Discussiones Mathematicae Graph Theory 42 (2022) 417–442 https://doi.org/10.7151/dmgt.2270 # FORBIDDEN SUBGRAPHS FOR COLLAPSIBLE GRAPHS AND SUPEREULERIAN GRAPHS XIA LIU AND LIMING XIONG School of Mathematics and Statistics Beijing Key Laboratory on MCAACI Beijing Institute of Technology Beijing 100081, P.R. of China e-mail: liuxia_90@163.com lmxiong@bit.edu.cn #### Abstract In this paper, we completely characterize the connected forbidden subgraphs and pairs of connected forbidden subgraphs that force a 2-edge-connected (2-connected) graph to be collapsible. In addition, the characterization of pairs of connected forbidden subgraphs that imply a 2-edge-connected graph of minimum degree at least three is supereulerian will be considered. We have given all possible forbidden pairs. In particular, we prove that every 2-edge-connected noncollapsible (or nonsupereulerian) graph of minimum degree at least three is Z_3 -free if and only if it is K_3 -free, where Z_i is a graph obtained by identifying a vertex of a K_3 with an end-vertex of a P_{i+1} . Keywords: forbidden subgraph, supereulerian, collapsible. 2010 Mathematics Subject Classification: 05C38, 05C45. ## 1. Introduction For the notation or terminology not defined here, see [1]. A graph is called trivial if it has only one vertex, nontrivial otherwise. All graphs involved in the conclusion considered in this paper are simple graphs. Let G be a connected graph. We use $\kappa(G)$, $\kappa'(G)$ and g(G) to denote the connectivity, edge-connectivity and girth of G, respectively. Let u be a vertex of G and G be a subset of G (or G). The induced subgraph of G is denoted by G[S]. We use G(G) and G(G) to denote the neighborhood and G(G) to denote the degree of G, respectively. The neighbors of S in G is defined as $N_G(S) = \bigcup_{x \in S} N_G(x) \setminus S$ and $N_G[S] = N_G(S) \cup S$. Define $N_T(S) = N_G(S) \cap T$ for $T \subseteq V(G)$. Let $V_i(G) = \{u \in V(G) : d_G(u) = i\}$ and $V_{\geq i}(G) = \{u \in V(G) : d_G(u) \geq i\}$. If F, G are graphs, we write $F \subseteq G$ if F is a subgraph of G and $F \cong G$ if F and G are isomorphic. For $x, y \in V(G)$ and $H \subseteq G$, let $E(u, H) = \{uv \in E(G) : v \in V(H)\}$, $d_G(x, y) = |E(P(x, y))|$, where P(x, y) is the shortest path between x and y, $d_G(x, H) = \min\{d_G(x, y) : y \in V(H)\}$ and $N^i(H) = \{x : d_G(x, H) = i\}$. Let \mathcal{H} be a set of connected graphs. A graph G is said to be \mathcal{H} -free if G does not contain H as an induced subgraph for all $H \in \mathcal{H}$, and we call each graph H of H a forbidden subgraph. In particular, if $H \in \mathcal{H}$, then we simply say that H is H and H a forbidden pair if H in H and H in H is an induced subgraph of H and H in H in H in H in H is an induced subgraph of H. By the definition of the relation " \mathcal{L} ", if $\mathcal{H}_1 \leq \mathcal{H}_2$, then every \mathcal{H}_1 -free graph is also \mathcal{H}_2 -free. Let K_n denote the complete graph of order n, and $K_{m,n}$ denote the complete bipartite graph with partition sets of size m and n, and P_n denote the path of order n, and C_n denote the cycle of order n. Use $T_{i,j,k}$ to denote the tree of three paths of length i, j, k with one common vertex. The graphs $Z_i, B_{i,j}, N_{i,j,k}, H_1, M_1, M_2$ are depicted in Figure 1. Figure 1. The common induced subgraphs. A graph is *supereulerian* if it has a connected spanning subgraph such that each vertex has even degree. Lv and Xiong characterized all forbidden pairs for a 2-connected graph to be supereulerian. **Theorem 1** (Lv and Xiong [9, 10]). Let $R, S \neq P_3$ be connected graphs of order at least 3 and let G be a 2-connected graph of order at least 7. Then $\{R, S\}$ -free graph G is superculerian if and only if $\{R, S\} \leq \{K_{1,4}, P_5\}, \{K_{1,3}, N_{1,1,3}\}, \{K_{1,3}, Z_4\}, \{K_{1,3}, P_7\}, \{C_4, P_5\}.$ Afterwards, Čada et al. [3] revealed how the forbidden subgraphs change when the minimum degree was increased slightly. They characterized two forbidden subgraphs forcing a 2-connected $K_{1,3}$ -free graph G with $\delta(G) \geq 3$ excepting two families of counterexamples to be superculerian. We may restate their results as follows. In fact, they gave more general results with some exceptions. **Theorem 2** (Cada et al. [3]). If a 2-connected $K_{1,3}$ -free graph G with $\delta(G) \geq 3$ is R-free for $R \in \{N_{2,2,4}, Z_8\}$, respectively, then G is superculerian. Motivated by these two results above, in this paper, we shall consider the forbidden pairs that force a 2-edge-connected graph of minimum degree at least three to be supereulerian. **Theorem 3.** Let G be a 2-edge-connected graph with $\delta(G) \geq 3$ such that it satisfies one of the following. - (1) G is $\{T_{2,2,1}, S\}$ -free for any $S \in \{N_{2,2,4}, B_{2,6}, B_{3,4}, Z_8\}$, - (2) G is $\{P_7, T_{2,2,2}\}$ -free, - (3) G is $\{P_6, S\}$ -free other than the Petersen graph for any $S \in \{M_1, M_2\}$, - (4) G is $\{T_{2,1,1}, H_1\}$ -free. Then G is superculerian. Comparing Theorems 2 and 3(1), we know that if we keep $S \in \{N_{2,2,4}, Z_8\}$, then we may extend the other one of the pair, the $K_{1,3}$ (i.e., $T_{1,1,1}$), to $T_{2,2,1}$ (a little wider). For a graph G, let O(G) denote the set of odd degree vertices in G. In [4], Catlin defined collapsible graphs. Given a subset $R \subseteq V(G)$ with |R| even, a subgraph Γ of G is an R-subgraph if both $O(\Gamma) = R$ and $G - E(\Gamma)$ are connected. A graph G is collapsible if for any even subset R of V(G), G has an R-subgraph. Catlin [4] shows that every collapsible graph is superculerian. We then study a characterization of connected forbidden graphs to assure collapsibility. **Theorem 4.** Let $r \geq 4$ be an integer and \mathcal{H} be a connected forbidden pair. Then - (1) every 2-edge-connected \mathcal{H} -free graph G of order at least r+3 implies that it is collapsible if and only if $\mathcal{H} \leq \{K_{1,3}, P_5\}$, $\{K_{1,r}, P_4\}$ or $\{C_4, P_5\}$, - (2) every 2-connected \mathcal{H} -free graph G of order at least r+3 implies that it is collapsible if and only if $\mathcal{H} \leq \{K_{2,\lceil r/2 \rceil}, P_5\}$. **Theorem 5.** Let H be a connected graph of order at least 3. Then H-free 2-edge-connected graph G with $\delta(G) \geq 3$ implies G is collapsible (superculerian) if and only if H is an induced subgraph of P_5 . The proofs of Theorems 4, 5 and Theorem 3 are placed in Sections 2 and 3, respectively. In the last section, we will exhibit a theorem to show the forbidden pairs in Theorem 3 except the pair $\{P_7, T_{2,2,2}\}$ are sharp and leave a conjecture. ## 2. FORBIDDEN SUBGRAPHS GUARANTEEING A 2-EDGE-CONNECTED GRAPH TO BE COLLAPSIBLE For a subset $X \subseteq E(G)$, the contraction G/X is the graph obtained from G by identifying the ends of each edge in X and then deleting the resulting loops. Note that the edges in E(G/X) can be regarded as edges in E(G). If H is a subgraph, then we use G/H for G/E(H). Note that by this definition, if H is a connected subgraph of G, then G/H = G/G[V(H)]. Catlin showed in [4] that every vertex of G lies in an unique maximal collapsible subgraph of G and C_2, K_3 are collapsible. The *reduction* of G, denoted by G', is obtained from G by contracting all maximal collapsible subgraphs of G. A graph is *reduced* if it is the reduction of some graph. The following result will be used to verify whether a graph is supereulerian. **Theorem 6** (Catlin [4]). Let G be a connected graph and let H be a collapsible subgraph of G and let G' be the reduction of G. Then each of the following holds. - (a) G is collapsible (supereulerian) if and only if G/H is collapsible (supereulerian). In particular, G is collapsible if and only if G' is K_1 . - (b) G is superculerian if and only if G' is superculerian. For two disjoint subsets V_1, V_2 and a 4-cycle $C_4 = x_1x_2x_3x_4x_1$ of graph G, define $G/\pi(V_1, V_2)$ to be the graph obtained from $G-E(G[V_1 \cup V_2])$ by identifying V_1 to form a vertex v_1 , by identifying V_2 to form a vertex v_2 , and by adding a new edge v_1v_2 and define $G/\pi(C_4) = G/\pi(\{x_1, x_3\}, \{x_2, x_4\})$. **Theorem 7** (Catlin [5]). For the graphs G and $G/\pi(C_4)$ defined above. If $G/\pi(C_4)$ is collapsible, then G is collapsible. In [8], the authors give a method to verify whether a subgraph of G is collapsible. They construct a C-subpartition (X_1, X_2) of G starting with a 4-cycle $x_1x_2x_3x_4x_1 \subseteq G$ as follows. - 1. $X_1 := \{x_1, x_3\}, X_2 := \{x_2, x_4\}, \{i, j\} = \{1, 2\}.$ - 2. While $u \in N_G(X_1 \cup X_2) \neq \emptyset$, $N_G(X_1) \cap N_G(X_2) = \emptyset$ and $N_G(u) \cap N_G[X_1 \cup X_2] \neq \emptyset$ do ``` \{X_i := X_i \cup \{u\}, X_j := X_j, \text{ if } |E(u, X_i)| \ge 2; X_i := X_i \cup (N_G(X_i) \cap N_G[u]), X_j := X_j, \text{ else if } N_G(X_i) \cap N_G[u] \ne \emptyset; X_i := X_i \cup (N_G(X_j) \cap N_G(u)), X_j := X_j \cup \{u\}, \text{ else. } \}. ``` Although the C-subpartition of G is not unique, the following result is true and would play an important role in the proofs in Section 3. **Lemma 8** (Liu et al. [8]). For a C-subpartition (X_1, X_2) of a graph G and any nonempty set $X_{12} \subseteq N_G(X_1) \cap N_G(X_2)$, $G[X_1 \cup X_2 \cup X_{12}]$ is collapsible. Before presenting the proofs of Theorems 4 and 5, we need some preparations. **Lemma 9.** Let G be a 2-edge-connected noncollapsible graph which has a maximal nontrivial collapsible subgraph H. Then (1) $$|E(u,H)| = 1$$ for any $u \in N_G(H)$, - (2) $N_G(H)$ is an independent set of G, - (3) if G is P_5 -free, then $|N_G(H') \cap V(H)| = 1$ for any component H' of G H. - **Proof.** (1) Let $G^* = G/H$ and $v_H \in V(G^*)$ be the contraction image of H. If $|E(u,H)| \geq 2$ for some $u \in N_G(H)$, then G^* has a collapsible subgraph C_2 containing vertices v_H and u. Whence
