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Abstract

In this paper, we completely characterize the connected forbidden sub-
graphs and pairs of connected forbidden subgraphs that force a 2-edge-
connected (2-connected) graph to be collapsible. In addition, the charac-
terization of pairs of connected forbidden subgraphs that imply a 2-edge-
connected graph of minimum degree at least three is supereulerian will
be considered. We have given all possible forbidden pairs. In particular,
we prove that every 2-edge-connected noncollapsible (or nonsupereulerian)
graph of minimum degree at least three is Z3-free if and only if it is K3-
free, where Zi is a graph obtained by identifying a vertex of a K3 with an
end-vertex of a Pi+1.
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1. Introduction

For the notation or terminology not defined here, see [1]. A graph is called
trivial if it has only one vertex, nontrivial otherwise. All graphs involved in
the conclusion considered in this paper are simple graphs. Let G be a connected
graph. We use κ(G), κ′(G) and g(G) to denote the connectivity, edge-connectivity
and girth of G, respectively. Let u be a vertex of G and S be a subset of V (G)
(or E(G)). The induced subgraph of G is denoted by G[S]. We use NG(u) to
denote the neighborhood and dG(u) to denote the degree of u. We use δ(G) and
∆(G) to denote the minimum degree and maximum degree ofG, respectively. The
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neighbors of S inG is defined asNG(S) =
⋃

x∈S NG(x)\S andNG[S] = NG(S)∪S.
Define NT (S) = NG(S) ∩ T for T ⊆ V (G). Let Vi(G) = {u ∈ V (G) : dG(u) = i}
and V≥i(G) = {u ∈ V (G) : dG(u) ≥ i}. If F,G are graphs, we write F ⊆ G if F
is a subgraph of G and F ∼= G if F and G are isomorphic. For x, y ∈ V (G) and
H ⊆ G, let E(u,H) = {uv ∈ E(G) : v ∈ V (H)}, dG(x, y) = |E(P (x, y))|, where
P (x, y) is the shortest path between x and y, dG(x,H) = min{dG(x, y) : y ∈
V (H)} and N i(H) = {x : dG(x,H) = i}. Let H be a set of connected graphs. A
graph G is said to be H-free if G does not contain H as an induced subgraph for
all H ∈ H, and we call each graph H of H a forbidden subgraph. In particular,
if {H} = H, then we simply say that G is H-free and we call H a forbidden pair

if |H| =2. For two sets H1 and H2 of connected graphs, we write H1 � H2 if
for every graph H2 in H2, there is a graph H1 in H1 such that H1 is an induced
subgraph of H2. By the definition of the relation “�”, if H1 � H2, then every
H1-free graph is also H2-free.

Let Kn denote the complete graph of order n, and Km,n denote the com-
plete bipartite graph with partition sets of size m and n, and Pn denote the
path of order n, and Cn denote the cycle of order n. Use Ti,j,k to denote
the tree of three paths of length i, j, k with one common vertex. The graphs
Zi, Bi,j , Ni,j,k, H1,M1,M2 are depicted in Figure 1.
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Figure 1. The common induced subgraphs.

A graph is supereulerian if it has a connected spanning subgraph such that
each vertex has even degree. Lv and Xiong characterized all forbidden pairs for
a 2-connected graph to be supereulerian.

Theorem 1 (Lv and Xiong [9, 10]). Let R,S ( 6= P3) be connected graphs of order

at least 3 and let G be a 2-connected graph of order at least 7. Then {R,S}-free
graph G is supereulerian if and only if {R,S} � {K1,4, P5}, {K1,3, N1,1,3}, {K1,3,
Z4}, {K1,3, P7}, {C4, P5}.

Afterwards, Čada et al. [3] revealed how the forbidden subgraphs change
when the minimum degree was increased slightly. They characterized two forbid-
den subgraphs forcing a 2-connected K1,3-free graph G with δ(G) ≥ 3 excepting
two families of counterexamples to be supereulerian. We may restate their results
as follows. In fact, they gave more general results with some exceptions.
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Theorem 2 (Čada et al. [3]). If a 2-connected K1,3-free graph G with δ(G) ≥ 3
is R-free for R ∈ {N2,2,4, Z8}, respectively, then G is supereulerian.

Motivated by these two results above, in this paper, we shall consider the
forbidden pairs that force a 2-edge-connected graph of minimum degree at least
three to be supereulerian.

Theorem 3. Let G be a 2-edge-connected graph with δ(G) ≥ 3 such that it satis-

fies one of the following.

(1) G is {T2,2,1, S}-free for any S ∈ {N2,2,4, B2,6, B3,4, Z8},

(2) G is {P7, T2,2,2}-free,

(3) G is {P6, S}-free other than the Petersen graph for any S ∈ {M1,M2},

(4) G is {T2,1,1, H1}-free.

Then G is supereulerian.

Comparing Theorems 2 and 3(1), we know that if we keep S ∈ {N2,2,4, Z8},
then we may extend the other one of the pair, the K1,3 (i.e., T1,1,1), to T2,2,1 (a
little wider). For a graph G, let O(G) denote the set of odd degree vertices in G.
In [4], Catlin defined collapsible graphs. Given a subset R ⊆ V (G) with |R| even,
a subgraph Γ of G is an R-subgraph if both O(Γ) = R and G−E(Γ) are connected.
A graph G is collapsible if for any even subset R of V (G), G has an R-subgraph.
Catlin [4] shows that every collapsible graph is supereulerian. We then study a
characterization of connected forbidden graphs to assure collapsibility.

Theorem 4. Let r ≥ 4 be an integer and H be a connected forbidden pair. Then

(1) every 2-edge-connected H-free graph G of order at least r + 3 implies that it

is collapsible if and only if H � {K1,3, P5}, {K1,r, P4} or {C4, P5},

(2) every 2-connected H-free graph G of order at least r + 3 implies that it is

collapsible if and only if H �
{

K2,⌈r/2⌉, P5

}

.

Theorem 5. Let H be a connected graph of order at least 3. Then H-free 2-
edge-connected graph G with δ(G) ≥ 3 implies G is collapsible (supereulerian) if

and only if H is an induced subgraph of P5.

The proofs of Theorems 4, 5 and Theorem 3 are placed in Sections 2 and 3,
respectively. In the last section, we will exhibit a theorem to show the forbidden
pairs in Theorem 3 except the pair {P7, T2,2,2} are sharp and leave a conjecture.

2. Forbidden Subgraphs Guaranteeing a 2-Edge-Connected Graph

To Be Collapsible

For a subset X ⊆ E(G), the contraction G/X is the graph obtained from G by
identifying the ends of each edge in X and then deleting the resulting loops. Note
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that the edges in E(G/X) can be regarded as edges in E(G). If H is a subgraph,
then we use G/H for G/E(H). Note that by this definition, if H is a connected
subgraph of G, then G/H = G/G[V (H)].

Catlin showed in [4] that every vertex of G lies in an unique maximal col-
lapsible subgraph of G and C2,K3 are collapsible. The reduction of G, denoted
by G′, is obtained from G by contracting all maximal collapsible subgraphs of G.
A graph is reduced if it is the reduction of some graph.

The following result will be used to verify whether a graph is supereulerian.

Theorem 6 (Catlin [4]). Let G be a connected graph and let H be a collapsible

subgraph of G and let G′ be the reduction of G. Then each of the following holds.

(a) G is collapsible (supereulerian) if and only if G/H is collapsible (super-
eulerian). In particular, G is collapsible if and only if G′ is K1.

(b) G is supereulerian if and only if G′ is supereulerian.

For two disjoint subsets V1, V2 and a 4-cycle C4 = x1x2x3x4x1 of graph G,
define G/π(V1, V2) to be the graph obtained from G−E(G[V1∪V2]) by identifying
V1 to form a vertex v1, by identifying V2 to form a vertex v2, and by adding a
new edge v1v2 and define G/π(C4) = G/π({x1, x3}, {x2, x4}).

Theorem 7 (Catlin [5]). For the graphs G and G/π(C4) defined above. If

G/π(C4) is collapsible, then G is collapsible.

In [8], the authors give a method to verify whether a subgraph of G is col-
lapsible. They construct a C-subpartition (X1, X2) of G starting with a 4-cycle
x1x2x3x4x1 ⊆ G as follows.

1. X1 := {x1, x3}, X2 := {x2, x4}, {i, j} = {1, 2}.
2. While u ∈ NG(X1∪X2) 6= ∅, NG(X1)∩NG(X2) = ∅ and NG(u)∩NG[X1∪

X2] 6= ∅ do

{Xi := Xi ∪ {u}, Xj := Xj , if |E(u,Xi)| ≥ 2; Xi := Xi ∪ (NG(Xi) ∩NG[u]),

Xj := Xj , else if NG(Xi) ∩NG[u] 6= ∅; Xi := Xi ∪ (NG(Xj) ∩NG(u)), Xj

:= Xj ∪ {u}, else. }.
Although the C-subpartition of G is not unique, the following result is true

and would play an important role in the proofs in Section 3.

Lemma 8 (Liu et al. [8]). For a C-subpartition (X1, X2) of a graph G and any

nonempty set X12 ⊆ NG(X1) ∩NG(X2), G[X1 ∪X2 ∪X12] is collapsible.

Before presenting the proofs of Theorems 4 and 5, we need some preparations.

Lemma 9. Let G be a 2-edge-connected noncollapsible graph which has a maximal

nontrivial collapsible subgraph H. Then

(1) |E(u,H)| = 1 for any u ∈ NG(H),
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(2) NG(H) is an independent set of G,

(3) if G is P5-free, then |NG(H
′) ∩ V (H)| = 1 for any component H ′ of G−H.

Proof. (1) Let G∗ = G/H and vH ∈ V (G∗) be the contraction image of H.
If |E(u,H)| ≥ 2 for some u ∈ NG(H), then G∗ has a collapsible subgraph C2

containing vertices vH and u. Whence G[V (H) ∪ {u}] is collapsible by Theorem
6(a), contradicting the maximality of H.

(2) Let G∗ = G/H and vH ∈ V (G∗) be the contraction image of H. If
there is an edge uv ∈ E(G[NG(H)]), then G∗ has a collapsible subgraph C3

containing vertices vH , u, v. Whence G[V (H) ∪ {u, v}] is collapsible by Theorem
6(a), contradicting the maximality of H.

(3) By contradiction, assume that G−H has a component H ′ with |NG(H
′)∩

V (H)| ≥ 2. ThenH ′ has an induced path P (u, v) such thatNG(H)∩V (P (u, v)) =
{u, v} and there are two vertices u′ ∈ NG(u) ∩ V (H), v′ ∈ NG(v) ∩ V (H). By
(1) and (2), |E(P (u, v))| ≥ 2. Note that |V (H)| ≥ 3. Then there is a vertex
v′′ ∈ NH(v) such that uP (u, v)vv′v′′ is an induced path of order at least 5.

The following results imply the sufficiency of Theorem 4(1).

Theorem 10. Every 2-edge-connected graph G is collapsible if it satisfies one of

the following.

