ng/(X7) N
N¢/(X2), and then G'[V(H) U {uy,us2}] is collapsible, a contradiction. 0

By symmetry, assume that uwjve € E(G') for some u) € Ng/(usa)\V(H).
Then dg(v3) = 2. Suppose otherwise. Assume that vs has a neighbor ug outside
V(H) U {u4,u}}. Since there is a C-subpartition ({t1,t2,v1,v2, us}, {vs, v, u}}),
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E(U3, {tl, tg, v1, V9, U4}) = @ Then uU3vV4 ¢ E(G,) Since G,[{u;g, vs3, tl, V1, V2, uﬁl,
ug}] 2 Pr, uzu)y € E(G'). Note that {us,us} N V>3(G’) # 0. By symmetry, as-
sume that uz has a neighbor u% outside V(H)U{us, us,uy}. Then |E(uf, V(H)U
{us,uq,uy})| = 1 and whugujvovitivg would be an induced P; in G', a contra-
diction. Hence d(u4) > 3 and u4 has a neighbor u) outside V(H) U {u4,u}}
with E(u), {ul,vs,v4}) = 0. Then ujt; ¢ E(G’). Suppose otherwise. Then
E(u',{t1,t2,v1,v2,uq,uly}) = 0 for v’ € Ng/(u]f) since there is a C-subpartition
({t1,ta, v1,v2, ug, ul }, {vs, va,u] }). Since G'[{v/, u}, uq, u}, va, to,v3}] & Pr, u'vs €
E(G"). However, there is a C-subpartition (X1, X2) = ({t1, t2, v1, v2,u'}, {vs, v4,
ug,uy}) with u) € Ng/(X1) N Ngr(X2), and then G'[V(H) U {uy, u}, ul, u'}]
is collapsible, a contradiction. Since G'[V(H) U {uy,u, u}}] is not collapsible,
{ujvi,ujta} € E(G"). Then ujve € E(G'), since otherwise, either ujjuqulvovitivs
(if ujv1 ¢ E(G")) or ujugulvatovsty (if ujta ¢ E(G’)) would be an induced P; in
G’, a contradiction. Note that G'[{ve, ua, ta, va, u), uj}] = F5, by symmetry, u)
has a neighbor w and w has two neighbors w1, wy such that {wyvg, wovs} C E(G').
Then ww1v4U4uﬁlvgvl would be an induced P; in G, a contradiction.

Case 3. H = F3.

Claim 27. Either vi and vq or vy and vs (or both) have a common neighbor.

Proof. Note that [{v1,ve,v3,v4} N V>3(G')| > 3. By contradiction, without loss
of generality, assume that vy, v4 have neighbors wu;, ug outside V(H), respectively.
Then E({ul, U4}, {tl, tQ, V1, V4, ’U5}) = @ Since G’[{ul, U1, tl, Vs, tg, V4, ’U,4}] 7’?
P;, wiug € E(G'). If vs has a neighbor us outside V(H) U {uj,us}, then
|E(us, H)| = 1. Since G'[V(H) U {u1, u4,us}] is not collapsible, {uqus, ujus} &
E(G"), {uius,uivs} € E(G') and {uqus,uqve} € E(G’). Then exactly one of
U5U5t1U1U4U4t2 (if {’LL1U5,U4U5} N E(G/) = @), U5U1U1U2t2U4U3 (if Urus € E(G/))
and usuqvatovovity (if uyug € F(G')) would be an induced P; in G’, a contra-
diction. Hence dg(vs) = 2. Then at least one of {vg,v3} has a neighbor outside
V(H) U {uy,us}; for otherwise, {ujvs, usva} C E(G') and G'[V(H) U {u1,us}]
is collapsible, a contradiction. By symmetry, let ug be a neighbor of vz outside
V(H) U {u1,us}. By symmetry, E(us,{t1,t2,v2,v4,v5}) = . Since G'[V(H) U
{u1,us,us}] is not collapsible, {ugu,usv1} € E(G") and {ugvi,usus} Z E(G").
Then exactly one of ugvsvgtovoviuy (if {usui, ugvi} NE(G") = 0), usuiugvatovsty
(if uguy € E(G")) and ugviujuqvatovs (if ugvy € E(G')) would be an induced P
in G’, a contradiction. O