$G[V(H) \cup \{u\}]$ is collapsible by Theorem 6(a), contradicting the maximality of H. - (2) Let $G^* = G/H$ and $v_H \in V(G^*)$ be the contraction image of H. If there is an edge $uv \in E(G[N_G(H)])$, then G^* has a collapsible subgraph C_3 containing vertices v_H, u, v . Whence $G[V(H) \cup \{u, v\}]$ is collapsible by Theorem G(a), contradicting the maximality of H. - (3) By contradiction, assume that G-H has a component H' with $|N_G(H') \cap V(H)| \geq 2$. Then H' has an induced path P(u,v) such that $N_G(H) \cap V(P(u,v)) = \{u,v\}$ and there are two vertices $u' \in N_G(u) \cap V(H)$, $v' \in N_G(v) \cap V(H)$. By (1) and (2), $|E(P(u,v))| \geq 2$. Note that $|V(H)| \geq 3$. Then there is a vertex $v'' \in N_H(v)$ such that uP(u,v)vv'v'' is an induced path of order at least 5. The following results imply the sufficiency of Theorem 4(1). **Theorem 10.** Every 2-edge-connected graph G is collapsible if it satisfies one of the following. - (1) G is P_4 -free other than $K_{2,t}$ for any $t \geq 2$, - (2) G is $\{K_{1,3}, P_5\}$ -free that is neither C_4 nor C_5 , - (3) G is $\{C_4, P_5\}$ -free other than C_5 . **Proof.** By contradiction, assume that G is not collapsible. Choose a collapsible subgraph H of G such that |V(H)| is maximized (possibly H is trivial). Then $N_G(H) \neq \emptyset$. - (1) We claim that G is reduced. Suppose otherwise. Then $|V(H)| \geq 3$. By Lemma 9(1),(2) and since $\kappa'(G) \geq 2$, there is an edge h_1h_2 such that $E(h_1,H)=\emptyset$ and $|E(h_2,H)|=1$. Then $G[\{h_1,h_2,h_3,h_4\}]\cong P_4$ for some $h_3\in N_G(h_2)\cap V(H)$ and $h_4\in N_H(h_3)$, a contradiction. Choose a vertex $u\in V(G)$ such that $d(u)=\Delta(G)\geq 2$. Let $N_G(u)=\{x_1,\ldots,x_{\Delta(G)}\}$. Since $N_G(u)$ is an independent set of G and $\kappa'(G)\geq 2$, there is a vertex $v\in N_G(x_1)\setminus\{u\}$. Then $vx_i\in E(G)$ for $i\in\{2,\ldots,\Delta(G)\}$ since $G[\{v,x_1,u,x_i\}]\not\cong P_4$. If there is a vertex $w\in N_G(\{x_1,\ldots,x_{\Delta(G)}\})\setminus\{u,v\}$, by symmetry, then $wx_i\in E(G)$ and $\Delta(G)\geq d_G(x_i)\geq 3$ for $i\in\{1,\ldots,\Delta(G)\}$, and hence $G[\{u,v,w,x_1,\ldots,x_{\Delta(G)}\})=\{u,v\}$, and hence $G\cong K_{2,\Delta(G)}$, a contradiction. - (2) Then G is reduced; for otherwise, there are two edges $uw, vw \in E(G)$ such that $w \in V(H)$ and $u, v \in N_G(H)$ by Lemma 9(3) and then $G[\{u, v, w, w'\}] \cong$ $K_{1,3}$ for some $w' \in N_H(w)$, a contradiction. Furthermore, $\Delta(G) = 2$ since G is $\{C_3, K_{1,3}\}$ -free. Hence $G \in \{C_4, C_5\}$ since G is P_5 -free, a contradiction. (3) If G is reduced, then g(G)=5 since G is $\{C_4,P_5\}$ -free and then $G=C_5$ since G is P_5 -free, a contradiction. Thus $|V(H)|\geq 3$ and there is a vertex $v\in V(H)$ and two vertices $u_1,u_2\in N_{G-H}(v)$ by Lemma 9(3). Then u_1,u_2 have no common neighbor in G-H since G is C_4 -free. Let $w_1\in N_{G-H}(u_1)$ and $w_2\in N_{G-H}(u_2)$. Then $E(\{w_1,w_2\},H)=\emptyset$ and hence $w_1w_2\in E(G)$ since $G[\{w_1,u_1,v,u_2,w_2\}]\not\cong P_5$. However, $G[\{w_1,w_2,u_2,v,v'\}]\cong P_5$ for some $v'\in N_H(v)$, a contradiction. Let t_1, t_2 be two positive integers and let u_1, v_1 be two nonadjacent vertices of degree t_1 in K_{2,t_1} and let u_2, v_2 be two nonadjacent vertices of degree t_2 in K_{2,t_2} . Define S_{t_1,t_2} be the graph obtained from K_{2,t_1} and K_{2,t_2} by identifying v_1 and v_2 , and by adding a new edge u_1u_2 . Let $K_{3,3}^- = K_{3,3} - e$ for any $e \in E(K_{3,3})$. Catlin shows that $K_{3,3}^-$ is collapsible. The following result implies the sufficiency of Theorem 4(2). **Theorem 11.** Every 2-connected P_5 -free graph G is either collapsible or $G \in \{K_{2,t}: t \geq 2\} \cup \{S_{t_1,t_2}: t_2 \geq t_1 \geq 1\}$. **Proof.** Assume that G is not collapsible. Then G is reduced. If not, then by Lemma 9(3), G has a maximal non-trivial collapsible subgraph H such that G-H has a component H' with $N_G(H') \cap V(H) = \{u_0\}$ for some $u_0 \in V(H)$, and hence u_0 is a cut vertex of G, a contradiction. Then $g(G) \geq 4$ since K_3 is collapsible. If $\Delta(G) = 2$, then $G \in \{C_4, C_5\}$ since G is P_5 -free. Therefore, assume that $\Delta(G) \geq 3$. Let $u \in V(G)$ with $d(u) = \Delta(G)$ and $V_i = N^i(u)$. Then $|V_1| \geq 3$ and $E(G[V_1]) = \emptyset$. If $V_3 \neq \emptyset$, then G has an induced path $uu_1u_2u_3$ such that $u_i \in V_i$. For any $u' \in V_1 \setminus \{u_1\}$, by the definition of V_i , $u'u_3 \notin E(G)$. Then $u_2u' \in E(G)$ since $G[\{u, u_1, u_2, u_3, u'\}] \not\cong P_5$. Since $\kappa(G) \geq 2$, $|V_2| \geq 2$ and there is a vertex $u'_2 \in V_2$ such that $E(u'_2, V_3) \neq \emptyset$. By symmetry, $u'_2u' \in E(G)$ for any $u' \in V_1$, and so $K_{3,3} \subseteq G[\{u, u_2, u'_2\} \cup V_1]$ is collapsible, a contradiction. Then $V_3 = \emptyset$, and let $t = \Delta(G)$. If $|V_2| = 1$, then $G \cong K_{2,t}$. So assume that $|V_2| \geq 2$. Let $V_1 = \{u_1, \ldots, u_t\}$. Since $\kappa(G) \geq 2$, there are two vertices $v_1, v_2 \in V_2$ such that $u_1v_1, u_2v_2 \in E(G)$. If $E(G[V_2]) = \emptyset$, then $v_1v_2 \notin E(G)$. Since $G[\{v_1, u_1, u, u_2, v_2\}] \not\cong P_5$, $\{u_1v_2, u_2v_1\} \cap E(G) \neq \emptyset$. By symmetry, assume that $u_1v_2 \in E(G)$. Then $v_1u_2 \notin E(G)$. Suppose otherwise. Since $K_{3,3}^- \not\subseteq G[\{u_i, u, u_1, u_2, v_1, v_2\}]$ for any $i \in \{3, \ldots, t\}$, $E(u_i, \{v_1, v_2\}) = \emptyset$, and so u_i has a neighbor v_i in V_2 . Since $G[\{v_i, u_i, u, u_1, v_1\}] \not\cong P_5$, $u_1v_i \in E(G)$. Then $d_G(u_1) \geq t+1$, a contradiction. So $v_1u_j \in E(G)$ for some $j \in \{3, \ldots, t\}$ and either $G[\{v_1, u_j, u, u_2, v_2\}] \cong P_5$ if $u_jv_2 \notin E(G)$ or $K_{3,3}^- \subseteq G[\{v_1, u_j, u, u_2, v_2\}]$ if $u_iv_2 \in E(G)$, a contradiction. Hence $E(G[V_2]) \neq \emptyset$. Assume that $v_1v_2 \in E(G)$. Since $g(G) \geq 4$, $u_1v_2, u_2v_1 \notin E(G)$. Then for $i \in \{3, ..., t\}$, $E(u_i, \{v_1, v_2\}) \neq \emptyset$ since $G[\{u_i, u, u_1, v_1, v_2\}] \not\cong P_5$. Without loss of generality, assume that $\{v_1u_1, \dots v_1u_{t_1}, v_2u_{t_1+1}, \dots, v_2u_{t_1+t_2}\} \subseteq E(G)$ for some integers t_1, t_2 with $t_1 + t_2 = t$. If $|V_2| \ge 3$, then there is a vertex $v_3 \in V_2$ such that $E(v_3, V_1) \ne \emptyset$. Furthermore, $E(v_3, \{v_1, v_2\}) \ne \emptyset$. Suppose otherwise. Assume that $v_3u_i \in E(G)$ for some $i \in \{1, \dots, t_1\}$. Then for any $j \in \{t_1 + 1, \dots, t\}$ and $k \in \{1, \dots, t_1\} \setminus \{i\}, v_3u_j \in E(G)$ since $G[\{v_3, u_i, v_1, v_2, u_j\}] \not\cong P_5$, and hence $v_3u_k \in E(G)$ since $G[\{u_k, v_1, v_2, u_j, v_3\}] \not\cong P_5$. Then either $K_{3,3}^- \subseteq G[\{u, u_1, u_2, u_3, v_1, v_3\}]$ if $t_1 \ge 2$ or $K_{3,3}^- \subseteq G[\{u, u_1, u_2, u_3, v_2, v_3\}]$ if $t_1 = 1$, a contradiction. By symmetry, assume that $v_2v_3 \in E(G)$. Since $G[\{v_3, v_2, v_1, u_i, u_\}] \not\cong P_5$ for any $i \in \{1, \dots, t_1\}, \{v_3u_1, \dots, v_3u_{t_1}\} \subseteq E(G)$. Then $t_1 \ge 2$, since otherwise, $d_G(v_2) \ge t_2 + 2 > t_1 + t_2$, a contradiction. Then there is a C-subpartition $(X_1, X_2) = (\{u, v_1, v_2, u_3, \dots, u_t\}, \{u_1, u_2\})$ with $v_3 \in N_G(X_1) \cap N_G(X_2)$. By Lemma 8, $G[X_1 \cup X_2 \cup \{v_3\}]$ is collapsible, a contradiction. Therefore, $|V_2| = 2$ and $G = S_{t_1,t_2}$. Corollary 12. Every 2-connected P_5 -free graph G of order at least $\Delta(G) + 4$ is collapsible. We construct some graphs as follows. The graph L_1 is obtained from a complete graph K_n and a path $x_1x_2x_3$ by adding the edges x_1y_1, x_3y_3 for some $y_1, y_3 \in V(K_n)$. The graph L_2 is obtained from a complete graph K_n and a path $x_1x_2x_3$ by adding the edges x_1y_1, x_3y_1 for some $y_1 \in V(K_n)$. Since the reduction of L_1 and L_2 are isomorphic to C_4 which is noncollapsible, L_1 and L_2 are noncollapsible. - **Proof of Theorem 4.** By Theorems 10 and 11, the sufficiency clearly holds. It remains to show the necessity. Let $\mathcal{H} = \{R, S\}$. Note that $K_{2,t}$ $(t \geq 2)$, C_k $(k \geq 4)$ and S_{t_1,t_2} $(t_2 \geq t_1 \geq 1)$ are noncollapsible. - (1) Since $L_1, L_2, K_{2,t}, C_k$ are 2-edge-connected, each graph contains at least one of R, S as an induced subgraph. Without loss of generality, assume that $K_{2,t}$ contains R as an induced subgraph. If R contains cycle C_4 as a subgraph, note that L_1 and C_k are C_4 -free and their maximal common induced subgraph is P_5 , then $S \subseteq P_5$. On the other hand, L_2 is $\{P_5, K_{2,3}\}$ -free, then $R \subseteq C_4$ and $\{R, S\} \leq \{C_4, P_5\}$. - If R contains $K_{1,3}$ as a subgraph, note that L_1 and C_k are $K_{1,3}$ -free, then $S \subseteq P_5$. On the other hand, L_2 is $\{P_5, K_{1,4}, T_{2,1,1}\}$ -free, then $\{R, S\} \leq \{K_{1,3}, P_5\}$. - If R contains $K_{1,4}$ as a subgraph, then $S \subseteq P_5$. On the other hand, L_2 is $\{P_5, K_{1,4}\}$ -free, and then $S \subseteq P_4$. Note that $K_{2,t}$ is $\{K_{1,r}, P_4\}$ -free for $r \ge |V(K_{2,t})| 3$, $\{R, S\} \le \{K_{1,|V(K_{2,t})|-2}, P_4\}$. - (2) Note that $L_1, K_{2,k}, C_k, S_{t_1,t_2}$ are 2-connected. Without loss of generality, assume that L_1 contains R as an induced subgraph. If R contains C_5 as a subgraph, then $K_{2,t}$ and C_k are C_5 -free and their maximal common induced subgraph are P_3 , a contradiction. Thus $R \subseteq P_5$. Since S_{t_1,t_2} is P_5 -free and there maximal common induced subgraph is $K_{2,\lfloor(|V(S_{t_1,t_2})|-3)/2\rfloor}$, $\{R,S\} \leq \{K_{2,\lfloor(|V(S_{t_1,t_2})|-3)/2\rfloor}, P_5\}$. **Theorem 13** (Lai [6]). If every edge of a 2-connected graph G lies in a cycle of length at most 4 in G and