(1) G is P4-free other than K2,t for any t ≥ 2,

(2) G is {K1,3, P5}-free that is neither C4 nor C5,

(3) G is {C4, P5}-free other than C5.

Proof. By contradiction, assume that G is not collapsible. Choose a collapsible
subgraph H of G such that |V (H)| is maximized (possibly H is trivial). Then
NG(H) 6= ∅.

(1) We claim that G is reduced. Suppose otherwise. Then |V (H)| ≥ 3.
By Lemma 9(1), (2) and since κ′(G) ≥ 2, there is an edge h1h2 such that
E(h1, H) = ∅ and |E(h2, H)| = 1. Then G[{h1, h2, h3, h4}] ∼= P4 for some h3 ∈
NG(h2) ∩ V (H) and h4 ∈ NH(h3), a contradiction. Choose a vertex u ∈ V (G)
such that d(u) = ∆(G) ≥ 2. Let NG(u) = {x1, . . . , x∆(G)}. Since NG(u) is an
independent set of G and κ′(G) ≥ 2, there is a vertex v ∈ NG(x1)\{u}. Then
vxi ∈ E(G) for i ∈ {2, . . . ,∆(G)} since G[{v, x1, u, xi}] ≇ P4. If there is a vertex
w ∈ NG({x1, . . . , x∆(G)})\{u, v}, by symmetry, then wxi ∈ E(G) and ∆(G) ≥
dG(xi) ≥ 3 for i ∈ {1, . . . ,∆(G)}, and hence G[{u, v, w, x1, . . . , x∆(G)] ∼= K3,∆(G)

is collapsible, a contradiction. This implies that NG({x1, . . . , x∆(G)}) = {u, v},
and hence G ∼= K2,∆(G), a contradiction.

(2) Then G is reduced; for otherwise, there are two edges uw, vw ∈ E(G) such
that w ∈ V (H) and u, v ∈ NG(H) by Lemma 9(3) and then G[{u, v, w,w′}] ∼=
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K1,3 for some w′ ∈ NH(w), a contradiction. Furthermore, ∆(G) = 2 since G is
{C3,K1,3}-free. Hence G ∈ {C4, C5} since G is P5-free, a contradiction.

(3) If G is reduced, then g(G) = 5 since G is {C4, P5}-free and then G = C5

since G is P5-free, a contradiction. Thus |V (H)| ≥ 3 and there is a vertex
v ∈ V (H) and two vertices u1, u2 ∈ NG−H(v) by Lemma 9(3). Then u1, u2
have no common neighbor in G − H since G is C4-free. Let w1 ∈ NG−H(u1)
and w2 ∈ NG−H(u2). Then E({w1, w2}, H) = ∅ and hence w1w2 ∈ E(G) since
G[{w1, u1, v, u2, w2}] ≇ P5. However, G[{w1, w2, u2, v, v

′}] ∼= P5 for some v′ ∈
NH(v), a contradiction.

Let t1, t2 be two positive integers and let u1, v1 be two nonadjacent vertices
of degree t1 in K2,t1 and let u2, v2 be two nonadjacent vertices of degree t2 in
K2,t2 . Define St1,t2 be the graph obtained from K2,t1 and K2,t2 by identifying v1
and v2, and by adding a new edge u1u2. Let K

−
3,3 = K3,3− e for any e ∈ E(K3,3).

Catlin shows that K−
3,3 is collapsible. The following result implies the sufficiency

of Theorem 4(2).

Theorem 11. Every 2-connected P5-free graph G is either collapsible or G ∈
{K2,t : t ≥ 2} ∪ {St1,t2 : t2 ≥ t1 ≥ 1}.

Proof. Assume that G is not collapsible. Then G is reduced. If not, then by
Lemma 9(3), G has a maximal non-trivial collapsible subgraphH such that G−H
has a component H ′ with NG(H

′)∩V (H) = {u0} for some u0 ∈ V (H), and hence
u0 is a cut vertex of G, a contradiction. Then g(G) ≥ 4 since K3 is collapsible.
If ∆(G) = 2, then G ∈ {C4, C5} since G is P5-free. Therefore, assume that
∆(G) ≥ 3. Let u ∈ V (G) with d(u) = ∆(G) and Vi = N i(u). Then |V1| ≥ 3 and
E(G[V1]) = ∅. If V3 6= ∅, then G has an induced path uu1u2u3 such that ui ∈ Vi.
For any u′ ∈ V1\{u1}, by the definition of Vi, u

′u3 /∈ E(G). Then u2u
′ ∈ E(G)

since G[{u, u1, u2, u3, u
′}] ≇ P5. Since κ(G) ≥ 2, |V2| ≥ 2 and there is a vertex

u′2 ∈ V2 such that E(u′2, V3) 6= ∅. By symmetry, u′2u
′ ∈ E(G) for any u′ ∈ V1,

and so K−
3,3 ⊆ G[{u, u2, u

′
2} ∪ V1] is collapsible, a contradiction.

Then V3 = ∅, and let t = ∆(G). If |V2| = 1, then G ∼= K2,t. So assume
that |V2| ≥ 2. Let V1 = {u1, . . . , ut}. Since κ(G) ≥ 2, there are two ver-
tices v1, v2 ∈ V2 such that u1v1, u2v2 ∈ E(G). If E(G[V2]) = ∅, then v1v2 /∈
E(G). Since G[{v1, u1, u, u2, v2}] ≇ P5, {u1v2, u2v1} ∩ E(G) 6= ∅. By symme-
try, assume that u1v2 ∈ E(G). Then v1u2 /∈ E(G). Suppose otherwise. Since
K−

3,3 6⊆ G[{ui, u, u1, u2, v1, v2}] for any i ∈ {3, . . . , t}, E(ui, {v1, v2}) = ∅, and so
ui has a neighbor vi in V2. Since G[{vi, ui, u, u1, v1}] ≇ P5, u1vi ∈ E(G). Then
dG(u1) ≥ t + 1, a contradiction. So v1uj ∈ E(G) for some j ∈ {3, . . . , t} and
either G[{v1, uj , u, u2, v2}] ∼= P5 if ujv2 /∈ E(G) or K−

3,3 ⊆ G[{v1, uj , u, u2, v2}] if
ujv2 ∈ E(G), a contradiction.

Hence E(G[V2]) 6= ∅. Assume that v1v2 ∈ E(G). Since g(G) ≥ 4, u1v2, u2v1 /∈
E(G). Then for i ∈ {3, . . . , t}, E(ui, {v1, v2}) 6= ∅ since G[{ui, u, u1, v1, v2}] ≇ P5.
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Without loss of generality, assume that {v1u1, . . . v1ut1 , v2ut1+1, . . . , v2ut1+t2} ⊆
E(G) for some integers t1, t2 with t1 + t2 = t. If |V2| ≥ 3, then there is a vertex
v3 ∈ V2 such that E(v3, V1) 6= ∅. Furthermore, E(v3, {v1, v2}) 6= ∅. Suppose
otherwise. Assume that v3ui ∈ E(G) for some i ∈ {1, . . . , t1}. Then for any j ∈
{t1 + 1, . . . , t} and k ∈ {1, . . . , t1}\{i}, v3uj ∈ E(G) since G[{v3, ui, v1, v2, uj}] ≇
P5, and hence v3uk ∈ E(G) since G[{uk, v1, v2, uj , v3}] ≇ P5. Then either K−

3,3 ⊆

G[{u, u1, u2, u3, v1, v3}] if t1 ≥ 2 orK−
3,3 ⊆ G[{u, u1, u2, u3, v2, v3}] if t1 = 1, a con-

tradiction. By symmetry, assume that v2v3 ∈ E(G). Since G[{v3, v2, v1, ui, u}] ≇
P5 for any i ∈ {1, . . . , t1}, {v3u1, . . . , v3ut1} ⊆ E(G). Then t1 ≥ 2, since other-
wise, dG(v2) ≥ t2 + 2 > t1 + t2, a contradiction. Then there is a C-subpartition
(X1, X2) = ({u, v1, v2, u3, . . . , ut}, {u1, u2}) with v3 ∈ NG(X1) ∩ NG(X2). By
Lemma 8, G[X1 ∪X2 ∪ {v3}] is collapsible, a contradiction. Therefore, |V2| = 2
and G = St1,t2 .

Corollary 12. Every 2-connected P5-free graph G of order at least ∆(G) + 4 is

collapsible.

We construct some graphs as follows. The graph L1 is obtained from a
complete graph Kn and a path x1x2x3 by adding the edges x1y1, x3y3 for some
y1, y3 ∈ V (Kn). The graph L2 is obtained from a complete graph Kn and a
path x1x2x3 by adding the edges x1y1, x3y1 for some y1 ∈ V (Kn). Since the
reduction of L1 and L2 are isomorphic to C4 which is noncollapsible, L1 and L2

are noncollapsible.

Proof of Theorem 4. By Theorems 10 and 11, the sufficiency clearly holds. It
remains to show the necessity. Let H = {R,S}. Note that K2,t (t ≥ 2), Ck

(k ≥ 4) and St1,t2 (t2 ≥ t1 ≥ 1) are noncollapsible.

(1) Since L1, L2,K2,t, Ck are 2-edge-connected, each graph contains at least
one of R,S as an induced subgraph. Without loss of generality, assume that
K2,t contains R as an induced subgraph. If R contains cycle C4 as a subgraph,
note that L1 and Ck are C4-free and their maximal common induced subgraph
is P5, then S ⊆ P5. On the other hand, L2 is {P5,K2,3}-free, then R ⊆ C4 and
{R,S} � {C4, P5}.

If R contains K1,3 as a subgraph, note that L1 and Ck are K1,3-free, then
S ⊆ P5. On the other hand, L2 is {P5,K1,4, T2,1,1}-free, then {R,S} � {K1,3, P5}.

If R contains K1,4 as a subgraph, then S ⊆ P5. On the other hand, L2

is {P5,K1,4}-free, and then S ⊆ P4. Note that K2,t is {K1,r, P4}-free for r ≥
|V (K2,t)| − 3, {R,S} � {K1,|V (K2,t)|−2, P4}.

(2) Note that L1,K2,k, Ck, St1,t2 are 2-connected. Without loss of gener-
ality, assume that L1 contains R as an induced subgraph. If R contains C5

as a subgraph, then K2,t and Ck are C5-free and their maximal common in-
duced subgraph are P3, a contradiction. Thus R ⊆ P5. Since St1,t2 is P5-free
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and there maximal common induced subgraph is K2,⌊(|V (St1,t2
)|−3)/2⌋, {R,S} �

{K2,⌊(|V (St1,t2
)|−3)/2⌋, P5}.

Theorem 13 (Lai [6]). If every edge of a 2-connected graph G lies in a cycle of

length at most 4 in G and δ(G) ≥ 3, then G is collapsible.

Define kK1 be an empty graph with k vertices.

Theorem 14. Every 2-edge-connected Z3-free graph G with δ(G) ≥ 3 is either

collapsible or K3-free.