Without loss of generality, let u; 4 be a common neighbor of vq,v4. Since
G'[{t1,t2,v1,v2,v3,v4,u1 4}] = F3, either vy and vz or vy and wuy4 (or both)
have a common neighbor by Claim 29. By symmetry, let u23 be a common
neighbor of vy, v3. Furthermore, we claim that two of {vs,u1 4, u23} have a com-
mon neighbor. Suppose otherwise. By symmetry, assume that uq4,u23 have
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neighbors u} 4, u5 3 outside V/(H) U {u1 4,u2 3}, respectively. By the choice of H,
E({u} 4,u53}, V(H)) = 0. Then either uj suz svstiviug au 4 (if uy quy 3 & E(G'))
or g 3uy 3y 4u1 4Vatavs (if uy 4uy 5 € E(G')) would be an induced Pr in G/,
a contradiction. By symmetry, let v’ be a common neighbor of {uj4,us23}.
Then w'vs € E(G') since G'[{t1,vs,t2,va, u1 4,0 ,u23}] % Pr. Note that H =
G'V(H)U{uy4,u',uz,3}] = P(10) and each vertex of H is in V(G). Furthermore,
there is no other vertex outside V(H). Suppose otherwise. Since #'(G') > 2, there
is an induced path P whose internal vertices are all not in V (H), connecting two
vertices of H. Then either|E(P)| > 3 and it would produce an induced P; in G’
or |[E(P)| <2 and G'[V(H) U V(P)] would be collapsible, a contradiction. Thus
G =G = P(10). u

Corollary 28. If 2-connected P;-free graph G other than P(10) satisfies that
G[Va(Q)] is a path, then G is supereulerian.

Proof. Let G* = G/V(G). Then G* is 2-connected, Pr-free with |Vo(G*)| < 1
and G is supereulerian if and only if G* is supereulerian. By Theorem 20, G*
is supereulerian or isomorphic to P(10). If G* = P(10), then either G has an
induced Pr (if Va(G) # 0) or G = G* = P(10) (if Va(G) = 0), a contradiction.
Thus G* is supereulerian and then G is supereulerian. [

Proof of Theorem 3. By contradiction, let G be a 2-edge-connected nonsuper-
eulerian graph with §(G) > 3.

(1) Then we will obtain an induced subgraph of G isomorphic to any one in
{N22,4, B2, B34, Zg} when G is Ty -free, contradicting that G is H-free. By
Lemma 18, G has an induced W; -subgraph H satisfy the following property.

Property P: the reduction of H is not a cycle C or C* for any H with H C H.

Claim 29. FEvery subgraph L of G isomorphic to one of {0(1,1,1),0(2,1,1)} is
in a collapsible subgraph.

Proof. Suppose that L = 0(t1,te,v1,v2,v3). For i € {1,2,3}, let u; € Ng(v;)\
V(L). If |E(u;, H)| > 2, note that there is a C-subpartition (X1, Xo) = ({t1, to,
vj},{vi,vk}) with u; € N(;(X1> N Ng(XQ) for any j # k € {1,2,3}\{i}, then
G[V(L) U {u;}] is collapsible by Lemma 8; we are done. In the case when
|E(ui, H)| = 1, u1 # ug # us. Then {ujug, ujus, ugus} C E(G) since G[{t1, v;, u;,
vj, uj, vgt] 2 Too1. Therefore, there is a C-subpartition (X1, X2) = ({t1,t2,v1},
{va, v3,u2,us}) with u; € Ng(X1) N Ng(X2), then G[V (L) U {u1,ug,us}] is col-
lapsible by Lemma 8.