$\delta(G) \geq 3$, then G is collapsible. Define kK_1 be an empty graph with k vertices. **Theorem 14.** Every 2-edge-connected Z_3 -free graph G with $\delta(G) \geq 3$ is either collapsible or K_3 -free. **Proof.** Assume that G has a triangle K. Choose an induced collapsible subgraph H containing K with |V(H)| maximized. If H=G, then G is collapsible. We then assume that $V(G)\backslash V(H)\neq\emptyset$. Let $G^*=G/H$ and $v_H\in V(G^*)$ be the contraction image of H, and let $V_i=N^i(v_H)$. Then $\kappa'(G^*)\geq 2$, $V_2(G^*)\subseteq \{v_H\}$. By Lemma 9(2), $G^*[V_1]\cong kK_1$ for $k=|V_1|\geq 2$. Since $\delta(G)\geq 3$, $l\geq 2$ for $l=|V_2|$. Since G is Z_3 -free, v_H is not in an induced P_4 and P_4 and P_4 . If there is an edge $u_1u_2 \in E(G[V_2])$, then $u_1v_{12} \in E(G^*)$ for some $v_{12} \in V_1$. Since $G^*[\{u_2, u_1, v_{12}, v_H\}] \ncong P_4$, $v_{12}u_1 \in E(G^*)$. Furthermore, $N_{G^*}(\{u_1, u_2\}) \cap V_1 = \{v_{12}\}$. Suppose otherwise. Assume that $v_2u_1 \in E(G)$ for some $v_2 \in V_1$. By symmetry, $u_2v_2 \in E(G^*)$, and so $G^*[\{v_H, v_{12}, v_2, u_1, u_2\}]$ is collapsible, contracting the choice of H. Note that there is a vertex $v_{34} \in V_2$ such that $E(v_{34}, \{u_1, u_2\}) = \emptyset$. Then there are two edges $v_{34}u_3, v_{34}u_4$ for some $u_3, u_4 \in V_2$. By symmetry, $E(\{u_3, u_4\}, \{u_1, u_2\}) = \emptyset$. Since $G^*[\{u_iv_{34}, v_H, v_{12}\}] \ncong P_4$ for $i \in \{3, 4\}, \{u_3v_{12}, u_4v_{12}\} \subseteq E(G^*)$. Then $N_{G^*}(u_3) \subseteq V_1$ and hence there is a vertex $v_0 \in N_{V_1}(u_3)$. However, $K_{3,3}^- \subseteq G^*[v_H, v_{12}, v_{34}, v_0, u_3, u_4]$ is collapsible, contradicting the choice of H. This implies that $G^*[V_2] \cong lK_1$. Then $k \geq d_{G^*}(u_1) \geq 3$. Hence G^* is a 2-connected bipartite graph such that $\delta(G^*) \geq 3$ and each edge lies in an induced C_4 . Then G^* is collapsible by Theorem 13, which implies G is collapsible by Theorem 6(a). Corollary 15. Let G be a 2-edge-connected noncollapsible (or nonsupereulerian) graph with $\delta(G) \geq 3$. Then G is Z_3 -free if and only if G is K_3 -free. An edge of G is said to be *subdivided* when it is deleted and replaced by a path of length 2 connecting its ends, the internal vertex of this path being a new vertex. A *subdivision* of a graph G is a graph that can be obtained from G by a sequence of edge subdivisions. We use $\theta(i,j,k) = \theta(t_1,t_2,x_1\cdots x_i,y_1\cdots y_j,z_1\cdots z_k)$ to denote the graph obtained from the *Theta graph* with 3-multiple edges and two vertices t_1,t_2 by replacing the 3-multiple edges with three internal vertex-disjoint paths $t_1x_1\cdots x_it_2, t_1y_1\cdots y_jt_2$ and $t_1z_1\cdots z_kt_2$, respectively. **Proof of Theorem 5.** The sufficiency. It suffices to prove that G is collapsible. Let H be an induced collapsible subgraph of G with |V(H)| maximized. On the contrary, we may choose a vertex $v \in N_G(H)$. Then |E(v,H)| = 1 and $E(w,H) = \emptyset$ for any $w \in N_G(v) \setminus V(H)$. Since G is P_5 -free and by Theorem 14, $4 \leq g(G) \leq 5$ and |V(H)| = 1, which means G is reduced. If g(G) = 5, let $C = x_1x_2x_3x_4x_5x_1$ be an induced cycle of G, then $|E(y_i,C)| = 1$ for $y_i \in$ $N_G(x_i)\setminus V(C)$ and $G[y_1,x_1,x_2,x_3,x_4]\cong P_5$, a contradiction. Hence g(G)=4. Let $C = x_1x_2x_3x_4x_1$ be an induced cycle of G and $y_i \in N_G(x_i) \setminus V(C)$. If $y_1x_3 \in$ E(G), note that $H' = G[\{x_1, x_2, x_3, x_4, y_1\}] \cong \theta(1, 1, 1)$, then $|E(y_2, H')| =$ $|E(y_4, H')| = |E(y', H')| = 1$ and $\{y_2y_4, y_2y', y_4y'\} \not\subseteq E(G)$ for $y' \in N_G(y_1) \setminus V(C)$ since $G[V(H) \cup \{y_1, y_2, y_4, y'\}]$ is not collapsible. By symmetry, assume $y_2y_4 \notin$ E(G), then $G[\{y_2, x_2, x_3, x_4, y_4\}] \cong P_5$, a contradiction. This implies $|E(y_i, C)| =$ 1 for $i \in \{1, 2, 3, 4\}$. Then $y_1y_3, y_2y_4 \in E(G)$ since $G[\{y_1, x_1, x_2, x_3, y_3\}] \ncong P_5$ and $G[\{y_2, x_2, x_3, x_4, y_4\}] \ncong P_5$. Since $G[\{y_1, y_3, x_3, x_2, y_2\}] \ncong P_5$, $E(y_2, \{y_1, y_3\} \ne P_5)$ \emptyset . By symmetry, assume that $y_1y_2 \in E(G)$. Then there is a C-subpartition $(X_1, X_2) = (\{x_1, x_4, y_2, y_4\}, \{x_2, y_1\})$ with $x_3 \in N_G(X_1) \cap N_G(X_2)$. By Lemma 8, $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}]$ is collapsible, a contradiction. The necessity. All graphs in Figure 4 are 2-edge-connected noncollapsible (nonsupereulerian). Especially, each graph in $\{G_1, G_6, G_{11}\}$ contains H as its induced subgraph. Note that G_6 and G_{11} have no common induced C_k for any $k \geq 3$ and G_6 is $K_{1,3}$ -free, H should be the subgraph of path. Since G_1 is P_6 -free, $H \subseteq P_5$. ## 3. Forbidden Subgraphs Guaranteeing a 2-Edge-Connected Graph To Be Supereulerian Before presenting the proofs, we need to prepare some results. A graph H is a minor of G if H is isomorphic to the contraction image of a subgraph of G. We call H an $induced\ minor$ of G if H is isomorphic to the contraction image of an induced subgraph of G. If a graph G has an induced minor H with $V(H) = \{v_1, v_2, \ldots, v_t\}$, then for pair of $\{i, j\} \subseteq \{1, 2, \ldots, t\}$, v_i is the contraction image of an induced subgraph G_{v_i} of G. Let X_{v_i} be the minimal subset of $V(G_{v_i})$ such that $G[X_{v_i}]$ is connected and $|E(X_{v_i}, \bigcup_{k \in \{1, 2, \ldots, t\} \setminus \{i\}} V(G_{v_k}))| = d_H(v_i)$. Then $|E(X_{v_i}, X_{v_j})| = 1$ if $v_i v_j \in E(H)$ and $|E(X_{v_i}, X_{v_j})| = 0$ otherwise. Note that $H' = G[X_{v_1} \cup X_{v_2} \cup \cdots \cup X_{v_t}]$ is an induced subgraph of G, called the H-subgraph. **Theorem 16** (Wang and Xiong [12]). $H'[N_{H'}[X_{v_i}]]$ has either an induced $T_{i,j,k}$ or an induced $N_{i',j',k'}$ for some i,j,k,i',j',k' if $d_H(v_i) \geq 3$. A wheel W_n is the graph obtained from the n-cycle $C_n = v_1 v_2 \cdots v_n v_1$, where $n \geq 2$, by adding an extra vertex v and new edges $\{vv_i : 1 \leq i \leq n\}$. The subdivided wheel W_n^* is the graph obtained from W_n by replacing $v_i v_{i+1}$ by a path $v_i v_i' v_{i+1}$ with $\{v_1', \ldots, v_n'\} \cap V(W_n) = \emptyset \ (1 \le i \le n)$. Let $W^* = \{W_n^* : n \ge 2\}$. **Theorem 17** (Lai [7]). If G is 2-edge-connected and does not have an induced minor isomorphic to a member in W^* , then G is supereulerian. For a cycle C, let C^+ denote the graph obtained from C by adding one edge between one pair non-adjacent vertices in C. **Lemma 18.** Let G be a 2-edge-connected graph. If every W_i^* -subgraph $(i \geq 2)$ H of G is in a subgraph $\bar{H} \subseteq G$ such that the reduction of \bar{H} is K_1 , C_k or C_k^+ for some integer $k \geq 4$, then G is superculerian. **Proof.** Let G' be the reduction of G. If $G' \cong K_1$, then G is supereulerian by Theorem 6(a). We then assume that $\kappa'(G') \geq \kappa'(G) \geq 2$. If G' has an induced minor $W_{i_0}^*$ for some $i_0 \geq 2$, then G' has an induced $W_{i_0}^*$ -subgraph H' and G has a corresponding induced $W_{i_0}^*$ -subgraph H such that H' is the reduction of H. By hypothesis, G has a subgraph H such that $H \subseteq H$ and the reduction of H, say H', satisfies that $H' \in \{K_1, C_k, C_k^+\}$ for some integer $k \geq 4$. Note that H' is an induced subgraph of H' and H' has three vertex-disjoint paths with length at least 2 between any two vertices of degree 3. This is impossible. Therefore, G' has no induced minor W_i^* for any $i \geq 2$. By Theorem 17, G' is supereulerian, and hence G is supereulerian by Theorem 6(b). **Theorem 19** (Liu et al. [8]). Every 2-connected P_7 -free graph G with $\delta(G) \geq 3$ is superculerian or P(10). The following result extends Theorem 19 and serves for the proofs of Theorem 3(2), (3). **Theorem 20.** Every 2-connected P_7 -free graph G with $|V_2(G)| \le 1$ is supereulerian or P(10). **Proof.** Let G' be the graph obtained from G by contracting all collapsible subgraph L of G such that $g(G/L) \geq 3$ and then either $|N_G(L)| \geq 3$ or $V(L) \cap V_2(G) \neq \emptyset$. Then G' is a $N_{1,1,1}$ -free simple graph such that $|V_2(G')| \leq 1$ and the vertex of degree 2 of G' is not in a collapsible subgraph of G'. Since any induced path of G' can be extended to an induced path of G, G' is P_7 -free. By Theorem G(a), it suffices to prove that G' is superculerian or $G = G' \cong P(10)$. By contradiction, assume that G' is nonsuperculerian and $G' \ncong P(10)$. Then G' is nontrivial and $\kappa'(G') \geq \kappa'(G) \geq 2$. In the proof below, we need a set of 2-connected nonsuperculerian graphs $\mathcal{F} = \{F_1, F_2, \ldots, F_{10}\}$ (see Figure 2). Claim 21. Every induced W_i^* -subgraph $(i \geq 2)$ of G' is isomorphic to a member of \mathcal{F} . Figure 2. The graphs that are nonsupereulerian. **Proof.** Let F be the induced W_i^* -subgraph of G'. Then G' has an induced minor W_i^* . For any vertex $v \in V(W_i^*)$, if $d_{W_i^*}(v) = 2$, then $F[N_F[X_v]]$ is isomorphic to a path. By Theorem 16 and since G' is $N_{1,1,1}$ -free, if $d_{W_i^*}(v) = 3$, then $F[N_F[X_v]]$ is isomorphic to a $T_{l,m,n}$ for some integers l,m,n. As F is P_7 -free, $i \in \{2,3\}$. This implies that F is isomorphic to the subdivision of W_i^* . Then $F \in \mathcal{F}$. **Claim 22.** If G' has a subgraph $F \cong F_i$ for $i \in \{1, 2, 3\}$, then either $G'[V(F)] \cong F$ or G'[V(F)] is collapsible. **Proof.** If $F \in \{F_1, F_2\}$, then we can verify that adding any edge between any pair of nonadjacent vertices of F results a collapsible graph. Therefore, suppose that $F \cong F_3$. Then $E(G'[V(F)]) \setminus E(L) \neq \{v_1v_3\}$, since otherwise, $|N_{G'}(t_1v_1v_5t_1)| \geq 3$ and $g(G'/t_1v_1v_5t_1) \geq 3$, contradicting the construction of G'. By symmetry, $E(G'[V(F)]) \setminus E(L)