Proof. Assume that G has a triangleK. Choose an induced collapsible subgraph
H containing K with |V (H)| maximized. If H = G, then G is collapsible. We
then assume that V (G)\V (H) 6= ∅. Let G∗ = G/H and vH ∈ V (G∗) be the
contraction image of H, and let Vi = N i(vH). Then κ′(G∗) ≥ 2, V2(G

∗) ⊆ {vH}.
By Lemma 9(2), G∗[V1] ∼= kK1 for k = |V1| ≥ 2. Since δ(G) ≥ 3, l ≥ 2 for
l = |V2|. Since G is Z3-free, vH is not in an induced P4 and V3 = ∅.

If there is an edge u1u2 ∈ E(G[V2]), then u1v12 ∈ E(G∗) for some v12 ∈ V1.
Since G∗[{u2, u1, v12, vH}] ≇ P4, v12u1 ∈ E(G∗). Furthermore, NG∗({u1, u2}) ∩
V1 = {v12}. Suppose otherwise. Assume that v2u1 ∈ E(G) for some v2 ∈
V1. By symmetry, u2v2 ∈ E(G∗), and so G∗[{vH , v12, v2, u1, u2}] is collapsible,
contracting the choice of H. Note that there is a vertex v34 ∈ V2 such that
E(v34, {u1, u2}) = ∅. Then there are two edges v34u3, v34u4 for some u3, u4 ∈ V2.
By symmetry, E({u3, u4}, {u1, u2}) = ∅. Since G∗[{uiv34, vH , v12}] ≇ P4 for
i ∈ {3, 4}, {u3v12, u4v12} ⊆ E(G∗). Then NG∗(u3) ⊆ V1 and hence there is a
vertex v0 ∈ NV1

(u3). However, K−
3,3 ⊆ G∗[vH , v12, v34, v0, u3, u4] is collapsible,

contradicting the choice of H.

This implies that G∗[V2] ∼= lK1. Then k ≥ dG∗(u1) ≥ 3. Hence G∗ is a
2-connected bipartite graph such that δ(G∗) ≥ 3 and each edge lies in an induced
C4. Then G∗ is collapsible by Theorem 13, which implies G is collapsible by
Theorem 6(a).

Corollary 15. Let G be a 2-edge-connected noncollapsible (or nonsupereulerian)
graph with δ(G) ≥ 3. Then G is Z3-free if and only if G is K3-free.

An edge of G is said to be subdivided when it is deleted and replaced by a path
of length 2 connecting its ends, the internal vertex of this path being a new vertex.
A subdivision of a graph G is a graph that can be obtained from G by a sequence
of edge subdivisions. We use θ(i, j, k) = θ(t1, t2, x1 · · ·xi, y1 · · · yj , z1 · · · zk) to
denote the graph obtained from the Theta graph with 3-multiple edges and two
vertices t1, t2 by replacing the 3-multiple edges with three internal vertex-disjoint
paths t1x1 · · ·xit2, t1y1 · · · yjt2 and t1z1 · · · zkt2, respectively.
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Proof of Theorem 5. The sufficiency. It suffices to prove that G is collapsi-
ble. Let H be an induced collapsible subgraph of G with |V (H)| maximized.
On the contrary, we may choose a vertex v ∈ NG(H). Then |E(v,H)| = 1 and
E(w,H) = ∅ for any w ∈ NG(v)\V (H). Since G is P5-free and by Theorem
14, 4 ≤ g(G) ≤ 5 and |V (H)| = 1, which means G is reduced. If g(G) = 5,
let C = x1x2x3x4x5x1 be an induced cycle of G, then |E(yi, C)| = 1 for yi ∈
NG(xi)\V (C) and G[y1, x1, x2, x3, x4] ∼= P5, a contradiction. Hence g(G) = 4.
Let C = x1x2x3x4x1 be an induced cycle of G and yi ∈ NG(xi)\V (C). If y1x3 ∈
E(G), note that H ′ = G[{x1, x2, x3, x4, y1}] ∼= θ(1, 1, 1), then |E(y2, H

′)| =
|E(y4, H

′)| = |E(y′, H ′)| = 1 and {y2y4, y2y
′, y4y

′} 6⊆ E(G) for y′ ∈ NG(y1)\V (C)
since G[V (H) ∪ {y1, y2, y4, y

′}] is not collapsible. By symmetry, assume y2y4 /∈
E(G), then G[{y2, x2, x3, x4, y4}] ∼= P5, a contradiction. This implies |E(yi, C)| =
1 for i ∈ {1, 2, 3, 4}. Then y1y3, y2y4 ∈ E(G) since G[{y1, x1, x2, x3, y3}] ≇ P5 and
G[{y2, x2, x3, x4, y4}] ≇ P5. Since G[{y1, y3, x3, x2, y2}] ≇ P5, E(y2, {y1, y3} 6=
∅. By symmetry, assume that y1y2 ∈ E(G). Then there is a C-subpartition
(X1, X2) = ({x1, x4, y2, y4}, {x2, y1}) with x3 ∈ NG(X1) ∩ NG(X2). By Lemma
8, G[{x1, x2, x3, x4, y1, y2, y4}] is collapsible, a contradiction.

The necessity. All graphs in Figure 4 are 2-edge-connected noncollapsible
(nonsupereulerian). Especially, each graph in {G1, G6, G11} contains H as its
induced subgraph. Note that G6 and G11 have no common induced Ck for any
k ≥ 3 and G6 is K1,3-free, H should be the subgraph of path. Since G1 is P6-free,
H ⊆ P5.

3. Forbidden Subgraphs Guaranteeing a 2-Edge-Connected Graph

To Be Supereulerian

Before presenting the proofs, we need to prepare some results. A graph H is a
minor of G if H is isomorphic to the contraction image of a subgraph of G. We
call H an induced minor of G if H is isomorphic to the contraction image of an
induced subgraph of G.

If a graph G has an induced minor H with V (H) = {v1, v2, . . . , vt}, then for
pair of {i, j} ⊆ {1, 2, . . . , t}, vi is the contraction image of an induced subgraph
Gvi of G. Let Xvi be the minimal subset of V (Gvi) such that G[Xvi ] is connected
and

∣

∣E
(

Xvi ,
⋃

k∈{1,2,...,t}\{i} V (Gvk)
)
∣

∣ = dH(vi). Then
∣

∣E
(

Xvi , Xvj

)
∣

∣ = 1 if vivj ∈

E(H) and
∣

∣E
(

Xvi , Xvj

)
∣

∣ = 0 otherwise. Note that H ′ = G[Xv1 ∪Xv2 ∪ · · · ∪Xvt ]
is an induced subgraph of G, called the H-subgraph.

Theorem 16 (Wang and Xiong [12]). H ′[NH′ [Xvi ]] has either an induced Ti,j,k

or an induced Ni′,j′,k′ for some i, j, k, i′, j′, k′ if dH(vi) ≥ 3.

A wheel Wn is the graph obtained from the n-cycle Cn = v1v2 · · · vnv1, where
n ≥ 2, by adding an extra vertex v and new edges {vvi : 1 ≤ i ≤ n}. The
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subdivided wheel W ∗
n is the graph obtained from Wn by replacing vivi+1 by a path

viv
′
ivi+1 with {v′1, . . . , v

′
n} ∩ V (Wn) = ∅ (1 ≤ i ≤ n). Let W ∗ = {W ∗

n : n ≥ 2}.

Theorem 17 (Lai [7]). If G is 2-edge-connected and does not have an induced

minor isomorphic to a member in W ∗, then G is supereulerian.

For a cycle C, let C+ denote the graph obtained from C by adding one edge
between one pair non-adjacent vertices in C.

Lemma 18. Let G be a 2-edge-connected graph. If every W ∗
i -subgraph (i ≥ 2)

H of G is in a subgraph H̄ ⊆ G such that the reduction of H̄ is K1, Ck or C+
k

for some integer k ≥ 4, then G is supereulerian.

Proof. Let G′ be the reduction of G. If G′ ∼= K1, then G is supereulerian by
Theorem 6(a). We then assume that κ′(G′) ≥ κ′(G) ≥ 2. If G′ has an induced
minor W ∗

i0
for some i0 ≥ 2, then G′ has an induced W ∗

i0
-subgraph H ′ and G has

a corresponding induced W ∗
i0
-subgraph H such that H ′ is the reduction of H.

By hypothesis, G has a subgraph H̄ such that H ⊆ H̄ and the reduction of H̄,
say H̄ ′, satisfies that H̄ ′ ∈ {K1, Ck, C

+
k } for some integer k ≥ 4. Note that H ′

is an induced subgraph of H̄ ′ and H ′ has three vertex-disjoint paths with length
at least 2 between any two vertices of degree 3. This is impossible. Therefore,
G′ has no induced minor W ∗

i for any i ≥ 2. By Theorem 17, G′ is supereulerian,
and hence G is supereulerian by Theorem 6(b).

Theorem 19 (Liu et al. [8]). Every 2-connected P7-free graph G with δ(G) ≥ 3
is supereulerian or P (10).

The following result extends Theorem 19 and serves for the proofs of Theorem
3(2), (3).

Theorem 20. Every 2-connected P7-free graph G with |V2(G)| ≤ 1 is supereule-

rian or P (10).

Proof. Let G′ be the graph obtained from G by contracting all collapsible sub-
graph L of G such that g(G/L) ≥ 3 and then either |NG(L)| ≥ 3 or V (L) ∩
V2(G) 6= ∅. Then G′ is a N1,1,1-free simple graph such that |V2(G

′)| ≤ 1 and
the vertex of degree 2 of G′ is not in a collapsible subgraph of G′. Since any
induced path of G′ can be extended to an induced path of G, G′ is P7-free. By
Theorem 6(a), it suffices to prove that G′ is supereulerian or G = G′ ∼= P (10).
By contradiction, assume that G′ is nonsupereulerian and G′ ≇ P (10). Then
G′ is nontrivial and κ′(G′) ≥ κ′(G) ≥ 2. In the proof below, we need a set of
2-connected nonsupereulerian graphs F = {F1, F2, . . . , F10} (see Figure 2).

Claim 21. Every induced W ∗
i -subgraph (i ≥ 2) of G′ is isomorphic to a member

of F .
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Figure 2. The graphs that are nonsupereulerian.

Proof. Let F be the induced W ∗
i -subgraph of G′. Then G′ has an induced minor

W ∗
i . For any vertex v ∈ V (W ∗

i ), if dW ∗

i
(v) = 2, then F [NF [Xv]] is isomorphic to

a path. By Theorem 16 and since G′ is N1,1,1-free, if dW ∗

i
(v) = 3, then F [NF [Xv]]

is isomorphic to a Tl,m,n for some integers l,m, n. As F is P7-free, i ∈ {2, 3}.
This implies that F is isomorphic to the subdivision of W ∗

i . Then F ∈ F .

Claim 22. If G′ has a subgraph F ∼= Fi for i ∈ {1, 2, 3}, then either G′[V (F )] ∼= F
or G′[V (F )] is collapsible.

Proof. If F ∈ {F1, F2}, then we can verify that adding any edge between any
pair of nonadjacent vertices of F results a collapsible graph.