Suppose that L = 6(t1,ta, v1v2,v3,v4) and ug € Ng(vs)\V(L). Note that
there is a C-subpartition ({t1,t2,v1,v2}, {vs,va}). If E(us, {t1,t2,v1,v2}) # 0,
then G[V (L) U {us}] is collapsible; we are done. If not, then ugvy € E(G) since
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G[{tl, V1, V2, V3, U4, U3}] £ T27271 and then G[{tl, to, U3, V4, U3}] = 9(1, 1, 1) isin a
collapsible subgraph L’ by above discussion. Hence G[V (L) U {us}] is collapsible
since G[V (L") U {v1,v2}]/L’ is isomorphic to one of { K7, Cs, Cs}. 0

Claim 30. H is not isomorphic to 0(i, j, k) for anyi>j >k > 1.

Proof. By contradiction, then j = k = 1 and assume that H = 0(t1,t2,x; - - - z;,
y1,21) since G is T o 1-free. By Property P, ¢1,t2 are not in a collapsible sub-
graph of G. By Claim 29, i > 3, Ng(y1) N Ng(z1) = 0 and E(Ng(y1), Ng(21)) =
(. Note that z; has a neighbor 2] outside V(H) with E(z{,{t1,t2,51}) = 0.
Since G[{t1,t2, x1,24, 21,21} 2 To21, E(2),{z1,2;}) # 0. By symmetry, as-
sume that zjz; € E(G). Then zizy ¢ E(G) since G[{t1,t2,x1,x2, Y1, 21, 21 }]
is not collapsible. Since G[{z1,x2,x3,t1,y1,21}] & Too1, #jzs € E(G). By
symmetry, zjz; € E(G) and zjx;41 ¢ E(G) for I € {1,3,...}. Then either
Gl{z],x1,t1, 23, 25,26} = Too1 (if @ > 6) or G[V(H) U {z}}] is collapsible (if
i < 5) by Lemma 8 since there is a C-subpartition (X1, X2) = ({z1,y1, 21}, {t1, to,
x3,...,2;}) with 9 € Ng(X1) N Ng(X2), a contradiction. 0

Now, we use 0'(i, j, k) = 0 (to, zyzx, 1 -+ 23, y1 - - - Y5, Zi - - - 2) to denote the
graph obtained from the complete graph K, with the vertex set {to,z,y,2} by
replacing the edges tox,toy, toz by the paths toxy---z;x, toyr - - Yy, toz1 - - - 2k2,
respectively

Claim 31. H is not isomorphic to 6'(i,j, k) for anyi>j >k > 1.

Proof. By contradiction, then H = 0'(to, zyzx,x1,y1,21) since G is Ty o 1-free.
Note that H/zyzx = 0(1,1,1), |E(z},H)| = 1 for 2} € Ng(z1)\V(H) since
GV (H) U {z}}] is not collapsible. Then G[{to, 1,2z}, y1,y0,21}] = T221, a con-
tradiction. 0

Claim 32. iy > 3.

Proof. By contradiction, assume that igc = 2. By Theorem 16 and Claims 30,
31, H = P(i,j,k) = P(zyz,2'y'?,x1 -+ xi,y1-- - y;, 21 - - - 2) which is obtained
from two vertex-disjoint triangles zyzx and z'y’2’z’ by adding three vertex-
disjoint paths zzy ---x;@’, yy1 ---y;y" and zzy--- 22" for ¢ > j > k > 1. Then
k > 2; for otherwise, z; has a neighbor 2] outside V(H) with |E(z], H)| =
1 since Gl{z,y,z,2',vy, 2, 21,2 }] is not collapsible by Property P, and hence
Gz, z,2', 7, 21,2} = T 21, a contradiction. Furthermore, any one of {No 24,
3276,33,4,28} is an induced subgraph of H if j > 4o0or ¢ > 4 and j = 3 or
i > b and j = 2 and we are done. It remains to consider the case when
H e {P(2,2,2), P(3,2,2), P(3,3,2), P(4,2,2), P(3,3,3)}.