\neq \{v_2v_4\}$. If $v_1v_4 \in E(G')$, then there is a C-subpartition $(X_1, X_2) = (\{t_1, t_2, v_4, v_5\}, \{v_1, v_3\})$ such that $v_2 \in N_{G'}(X_1) \cap N_{G'}(X_2)$, and hence G'[V(F)] is collapsible by Lemma 8. By symmetry, G'[V(F)] is collapsible if $v_2v_3 \in E(G')$. If $E(v_5, \{v_1, v_2, v_3, v_4\}) \neq \emptyset$, $E(t_1, \{v_2, v_4\}) \neq \emptyset$, $E(t_2, \{v_1, v_3\}) \neq \emptyset$, $t_1t_2 \in E(G')$ or $\{v_1v_3, v_2v_4\} \subseteq E(G')$, then we can verify that G'[V(F)] is collapsible. Hence either $G'[V(F)] \cong F$ or G'[V(F)] is collapsible. **Claim 23.** If G' has two induced subgraphs \bar{F} and $F \cong F_i$ for $i \in \{1, 2, 3\}$ such that $F \subseteq \bar{F}$ and the reduction of \bar{F} is a cycle C_k or C_k^+ for some $k \geq 4$, then F is in a collapsible subgraph of G'. **Proof.** Since the reduction of \bar{F} is C_k or C_k^+ , G' has a collapsible subgraph $L \subseteq \bar{F}$ such that either $t_1, t_2 \in V(L)$ or $t_1t_2 \in E(G'/L)$. Since $i \in \{1, 2, 3\}$, $G'[V(L) \cup V(F)]$ is collapsible. Since G' is nonsupereulerian and by Lemma 18, we can choose an induced $W_{i_0}^*$ -subgraph H of G' such that for any integer $k \geq 4$ and any graph \bar{H} with $H \subseteq \bar{H} \subseteq G'$, \bar{H} is not collapsible and the reduction of \bar{H} is not C_k or C_k^+ . By Claim 21, we assume that $H \cong F_{j_0}$ for some $j_0 \in \{1, \ldots, 10\}$ with j_0 minimized. Then every induced subgraph $F \cong F_j$ of G' with $j < j_0$ is in a subgraph \bar{F} of G' such that the reduction of \bar{F} is K_1 or a cycle C or C^+ ; in addition, by Claims 22 and 23, if $j \leq \min\{j_0 - 1, 3\}$, then F is not necessary induced in G' and F is in a collapsible subgraph. Claim 24. $j_0 \le 3$. **Proof.** By contradiction, assume that $4 \leq j_0 \leq 10$. Suppose that $H \cong F_{10}$. Then $|\{v_1, v_2, v_3\} \cap V_{\geq 3}(G')| \geq 2$. By symmetry, assume that v_1, v_2 have neighbors u_1, u_2 outside V(H), respectively. Note that H has two C-subpartitions $(\{t, v_1, v_3\}, \{t_1, t_2, t_3, v_2\}), (\{v_1, t_1, t_2, t_3\}, \{t, v_2, v_3\})$. Then $|E(u_1, H)| = 1$, since otherwise, $G'[V(H) \cup \{u_1\}]$ is collapsible by Lemma 8, contradicting the choice of H. This implies that $u_1 \neq u_2$ and $|E(u_2, H)| = 1$. Thus either $u_1v_1t_3v_3t_2v_2u_2$ (if $u_1u_2 \notin E(G')$) or $u_1u_2v_2t_1tt_3v_3$ (if $u_1u_2 \in E(G')$) would be an induced P_7 in G', a contradiction. Suppose that $H \cong F_9$. Then $\{v_2, v_3\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that v_2 has a neighbor u_2 outside V(H). Note that there is a C-subpartition $(\{t, v_2, v_3\}, \{t_1, t_2, t_3, v_1, v_4\})$. Then $E(u_2, \{t_1, t_2, t_3, v_1, v_4\}) = \emptyset$, since otherwise, $G'[V(H) \cup \{u_2\}]$ is collapsible by Lemma 8, a contradiction. As $G'[\{u_2, v_2, t_2, t, t_3, v_4, v_1\}] \not\cong P_7$, $u_2t \in E(G')$. Then $F_1 \subseteq G'[\{t_1, t_2, t, v_2, u_2\}]$ is in a collapsible subgraph of G' by the choice of H, and hence $G'[V(H) \cup \{u_2\}]$ is in a collapsible subgraph of G', a contradiction. Suppose that $H \cong F_8$. Then $\{v_1, v_2\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that v_1 has a neighbor u_1 outside V(H). Note that there is a C-subpartition $(\{v_1, v_2\}, \{t, v_3, t_1, t_2, t_3, v\})$. By Lemma 8, $E(u_1, \{t, v_3, t_1, t_2, t_3, v\}) = \emptyset$ and hence $G'[\{u_1, v_1, t_1, v, t, t_2, v_3\}] \cong P_7$, a contradiction. Suppose that $H \cong F_7$. Then $\{v_5, v_6\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that v_6 has a neighbor u_6 outside V(H). By the choice of H, $G'[\{t_1, t_2, v_5, v_6, u_6\}]$ is not in a collapsible subgraph, and hence $E(u_6, \{t_1, t_2, v_5\}) = \emptyset$. In addition, $E(u_6, \{v_2, v_3\}) = \emptyset$. Suppose otherwise. By symmetry, assume that $u_6v_2 \in E(G')$. Since $G'[V(H) \cup \{u_6\}]$ is not collapsible, $\{u_6v_1, u_6v_3\} \not\subseteq E(G')$. Since $G'[\{u_6,v_2,v_1,t_1,v_5,t_2,v_4\}] \ncong P_7 \text{ and } G'[\{u_6,v_2,v_3,v_4,t_2,v_5,t_1\}] \ncong P_7, \ u_6v_4 \in E(G'). \text{ Note that there is a C-subpartition } (X_1,X_2) = (\{v_2,v_4,v_5,v_6\},\{t_1,t_2,v_3,u_6\}) \text{ such that } v_1 \in N_{G'}(X_1) \cap N_{G'}(X_2). \text{ Then } G'[V(H) \cup \{u_6\}] \text{ is collapsible by Lemma 8, a contradiction. Then one of } u_6v_6t_1v_1v_2v_3v_4 \text{ (if } \{u_6v_1,u_6v_4\} \cap E(G') = \emptyset), \ v_2v_3v_4u_6v_6t_1v_5 \text{ (if } \{u_6v_1,u_6v_4\} \subseteq E(G')), \ u_6v_1v_2v_3v_4t_2v_5 \text{ (if } \{u_6v_1,u_6v_4\} \cap E(G') = \{u_6v_1\}) \text{ and } u_6v_4v_3v_2v_1t_1v_5 \text{ (if } \{u_6v_1,u_6v_4\} \cap E(G') = \{u_6v_4\}) \text{ would be an induced } P_7 \text{ in } G', \text{ a contradiction.}$ Suppose that $H \cong F_6$. Then $\{v_4, v_5\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that v_4 has a neighbor u_4 outside V(H). By the choice of H, $G'[\{t_1, t_2, v_4, v_5, v_6, u_4\}]$ is not in a collapsible subgraph, then $\{u_4t_1, u_4v_5\} \not\subseteq E(G')$ and $F_2 \not\subseteq G'[\{t_1, t_2, v_4, v_5, v_6, u_4\}]$, and hence $E(u_4, \{t_2, v_6\}) = \emptyset$. Then $u_4v_5 \not\in E(G')$, since otherwise, $u_4t_1 \not\in E(G')$, $d_{G'}(u_4) \geq 3$, $|N_{G'}(u_4v_4v_5u_4)| \geq 3$ and $g(G'/(u_4v_4v_5u_4)) \geq 3$, contracting the construction of G'. By symmetry, $u_4t_1 \not\in E(G)$. In addition, $\{u_4v_1, u_4v_3\} \not\subseteq E(G')$, since otherwise, there is a C-subpartition $(X_1, X_2) = (\{t_1, t_2, v_2, u_4\}, \{v_1, v_3, v_4, v_6\})$ such that $v_5 \in N_{G'}(X_1) \cap N_{G'}(X_2)$, then $G'[V(H) \cup \{u_4\}]$ is collapsible by Lemma 8, a contradiction. Then $u_4v_2 \in E(G')$; for otherwise, one of $u_4v_4t_1v_6t_2v_3v_2$ (if $\{u_4v_1, u_4v_3\} \cap E(G') = \emptyset$), $v_4u_4v_1v_2v_3t_2v_6$ (if $u_4v_1 \in E(G')$) and $v_6t_2v_3u_4v_4t_1v_1$ (if $u_4v_3 \in E(G')$) would be an induced P_7 in G', a contradiction. Thus $E(u_4, \{v_1, v_3\}) = \emptyset$ by the construction of G', and then $u_4v_2v_1t_1v_6t_2v_5$ would be an induced P_7 in G', a contradiction. Suppose that $H \cong F_5$. Then $\{v_4, v_5\} \cap V_{>3}(G') \neq \emptyset$. By symmetry, assume that v_4 has a neighbor u_4 outside V(H). By the construction of G' and by the choice of H, $E(u_4, \{t_1, t_2, v_5\}) = \emptyset$. In addition, $u_4v_2 \notin E(G')$; for otherwise, $F_3 \subseteq G'[\{t_1, t_2, v_1, v_2, v_3, v_4, u_4\}]$ is in a collapsible subgraph of G' by the choice of H, and then $G'[V(H) \cup \{u_4\}]$ is in a collapsible subgraph, a contradiction. And $\{u_4v_1, u_4v_3\} \not\subseteq E(G')$; for otherwise, there is a C-subpartition $(X_1, X_2) =$ $(\{t_1, v_1, v_3, v_4\}, \{t_2, v_2, u_4\})$ with $v_5 \in N_{G'}(X_1) \cap N_{G'}(X_2)$, then $G'[V(H) \cup \{u_4\}]$ is collapsible by Lemma 8, a contradiction. Then $\{u_4v_1, u_4v_3\} \cap E(G') = \emptyset$. Suppose otherwise. Without loss of generality, assume that $u_4v_1 \in E(G')$. Then $\{v_5,u_4\}\cap V_{\geq 3}(G')\neq\emptyset$. By symmetry, assume that v_5 has a neighbor u_5 outside $V(H) \cup \{u_4\}$ with $E(u_5, \{t_1, t_2, v_2, v_4\}) = \emptyset$. Then $u_5u_4 \notin E(G')$; for otherwise $F_2 \subseteq G'[\{v_4, v_5, t_1, t_2, u_4, u_5\}]$ is in a collapsible subgraph of G' and then $G'[V(H) \cup \{u_4, u_5\}]$ is in a collapsible subgraph of G', a contradiction. In addition, $u_5v_1 \notin E(G')$; for otherwise, $F_3 \subseteq G'[\{v_1, v_4, u_4, u_5, v_2, v_3, v_4\}]$ is in a collapsible subgraph of G' and then $G'[V(H) \cup \{u_4, u_5\}]$ is in a collapsible subgraph of G', a contradiction. Thus $u_5v_5t_2v_4t_1v_1v_2$ would be an induced P_7 in G', a contradiction. This implies $|E(u_4, H)| = 1$ and u_4 has a neighbor u'_4 outside $V(H) \cup \{u_4\}$. Since $G'[V(H) \cup \{u_4, u_4'\}]$ is not collapsible and by the construction of $G', u_4'v_4 \notin E(G')$, $\{u_4'v_2, u_4'v_i\} \not\subseteq E(G') \text{ for } i \in \{1,3\} \text{ and } G'[\{t_1, t_2, v_4, v_5, u_4, u_4'\}] \text{ is not collapsible.}$ Then $u_4'v_5 \notin E(G')$ since $F_2 \not\subseteq G'[\{t_1, t_2, v_4, v_5, u_4, u_4'\}]$ and $\{u_4't_1, u_4't_2\} \not\subseteq E(G')$ since $F_1 \not\subseteq G'[\{t_1, t_2, v_4, v_5, u_4'\}]$. By symmetry, assume that $u_4't_1 \notin E(G')$. Then $\{u_4'v_1,u_4'v_3\} \not\subseteq E(G') \text{ since } F_3 \not\subseteq G'[\{t_1,t_2,v_1,v_3,v_4,u_4,u_4'\}] \text{ and } \{u_4'v_1,u_4't_2\} \not\subseteq E(G') \text{ since } F_3 \not\subseteq G'[\{v_1,t_2,v_2,v_3,t_1,u_4'\}]. \text{ Thus } \{u_4'v_2,u_4't_2\} \subseteq E(G'); \text{ for otherwise, one of } u_4u_4'v_1v_2v_3t_2v_5 \text{ (if } u_4'v_1 \in E(G')), \ u_4u_4'v_3v_2v_1t_1v_5 \text{ (if } u_4'v_3 \in E(G')) \text{ and } u_4u_4'v_2v_3t_2v_5t_1 \text{ (if } u_4'v_2 \in E(G') \text{ and } u_4't_2 \notin E(G')) \text{ would be an induced } P_7 \text{ in } G', \text{ a contradiction. Note that } \{v_3,v_5\} \cap V_{\geq 3}(G') \neq \emptyset. \text{ By symmetry, assume that } u_5 \in N_{G'}(v_5) \backslash V(H) \text{ with } |E(u_5,H)| = 1. \text{ Since } F_2 \not\subseteq G'[\{t_1,t_2,v_4,v_5,u_4,u_5\}], u_4u_5 \notin E(G'). \text{ Since } G'[\{u_5,v_5,t_1,v_1,v_2,u_4',u_4\}] \not\cong P_7, \ u_5u_4' \in E(G'). \text{ Note that } \{u_4,u_5\} \cap V_{\geq 3}(G') \neq \emptyset. \text{ By symmetry, assume that there is a vertex } u_5' \in N_{G'}(u_5) \backslash V(H) \cup \{u_4'\}) \text{ with } u_5'v_2 \in E(G). \text{ However there is a C-subpartition } (X_1,X_2) = (\{t_1,t_2,v_1,v_2,u_4\},\{v_3,v_4,v_5,u_5,u_4'\}) \text{ with } u_5' \in N_{G'}(X_1) \cap N_{G'}(X_2), \text{ then } G'[V(H) \cup \{u_4,u_5,u_4',u_5'\}] \text{ is collapsible by Lemma 8, a contradiction.}$ Suppose finally that $H \cong F_4$. Then $|\{v_1, \ldots, v_6\} \cap V_{>3}(G')| \geq 5$. By symmetry, assume that $\{v_1,\ldots,v_5\}\subseteq V_{>3}(G')$. Let $u_1\in