Therefore, suppose that F ∼= F3. Then E(G′[V (F )])\E(L) 6= {v1v3}, since
otherwise, |NG′(t1v1v5t1)| ≥ 3 and g(G′/t1v1v5t1) ≥ 3, contradicting the con-
struction of G′. By symmetry, E(G′[V (F )])\E(L) 6= {v2v4}. If v1v4 ∈ E(G′),
then there is a C-subpartition (X1, X2) = ({t1, t2, v4, v5}, {v1, v3}) such that
v2 ∈ NG′(X1) ∩ NG′(X2), and hence G′[V (F )] is collapsible by Lemma 8. By
symmetry, G′[V (F )] is collapsible if v2v3 ∈ E(G′). If E(v5, {v1, v2, v3, v4}) 6= ∅,
E(t1, {v2, v4}) 6= ∅, E(t2, {v1, v3}) 6= ∅, t1t2 ∈ E(G′) or {v1v3, v2v4} ⊆ E(G′),
then we can verify that G′[V (F )] is collapsible. Hence either G′[V (F )] ∼= F or
G′[V (F )] is collapsible.
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Claim 23. If G′ has two induced subgraphs F̄ and F ∼= Fi for i ∈ {1, 2, 3} such

that F ⊆ F̄ and the reduction of F̄ is a cycle Ck or C+
k for some k ≥ 4, then F

is in a collapsible subgraph of G′.

Proof. Since the reduction of F̄ is Ck or C+
k , G′ has a collapsible subgraph

L ⊆ F̄ such that either t1, t2 ∈ V (L) or t1t2 ∈ E(G′/L). Since i ∈ {1, 2, 3},
G′[V (L) ∪ V (F )] is collapsible.

Since G′ is nonsupereulerian and by Lemma 18, we can choose an induced
W ∗

i0
-subgraph H of G′ such that for any integer k ≥ 4 and any graph H̄ with

H ⊆ H̄ ⊆ G′, H̄ is not collapsible and the reduction of H̄ is not Ck or C+
k . By

Claim 21, we assume that H ∼= Fj0 for some j0 ∈ {1, . . . , 10} with j0 minimized.
Then every induced subgraph F ∼= Fj of G′ with j < j0 is in a subgraph F̄ of G′

such that the reduction of F̄ is K1 or a cycle C or C+; in addition, by Claims 22
and 23, if j ≤ min{j0 − 1, 3}, then F is not necessary induced in G′ and F is in
a collapsible subgraph.

Claim 24. j0 ≤ 3.

Proof. By contradiction, assume that 4 ≤ j0 ≤ 10. Suppose that H ∼= F10.
Then |{v1, v2, v3} ∩ V≥3(G

′)| ≥ 2. By symmetry, assume that v1, v2 have neigh-
bors u1, u2 outside V (H), respectively. Note that H has two C-subpartitions
({t, v1, v3}, {t1, t2, t3, v2}), ({v1, t1, t2, t3}, {t, v2, v3}). Then |E(u1, H)| = 1, since
otherwise, G′[V (H) ∪ {u1}] is collapsible by Lemma 8, contradicting the choice
of H. This implies that u1 6= u2 and |E(u2, H)| = 1. Thus either u1v1t3v3t2v2u2
(if u1u2 /∈ E(G′)) or u1u2v2t1tt3v3 (if u1u2 ∈ E(G′)) would be an induced P7 in
G′, a contradiction.

Suppose that H ∼= F9. Then {v2, v3} ∩ V≥3(G
′) 6= ∅. By symmetry, assume

that v2 has a neighbor u2 outside V (H). Note that there is a C-subpartition
({t, v2, v3}, {t1, t2, t3, v1, v4}). Then E(u2, {t1, t2, t3, v1, v4}) = ∅, since otherwise,
G′[V (H)∪{u2}] is collapsible by Lemma 8, a contradiction. As G′[{u2, v2, t2, t, t3,
v4, v1}] ≇ P7, u2t ∈ E(G′). Then F1 ⊆ G′[{t1, t2, t, v2, u2}] is in a collapsible
subgraph of G′ by the choice of H, and hence G′[V (H)∪ {u2}] is in a collapsible
subgraph of G′, a contradiction.

Suppose that H ∼= F8. Then {v1, v2} ∩ V≥3(G
′) 6= ∅. By symmetry, assume

that v1 has a neighbor u1 outside V (H). Note that there is a C-subpartition
({v1, v2}, {t, v3, t1, t2, t3, v}). By Lemma 8, E(u1, {t, v3, t1, t2, t3, v}) = ∅ and
hence G′[{u1, v1, t1, v, t, t2, v3}] ∼= P7, a contradiction.

Suppose that H ∼= F7. Then {v5, v6} ∩ V≥3(G
′) 6= ∅. By symmetry, assume

that v6 has a neighbor u6 outside V (H). By the choice of H, G′[{t1, t2, v5, v6, u6}]
is not in a collapsible subgraph, and hence E(u6, {t1, t2, v5}) = ∅. In addition,
E(u6, {v2, v3}) = ∅. Suppose otherwise. By symmetry, assume that u6v2 ∈
E(G′). Since G′[V (H) ∪ {u6}] is not collapsible, {u6v1, u6v3} 6⊆ E(G′). Since
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G′[{u6, v2, v1, t1, v5, t2, v4}] ≇ P7 and G′[{u6, v2, v3, v4, t2, v5, t1}] ≇ P7, u6v4 ∈
E(G′). Note that there is a C-subpartition (X1, X2) = ({v2, v4, v5, v6}, {t1, t2, v3,
u6}) such that v1 ∈ NG′(X1) ∩NG′(X2). Then G′[V (H) ∪ {u6}] is collapsible by
Lemma 8, a contradiction. Then one of u6v6t1v1v2v3v4 (if {u6v1, u6v4}∩E(G′) =
∅), v2v3v4u6v6t1v5 (if {u6v1, u6v4} ⊆ E(G′)), u6v1v2v3v4t2v5 (if {u6v1, u6v4} ∩
E(G′) = {u6v1}) and u6v4v3v2v1t1v5 (if {u6v1, u6v4}∩E(G′) = {u6v4}) would be
an induced P7 in G′, a contradiction.

Suppose that H ∼= F6. Then {v4, v5} ∩ V≥3(G
′) 6= ∅. By symmetry, assume

that v4 has a neighbor u4 outside V (H). By the choice ofH, G′[{t1, t2, v4, v5, v6, u4}]
is not in a collapsible subgraph, then {u4t1, u4v5} 6⊆ E(G′) and F2 6⊆ G′[{t1, t2, v4, v5,
v6, u4}], and hence E(u4, {t2, v6}) = ∅. Then u4v5 /∈ E(G′), since otherwise,
u4t1 /∈ E(G′), dG′(u4) ≥ 3, |NG′(u4v4v5u4)| ≥ 3 and g(G′/(u4v4v5u4)) ≥ 3,
contracting the construction of G′. By symmetry, u4t1 /∈ E(G). In addition,
{u4v1, u4v3} 6⊆ E(G′), since otherwise, there is a C-subpartition (X1, X2) =
({t1, t2, v2, u4}, {v1, v3, v4, v6}) such that v5 ∈ NG′(X1)∩NG′(X2), thenG′[V (H)∪
{u4}] is collapsible by Lemma 8, a contradiction. Then u4v2 ∈ E(G′); for oth-
erwise, one of u4v4t1v6t2v3v2 (if {u4v1, u4v3} ∩ E(G′) = ∅), v4u4v1v2v3t2v6 (if
u4v1 ∈ E(G′)) and v6t2v3u4v4t1v1 (if u4v3 ∈ E(G′)) would be an induced P7 in
G′, a contradiction. Thus E(u4, {v1, v3}) = ∅ by the construction of G′, and then
u4v2v1t1v6t2v5 would be an induced P7 in G′, a contradiction.

Suppose that H ∼= F5. Then {v4, v5} ∩ V≥3(G
′) 6= ∅. By symmetry, assume

that v4 has a neighbor u4 outside V (H). By the construction of G′ and by the
choice of H, E(u4, {t1, t2, v5}) = ∅. In addition, u4v2 /∈ E(G′); for otherwise,
F3 ⊆ G′[{t1, t2, v1, v2, v3, v4, u4}] is in a collapsible subgraph of G′ by the choice
of H, and then G′[V (H) ∪ {u4}] is in a collapsible subgraph, a contradiction.
And {u4v1, u4v3} 6⊆ E(G′); for otherwise, there is a C-subpartition (X1, X2) =
({t1, v1, v3, v4}, {t2, v2, u4}) with v5 ∈ NG′(X1) ∩NG′(X2), then G′[V (H) ∪ {u4}]
is collapsible by Lemma 8, a contradiction. Then {u4v1, u4v3}∩E(G′) = ∅. Sup-
pose otherwise. Without loss of generality, assume that u4v1 ∈ E(G′). Then
{v5, u4} ∩ V≥3(G

′) 6= ∅. By symmetry, assume that v5 has a neighbor u5 out-
side V (H) ∪ {u4} with E(u5, {t1, t2, v2, v4}) = ∅. Then u5u4 /∈ E(G′); for oth-
erwise F2 ⊆ G′[{v4, v5, t1, t2, u4, u5}] is in a collapsible subgraph of G′ and then
G′[V (H)∪{u4, u5}] is in a collapsible subgraph of G′, a contradiction. In addition,
u5v1 /∈ E(G′); for otherwise, F3 ⊆ G′[{v1, v4, u4, u5, v2, v3, v4}] is in a collapsible
subgraph of G′ and then G′[V (H)∪{u4, u5}] is in a collapsible subgraph of G′, a
contradiction. Thus u5v5t2v4t1v1v2 would be an induced P7 inG′, a contradiction.
This implies |E(u4, H)| = 1 and u4 has a neighbor u′4 outside V (H)∪{u4}. Since
G′[V (H)∪{u4, u

′
4}] is not collapsible and by the construction of G′, u′4v4 /∈ E(G′),

{u′4v2, u
′
4vi} 6⊆ E(G′) for i ∈ {1, 3} and G′[{t1, t2, v4, v5, u4, u

′
4}] is not collapsible.

Then u′4v5 /∈ E(G′) since F2 6⊆ G′[{t1, t2, v4, v5, u4, u
′
4}] and {u′4t1, u

′
4t2} 6⊆ E(G′)

since F1 6⊆ G′[{t1, t2, v4, v5, u
′
4}]. By symmetry, assume that u′4t1 /∈ E(G′). Then
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{u′4v1, u
′
4v3} 6⊆ E(G′) since F3 6⊆ G′[{t1, t2, v1, v3, v4, u4, u

′
4}] and {u′4v1, u

′
4t2} 6⊆

E(G′) since F3 6⊆ G′[{v1, t2, v2, v3, t1, u
′
4}]. Thus {u

′
4v2, u

′
4t2} ⊆ E(G′); for other-

wise, one of u4u
′
4v1v2v3t2v5 (if u′4v1 ∈ E(G′)), u4u

′
4v3v2v1t1v5 (if u′4v3 ∈ E(G′))

and u4u
′
4v2v3t2v5t1 (if u

′
4v2 ∈ E(G′) and u′4t2 /∈ E(G′)) would be an induced P7 in

G′, a contradiction. Note that {v3, v5}∩V≥3(G
′) 6= ∅. By symmetry, assume that

u5 ∈ NG′(v5)\V (H) with |E(u5, H)| = 1. Since F2 6⊆ G′[{t1, t2, v4, v5, u4, u5}],
u4u5 /∈ E(G′). Since G′[{u5, v5, t1, v1, v2, u

′
4, u4}] ≇ P7, u5u

′
4 ∈ E(G′). Note

that {u4, u5} ∩ V≥3(G
′) 6= ∅. By symmetry, assume that there is a vertex u′5 ∈

NG′(u5)\(V (H) ∪ {u′4}) with u′5v2 ∈ E(G). However there is a C-subpartition
(X1, X2) = ({t1, t2, v1, v2, u4}, {v3, v4, v5, u5, u

′
4}) with u′5 ∈ NG′(X1) ∩ NG′(X2),

then G′[V (H) ∪ {u4, u5, u
′
4, u

′
5}] is collapsible by Lemma 8, a contradiction.