First assume that H € {P(2,2,2), P(3,2,2),P(3,3,2),P(4,2,2)}. If there
are two vertices z, € Ng(z)\V(H) for i € {1,2} with {2} 22,2521} N E(G) = 0,
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then {z]z, 25z} € E(G), {z}7, 252"} € E(G) and {#}z,252'} € E(G) by Prop-
erty P. Furthermore, {#}2/, 252} C E(G) since G[{z1,z2,x, 22,2'}] 2 Tho1 and
Gl{z2, 2,2, 21,2,25}] 2 Too1. Then 22y € E(G) for any 2z € Ng(z]) since
G{7, 22,25, 21, 2", 2'}] 2 Tho1 and G[{z,y,z, 21, 22,2,y 2, 2], 2},2"}] is not
collapsible and hence G[{z2, 2,2/, 21,2,2"}] = T 21, a contradiction. This im-
plies that 2,29 have at least one common neighbor zy outside V(H). Since
GV (H)U{zp}] is not collapsible, |E(zo, H)| = 2. Hence any of {N2 4, B2, B34,
Zg} is an induced subgraph of G|V (H) U {20}], a contradiction.

Thus H = P(3,3,3). Note that any of {N224,Bag, B34} is an induced
subgraph of H, it suffices to obtain an induced subgraph of GG isomorphic to
Zg. We first claim that at least one pair of {z1,z3},{y1,vys},{z1,23} has at
least one common neighbour. Suppose otherwise. Let z}, y/, 2/ be the neighbours
of x;,yi, z outside H for i € {1,3}, respectively. Then {2]z3,24z1} N E(G) =
0. Since G[{z1,2,x,22,23,21}] & Top1 and G[{z3,2',2', 22,21, 24} 2 Ta21,
E(,{#2,z,x}) # 0 and E(2},{22,2',2'}) # 0. By symmetry, E(z},{z2,z,y}) #
0, E(zy, {x2,2",y'}) # 0, By, {y2,y,2}) # 0 and E(y3,{y2,9',2'}) # 0. Note
6(1,1,1) C GIV(H) U{x}, x4, v}, y5, 21, 25}/ (zyzz, 2’y 2'2"). Then |E(2), H)| =
(B, )| = B, H)| = Byl H)| = |E( H)| = |B(5, H)| = 1 and {zy,
iz} N E(G) = 0 since G is Ty -free. Hence E(z),{z2,2}) # 0 and there is
an induced subgraph isomorphic to Zg, a contradiction. Without loss of gen-
erality, we may assume that z1, z3 has a common neighbour z13. By Property
P, E(z13,{z,y,2z,2",y/,2'}) = 0. Then E(z3,V(H)\{22}) = 0 since G is T2 -
free. If 21320 ¢ E(G), then there is a vertex 23 € Ng(Z13)\{#1,23} such that
E(5,{z1,23,22'}) # 0 since G[2}3, 213, 21, 23,2, 2] 2 Ta21. By Property P,
|E(2]5,{x, vy, z,21})| < 1. Then 2{32 ¢ E(G), since otherwise, E(z5, {z1, 22} =0
by Property P and G[{z, x,x1, 21, 22, #13}] = T2 21. By symmetry, 252" ¢ E(G).
Then E(243,{z1,23} # 0. By Property P, E(213,{21,91,%3,y3}) = 0 and then
E(z}5,{x2,y2}) = 0, and hence there is an induced subgraph isomorphic to
Zg, a contradiction. This implies that zj320 € E(G). By symmetry, we can
prove that x1, xo, x3 have a common neighbor x13 and y1, y2, y3 have a common
neighbor g13. Hence either there is an induced subgraph isomorphic to Zg or
G[V(H) U {x13, Y13, z13}] is collapsible, a contradiction. 0