N_{G'}(v_1)\setminus V(H)$. Then $u_1t_1\notin$ E(G'). In addition, $u_1v_2 \notin E(G')$. Suppose otherwise. If $u_1t_2 \notin E(G')$, then either $|N_{G'}(u_1v_1v_2u_1)| \geq 3$ or $d_{G'}(u_1) = 2$; if $u_1t_2 \in E(G')$, then $G'[\{u_1, v_1, v_2, t_2\}]$ is collapsible and $|N_{G'}(\{u_1, v_1, v_2, t_2\})| \geq 3$, contracting the construction of G'. Furthermore, $\{u_1v_3, u_1v_5\} \not\subseteq E(G')$; for otherwise, $E(u_1, \{v_2, v_4, v_6\}) \neq \emptyset$ and $F_1 \subseteq G'[\{t_1, v_1, v_3, v_5, u_1\}]$ is in a collapsible subgraph of G', and then $G'[V(H) \cup$ $\{u_1\}$ is in a collapsible subgraph of G', a contradiction. By symmetry, assume that $u_1v_3 \notin E(G')$. Since $F_3 \not\subseteq G'[\{t_1, t_2, v_1, u_1, v_2, v_i, v_{i-1}\}]$ for $i \in \{4, 6\}$, $E(u_1, \{v_4, v_6\}) = \emptyset$. Then $u_1 t_2 \in E(G')$ since $G'[\{u_1, v_1, t_1, v_3, v_4, t_2, v_6\}] \ncong P_7$. By symmetry, v_j has a neighbor u_j outside V(H) and $u_j t_{j \pmod{2}+1} \in E(G')$ for $j \in \{2,\ldots,5\}$. Note that $\{u_1,u_2\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that v_3, v_5, u_1, u_4 , $\{t_1, v_2, v_4, v_6, u_3\}$, by Lemma 8, $E(u'_1, \{t_1, v_2, v_4, v_6, u_3\}) = \emptyset$. By symmetry, $E(u_1', \{u_1, t_2\}) = \emptyset$. Then $u_1'v_3 \notin E(G')$; for otherwise, $F_2 \subseteq G'[\{t_2, v_3, t_2\}]$ v_4, u_3, u_1, u_1' is in a collapsible subgraph of G' and then $G'[V(H) \cup \{u_1, u_1'\}]$ is in a collapsible subgraph of G', a contradiction. Since $G'[\{u'_1, u_1, t_2, v_6, v_5, t_1, v_3\}] \ncong$ u_1, u_1' , $\{t_2, v_1, v_3, u_2\}$) with $v_6 \in N_{G'}(X_1) \cap N_{G'}(X_2)$, then $G'[V(H) \cup \{u_1, u_2, u_1'\}]$ is collapsible by Lemma 8, a contradiction. For $j_0 \leq 3$, we shall distinguish the following three cases. Case 1. $H \cong F_1$. Since $G'[V(H) \cup \{u\}]$ is not collapsible, |E(u, H)| = 1 for any $u \in N_{G'}(\{v_1, v_2, v_3\}) \setminus V(H)$ by Lemma 8. Claim 25. There is an induced path $P(v_i, v_j)$ between v_i and v_j outside H for some $\{i, j\} \subseteq \{1, 2, 3\}$. **Proof.** Note that $|\{v_1, v_2, v_3\} \cap V_{\geq 3}(G')| \geq 2$. By symmetry, v_1, v_2 have neighbors u_1, u_2 outside V(H) with $|E(u_1, H)| = |E(u_2, H)| = 1$. Then u_1, u_2 have neighbors u'_1, u'_2 outside $V(H) \cup \{u_1, u_2\}$ with $N_{G'}\{u'_1, u'_2\} \subseteq \{t_1, t_2\}$. In addition, $|N_{G'}(u'_i) \cap \{t_1, t_2\}| \leq 1$; for otherwise $G'[V(H) \cup \{u_i, u'_i\}]$ is collapsible for $i \in \{1, 2\}$. Then either $u'_1u_1v_1t_1(t_2)v_2u_2u'_2$ (if $N_{G'}(u'_1) \cup N_{G'}(u'_2) = \{t_2\}(\{t_1\})$) or $u_1u'_1t_1v_3t_2u'_2u_2$ (if $N_{G'}(u'_1) \cup N_{G'}(u'_2) = \{t_1, t_2\}$ and $\{u'_1t_1, u'_2t_2\} \subseteq E(G')$) would be an induced P_7 in G', a contradiction. By Claim 25, we may choose a longest induced path $P(v_1, v_2)$ satisfying $|E(V(P(v_1, v_2)), V(H))| = 2$. Then $3 \leq |E(P(v_1, v_2))| \leq 4$ since G' is P_7 -free. Suppose firstly that $P(v_1, v_2) = v_1 u_1 u_2 v_2$. Note that $\{u_1, u_2\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that u_2 has a neighbor u_2' outside $V(H) \cup \{u_1, u_2\}$. Note that there are two C-subpartitions $(\{t_1, t_2, v_3\}, \{v_1, v_2, u_1, u_2\})$ and $(\{t_1, t_2, v_1, u_2\}, \{v_2, v_3, u_1\})$. Then $E(u_2', \{t_1, t_2, v_2, v_3\}) = \emptyset$ since $G'[V(H) \cup \{u_1, u_2, u_2'\}]$ is not collapsible and by Lemma 8. In addition, $u_2'u_1 \notin E(G)$, since otherwise, either $u_2'v_1 \in E(G')$, $G'[\{v_1, v_2, u_1, u_2, u_2'\}]$ is collapsible and $|N_{G'}(\{v_1, v_2, u_1, u_2, u_2'\})| \geq 3$ or $u_2'v_1 \notin E(G')$, contracting the construction of G'. We then claim that $u_2'v_1 \notin E(G')$. Suppose otherwise. Note that $\{u_1, u_2'\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that u_1 has a neighbor u_1' outside $V(H) \cup \{u_1, u_2, u_2'\}$. Then $E(u_1', \{v_1, u_2\}) = \emptyset$. Since $G'[V(H) \cup \{u_1, u_2, u_1', u_2'\}]$ is not collapsible, $E(u_1', \{t_1, t_2, v_2, v_3, u_2'\}) = \emptyset$. Thus u_1' has a neighbor u_1'' outside $V(H) \cup \{u_1, u_2, u_1', u_2'\}$. By the choice of $P(v_1, v_2)$, $E(u_1'', \{v_2, v_3\}) = \emptyset$. Since $G'[V(H) \cup \{u_1, u_2, u_1', u_2'\}]$ is not collapsible, $\{u_1''t_1, u_1''t_2\} \not\subseteq E(G')$. Assume that $u_1''t_1 \notin E(G')$. Then $u_1''u_2 \notin E(G')$ since $G'[V(H) \cup \{u_1, u_1', u_2, u_2', u_1''\}]$ is not collapsible, and hence $u_1''u_1'u_1u_2v_2t_1v_3$ would be an induced P_7 in G', a contradiction. Then u_2' has a neighbor u_2'' outside $V(H) \cup \{u_1, u_2, u_2'\}$. By the choice of $P(v_1, v_2)$, $E(u_2'', \{v_1, v_2, u_2, u_2'\}) = \emptyset$. Since $G'[V(H) \cup \{u_2''\}]$ is not collapsible, $\{u_2''t_1, u_2''t_2\} \not\subseteq E(G')$. Assume that $u_2''t_1 \not\in E(G')$. Then $u_2''u_1 \in E(G')$ since $G'[\{u_2'', u_2', u_2, u_1, v_1, t_1, v_3\}] \ncong P_7$. Note that $\{u_2', u_2''\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that u_2'' has a neighbor u_2''' outside $V(H) \cup \{u_1, u_2, u_2', u_2''\}$. Then $E(u_2''', V(H) \cup \{u_1, u_2, u_2', u_2''\}) = \emptyset$ and $u_2'''u_2''u_2'u_2v_2t_1v_1$ would be an induced P_7 in G', a contradiction. It remains to consider the case when $|E(P(v_1, v_2))| = 4$. Assume that $P(v_1, v_2) = v_1 u_1 u u_2 v_2$. Note that $\{u_1, u_2\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that u_2 has a neighbor u_2' outside $V(H) \cup \{u_1, u_2\}$. Then $E(u_2', \{v_2, u\}) = \emptyset$. Since $G'[V(H) \cup \{u_2'\}]$ is not collapsible, $\{u_2't_1, u_2't_2\} \not\subseteq E(G')$. Assume that $u_2't_1 \not\in E(G')$. Then $\{u_2'v_1, u_2'v_3, u_2'u_1\} \cap E(G') \neq \emptyset$ since $G'[\{u_2', u_2, u, u_1, v_1, t_1, v_3|] \not\cong P_7$. We claim that $u_2'v_1 \not\in E(G')$. Suppose otherwise. If v_3 has a neighbor u_3 outside $V(H) \cup \{u_1, u_2, u, u_2'\}$, then $|E(u_3, V(H) \cup \{u_1, u_2, u, u_2'\})| = 1$ and then $u_3v_3t_2v_1u_1uu_2$ would be an induced P_7 in P_7 in P_7 a contradiction. Hence P_7 in $\{u_1, u_2'\} \cap V_{\geq 3}(G') \neq \emptyset. \text{ If } u_2' \text{ has a neighbor } u_2'' \text{ outside } V(H) \cup \{u_1, u_2, u, u_2'\}, \text{ then } E(u_2'', V(H) \cup \{u, u_2\}) = \emptyset \text{ since } G'[V(H) \cup \{u, u_2, u_2''\}] \text{ is not collapsible, and hence either } u_2''u_2'u_2uu_1v_1t_1 \ (u_2''u_1 \notin E(G')) \text{ or } u_2''u_1uu_2v_2t_1v_3 \ (u_2''u_1 \in E(G')) \text{ would be an induced } P_7 \text{ in } G', \text{ a contradiction. Then } d_{G'}(u_2') = 2 \text{ and } u_1 \text{ has a neighbor } u_1' \text{ outside } V(H) \cup \{u_1, u_2, u, u_2'\} \text{ such that } E(u_1', \{t_1, t_2, v_1, v_2, u\}) = \emptyset \text{ and } \{u_1'v_3, u_1'u_2'\} \not\subseteq E(G') \text{ since } G'[V(H) \cup \{u_1, u_2, u, u_1', u_2'\}] \text{ is not collapsible. Then } u_1'u_2 \in E(G'); \text{ for otherwise, either } u_1'u_1uu_2v_2t_1v_3 \text{ or } u_1'u_1v_1t_1v_2u_2u_2' \text{ would be an induced } P_7 \text{ in } G', \text{ a contradiction. Note that } u \text{ has a neighbor } u' \text{ outside } V(H) \cup \{u_1, u_2, u_1', u_2'\} \text{ such that } E(u', V(H) \cup \{u_1, u_2, u_1', u_2'\}) = \emptyset \text{ since } G'[V(H) \cup \{u, u_1, u_2, u_1', u_1', u_2'\}] \text{ is not collapsible. Then } u'uu_2u_2'v_3t_1v_1 \text{ would be an induced } P_7 \text{ in } G', \text{ a contradiction.}$ Then $u_2'u_1 \in E(G')$, $\{u, u_2'\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that u has a neighbor u' outside $V(H) \cup \{u_1, u_2, u_2', u\}$. Then $|E(u', V(H) \cup \{u_1, u_2, u_2', u\})| = 1$ and u' has a neighbor u'' outside $V(H) \cup \{u_1, u_2, u_2', u, u'\}$. Since $G'[V(H) \cup \{u_1, u_2, u, u_2', u''\}]$ is not collapsible, $\{u''t_1, u''t_2\} \not\subseteq E(G')$ and $\{u''u_1, u''u_2\} \not\subseteq E(G')$. By symmetry, assume that $\{u''t_1, u''u_1\} \cap E(G') = \emptyset$. Then $u''u \notin E(G')$. Since $G'[\{u'', u', u, u_1, v_1, t_1, v_2\}] \not\cong P_7$ and $G'[\{u'', u', u, u_1, v_1, t_1, v_3\}] \not\cong P_7$, $u''v_1 \in E(G')$. However, $u_2uu'u''v_1t_1v_3$ would be an induced P_7 in G', a contradiction. Case 2. $H \cong F_2$. Note that $\{v_3, v_4\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that v_4 has a neighbor u_4 outside V(H). By the choice of H, $u_4v_3 \notin E(G')$. Since there is a C-subpartition $(\{t_1, t_2, v_1, v_2\}, \{v_3, v_4\}), E(u_4, \{t_1, t_2, v_1, v_2\}) = \emptyset$ by Lemma 8. This implies $|E(u_4, H)| = 1$ and then $N_{G'}(u_4) \setminus V(H) \neq \emptyset$. Claim 26. u_4 has a neighbor outside V(H) that is adjacent to exactly one of $\{v_1, v_2\}$. **Proof.