Suppose finally that H ∼= F4. Then |{v1, . . . , v6} ∩ V≥3(G
′)| ≥ 5. By symme-

try, assume that {v1, . . . , v5} ⊆ V≥3(G
′). Let u1 ∈ NG′(v1)\V (H). Then u1t1 /∈

E(G′). In addition, u1v2 /∈ E(G′). Suppose otherwise. If u1t2 /∈ E(G′), then ei-
ther |NG′(u1v1v2u1)| ≥ 3 or dG′(u1) = 2; if u1t2 ∈ E(G′), then G′[{u1, v1, v2, t2}]
is collapsible and |NG′({u1, v1, v2, t2})| ≥ 3, contracting the construction of G′.
Furthermore, {u1v3, u1v5} 6⊆ E(G′); for otherwise, E(u1, {v2, v4, v6}) 6= ∅ and
F1 ⊆ G′[{t1, v1, v3, v5, u1}] is in a collapsible subgraph of G′, and then G′[V (H)∪
{u1}] is in a collapsible subgraph of G′, a contradiction. By symmetry, assume
that u1v3 /∈ E(G′). Since F3 6⊆ G′[{t1, t2, v1, u1, v2, vi, vi−1}] for i ∈ {4, 6},
E(u1, {v4, v6}) = ∅. Then u1t2 ∈ E(G′) since G′[{u1, v1, t1, v3, v4, t2, v6}] ≇ P7.
By symmetry, vj has a neighbor uj outside V (H) and ujtj(mod 2)+1 ∈ E(G′) for
j ∈ {2, . . . , 5}. Note that {u1, u2} ∩ V≥3(G

′) 6= ∅. By symmetry, assume that
u1 has a neighbor u′1 outside V (H). Since there is a C-subpartition ({t2, v1,
v3, v5, u1, u4}, {t1, v2, v4, v6, u3}), by Lemma 8, E(u′1, {t1, v2, v4, v6, u3}) = ∅. By
symmetry, E(u′1, {u1, t2}) = ∅. Then u′1v3 /∈ E(G′); for otherwise, F2 ⊆ G′[{t2, v3,
v4, u3, u1, u

′
1}] is in a collapsible subgraph of G′ and then G′[V (H)∪{u1, u

′
1}] is in

a collapsible subgraph of G′, a contradiction. Since G′[{u′1, u1, t2, v6, v5, t1, v3}] ≇
P7, u

′
1v5 ∈ E(G′). However, there is a C-subpartition (X1, X2) = ({t1, v2, v4, v5,

u1, u
′
1}, {t2, v1, v3, u2}) with v6 ∈ NG′(X1)∩NG′(X2), thenG′[V (H) ∪{u1, u2, u

′
1}]

is collapsible by Lemma 8, a contradiction.

For j0 ≤ 3, we shall distinguish the following three cases.

Case 1. H ∼= F1. Since G′[V (H) ∪ {u}] is not collapsible, |E(u,H)| = 1 for
any u ∈ NG′({v1, v2, v3}) \ V (H) by Lemma 8.

Claim 25. There is an induced path P (vi, vj) between vi and vj outside H for

some {i, j} ⊆ {1, 2, 3}.

Proof. Note that |{v1, v2, v3} ∩ V≥3(G
′)| ≥ 2. By symmetry, v1, v2 have neigh-

bors u1, u2 outside V (H) with |E(u1, H)| = |E(u2, H)| = 1. Then u1, u2 have
neighbors u′1, u

′
2 outside V (H)∪{u1, u2} with NG′{u′1, u

′
2}⊆{t1, t2}. In addition,
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|NG′(u′i) ∩ {t1, t2}| ≤ 1; for otherwise G′[V (H) ∪ {ui, u
′
i}] is collapsible for i ∈

{1, 2}. Then either u′1u1v1t1(t2)v2u2u
′
2 (if NG′(u′1) ∪ NG′(u′2) = {t2}({t1})) or

u1u
′
1t1v3t2u

′
2u2 (if NG′(u′1)∪NG′(u′2) = {t1, t2} and {u′1t1, u

′
2t2} ⊆ E(G′)) would

be an induced P7 in G′, a contradiction.

By Claim 25, we may choose a longest induced path P (v1, v2) satisfying
|E(V (P (v1, v2)), V (H))| = 2. Then 3 ≤ |E(P (v1, v2))| ≤ 4 since G′ is P7-free.

Suppose firstly that P (v1, v2) = v1u1u2v2. Note that {u1, u2} ∩ V≥3(G
′) 6= ∅.

By symmetry, assume that u2 has a neighbor u′2 outside V (H) ∪ {u1, u2}. Note
that there are two C-subpartitions ({t1, t2, v3}, {v1, v2, u1, u2}) and ({t1, t2, v1, u2},
{v2, v3, u1}). Then E(u′2, {t1, t2, v2, v3}) = ∅ since G′[V (H) ∪ {u1, u2, u

′
2}] is not

collapsible and by Lemma 8. In addition, u′2u1 /∈ E(G), since otherwise, either
u′2v1 ∈ E(G′), G′[{v1, v2, u1, u2, u

′
2}] is collapsible and |NG′({v1, v2, u1, u2, u

′
2})| ≥

3 or u′2v1 /∈ E(G′), contracting the construction of G′. We then claim that
u′2v1 /∈ E(G′). Suppose otherwise. Note that {u1, u

′
2} ∩ V≥3(G

′) 6= ∅. By sym-
metry, assume that u1 has a neighbor u′1 outside V (H) ∪ {u1, u2, u

′
2}. Then

E(u′1, {v1, u2}) = ∅. Since G′[V (H)∪{u1, u2, u
′
1, u

′
2}] is not collapsible, E(u′1, {t1,

t2, v2, v3, u
′
2}) = ∅. Thus u′1 has a neighbor u′′1 outside V (H) ∪ {u1, u2, u

′
1, u

′
2}.

By the choice of P (v1, v2), E(u′′1, {v2, v3}) = ∅. Since G′[V (H)∪ {u′′1}] is not col-
lapsible, {u′′1t1, u

′′
1t2} 6⊆ E(G′). Assume that u′′1t1 /∈ E(G′). Then u′′1u2 /∈ E(G′)

since G′[V (H) ∪ {u1, u
′
1, u2, u

′
2, u

′′
1}] is not collapsible, and hence u′′1u

′
1u1u2v2t1v3

would be an induced P7 in G′, a contradiction.
Then u′2 has a neighbor u′′2 outside V (H) ∪ {u1, u2, u

′
2}. By the choice of

P (v1, v2), E(u′′2, {v1, v2, u2, u
′
2}) = ∅. Since G′[V (H) ∪ {u′′2}] is not collapsible,

{u′′2t1, u
′′
2t2} 6⊆ E(G′). Assume that u′′2t1 /∈ E(G′). Then u′′2u1 ∈ E(G′) since

G′[{u′′2, u
′
2, u2, u1, v1, t1, v3}] ≇ P7. Note that {u′2, u

′′
2} ∩ V≥3(G

′) 6= ∅. By sym-
metry, assume that u′′2 has a neighbor u′′′2 outside V (H) ∪ {u1, u2, u

′
2, u

′′
2}. Then

E(u′′′2 , V (H) ∪ {u1, u2, u
′
2, u

′′
2}) = ∅ and u′′′2 u

′′
2u

′
2u2v2t1v1 would be an induced P7

in G′, a contradiction.
It remains to consider the case when |E(P (v1, v2))| = 4. Assume that

P (v1, v2) = v1u1uu2v2. Note that {u1, u2} ∩ V≥3(G
′) 6= ∅. By symmetry, assume

that u2 has a neighbor u
′
2 outside V (H)∪{u1, u2}. Then E(u′2, {v2, u}) = ∅. Since

G′[V (H) ∪ {u′2}] is not collapsible, {u′2t1, u
′
2t2} 6⊆ E(G′). Assume that u′2t1 /∈

E(G′). Then {u′2v1, u
′
2v3, u

′
2u1} ∩ E(G′) 6= ∅ since G′[{u′2, u2, u, u1, v1, t1, v3|] ≇

P7. We claim that u′2v1 /∈ E(G′). Suppose otherwise. If v3 has a neighbor
u3 outside V (H) ∪ {u1, u2, u, u

′
2}, then |E(u3, V (H) ∪ {u1, u2, u, u

′
2})| = 1 and

then u3v3t2v1u1uu2 would be an induced P7 in G′, a contradiction. Hence
dG′(v3) = 2. Then u has a neighbor u′ outside V (H) ∪ {u1, u2, u, u

′
2} such

that E(u′, {t1, t2, v2, v3, u1, u2, u}) = ∅. Since G′[{u′, u, u2, u
′
2, v1, t1, v3}] ≇ P7,

u′v1 ∈ E(G′). Then u′ has a neighbor u′′ outside V (H)∪{u1, u2, u, u
′} such that

E(u′′, V (H) ∪ {u2, u}) = ∅ and u′′u′uu2v2t1v3 would be an induced P7 in G′, a
contradiction. We then claim that u′2v3 /∈ E(G′). Suppose otherwise. Note that
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{u1, u
′
2} ∩ V≥3(G

′) 6= ∅. If u′2 has a neighbor u′′2 outside V (H) ∪ {u1, u2, u, u
′
2},

then E(u′′2, V (H) ∪ {u, u2}) = ∅ since G′[V (H) ∪ {u, u2, u
′′
2}] is not collapsible,

and hence either u′′2u
′
2u2uu1v1t1 (u

′′
2u1 /∈ E(G′)) or u′′2u1uu2v2t1v3 (u

′′
2u1 ∈ E(G′))

would be an induced P7 in G′, a contradiction. Then dG′(u′2) = 2 and u1 has a
neighbor u′1 outside V (H) ∪ {u1, u2, u, u

′
2} such that E(u′1, {t1, t2, v1, v2, u}) = ∅

and {u′1v3, u
′
1u

′
2} 6⊆ E(G′) since G′[V (H) ∪ {u1, u2, u, u

′
1, u

′
2}] is not collapsi-

ble. Then u′1u2 ∈ E(G′); for otherwise, either u′1u1uu2v2t1v3 or u′1u1v1t1v2u2u
′
2

would be an induced P7 in G′, a contradiction. Note that u has a neighbor u′

outside V (H)∪ {u1, u2, u
′
1, u

′
2} such that E(u′, V (H)∪ {u1, u2, u

′
1, u

′
2}) = ∅ since

G′[V (H) ∪ {u, u1, u2, u
′, u′1, u

′
2}] is not collapsible. Then u′uu2u

′
2v3t1v1 would be

an induced P7 in G′, a contradiction.