Then W has a center vertex v and spoke-vertices V3(Wy) U Va(W;) =
{vr, .. v} U oy, 0 b with dg > 3. If H[Ng[X,]] has an induced N
for some 4, j, k, then H[Ng[X,,]| has an induced Nj, j, x, for some iz, ji, kb and
te{l,...,ip} since G is Ty o 1-free. Therefore, any of {Na 24, Bag, B34, Zs} is a
subgraph of G, a contradiction. Then H[Ng[X,]] has an induced T; ;  for some
i, j, k by Theorem 16. Furthermore, H[Ny[X,,]] has an induced T, j, j, for some
integers iy, ji, k¢ and t € {1,...,4p} since G is Th o -free, which means H is iso-
morphic to the subdivision of W . Since G is Ty 2 1-free, H € {Fy, F1p} depicted
in Figure 2. For H = F}g, as our discussion in Theorem 20, v; has a neighbor u;
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outside V(H) with |E(u;, H)| =1 for i € {1,2,3}. Furthermore, at least two of
{u1,u2,uz} are nonadjacent in G since G[V (H) U {u1, uz2,us}] is not collapsible.
By symmetry, assume that ujus ¢ E(G). Thus G[{t1,v1,v2,u1,u2,t}] = Tha1,
a contradiction. For H = Fy, we have that G[{t1,v1,v4,v2,u2,t}] = T2, for
uz € Ng(v2)\V (H), a contradiction. This completes the proof of (1).

If G satisfies (2) or (3), especially G is Py-free, then G is supereulerian or
P(10) if K(G) = 2 by Theorem 20, a contradiction. Then assume that x(G) = 1.
By Corollary 28, there is a block By of G and an induced path P(v1,v2) C By
with Va(Bpy) NV (P(v1,v2)) = {v1,v2} and |E(P(v1,v2))| > 2. Note that vy, vy
are cut-vertices, there are two blocks Bj, By such that V(B1) N V(By) = {v1}
and V(BQ) N V(Bo) = {Uz}.

(2) Then vy, ve are not in collapsible subgraphs of G. Suppose otherwise.
Replace G by the graph G* obtained by adding vertex set {z;,y;} and edge
set X; = {wvixi, viyi, wixi, uiy;, x;y; } for vy € Npy(v;) if v; is in a collapsible
subgraph of By for i € {1,2} since G* is 2-edge-connected {T% 22, Pr}-free,
|V<3(G*)| < |V<3(G)| and G is supereulerian if and only if G* is supereule-
rian. Let 21 € Np,(v1) and z2 € Np,(v2). Since k(Bpy) > 2, there is an induced
cycle C C By with vertices v1,v9. Since G is Pr-free, 4 < [(C) < 6. Then
we claim that do(vi,v2) = 3. Suppose otherwise. Assume that ujujougs C C
and u € Ng(ui2) with E(u, {vi,v2}) = 0. Let uj,ug € Ng(u). By symme-
try, {uiv1, ugve} € E(G) since G[{u12,v1, 21, v2, 2, uu;}] 2 Tohao for i € {1,2}.
However G[{x1,v1,u1,u,us, va, x2}] = Pr, a contradiction. Hence, [(C') = 6 and
assume that C' = viujugvawowivy. Then E(w], {u1,u2}) # 0 for w) € Ng(w)
since G is Pr-free. Furthermore, |E(w],C)| = 2 since G[V(C) U {w]}] is not
collapsible, and wfws € E(G) since G[{w1,v1,x1,ws,ve, w),w]}] 2 Tras for
wf € Ng(w))\V(C).

Then wjug € E(G); for otherwise, wju; € E(G) and |E(w/,C)| = 1 since
GV (C)U{w!, w!}] is not collapsible, and then G[{w/, wa, va, ug, u1,v1,21}] = P,
a contradiction. Furthermore, wius ¢ E(G) since G[V(C) U {w},w}] is not
collapsible and wiu; € E(G) since G[{w/,wa,ve,us, us,v1,21}] 2 P;. Then
Gl{x2,v2, wa, W, ui,v1,21}] = Py, a contradiction.