** By contradiction, assume that $\{u'_4v_1, u'_4v_2\} \cap E(G') = \emptyset$ for any $u'_4 \in N_{G'}(u_4) \setminus V(H)$. Since $\{v_1, v_2\} \cap V_{\geq 3}(G') \neq \emptyset$, by symmetry, assume that v_2 has a neighbor u_2 outside $V(H) \cup \{u_4, u'_4\}$. By the choice of H, $E(u_2, \{t_2, v_1, v_3, v_4, u\}) = \emptyset$ and $u'v_4 \notin E(G')$. Since $G'[V(H) \cup \{u_2, u_4, u'_4\}]$ is not collapsible, $\{u'_4t_1, u'_4u_2\} \not\subseteq E(G')$ and $\{u'_4t_1, u'_4v_3\} \not\subseteq E(G')$. Then $u_2t_1 \in E(G')$; for otherwise, exactly one of $u'_4u_4v_4t_1v_1v_2u_2$ (if $\{u_2u'_4, u'_4t_1\} \cap E(G') = \emptyset$), $v_2u_2u'_4u_4v_4t_1v_3$ (if $u_2u'_4 \in E(G')$) and $u_2v_2t_2v_3t_1u'_4u_4$ (if $u'_4t_1 \in E(G')$) would be an induced P_7 in P_7 in P_7 a contradiction. Since $\{v_1, u_2\} \cap V_{\geq 3}(G') \neq \emptyset$, by symmetry, assume that v_1 has a neighbor u_1 outside $V(H) \cup \{u_2, u_4, u'_4\}$. By symmetry, $u_1t_2 \in E(G')$. Then there is a P_7 -subpartition $\{u_1, u_2\} \cap \{u_1, \cap$ By symmetry, assume that $u'_4v_2 \in E(G')$ for some $u'_4 \in N_{G'}(u_4) \setminus V(H)$. Then $d_{G'}(v_3) = 2$. Suppose
otherwise. Assume that v_3 has a neighbor u_3 outside $V(H) \cup \{u_4, u'_4\}$. Since there is a C-subpartition $(\{t_1, t_2, v_1, v_2, u_4\}, \{v_3, v_4, u'_4\})$, $E(u_3, \{t_1, t_2, v_1, v_2, u_4\}) = \emptyset$. Then $u_3v_4 \notin E(G')$. Since $G'[\{u_3, v_3, t_1, v_1, v_2, u_4'\}]$ $\{u_4\}\} \not\cong P_7, \ u_3u_4' \in E(G').$ Note that $\{u_3, u_4\} \cap V_{\geq 3}(G') \neq \emptyset$. By symmetry, assume that u_3 has a neighbor u_3' outside $V(H) \cup \{u_3, u_4, u_4'\}$. Then $|E(u_3', V(H) \cup u_3')|$ $\{u_3, u_4, u_4'\}\} = 1$ and $u_3' u_3 u_4' v_2 v_1 t_1 v_4$ would be an induced P_7 in G', a contradiction. Hence $d(u_4) \geq 3$ and u_4 has a neighbor u_4'' outside $V(H) \cup \{u_4, u_4'\}$ with $E(u_4'', \{u_4', v_3, v_4\}) = \emptyset$. Then $u_4'' t_1 \notin E(G')$. Suppose otherwise. Then $E(u',\{t_1,t_2,v_1,v_2,u_4,u'_4\})=\emptyset$ for $u'\in N_{G'}(u''_4)$ since there is a C-subpartition $(\{t_1, t_2, v_1, v_2, u_4, u_4'\}, \{v_3, v_4, u_4''\})$. Since $G'[\{u', u_4'', u_4, u_4', v_2, t_2, v_3\}] \ncong P_7, u'v_3 \in$ u_4, u_4'') with $u_4' \in N_{G'}(X_1) \cap N_{G'}(X_2)$, and then $G'[V(H) \cup \{u_u, u_4', u_4'', u_4''\}]$ is collapsible, a contradiction. Since $G'[V(H) \cup \{u_4, u_4', u_4''\}]$ is not collapsible, $\{u_4''v_1, u_4''t_2\} \not\subseteq E(G')$. Then $u_4''v_2 \in E(G')$, since otherwise, either $u_4''u_4u_4'v_2v_1t_1v_3$ (if $u_4''v_1 \notin E(G')$) or $u_4''u_4u_4'v_2t_2v_3t_1$ (if $u_4''t_2 \notin E(G')$) would be an induced P_7 in G', a contradiction. Note that $G'[\{v_2, u_4, t_2, v_4, u_4', u_4''\}] \cong F_2$, by symmetry, u_4'' has a neighbor w and w has two neighbors w_1, w_2 such that $\{w_1v_4, w_2v_4\} \subseteq E(G')$. Then $ww_1v_4u_4u_4'v_2v_1$ would be an induced P_7 in G', a contradiction. Case 3. $H \cong F_3$. Claim 27. Either v_1 and v_4 or v_2 and v_3 (or both) have a common neighbor. **Proof.** Note that $|\{v_1, v_2, v_3, v_4\} \cap V_{>3}(G')| \geq 3$. By contradiction, without loss of generality, assume that v_1, v_4 have neighbors u_1, u_4 outside V(H), respectively. Then $E(\{u_1, u_4\}, \{t_1, t_2, v_1, v_4, v_5\}) = \emptyset$. Since $G'[\{u_1, v_1, t_1, v_5, t_2, v_4, u_4\}] \ncong$ P_7 , $u_1u_4 \in E(G')$. If v_5 has a neighbor u_5 outside $V(H) \cup \{u_1, u_4\}$, then $|E(u_5, H)| = 1$. Since $G'[V(H) \cup \{u_1, u_4, u_5\}]$ is not collapsible, $\{u_4u_5, u_1u_5\} \not\subseteq$ $E(G'), \{u_1u_5, u_1v_3\} \not\subseteq E(G')$ and $\{u_4u_5, u_4v_2\} \not\subseteq E(G')$. Then exactly one of $u_5v_5t_1u_1u_4v_4t_2$ (if $\{u_1u_5, u_4u_5\} \cap E(G') = \emptyset$), $u_5u_1v_1v_2t_2v_4v_3$ (if $u_1u_5 \in E(G')$) and $u_5u_4v_4t_2v_2v_1t_1$ (if $u_1u_4 \in E(G')$) would be an induced P_7 in G', a contradiction. Hence $d_G(v_5) = 2$. Then at least one of $\{v_2, v_3\}$ has a neighbor outside $V(H) \cup \{u_1, u_4\}$; for otherwise, $\{u_1v_3, u_4v_2\} \subseteq E(G')$ and $G'[V(H) \cup \{u_1, u_4\}]$ is collapsible, a contradiction. By symmetry, let u_3 be a neighbor of v_3 outside $V(H) \cup \{u_1, u_4\}$. By symmetry, $E(u_3, \{t_1, t_2, v_2, v_4, v_5\}) = \emptyset$. Since $G'[V(H) \cup V(H)] = \emptyset$. $\{u_1, u_3, u_4\}\]$ is not collapsible, $\{u_3u_1, u_3v_1\} \not\subseteq E(G')$ and $\{u_3v_1, u_3u_4\} \not\subseteq E(G')$. Then exactly one of $u_3v_3v_4t_2v_2v_1u_1$ (if $\{u_3u_1, u_3v_1\} \cap E(G') = \emptyset$), $u_3u_1u_4v_4t_2v_5t_1$ (if $u_3u_1 \in E(G')$) and $u_3v_1u_1u_4v_4t_2v_5$ (if $u_3v_1 \in E(G')$) would be an induced P_7 in G', a contradiction. Without loss of generality, let $u_{1,4}$ be a common neighbor of v_1, v_4 . Since $G'[\{t_1, t_2, v_1, v_2, v_3, v_4, u_{1,4}\}] \cong F_3$, either v_2 and v_3 or v_4 and $u_{1,4}$ (or both) have a common neighbor by Claim 29. By symmetry, let $u_{2,3}$ be a common neighbor of v_2, v_3 . Furthermore, we claim that two of $\{v_5, u_{1,4}, u_{2,3}\}$ have a common neighbor. Suppose otherwise. By symmetry, assume that $u_{1,4}, u_{2,3}$ have neighbors $u'_{1,4}, u'_{2,3}$ outside $V(H) \cup \{u_{1,4}, u_{2,3}\}$, respectively. By the choice of H, $E(\{u'_{1,4}, u'_{2,3}\}, V(H)) = \emptyset$. Then either $u'_{2,3}u_{2,3}v_3t_1v_1u_{1,4}u'_{1,4}$ (if $u'_{1,4}u'_{2,3} \notin E(G')$) or $u_{2,3}u'_{2,3}u'_{1,4}u_{1,4}v_4t_2v_5$ (if $u'_{1,4}u'_{2,3} \in E(G')$) would be an induced P_7 in G', a contradiction. By symmetry, let u' be a common neighbor of $\{u_{1,4}, u_{2,3}\}$. Then $u'v_5 \in E(G')$ since $G'[\{t_1, v_5, t_2, v_4, u_{1,4}, u', u_{2,3}\}] \ncong P_7$. Note that $\tilde{H} = G'[V(H) \cup \{u_{1,4}, u', u_{2,3}\}] \cong P(10)$ and each vertex of \tilde{H} is in V(G). Furthermore, there is no other vertex outside $V(\tilde{H})$. Suppose otherwise. Since $\kappa'(G') \ge 2$, there is an induced path P whose internal vertices are all not in $V(\tilde{H})$, connecting two vertices of \tilde{H} . Then either $|E(P)| \ge 3$ and it would produce an induced P_7 in G' or $|E(P)| \le 2$ and $G'[V(\tilde{H}) \cup V(P)]$ would be collapsible, a contradiction. Thus $G = G' \cong P(10)$. **Corollary 28.** If 2-connected P_7 -free graph G other than P(10) satisfies that $G[V_2(G)]$ is a path, then G is superculerian. **Proof.** Let $G^* = G/V_2(G)$. Then G^* is 2-connected, P_7 -free with $|V_2(G^*)| \leq 1$ and G is superculerian if and only if G^* is superculerian. By Theorem 20, G^* is superculerian or isomorphic to P(10). If $G^* \cong P(10)$, then either G has an induced P_7 (if $V_2(G) \neq \emptyset$) or $G = G^* = P(10)$ (if $V_2(G) = \emptyset$), a contradiction. Thus G^* is superculerian and then G is superculerian. **Proof of Theorem 3.** By contradiction, let G be a 2-edge-connected nonsupereulerian graph with $\delta(G) \geq 3$. (1) Then we will obtain an induced subgraph of G isomorphic to any one in $\{N_{2,2,4}, B_{2,6}, B_{3,4}, Z_8\}$ when G is $T_{2,2,1}$ -free, contradicting that G is \mathcal{H} -free. By Lemma 18, G has an induced $W_{i_0}^*$ -subgraph H satisfy the following property. Property P: the reduction of \bar{H} is not a cycle C or C^+ for any \bar{H} with $H \subseteq \bar{H}$. Claim 29. Every subgraph L of G isomorphic to one of $\{\theta(1,1,1), \theta(2,1,1)\}$ is in a collapsible subgraph. **Proof.** Suppose that $L = \theta(t_1, t_2, v_1, v_2, v_3)$. For $i \in \{1, 2, 3\}$, let $u_i \in N_G(v_i) \setminus V(L)$. If $|E(u_i, H)| \geq 2$, note that there is a C-subpartition $(X_1, X_2) = (\{t_1, t_2, v_j\}, \{v_i, v_k\})$ with $u_i \in N_G(X_1) \cap N_G(X_2)$ for any $j \neq k \in \{1, 2, 3\} \setminus \{i\}$, then $G[V(L) \cup \{u_i\}]$ is collapsible by Lemma 8; we are done. In the case when $|E(u_i, H)| = 1$, $u_1 \neq u_2 \neq u_3$. Then $\{u_1u_2, u_1u_3, u_2u_3\} \subseteq E(G)$ since $G[\{t_1, v_i, u_i, v_j, u_j, v_k\}] \not\cong T_{2,2,1}$. Therefore, there is a C-subpartition $(X_1, X_2) = (\{t_1, t_2, v_1\}, \{v_2, v_3, u_2, u_3\})$ with $u_1 \in N_G(X_1) \cap N_G(X_2)$, then $G[V(L) \cup \{u_1, u_2, u_3\}]$ is collapsible by Lemma 8. Suppose that $L = \theta(t_1, t_2, v_1 v_2, v_3, v_4)$ and $u_3 \in N_G(v_3) \setminus V(L)$. Note that there is a C-subpartition $(\{t_1, t_2, v_1, v_2\}, \{v_3, v_4\})$. If $E(u_3, \{t_1, t_2, v_1, v_2\}) \neq \emptyset$, then $G[V(L) \cup \{u_3\}]$ is collapsible; we are done. If not, then $u_3 v_4 \in E(G)$ since $G[\{t_1,v_1,v_2,v_3,v_4,u_3\}] \ncong T_{2,2,1}$ and then $G[\{t_1,t_2,v_3,v_4,u_3\}] \cong \theta(1,1,1)$ is in a collapsible subgraph L' by above discussion. Hence $G[V(L) \cup \{u_3\}]$ is collapsible since $G[V(L') \cup \{v_1,v_2\}]/L'$ is isomorphic to one of $\{K_1,C_2,C_3\}$. **Claim 30.** *H* is not isomorphic to $\theta(i, j, k)$ for any $i \geq j \geq k \geq 1$. **Proof.** By contradiction, then j = k = 1 and assume that $H = \theta(t_1, t_2, x_1 \cdots x_i, y_1, z_1)$ since G is $T_{2,2,1}$ -free. By Property P, t_1, t_2 are not in a collapsible subgraph of G. By Claim 29, $i \geq 3$, $N_G(y_1) \cap N_G(z_1) = \emptyset$ and $E(N_G(y_1), N_G(z_1)) = \emptyset$. Note that z_1 has a neighbor z_1' outside V(H) with $E(z_1', \{t_1, t_2, y_1\}) = \emptyset$. Since $G[\{t_1, t_2, x_1, x_i, z_1, z_1'\}] \not\cong T_{2,2,1}$, $E(z_1', \{x_1, x_i\}) \neq \emptyset$. By symmetry, assume that $z_1'x_1 \in E(G)$. Then $z_1'x_2 \notin E(G)$ since $G[\{t_1, t_2, x_1, x_2, y_1, z_1, z_1'\}]$ is not collapsible. Since $G[\{x_1, x_2, x_3, t_1, y_1, z_1'\}] \not\cong T_{2,2,1}$, $z_1'x_3 \in E(G)$. By symmetry, $z_1'x_1 \in E(G)$ and $z_1'x_{l+1} \notin E(G)$ for $l \in \{1, 3, ...