Then u′2u1 ∈ E(G′), {u, u′2}∩V≥3(G
′) 6= ∅. By symmetry, assume that u has a

neighbor u′ outside V (H)∪{u1, u2, u
′
2, u}. Then |E(u′, V (H)∪{u1, u2, u

′
2, u})| = 1

and u′ has a neighbor u′′ outside V (H) ∪ {u1, u2, u
′
2, u, u

′}. Since G′[V (H) ∪
{u1, u2, u, u

′
2, u

′′}] is not collapsible, {u′′t1, u
′′t2} 6⊆ E(G′) and {u′′u1, u

′′u2} 6⊆
E(G′). By symmetry, assume that {u′′t1, u

′′u1} ∩ E(G′) = ∅. Then u′′u /∈
E(G′). Since G′[{u′′, u′, u, u1, v1, t1, v2}] ≇ P7 and G′[{u′′, u′, u, u1, v1, t1, v3}] ≇
P7, u′′v1 ∈ E(G′). However, u2uu

′u′′v1t1v3 would be an induced P7 in G′, a
contradiction.

Case 2. H ∼= F2. Note that {v3, v4} ∩ V≥3(G
′) 6= ∅. By symmetry, assume

that v4 has a neighbor u4 outside V (H). By the choice of H, u4v3 /∈ E(G′).
Since there is a C-subpartition ({t1, t2, v1, v2}, {v3, v4}), E(u4, {t1, t2, v1, v2}) = ∅
by Lemma 8. This implies |E(u4, H)| = 1 and then NG′(u4) \ V (H) 6= ∅.

Claim 26. u4 has a neighbor outside V (H) that is adjacent to exactly one of

{v1, v2}.

Proof. By contradiction, assume that {u′4v1, u
′
4v2} ∩ E(G′) = ∅ for any u′4 ∈

NG′(u4)\V (H). Since {v1, v2}∩V≥3(G
′) 6= ∅, by symmetry, assume that v2 has a

neighbor u2 outside V (H)∪{u4, u
′
4}. By the choice ofH, E(u2, {t2, v1, v3, v4, u}) =

∅ and u′v4 /∈ E(G′). SinceG′[V (H)∪{u2, u4, u
′
4}] is not collapsible, {u

′
4t1, u

′
4u2} 6⊆

E(G′) and {u′4t1, u
′
4v3} 6⊆ E(G′). Then u2t1 ∈ E(G′); for otherwise, exactly one

of u′4u4v4t1v1v2u2 (if {u2u
′
4, u

′
4t1}∩E(G′) = ∅), v2u2u

′
4u4v4t1v3 (if u2u

′
4 ∈ E(G′))

and u2v2t2v3t1u
′
4u4 (if u′4t1 ∈ E(G′)) would be an induced P7 in G′, a contradic-

tion. Since {v1, u2} ∩ V≥3(G
′) 6= ∅, by symmetry, assume that v1 has a neighbor

u1 outside V (H) ∪ {u2, u4, u
′
4}. By symmetry, u1t2 ∈ E(G′). Then there is

a C-subpartition (X1, X2) = ({t1, t2, v1, v3, v4}, {u1, v2}) with u2 ∈ NG′(X1) ∩
NG′(X2), and then G′[V (H) ∪ {u1, u2}] is collapsible, a contradiction.

By symmetry, assume that u′4v2 ∈ E(G′) for some u′4 ∈ NG′(u4)\V (H).
Then dG′(v3) = 2. Suppose otherwise. Assume that v3 has a neighbor u3 outside
V (H) ∪ {u4, u

′
4}. Since there is a C-subpartition ({t1, t2, v1, v2, u4}, {v3, v4, u

′
4}),



Forbidden Subgraphs for Collapsible and Supereulerian Graphs 433

E(u3, {t1, t2, v1, v2, u4}) = ∅. Then u3v4 /∈ E(G′). Since G′[{u3, v3, t1, v1, v2, u
′
4,

u4}] ≇ P7, u3u
′
4 ∈ E(G′). Note that {u3, u4} ∩ V≥3(G

′) 6= ∅. By symmetry, as-
sume that u3 has a neighbor u′3 outside V (H)∪{u3, u4, u

′
4}. Then |E(u′3, V (H)∪

{u3, u4, u
′
4})| = 1 and u′3u3u

′
4v2v1t1v4 would be an induced P7 in G′, a contra-

diction. Hence d(u4) ≥ 3 and u4 has a neighbor u′′4 outside V (H) ∪ {u4, u
′
4}

with E(u′′4, {u
′
4, v3, v4}) = ∅. Then u′′4t1 /∈ E(G′). Suppose otherwise. Then

E(u′, {t1, t2, v1, v2, u4, u
′
4}) = ∅ for u′ ∈ NG′(u′′4) since there is a C-subpartition

({t1, t2, v1, v2, u4, u
′
4}, {v3, v4, u

′′
4}). SinceG

′[{u′, u′′4, u4, u
′
4, v2, t2, v3}] ≇ P7, u

′v3 ∈
E(G′). However, there is a C-subpartition (X1, X2) = ({t1, t2, v1, v2, u

′}, {v3, v4,
u4, u

′′
4}) with u′4 ∈ NG′(X1) ∩ NG′(X2), and then G′[V (H) ∪ {uu, u

′
4, u

′′
4, u

′}]
is collapsible, a contradiction. Since G′[V (H) ∪ {u4, u

′
4, u

′′
4}] is not collapsible,

{u′′4v1, u
′′
4t2} 6⊆ E(G′). Then u′′4v2 ∈ E(G′), since otherwise, either u′′4u4u

′
4v2v1t1v3

(if u′′4v1 /∈ E(G′)) or u′′4u4u
′
4v2t2v3t1 (if u′′4t2 /∈ E(G′)) would be an induced P7 in

G′, a contradiction. Note that G′[{v2, u4, t2, v4, u
′
4, u

′′
4}]

∼= F2, by symmetry, u′′4
has a neighbor w and w has two neighbors w1, w2 such that {w1v4, w2v4} ⊆ E(G′).
Then ww1v4u4u

′
4v2v1 would be an induced P7 in G′, a contradiction.

Case 3. H ∼= F3.

Claim 27. Either v1 and v4 or v2 and v3 (or both) have a common neighbor.

Proof. Note that |{v1, v2, v3, v4} ∩ V≥3(G
′)| ≥ 3. By contradiction, without loss

of generality, assume that v1, v4 have neighbors u1, u4 outside V (H), respectively.
Then E({u1, u4}, {t1, t2, v1, v4, v5}) = ∅. Since G′[{u1, v1, t1, v5, t2, v4, u4}] ≇

P7, u1u4 ∈ E(G′). If v5 has a neighbor u5 outside V (H) ∪ {u1, u4}, then
|E(u5, H)| = 1. Since G′[V (H) ∪ {u1, u4, u5}] is not collapsible, {u4u5, u1u5} 6⊆
E(G′), {u1u5, u1v3} 6⊆ E(G′) and {u4u5, u4v2} 6⊆ E(G′). Then exactly one of
u5v5t1u1u4v4t2 (if {u1u5, u4u5} ∩ E(G′) = ∅), u5u1v1v2t2v4v3 (if u1u5 ∈ E(G′))
and u5u4v4t2v2v1t1 (if u1u4 ∈ E(G′)) would be an induced P7 in G′, a contra-
diction. Hence dG(v5) = 2. Then at least one of {v2, v3} has a neighbor outside
V (H) ∪ {u1, u4}; for otherwise, {u1v3, u4v2} ⊆ E(G′) and G′[V (H) ∪ {u1, u4}]
is collapsible, a contradiction. By symmetry, let u3 be a neighbor of v3 outside
V (H) ∪ {u1, u4}. By symmetry, E(u3, {t1, t2, v2, v4, v5}) = ∅. Since G′[V (H) ∪
{u1, u3, u4}] is not collapsible, {u3u1, u3v1} 6⊆ E(G′) and {u3v1, u3u4} 6⊆ E(G′).
Then exactly one of u3v3v4t2v2v1u1 (if {u3u1, u3v1}∩E(G′) = ∅), u3u1u4v4t2v5t1
(if u3u1 ∈ E(G′)) and u3v1u1u4v4t2v5 (if u3v1 ∈ E(G′)) would be an induced P7

in G′, a contradiction.

Without loss of generality, let u1,4 be a common neighbor of v1, v4. Since
G′[{t1, t2, v1, v2, v3, v4, u1,4}] ∼= F3, either v2 and v3 or v4 and u1,4 (or both)
have a common neighbor by Claim 29. By symmetry, let u2,3 be a common
neighbor of v2, v3. Furthermore, we claim that two of {v5, u1,4, u2,3} have a com-
mon neighbor. Suppose otherwise. By symmetry, assume that u1,4, u2,3 have
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neighbors u′1,4, u
′
2,3 outside V (H) ∪ {u1,4, u2,3}, respectively. By the choice of H,

E({u′1,4, u
′
2,3}, V (H)) = ∅. Then either u′2,3u2,3v3t1v1u1,4u

′
1,4 (if u

′
1,4u

′
2,3 /∈ E(G′))

or u2,3u
′
2,3u

′
1,4u1,4v4t2v5 (if u′1,4u

′
2,3 ∈ E(G′)) would be an induced P7 in G′,

a contradiction. By symmetry, let u′ be a common neighbor of {u1,4, u2,3}.
Then u′v5 ∈ E(G′) since G′[{t1, v5, t2, v4, u1,4, u

′, u2,3}] ≇ P7. Note that H̃ =
G′[V (H)∪{u1,4, u

′, u2,3}] ∼= P (10) and each vertex of H̃ is in V (G). Furthermore,
there is no other vertex outside V (H̃). Suppose otherwise. Since κ′(G′) ≥ 2, there
is an induced path P whose internal vertices are all not in V (H̃), connecting two
vertices of H̃. Then either|E(P )| ≥ 3 and it would produce an induced P7 in G′

or |E(P )| ≤ 2 and G′[V (H̃) ∪ V (P )] would be collapsible, a contradiction. Thus
G = G′ ∼= P (10).

Corollary 28. If 2-connected P7-free graph G other than P (10) satisfies that

G[V2(G)] is a path, then G is supereulerian.

Proof. Let G∗ = G/V2(G). Then G∗ is 2-connected, P7-free with |V2(G
∗)| ≤ 1

and G is supereulerian if and only if G∗ is supereulerian. By Theorem 20, G∗

is supereulerian or isomorphic to P (10). If G∗ ∼= P (10), then either G has an
induced P7 (if V2(G) 6= ∅) or G = G∗ = P (10) (if V2(G) = ∅), a contradiction.
Thus G∗ is supereulerian and then G is supereulerian.