(3) We will obtain an induced subgraph of G isomorphic to any one in
{My, Ms}. Since G is Ps-free, V(B;) C Ng(v;) for ¢ € {1,2} and v;,vy have
at least two common neighbors ui,us in By with degree 3. Then there is an
induced M; of G[V(Bl) U V(BQ) @] {ul, UQ}]

Furthermore, we claim that u;,us have a common neighbor. Suppose oth-
erwise. Let w1 € Ng(up) \ {v1,v2}. Then w; has two neighbors z1, z2 such that
E({z1, 22}, {vi,v2,u1}) = 0. In addition, z122 ¢ E(G); for otherwise, there is an
induced My of G[V(B1)UV (Ba)U{u, w1, 21, 22}, a contradiction. Furthermore,
E(ug,{z1,22}) = 0; for otherwise, {z1us, z2us} C E(G), and then z; has a neigh-
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bor 2§ with E (2], {v1, v2,u1,u2, w1 }) = ) and hence it would produce an induced
P, a contradiction. However us has a neighbor ws such that either z;wyuiviusws
(if zywe ¢ E(G)) or wiziwauguiv] (if zywy € E(G)) would be an induced Fg in
G, a contradiction. Let vy be one common neighbor of u1, ug other than {vy, vo}.
Then vy has a neighbor ug other than {uj,us} and E(ug, {v1,vs,u1,u2}) = 0.
Therefore ug has a neighbor u{, such that E(ug, {v1,v2}) = 0 and {ujuy, ugyua}
E(G) since Glvy,va,vp,u1,u2, ug,up] is not collapsible. However there is ei-
ther an induced Ps (if ugvg ¢ E(G)) or an induced My (if ujvg € E(G)) in
GV (By) UV(B2) U{u1,v9, ug, upy}], a contradiction.

(4) Suppose that S = xjx9 - Ti_12x,41 - - 2321 is a closed trail of G with
a fixed orientation such that |V(S)| is maximized and V(G)\V(S) # 0. Let
xf = Ti1,T; = fci_l,:vi” = z;yp and 33?_ = x;_p, (all subscribes are taken
module by (1). Then there is a vertex v outside S such that v is adjacent to a
vertex 1 of S since G is connected. Since G[{x1, xf, xy,v,0'}| 2 T, for some
v' € Ng(v), {z] 27, va3T, vt} N EB(G) # 0. We claim that E(v, {23,237 }) #
(. Suppose otherwise. Then z{z] € E(G). Note that there are two vertices
v, v" in Ng(v) with E({¢/,v"},{z1,2],27}) = 0. Since G[{v,z1,z],v',0"}] 2
To11, v'v" € E(G). Then G[{x1,x],27,v,v',v"}] = Hy, a contradiction. By
symmetry, assume that va?™ € E(G). Since [{v,z1, 27, 23",v'}] % Th11 for v’ €
Ne(v), vei~ € E(G). However G[{x1,x], 2/, 27 ,v}] = Ty1 1 for 2’ € Ng(z]), a
contradiction. This completes the proof of (4) and the whole theorem. ]

4. CONCLUSION

The following theorem here indicates that the forbidden pairs in Theorem 3 except
the pair {P;,T>22} are sharp and it remains to prove 2-edge-connected {R, S}-
free graph G with 6(G) > 3 is supereulerian for {R, S} = {Z5,T222} or one
of them is Z3 to completely characterize forbidden pairs. Here Hy (H3) is the
graph obtained from H; by contracting (subdividing) the edge which is not in
any triangle of H; and Hy is the graph obtained from H; by adding a pendant
edge to the vertex of a triangle of Hj.

Theorem 33. Let R,S be two connected graphs. If every 2-edge-connected
{R, S}-free graph G with order at least 11 and §(G) > 3 implies that it is supereu-
lerian, then {R,S} = {Tz211,H1}, {1221, Naga}, {1221, Bag}, {1221, B3a},
{T221, 28}, {FPe, M1}, {Ps, M2}, {Top2, 25}, {Z3,T1}, {Z3,12}, {23,153}, {23,
Ty}, {Zs,T5}, {Z3, T}, where Ty,..., Ty are depicted in Figure 3.