\}$. Then either $G[\{z_1', x_1, t_1, x_3, x_5, x_6\}] \cong T_{2,2,1}$ (if $i \geq 6$) or $G[V(H) \cup \{z_1'\}]$ is collapsible (if $i \leq 5$) by Lemma 8 since there is a C-subpartition $(X_1, X_2) = (\{x_1, y_1, z_1\}, \{t_1, t_2, x_3, ..., x_i\})$ with $x_2 \in N_G(X_1) \cap N_G(X_2)$, a contradiction. □ Now, we use $\theta'(i,j,k) = \theta'(t_0,xyzx,x_1\cdots x_i,y_1\cdots y_j,z_i\cdots z_k)$ to denote the graph obtained from the complete graph K_4 with the vertex set $\{t_0,x,y,z\}$ by replacing the edges t_0x,t_0y,t_0z by the paths $t_0x_1\cdots x_ix,t_0y_1\cdots y_jy,t_0z_1\cdots z_kz$, respectively Claim 31. H is not isomorphic to $\theta'(i, j, k)$ for any $i \geq j \geq k \geq 1$. **Proof.** By contradiction, then $H = \theta'(t_0, xyzx, x_1, y_1, z_1)$ since G is $T_{2,2,1}$ -free. Note that $H/xyzx \cong \theta(1,1,1), |E(x_1',H)| = 1$ for $x_1' \in N_G(x_1) \setminus V(H)$ since $G[V(H) \cup \{x_1'\}]$ is not collapsible. Then $G[\{t_0, x_1, x_1', y_1, y_0, z_1\}] \cong T_{2,2,1}$, a contradiction. Claim 32. $i_0 \ge 3$. **Proof.** By contradiction, assume that $i_0 = 2$. By Theorem 16 and Claims 30, 31, $H = P(i, j, k) = P(xyz, x'y'z', x_1 \cdots x_i, y_1 \cdots y_j, z_1 \cdots z_k)$ which is obtained from two vertex-disjoint triangles xyzx and x'y'z'x' by adding three vertex-disjoint paths $xx_1 \cdots x_i x'$,
$yy_1 \cdots y_j y'$ and $zz_1 \cdots z_k z'$ for $i \geq j \geq k \geq 1$. Then $k \geq 2$; for otherwise, z_1 has a neighbor z'_1 outside V(H) with $|E(z'_1, H)| = 1$ since $G[\{x, y, z, x', y', z', z_1, z'_1\}]$ is not collapsible by Property P, and hence $G[\{x, z, x', z', z_1, z'_1\}] \cong T_{2,2,1}$, a contradiction. Furthermore, any one of $\{N_{2,2,4}, B_{2,6}, B_{3,4}, Z_8\}$ is an induced subgraph of H if $j \geq 4$ or $i \geq 4$ and j = 3 or $i \geq 5$ and j = 2 and we are done. It remains to consider the case when $H \in \{P(2,2,2), P(3,2,2), P(3,3,2), P(4,2,2), P(3,3,3)\}$. First assume that $H \in \{P(2,2,2), P(3,2,2), P(3,3,2), P(4,2,2)\}$. If there are two vertices $z_i' \in N_G(z_i) \setminus V(H)$ for $i \in \{1,2\}$ with $\{z_1'z_2, z_2'z_1\} \cap E(G) = \emptyset$, then $\{z_1'z, z_2'z\} \not\subseteq E(G), \{z_1'z', z_2'z'\} \not\subseteq E(G) \text{ and } \{z_1'z, z_2'z'\} \not\subseteq E(G) \text{ by Property P. Furthermore, } \{z_1'z', z_2'z\} \subseteq E(G) \text{ since } G[\{z_1, z, x, z_2, z'\}] \not\cong T_{2,2,1} \text{ and } G[\{z_2, z', x', z_1, z, z_2'\}] \not\cong T_{2,2,1}.$ Then $z''z_2 \in E(G)$ for any $z'' \in N_G(z_1')$ since $G[\{z', z_2, z_2', z_1', z'', x''\}] \not\cong T_{2,2,1}$ and $G[\{x, y, z, z_1, z_2, x', y', z', z_1', z_2', z''\}]$ is not collapsible and hence $G[\{z_2, z', x', z_1, z, z''\}] \cong T_{2,2,1}$, a contradiction. This implies that z_1, z_2 have at least one common neighbor z_0 outside V(H). Since $G[V(H) \cup \{z_0\}]$ is not collapsible, $|E(z_0, H)| = 2$. Hence any of $\{N_{2,2,4}, B_{2,6}, B_{3,4}, Z_8\}$ is an induced subgraph of $G[V(H) \cup \{z_0\}]$, a contradiction. Thus H = P(3,3,3). Note that any of $\{N_{2,2,4}, B_{2,6}, B_{3,4}\}$ is an induced subgraph of H, it suffices to obtain an induced subgraph of G isomorphic to Z_8 . We first claim that at least one pair of $\{x_1, x_3\}, \{y_1, y_3\}, \{z_1, z_3\}$ has at least one common neighbour. Suppose otherwise. Let x'_i, y'_i, z'_i be the neighbours of x_i, y_i, z_i outside H for $i \in \{1, 3\}$, respectively. Then $\{z_1'z_3, z_3'z_1\} \cap E(G) =$ \emptyset . Since $G[\{z_1, z, x, z_2, z_3, z_1'\}] \ncong T_{2,2,1}$ and $G[\{z_3, z', x', z_2, z_1, z_3'\}] \ncong T_{2,2,1}$ $E(z_1', \{z_2, z, x\}) \neq \emptyset$ and $E(z_3', \{z_2, z', x'\}) \neq \emptyset$. By symmetry, $E(x_1', \{x_2, x, y\}) \neq \emptyset$ \emptyset , $E(x_3', \{x_2, x', y'\}) \neq \emptyset$, $E(y_1', \{y_2, y, z\}) \neq \emptyset$ and $E(y_3', \{y_2, y', z'\}) \neq \emptyset$. Note $\theta(1,1,1) \subseteq G[V(H) \cup \{x_1',x_3',y_1',y_3',z_1',z_3'\}]/(xyzx,x'y'z'x')$. Then $|E(x_1',H)| =$ $|E(x_3', H)| = |E(y_1', H)| = |E(y_3', H)| = |E(z_1', H)| = |E(z_3', H)| = 1$ and $\{x_1'y, x_2'\} = |E(x_3', H)| = |E(x_3', H)| = 1$ $x_1'z\} \cap E(G) = \emptyset$ since G is $T_{2,2,1}$ -free. Hence $E(x_1',\{x_2,x\}) \neq \emptyset$ and there is an induced subgraph isomorphic to Z_8 , a contradiction. Without loss of generality, we may assume that z_1, z_3 has a common neighbour z_{13} . By Property P, $E(z_{13}, \{x, y, z, x', y', z'\}) = \emptyset$. Then $E(z_{13}, V(H) \setminus \{z_2\}) = \emptyset$ since G is $T_{2,2,1}$ free. If $z_{13}z_2 \notin E(G)$, then there is a vertex $z'_{13} \in N_G(Z_{13}) \setminus \{z_1, z_3\}$ such that $E(z'_{13}, \{z_1, z_3, zz'\}) \neq \emptyset$ since $G[z'_{13}, z_{13}, z_1, z_3, z, z'] \ncong T_{2,2,1}$. By Property P, $|E(z'_{13}, \{x, y, z, z_1\})| \le 1$. Then $z'_{13}z \notin E(G)$, since otherwise, $E(z'_{13}, \{x_1, z_2\}) = \emptyset$ by Property P and $G[\{z, x, x_1, z_1, z_2, z'_{13}\}] \cong T_{2,2,1}$. By symmetry, $z'_{13}z' \notin E(G)$. Then $E(z'_{13}, \{z_1, z_3\} \neq \emptyset$. By Property P, $E(z'_{13}, \{x_1, y_1, x_3, y_3\}) = \emptyset$ and then $E(z'_{13},\{x_2,y_2\})=\emptyset$, and hence there is an induced subgraph isomorphic to Z_8 , a contradiction. This implies that $z_{13}z_2 \in E(G)$. By symmetry, we can prove that x_1, x_2, x_3 have a common neighbor x_{13} and y_1, y_2, y_3 have a common neighbor y_{13} . Hence either there is an induced subgraph isomorphic to Z_8 or $G[V(H) \cup \{x_{13}, y_{13}, z_{13}\}]$ is collapsible, a contradiction. Then $W_{i_0}^*$ has a center vertex v and spoke-vertices $V_3(W_{i_0}^*) \cup V_2(W_{i_0}^*) = \{v_1,\ldots,v_{i_0}\} \cup \{v_1',\ldots,v_{i_0}'\}$ with $i_0 \geq 3$. If $H[N_H[X_v]]$ has an induced $N_{i,j,k}$ for some i,j,k, then $H[N_H[X_{v_t}]]$ has an induced $N_{i,j,k,t}$ for some i,j,k and $t \in \{1,\ldots,i_0\}$ since G is $T_{2,2,1}$ -free. Therefore, any of $\{N_{2,2,4},B_{2,6},B_{3,4},Z_8\}$ is a subgraph of G, a contradiction. Then $H[N_H[X_v]]$ has an induced $T_{i,j,k}$ for some i,j,k by Theorem 16. Furthermore, $H[N_H[X_{v_t}]]$ has an induced $T_{i,j,k,t}$ for some integers i_t,j_t,k_t and $t \in \{1,\ldots,i_0\}$ since G is $T_{2,2,1}$ -free, which means H is isomorphic to the subdivision of $W_{i_0}^*$. Since G is $T_{2,2,1}$ -free, $H \in \{F_9,F_{10}\}$ depicted in Figure 2. For $H \cong F_{10}$, as our discussion in Theorem 20, v_i has a neighbor u_i outside V(H) with $|E(u_i, H)| = 1$ for $i \in \{1, 2, 3\}$. Furthermore, at least two of $\{u_1, u_2, u_3\}$ are nonadjacent in G since $G[V(H) \cup \{u_1, u_2, u_3\}]$ is not collapsible. By symmetry, assume that $u_1u_2 \notin E(G)$. Thus $G[\{t_1, v_1, v_2, u_1, u_2, t\}] \cong T_{2,2,1}$, a contradiction. For $H \cong F_9$, we have that $G[\{t_1, v_1, v_4, v_2, u_2, t\}] \cong T_{2,2,1}$ for $u_2 \in N_G(v_2) \setminus V(H)$, a contradiction. This completes the proof of (1). If G satisfies (2) or (3), especially G is P_7 -free, then G is superculerian or P(10) if $\kappa(G)=2$ by Theorem 20, a contradiction. Then assume that $\kappa(G)=1$. By Corollary 28, there is a block B_0 of G and an induced path $P(v_1,v_2)\subseteq B_0$ with $V_2(B_0)\cap V(P(v_1,v_2))=\{v_1,v_2\}$ and $|E(P(v_1,v_2))|\geq 2$. Note that v_1,v_2 are cut-vertices, there are two blocks B_1,B_2 such that $V(B_1)\cap V(B_0)=\{v_1\}$ and $V(B_2)\cap V(B_0)=\{v_2\}$. (2) Then v_1, v_2 are not in collapsible subgraphs of G. Suppose otherwise. Replace G by the graph G^* obtained by adding vertex set $\{x_i, y_i\}$ and edge set $X_i = \{v_i x_i, v_i y_i, u_i x_i, u_i y_i, x_i y_i\}$ for $u_i \in N_{B_0}(v_i)$ if v_i is in a collapsible subgraph of B_0 for $i \in \{1, 2\}$ since G^* is 2-edge-connected $\{T_{2,2,2}, P_7\}$ -free, $|V_{\leq 3}(G^*)| \leq |V_{\leq 3}(G)|$ and G is superculerian if and only if G^* is superculerian. Let $x_1 \in N_{B_1}(v_1)$ and $x_2 \in N_{B_2}(v_2)$. Since $\kappa(B_0) \geq 2$, there is an induced cycle $C \subseteq B_0$ with vertices v_1, v_2 . Since G is P_7 -free, $1 \leq I(C) \leq G$. Then we claim that $1 \leq I(C) \leq G$. Then we claim that $1 \leq I(C) \leq G$ suppose otherwise. Assume that $1 \leq I(C) \leq G$ and $1 \leq I(C) \leq G$ since $1 \leq I(C) \leq G$ since $1 \leq I(C) \leq G$ suppose otherwise. Assume that $1 \leq I(C) \leq G$ and $1 \leq I(C) \leq G$ since $1 \leq I(C) \leq G$ since $1 \leq I(C) \leq G$ since $1 \leq I(C) \leq G$ suppose otherwise. Assume that $1 \leq I(C) \leq G$ suppose otherwise. Assume that $1 \leq I(C) \leq G$ and assume that $1 \leq I(C) \leq G$ since I(C)$ Then $w_1'u_2 \in E(G)$; for otherwise, $w_1'u_1 \in E(G)$ and $|E(w_1'',C)| = 1$ since $G[V(C) \cup \{w_1', w_1''\}]$ is not collapsible, and then $G[\{w_1'', w_2, v_2, u_2, u_1, v_1, x_1\}] \cong P_7$, a contradiction. Furthermore, $w_1''u_2 \notin E(G)$ since $G[V(C) \cup \{w_1', w_1''\}]$ is not collapsible and $w_1''u_1 \in E(G)$ since $G[\{w_1'', w_2, v_2, u_2, u_1, v_1, x_1\}] \ncong P_7$. Then $G[\{x_2, v_2, w_2, w_1'', u_1, v_1, x_1\}] \cong P_7$, a contradiction. (3) We will obtain an induced subgraph of G isomorphic to any one in $\{M_1, M_2\}$. Since G is P_6 -free, $V(B_i) \subseteq