Proof of Theorem 3. By contradiction, let G be a 2-edge-connected nonsuper-
eulerian graph with δ(G) ≥ 3.

(1) Then we will obtain an induced subgraph of G isomorphic to any one in
{N2,2,4, B2,6, B3,4, Z8} when G is T2,2,1-free, contradicting that G is H-free. By
Lemma 18, G has an induced W ∗

i0
-subgraph H satisfy the following property.

Property P: the reduction of H̄ is not a cycle C or C+ for any H̄ with H ⊆ H̄.

Claim 29. Every subgraph L of G isomorphic to one of {θ(1, 1, 1), θ(2, 1, 1)} is

in a collapsible subgraph.

Proof. Suppose that L = θ(t1, t2, v1, v2, v3). For i ∈ {1, 2, 3}, let ui ∈ NG(vi)\
V (L). If |E(ui, H)| ≥ 2, note that there is a C-subpartition (X1, X2) = ({t1, t2,
vj}, {vi, vk}) with ui ∈ NG(X1) ∩ NG(X2) for any j 6= k ∈ {1, 2, 3}\{i}, then
G[V (L) ∪ {ui}] is collapsible by Lemma 8; we are done. In the case when
|E(ui, H)| = 1, u1 6= u2 6= u3. Then {u1u2, u1u3, u2u3} ⊆ E(G) since G[{t1, vi, ui,
vj , uj , vk}] ≇ T2,2,1. Therefore, there is a C-subpartition (X1, X2) = ({t1, t2, v1},
{v2, v3, u2, u3}) with u1 ∈ NG(X1) ∩NG(X2), then G[V (L) ∪ {u1, u2, u3}] is col-
lapsible by Lemma 8.

Suppose that L = θ(t1, t2, v1v2, v3, v4) and u3 ∈ NG(v3)\V (L). Note that
there is a C-subpartition ({t1, t2, v1, v2}, {v3, v4}). If E(u3, {t1, t2, v1, v2}) 6= ∅,
then G[V (L) ∪ {u3}] is collapsible; we are done. If not, then u3v4 ∈ E(G) since
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G[{t1, v1, v2, v3, v4, u3}] ≇ T2,2,1 and then G[{t1, t2, v3, v4, u3}] ∼= θ(1, 1, 1) is in a
collapsible subgraph L′ by above discussion. Hence G[V (L)∪ {u3}] is collapsible
since G[V (L′) ∪ {v1, v2}]/L

′ is isomorphic to one of {K1, C2, C3}.

Claim 30. H is not isomorphic to θ(i, j, k) for any i ≥ j ≥ k ≥ 1.

Proof. By contradiction, then j = k = 1 and assume that H = θ(t1, t2, x1 · · ·xi,
y1, z1) since G is T2,2,1-free. By Property P, t1, t2 are not in a collapsible sub-
graph of G. By Claim 29, i ≥ 3, NG(y1)∩NG(z1) = ∅ and E(NG(y1), NG(z1)) =
∅. Note that z1 has a neighbor z′1 outside V (H) with E(z′1, {t1, t2, y1}) = ∅.
Since G[{t1, t2, x1, xi, z1, z

′
1}] ≇ T2,2,1, E(z′1, {x1, xi}) 6= ∅. By symmetry, as-

sume that z′1x1 ∈ E(G). Then z′1x2 /∈ E(G) since G[{t1, t2, x1, x2, y1, z1, z
′
1}]

is not collapsible. Since G[{x1, x2, x3, t1, y1, z
′
1}] ≇ T2,2,1, z′1x3 ∈ E(G). By

symmetry, z′1xl ∈ E(G) and z′1xl+1 /∈ E(G) for l ∈ {1, 3, . . . }. Then either
G[{z′1, x1, t1, x3, x5, x6}]

∼= T2,2,1 (if i ≥ 6) or G[V (H) ∪ {z′1}] is collapsible (if
i ≤ 5) by Lemma 8 since there is a C-subpartition (X1, X2) = ({x1, y1, z1}, {t1, t2,
x3, . . . , xi}) with x2 ∈ NG(X1) ∩NG(X2), a contradiction.

Now, we use θ′(i, j, k) = θ′(t0, xyzx, x1 · · ·xi, y1 · · · yj , zi · · · zk) to denote the
graph obtained from the complete graph K4 with the vertex set {t0, x, y, z} by
replacing the edges t0x, t0y, t0z by the paths t0x1 · · ·xix, t0y1 · · · yjy, t0z1 · · · zkz,
respectively

Claim 31. H is not isomorphic to θ′(i, j, k) for any i ≥ j ≥ k ≥ 1.

Proof. By contradiction, then H = θ′(t0, xyzx, x1, y1, z1) since G is T2,2,1-free.
Note that H/xyzx ∼= θ(1, 1, 1), |E(x′1, H)| = 1 for x′1 ∈ NG(x1)\V (H) since
G[V (H) ∪ {x′1}] is not collapsible. Then G[{t0, x1, x

′
1, y1, y0, z1}]

∼= T2,2,1, a con-
tradiction.

Claim 32. i0 ≥ 3.

Proof. By contradiction, assume that i0 = 2. By Theorem 16 and Claims 30,
31, H = P (i, j, k) = P (xyz, x′y′z′, x1 · · ·xi, y1 · · · yj , z1 · · · zk) which is obtained
from two vertex-disjoint triangles xyzx and x′y′z′x′ by adding three vertex-
disjoint paths xx1 · · ·xix

′, yy1 · · · yjy
′ and zz1 · · · zkz

′ for i ≥ j ≥ k ≥ 1. Then
k ≥ 2; for otherwise, z1 has a neighbor z′1 outside V (H) with |E(z′1, H)| =
1 since G[{x, y, z, x′, y′, z′, z1, z

′
1}] is not collapsible by Property P, and hence

G[{x, z, x′, z′, z1, z
′
1}]

∼= T2,2,1, a contradiction. Furthermore, any one of {N2,2,4,
B2,6, B3,4, Z8} is an induced subgraph of H if j ≥ 4 or i ≥ 4 and j = 3 or
i ≥ 5 and j = 2 and we are done. It remains to consider the case when
H ∈ {P (2, 2, 2), P (3, 2, 2), P (3, 3, 2), P (4, 2, 2), P (3, 3, 3)}.

First assume that H ∈ {P (2, 2, 2), P (3, 2, 2), P (3, 3, 2), P (4, 2, 2)}. If there
are two vertices z′i ∈ NG(zi)\V (H) for i ∈ {1, 2} with {z′1z2, z

′
2z1} ∩ E(G) = ∅,
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then {z′1z, z
′
2z} 6⊆ E(G), {z′1z

′, z′2z
′} 6⊆ E(G) and {z′1z, z

′
2z

′} 6⊆ E(G) by Prop-
erty P. Furthermore, {z′1z

′, z′2z} ⊆ E(G) since G[{z1, z, x, z2, z
′}] ≇ T2,2,1 and

G[{z2, z
′, x′, z1, z, z

′
2}] ≇ T2,2,1. Then z′′z2 ∈ E(G) for any z′′ ∈ NG(z

′
1) since

G[{z′, z2, z
′
2, z

′
1, z

′′, x′}] ≇ T2,2,1 and G[{x, y, z, z1, z2, x
′, y′, z′, z′1, z

′
2, z

′′}] is not
collapsible and hence G[{z2, z

′, x′, z1, z, z
′′}] ∼= T2,2,1, a contradiction. This im-

plies that z1, z2 have at least one common neighbor z0 outside V (H). Since
G[V (H)∪{z0}] is not collapsible, |E(z0, H)| = 2. Hence any of {N2,2,4, B2,6, B3,4,
Z8} is an induced subgraph of G[V (H) ∪ {z0}], a contradiction.

Thus H = P (3, 3, 3). Note that any of {N2,2,4, B2,6, B3,4} is an induced
subgraph of H, it suffices to obtain an induced subgraph of G isomorphic to
Z8. We first claim that at least one pair of {x1, x3}, {y1, y3}, {z1, z3} has at
least one common neighbour. Suppose otherwise. Let x′i, y

′
i, z

′
i be the neighbours

of xi, yi, zi outside H for i ∈ {1, 3}, respectively. Then {z′1z3, z
′
3z1} ∩ E(G) =

∅. Since G[{z1, z, x, z2, z3, z
′
1}] ≇ T2,2,1 and G[{z3, z

′, x′, z2, z1, z
′
3}] ≇ T2,2,1,

E(z′1, {z2, z, x}) 6= ∅ and E(z′3, {z2, z
′, x′}) 6= ∅. By symmetry, E(x′1, {x2, x, y}) 6=

∅, E(x′3, {x2, x
′, y′}) 6= ∅, E(y′1, {y2, y, z}) 6= ∅ and E(y′3, {y2, y

′, z′}) 6= ∅. Note
θ(1, 1, 1) ⊆ G[V (H) ∪ {x′1, x

′
3, y

′
1, y

′
3, z

′
1, z

′
3}]/(xyzx, x

′y′z′x′). Then |E(x′1, H)| =
|E(x′3, H)| = |E(y′1, H)| = |E(y′3, H)| = |E(z′1, H)| = |E(z′3, H)| = 1 and {x′1y,
x′1z} ∩ E(G) = ∅ since G is T2,2,1-free. Hence E(x′1, {x2, x}) 6= ∅ and there is
an induced subgraph isomorphic to Z8, a contradiction. Without loss of gen-
erality, we may assume that z1, z3 has a common neighbour z13. By Property
P, E(z13, {x, y, z, x

′, y′, z′}) = ∅. Then E(z13, V (H)\{z2}) = ∅ since G is T2,2,1-
free. If z13z2 /∈ E(G), then there is a vertex z′13 ∈ NG(Z13)\{z1, z3} such that
E(z′13, {z1, z3, zz

′}) 6= ∅ since G[z′13, z13, z1, z3, z, z
′] ≇ T2,2,1. By Property P,

|E(z′13, {x, y, z, z1})| ≤ 1. Then z′13z /∈ E(G), since otherwise, E(z′13, {x1, z2} = ∅
by Property P and G[{z, x, x1, z1, z2, z

′
13}]

∼= T2,2,1. By symmetry, z′13z
′ /∈ E(G).

Then E(z′13, {z1, z3} 6= ∅. By Property P, E(z′13, {x1, y1, x3, y3}) = ∅ and then
E(z′13, {x2, y2}) = ∅, and hence there is an induced subgraph isomorphic to
Z8, a contradiction. This implies that z13z2 ∈ E(G). By symmetry, we can
prove that x1, x2, x3 have a common neighbor x13 and y1, y2, y3 have a common
neighbor y13. Hence either there is an induced subgraph isomorphic to Z8 or
G[V (H) ∪ {x13, y13, z13}] is collapsible, a contradiction.