Proof. All graphs in Figure 4 are 2-edge-connected nonsupereulerian graphs with
minimum degree at least three. Then each graph contains at least one of R, S
as an induced subgraph. Without loss of generality, assume that G; contains R
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as an induced subgraph. Then R either is a tree with maximum degree at most
3 or contains a cycle as an induced subgraph. Now we distinguish the following
two cases.

7 T, T T, T T,
Figure 3. Some common induced subgraphs.

Case 1. Ris a tree. If A(R) = 2, then R is an induced subgraph of Ps, a con-
tradiction. If A(R) = 3, then |V3(R)| = 1 and R is an induced subgraph of T5 2 o.
Since G§,G7,Gg, Gy are K 3-free, S is an induced subgraph of Gg, G7, Gs, Gy.
Note that Gg is Ky-free. Then R is Ky-free. Since G7 is both Hy-free and
Hs-free and Gg is Hy-free, any maximal common induced subgraph of G7,Gg
contains at most two triangles, and hence it is isomorphic to H; if it contains
exactly two triangles. Since Gg is Bygy-free and G7 is {Na2s5, B27, B35, Zo}-
free, the maximal common induced subgraphs containing exactly one triangle of
Ge,G7 are Nag 4, Bog, B34, Zg. Since the common induced cycle of G7, Gy is
C3 and Gy is Pjj-free, the maximal common induced subgraph containing no
triangle of G7, Gg is Pig. Therefore, S is an induced subgraph of a graph in
{N224,B2¢, B34, Zs, Hi}.

On the other hand, since Gig is {Hi,T521}-free, {R,S} < {Hi,T51.1}.
Since G4 is R-free and T3 -free for R is an induced subgraph of a graph
in {No24,Bog, B3a, Zg}, {R,S} = {Naoa,To21},{Bo6, 1221}, {B34,T221} or
{Zg,T27271}. Since G4 is {3171, Z6,P8}—free, {R, S} = {Z5,T27272}.

Case 2. R is not a tree. Then R contains only a C3 or C4 as an induced
subgraph since G is Ci-free for k > 5.

Subcase 2.1. R contains Cy4 as an induced subgraph. If R contains K3 3 as an
induced subgraph, then Go, Gg, G11 are K 3-free, and G is Fs-free, which means
S is an induced subgraph of Ps, a contradiction. Then R is an induced subgraph
of My. Note that Gg, G5, G171 are Cy-free and G5 is Pr-free, which means S is an
induced subgraph of Ps. Therefore, {R, S} < {My, Ps}.
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Subcase 2.2. R contains K, (r > 4). Note that G3,Gg, G11 are Ky-free, Gg
is {Kj3,Cy4}-free and Gy; is Cz-free. Then R is an induced subgraph of path.
Since G3 is Ps-free, S C Ps, a contradiction.

TR

G, G, G, G,

R3S

élé %% E ; H : Km‘n Km,n Km,n

Gll

GS G9 Gl 0
Gl 3

G] 4

W
JUaV vV g v

Figure 4. The graphs that are nonsupereulerian.

Subcase 2.3. R is Ky4-free and Cy-free. Then R contains (3 as an induced
subgraph and R is 4C3-free. If R contains 3C3 as an induced subgraph, then R is
an induced subgraph of Ms. Since G5, Gg, G11 are Ma-free, {R, S} < {Ma, Ps}.

If R contains 2C'3 as an induced subgraph, then R is an induced subgraph
of M. If R is 2Cs-free, then R is an induced subgraph of Z3. Note that
G111, G2, Gis, Gy are Cs-free. Since Gq1 is Ci-free for kK > 5, Gz is Cy-free
and A(G14) = 3, S is a tree with A(S) < 3 and |V53(S)| < 3. Then S is an
induced subgraph of the common induced subgraphs of G1; and G2 which is one
of {Tl,...,Tﬁ}. u

Considering the proof idea of Theorem 3(1), we believe the existence of a
connected spanning even subgraph in a 2-edge-connected {Zs, T 2 2}-free graph
G with §(G) > 3.
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Conjecture 34. Fvery 2-edge-connected {Zs, T 2 2 }-free graph G with §(G) > 3
18 supereulerian.
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