N_G(v_i)$ for $i \in \{1, 2\}$ and v_1, v_2 have at least two common neighbors u_1, u_2 in B_0 with degree 3. Then there is an induced M_1 of $G[V(B_1) \cup V(B_2) \cup \{u_1, u_2\}]$. Furthermore, we claim that u_1, u_2 have a common neighbor. Suppose otherwise. Let $w_1 \in N_G(u_1) \setminus \{v_1, v_2\}$. Then w_1 has two neighbors z_1, z_2 such that $E(\{z_1, z_2\}, \{v_1, v_2, u_1\}) = \emptyset$. In addition, $z_1 z_2 \notin E(G)$; for otherwise, there is an induced M_2 of $G[V(B_1) \cup V(B_2) \cup \{u_1, w_1, z_1, z_2\}]$, a contradiction. Furthermore, $E(u_2, \{z_1, z_2\}) = \emptyset$; for otherwise, $\{z_1 u_2, z_2 u_2\} \subseteq E(G)$, and then z_1 has a neigh- bor z_1' with $E(z_1', \{v_1, v_2, u_1, u_2, w_1\}) = \emptyset$ and hence it would produce an induced P_6 , a contradiction. However u_2 has a neighbor w_2 such that either $z_1w_1u_1v_1u_2w_2$ (if $z_1w_2 \notin E(G)$) or $w_1z_1w_2u_2v_1v_1'$ (if $z_1w_2 \in E(G)$) would be an induced P_6 in G, a contradiction. Let v_0 be one common neighbor of u_1, u_2 other than $\{v_1, v_2\}$. Then v_0 has a neighbor u_0 other than $\{u_1, u_2\}$ and $E(u_0, \{v_1, v_2, u_1, u_2\}) = \emptyset$. Therefore u_0 has a neighbor u_0' such that $E(u_0', \{v_1, v_2\}) = \emptyset$ and $\{u_0'u_1, u_0'u_2\} \not\subseteq E(G)$ since $G[v_1, v_2, v_0, u_1, u_2, u_0, u_0']$ is not collapsible. However there is either an induced P_6 (if $u_0'v_0 \notin E(G)$) or an induced M_2 (if $u_0'v_0 \in E(G)$) in $G[V(B_1) \cup V(B_2) \cup \{u_1, v_0, u_0, u_0'\}]$, a contradiction. (4) Suppose that $S=x_1x_2\cdots x_{i-1}x_ix_{i+1}\cdots x_lx_1$ is a closed trail of G with a fixed orientation such that |V(S)| is maximized and $V(G)\backslash V(S)\neq\emptyset$. Let $x_i^+=x_{i+1},x_i^-=x_{i-1},x_i^{h+}=x_{i+h}$ and $x_i^{h-}=x_{i-h}$ (all subscribes are taken module by (1). Then there is a vertex v outside S such that v is adjacent to a vertex x_1 of S since G is connected. Since $G[\{x_1,x_1^+,x_1^-,v,v'\}]\not\cong T_{2,1,1}$ for some
$v'\in N_G(v), \{x_1^+x_1^-,vx_1^{2+},vx_1^{2-}\}\cap E(G)\neq\emptyset$. We claim that $E(v,\{x_1^{2+},x_1^{2-}\})\neq\emptyset$. Suppose otherwise. Then $x_1^+x_1^-\in E(G)$. Note that there are two vertices v',v'' in $N_G(v)$ with $E(\{v',v''\},\{x_1,x_1^+,x_1^-\})=\emptyset$. Since $G[\{v,x_1,x_1^+,v',v''\}]\not\cong T_{2,1,1}, v'v''\in E(G)$. Then $G[\{x_1,x_1^+,x_1^-,v,v',v''\}]\cong H_1$, a contradiction. By symmetry, assume that $vx_1^{2+}\in E(G)$. Since $[\{v,x_1,x_1^-,x_1^{2+},v'\}]\not\cong T_{2,1,1}$ for $v'\in N_G(v), vx_1^{2-}\in E(G)$. However $G[\{x_1,x_1^+,x_1^-,v,v',v''\}]\cong T_{2,1,1}$ for $x'\in N_G(x_1^+)$, a contradiction. This completes the proof of (4) and the whole theorem. #### 4. Conclusion The following theorem here indicates that the forbidden pairs in Theorem 3 except the pair $\{P_7, T_{2,2,2}\}$ are sharp and it remains to prove 2-edge-connected $\{R, S\}$ -free graph G with $\delta(G) \geq 3$ is superculerian for $\{R, S\} = \{Z_5, T_{2,2,2}\}$ or one of them is Z_3 to completely characterize forbidden pairs. Here H_2 (H_3) is the graph obtained from H_1 by contracting (subdividing) the edge which is not in any triangle of H_1 and H_4 is the graph obtained from H_1 by adding a pendant edge to the vertex of a triangle of H_1 . **Theorem 33.** Let R, S be two connected graphs. If every 2-edge-connected $\{R, S\}$ -free graph G with order at least 11 and $\delta(G) \geq 3$ implies that it is supereulerian, then $\{R, S\} \leq \{T_{2,1,1}, H_1\}$, $\{T_{2,2,1}, N_{2,2,4}\}$, $\{T_{2,2,1}, B_{2,6}\}$, $\{T_{2,2,1}, B_{3,4}\}$, $\{T_{2,2,1}, Z_8\}$, $\{P_6, M_1\}$, $\{P_6, M_2\}$, $\{T_{2,2,2}, Z_5\}$, $\{Z_3, T_1\}$, $\{Z_3, T_2\}$, $\{Z_3, T_3\}$, $\{Z_3, T_4\}$, $\{Z_3, T_5\}$, $\{Z_3, T_6\}$, where T_1, \ldots, T_6 are depicted in Figure 3. **Proof.** All graphs in Figure 4 are 2-edge-connected nonsuperculerian graphs with minimum degree at least three. Then each graph contains at least one of R, S as an induced subgraph. Without loss of generality, assume that G_1 contains R as an induced subgraph. Then R either is a tree with maximum degree at most 3 or contains a cycle as an induced subgraph. Now we distinguish the following two cases. Figure 3. Some common induced subgraphs. Case 1. R is a tree. If $\Delta(R)=2$, then R is an induced subgraph of P_5 , a contradiction. If $\Delta(R)=3$, then $|V_3(R)|=1$ and R is an induced subgraph of $T_{2,2,2}$. Since G_6, G_7, G_8, G_9 are $K_{1,3}$ -free, S is an induced subgraph of G_6, G_7, G_8, G_9 . Note that G_8 is K_4 -free. Then R is K_4 -free. Since G_7 is both H_2 -free and H_3 -free and G_9 is H_4 -free, any maximal common induced subgraph of G_7, G_9 contains at most two triangles, and hence it is isomorphic to H_1 if it contains exactly two triangles. Since G_6 is $B_{4,4}$ -free and G_7 is $\{N_{2,2,5}, B_{2,7}, B_{3,5}, Z_9\}$ -free, the maximal common induced subgraphs containing exactly one triangle of G_6, G_7 are $N_{2,2,4}, B_{2,6}, B_{3,4}, Z_8$. Since the common induced cycle of G_7, G_8 is G_7 and G_7 is G_7 is G_7 in G_7 is G_7 in On the other hand, since G_{10} is $\{H_1, T_{2,2,1}\}$ -free, $\{R, S\} \leq \{H_1, T_{2,1,1}\}$. Since G_4 is R-free and $T_{2,2,2}$ -free for R is an induced subgraph of a graph in $\{N_{2,2,4}, B_{2,6}, B_{3,4}, Z_8\}$, $\{R, S\} \leq \{N_{2,2,4}, T_{2,2,1}\}$, $\{B_{2,6}, T_{2,2,1}\}$, $\{B_{3,4}, T_{2,2,1}\}$ or $\{Z_8, T_{2,2,1}\}$. Since G_4 is $\{B_{1,1}, Z_6, P_8\}$ -free, $\{R, S\} \leq \{Z_5, T_{2,2,2}\}$. Case 2. R is not a tree. Then R contains only a C_3 or C_4 as an induced subgraph since G_1 is C_k -free for $k \geq 5$. Subcase 2.1. R contains C_4 as an induced subgraph. If R contains $K_{2,3}$ as an induced subgraph, then G_2, G_8, G_{11} are $K_{2,3}$ -free, and G_2 is P_6 -free, which means S is an induced subgraph of P_5 , a contradiction. Then R is an induced subgraph of M_1 . Note that G_8, G_5, G_{11} are C_4 -free and G_5 is P_7 -free, which means S is an induced subgraph of P_6 . Therefore, $\{R, S\} \leq \{M_1, P_6\}$. Subcase 2.2. R contains K_r $(r \ge 4)$. Note that G_3, G_8, G_{11} are K_4 -free, G_8 is $\{K_{1,3}, C_4\}$ -free and G_{11} is C_3 -free. Then R is an induced subgraph of path. Since G_3 is P_6 -free, $S \subseteq P_5$, a contradiction. Figure 4. The graphs that are nonsupereulerian. Subcase 2.3. R is K_4 -free and C_4 -free. Then R contains C_3 as an induced subgraph and R is $4C_3$ -free. If R contains $3C_3$ as an induced subgraph, then R is an induced subgraph of M_2 . Since G_5, G_8, G_{11} are M_2 -free, $\{R, S\} \leq \{M_2, P_6\}$. If R contains $2C_3$ as an induced subgraph, then R is an induced subgraph of M_1 . If R is $2C_3$ -free, then R is an induced subgraph of Z_3 . Note that $G_{11}, G_{12}, G_{13}, G_{14}$ are C_3 -free. Since G_{11} is C_k -free for $k \geq 5$, G_{13} is C_4 -free and $\Delta(G_{14}) = 3$, S is a tree with $\Delta(S) \leq 3$ and $|V_3(S)| \leq 3$. Then S is an induced subgraph of the common induced subgraphs of G_{11} and G_{12} which is one of $\{T_1, \ldots, T_6\}$. Considering the proof idea of Theorem 3(1), we believe the existence of a connected spanning even subgraph in a 2-edge-connected $\{Z_5, T_{2,2,2}\}$ -free graph G with $\delta(G) \geq 3$. Conjecture 34. Every 2-edge-connected $\{Z_5, T_{2,2,2}\}$ -free graph G with $\delta(G) \geq 3$ is superculerian. ### Acknowledgments This research is supported by the Natural Science Funds of China (No. 11871099 and No. 11671037). The authors would like to thank the referees for their careful correction and value comments that make the presentation improved. #### References - [1] J.A. Bondy and U.S.R. Murty, Graph Theory in: Grad. Texts in Math. **244** (Springer-Verlag, London, 2008). - [2] J. Brousek, Z. Ryjáček and O. Favaron, Forbidden subgraphs, hamiltonicity and closure in claw-free graphs, Discrete Math. 196 (1999) 29–50. https://doi.org/10.1016/S0012-365X(98)00334-3 - R. Čada, K. Ozeki, L. Xiong and K. Yoshimoto, Pairs of forbidden subgraphs and 2-connected supereulerian graphs, Discrete Math. 341 (2018) 1696–1707. https://doi.org/10.1016/j.disc.2018.03.009 - [4] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29–44. https://doi.org/10.1002/jgt.3190120105 - [5] P.A. Catlin, Supereulerian graphs, collapsible graphs, and four-cycles, Congr. Numer. 58 (1987) 233–246. - [6] H.-J. Lai, Graph whose edges are in small cycles, Discrete Math. **94** (1991) 11–22. https://doi.org/10.1016/0012-365X(91)90302-I - [7] H.-J. Lai, Supereulerian graphs and excluded induced minors, Discrete Math. 146 (1995) 133–143. https://doi.org/10.1016/0012-365X(94)00159-7 - [8] X. Liu, H. Lin and L. Xiong, Forbidden subgraphs and weak locally connected graphs, Graphs Combin. 34 (2018) 1671–1690. https://doi.org/10.1007/s00373-018-1952-2 - [9] S. Lv and L. Xiong, Forbidden pairs for spanning (closed) trails, Discrete Math. 340 (2017) 1012–1018. https://doi.org/10.1016/j.disc.2017.01.009 - [10] S. Lv and L. Xiong, Erratum to "Forbidden pairs for spanning (closed) trails" [Discrete Math. 340 (2017) 1012–1018], Discrete Math. 341 (2018) 1192–1193. https://doi.org/10.1016/j.disc.2017.11.020 - [11] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217–224. https://doi.org/10.1006/jctb.1996.1732 [12] S. Wang and L. Xiong, Forbidden set of induced subgraphs for 2-connected supereulerian graphs, Discrete Math. **340** (2017) 2792–2797. https://doi.org/10.1016/j.disc.2017.08.006 > Revised 13 April 2019 Revised 13 November 2019 Accepted 17 November 2019