Then W ∗
i0

has a center vertex v and spoke-vertices V3(W
∗
i0
) ∪ V2(W

∗
i0
) =

{v1, . . . , vi0} ∪ {v′1, . . . , v
′
i0
} with i0 ≥ 3. If H[NH [Xv]] has an induced Ni,j,k

for some i, j, k, then H[NH [Xvt ]] has an induced Nit,jt,kt for some it, jt, kt and
t ∈ {1, . . . , i0} since G is T2,2,1-free. Therefore, any of {N2,2,4, B2,6, B3,4, Z8} is a
subgraph of G, a contradiction. Then H[NH [Xv]] has an induced Ti,j,k for some
i, j, k by Theorem 16. Furthermore, H[NH [Xvt ]] has an induced Tit,jt,kt for some
integers it, jt, kt and t ∈ {1, . . . , i0} since G is T2,2,1-free, which means H is iso-
morphic to the subdivision of W ∗

i0
. Since G is T2,2,1-free, H ∈ {F9, F10} depicted

in Figure 2. For H ∼= F10, as our discussion in Theorem 20, vi has a neighbor ui
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outside V (H) with |E(ui, H)| = 1 for i ∈ {1, 2, 3}. Furthermore, at least two of
{u1, u2, u3} are nonadjacent in G since G[V (H) ∪ {u1, u2, u3}] is not collapsible.
By symmetry, assume that u1u2 /∈ E(G). Thus G[{t1, v1, v2, u1, u2, t}] ∼= T2,2,1,
a contradiction. For H ∼= F9, we have that G[{t1, v1, v4, v2, u2, t}] ∼= T2,2,1 for
u2 ∈ NG(v2)\V (H), a contradiction. This completes the proof of (1).

If G satisfies (2) or (3), especially G is P7-free, then G is supereulerian or
P (10) if κ(G) = 2 by Theorem 20, a contradiction. Then assume that κ(G) = 1.
By Corollary 28, there is a block B0 of G and an induced path P (v1, v2) ⊆ B0

with V2(B0) ∩ V (P (v1, v2)) = {v1, v2} and |E(P (v1, v2))| ≥ 2. Note that v1, v2
are cut-vertices, there are two blocks B1, B2 such that V (B1) ∩ V (B0) = {v1}
and V (B2) ∩ V (B0) = {v2}.

(2) Then v1, v2 are not in collapsible subgraphs of G. Suppose otherwise.
Replace G by the graph G∗ obtained by adding vertex set {xi, yi} and edge
set Xi = {vixi, viyi, uixi, uiyi, xiyi} for ui ∈ NB0

(vi) if vi is in a collapsible
subgraph of B0 for i ∈ {1, 2} since G∗ is 2-edge-connected {T2,2,2, P7}-free,
|V≤3(G

∗)| ≤ |V≤3(G)| and G is supereulerian if and only if G∗ is supereule-
rian. Let x1 ∈ NB1

(v1) and x2 ∈ NB2
(v2). Since κ(B0) ≥ 2, there is an induced

cycle C ⊆ B0 with vertices v1, v2. Since G is P7-free, 4 ≤ l(C) ≤ 6. Then
we claim that dC(v1, v2) = 3. Suppose otherwise. Assume that u1u12u2 ⊆ C
and u ∈ NG(u12) with E(u, {v1, v2}) = ∅. Let u1, u2 ∈ NG(u). By symme-
try, {u1v1, u2v2} ⊆ E(G) since G[{u12, v1, x1, v2, x2, uui}] ≇ T2,2,2 for i ∈ {1, 2}.
However G[{x1, v1, u1, u, u2, v2, x2}] ∼= P7, a contradiction. Hence, l(C) = 6 and
assume that C = v1u1u2v2w2w1v1. Then E(w′

1, {u1, u2}) 6= ∅ for w′
1 ∈ NG(w1)

since G is P7-free. Furthermore, |E(w′
1, C)| = 2 since G[V (C) ∪ {w′

1}] is not
collapsible, and w′′

1w2 ∈ E(G) since G[{w1, v1, x1, w2, v2, w
′
1, w

′′
1}] ≇ T2,2,2 for

w′′
1 ∈ NG(w

′
1)\V (C).

Then w′
1u2 ∈ E(G); for otherwise, w′

1u1 ∈ E(G) and |E(w′′
1 , C)| = 1 since

G[V (C)∪{w′
1, w

′′
1}] is not collapsible, and then G[{w′′

1 , w2, v2, u2, u1, v1, x1}] ∼= P7,
a contradiction. Furthermore, w′′

1u2 /∈ E(G) since G[V (C) ∪ {w′
1, w

′′
1}] is not

collapsible and w′′
1u1 ∈ E(G) since G[{w′′

1 , w2, v2, u2, u1, v1, x1}] ≇ P7. Then
G[{x2, v2, w2, w

′′
1 , u1, v1, x1}]

∼= P7, a contradiction.

(3) We will obtain an induced subgraph of G isomorphic to any one in
{M1,M2}. Since G is P6-free, V (Bi) ⊆ NG(vi) for i ∈ {1, 2} and v1, v2 have
at least two common neighbors u1, u2 in B0 with degree 3. Then there is an
induced M1 of G[V (B1) ∪ V (B2) ∪ {u1, u2}].

Furthermore, we claim that u1, u2 have a common neighbor. Suppose oth-
erwise. Let w1 ∈ NG(u1) \ {v1, v2}. Then w1 has two neighbors z1, z2 such that
E({z1, z2}, {v1, v2, u1}) = ∅. In addition, z1z2 /∈ E(G); for otherwise, there is an
induced M2 of G[V (B1)∪V (B2)∪{u1, w1, z1, z2}], a contradiction. Furthermore,
E(u2, {z1, z2}) = ∅; for otherwise, {z1u2, z2u2} ⊆ E(G), and then z1 has a neigh-
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bor z′1 with E(z′1, {v1, v2, u1, u2, w1}) = ∅ and hence it would produce an induced
P6, a contradiction. However u2 has a neighbor w2 such that either z1w1u1v1u2w2

(if z1w2 /∈ E(G)) or w1z1w2u2v1v
′
1 (if z1w2 ∈ E(G)) would be an induced P6 in

G, a contradiction. Let v0 be one common neighbor of u1, u2 other than {v1, v2}.
Then v0 has a neighbor u0 other than {u1, u2} and E(u0, {v1, v2, u1, u2}) = ∅.
Therefore u0 has a neighbor u′0 such that E(u′0, {v1, v2}) = ∅ and {u′0u1, u

′
0u2} 6⊆

E(G) since G[v1, v2, v0, u1, u2, u0, u
′
0] is not collapsible. However there is ei-

ther an induced P6 (if u′0v0 /∈ E(G)) or an induced M2 (if u′0v0 ∈ E(G)) in
G[V (B1) ∪ V (B2) ∪ {u1, v0, u0, u

′
0}], a contradiction.

(4) Suppose that S = x1x2 · · ·xi−1xixi+1 · · ·xlx1 is a closed trail of G with
a fixed orientation such that |V (S)| is maximized and V (G)\V (S) 6= ∅. Let
x+i = xi+1, x

−
i = xi−1, x

h+
i = xi+h and xh−i = xi−h (all subscribes are taken

module by (l). Then there is a vertex v outside S such that v is adjacent to a
vertex x1 of S since G is connected. Since G[{x1, x

+
1 , x

−
1 , v, v

′}] ≇ T2,1,1 for some
v′ ∈ NG(v), {x

+
1 x

−
1 , vx

2+
1 , vx2−1 } ∩ E(G) 6= ∅. We claim that E(v, {x2+1 , x2−1 }) 6=

∅. Suppose otherwise. Then x+1 x
−
1 ∈ E(G). Note that there are two vertices

v′, v′′ in NG(v) with E({v′, v′′}, {x1, x
+
1 , x

−
1 }) = ∅. Since G[{v, x1, x

+
1 , v

′, v′′}] ≇
T2,1,1, v

′v′′ ∈ E(G). Then G[{x1, x
+
1 , x

−
1 , v, v

′, v′′}] ∼= H1, a contradiction. By
symmetry, assume that vx2+1 ∈ E(G). Since [{v, x1, x

−
1 , x

2+
1 , v′}] ≇ T2,1,1 for v

′ ∈
NG(v), vx

2−
1 ∈ E(G). However G[{x1, x

+
1 , x

′, x−1 , v}]
∼= T2,1,1 for x′ ∈ NG(x

+
1 ), a

contradiction. This completes the proof of (4) and the whole theorem.

4. Conclusion

The following theorem here indicates that the forbidden pairs in Theorem 3 except
the pair {P7, T2,2,2} are sharp and it remains to prove 2-edge-connected {R,S}-
free graph G with δ(G) ≥ 3 is supereulerian for {R,S} = {Z5, T2,2,2} or one
of them is Z3 to completely characterize forbidden pairs. Here H2 (H3) is the
graph obtained from H1 by contracting (subdividing) the edge which is not in
any triangle of H1 and H4 is the graph obtained from H1 by adding a pendant
edge to the vertex of a triangle of H1.

Theorem 33. Let R,S be two connected graphs. If every 2-edge-connected
{R,S}-free graph G with order at least 11 and δ(G) ≥ 3 implies that it is supereu-

lerian, then {R,S} � {T2,1,1, H1}, {T2,2,1, N2,2,4}, {T2,2,1, B2,6}, {T2,2,1, B3,4},
{T2,2,1, Z8}, {P6,M1}, {P6,M2}, {T2,2,2, Z5}, {Z3, T1}, {Z3, T2}, {Z3, T3}, {Z3,
T4}, {Z3, T5}, {Z3, T6}, where T1, . . . , T6 are depicted in Figure 3.

Proof. All graphs in Figure 4 are 2-edge-connected nonsupereulerian graphs with
minimum degree at least three. Then each graph contains at least one of R, S
as an induced subgraph. Without loss of generality, assume that G1 contains R
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as an induced subgraph. Then R either is a tree with maximum degree at most
3 or contains a cycle as an induced subgraph. Now we distinguish the following
two cases.

2
T

1
T 5

T
6

T3
T

4
T

Figure 3. Some common induced subgraphs.

Case 1. R is a tree. If ∆(R) = 2, then R is an induced subgraph of P5, a con-
tradiction. If ∆(R) = 3, then |V3(R)| = 1 and R is an induced subgraph of T2,2,2.
Since G6, G7, G8, G9 are K1,3-free, S is an induced subgraph of G6, G7, G8, G9.
Note that G8 is K4-free. Then R is K4-free. Since G7 is both H2-free and
H3-free and G9 is H4-free, any maximal common induced subgraph of G7, G9

contains at most two triangles, and hence it is isomorphic to H1 if it contains
exactly two triangles. Since G6 is B4,4-free and G7 is {N2,2,5, B2,7, B3,5, Z9}-
free, the maximal common induced subgraphs containing exactly one triangle of
G6, G7 are N2,2,4, B2,6, B3,4, Z8. Since the common induced cycle of G7, G8 is
C3 and G7 is P11-free, the maximal common induced subgraph containing no
triangle of G7, G8 is P10. Therefore, S is an induced subgraph of a graph in
{N2,2,4, B2,6, B3,4, Z8, H1}.

On the other hand, since G10 is {H1, T2,2,1}-free, {R,S} � {H1, T2,1,1}.
Since G4 is R-free and T2,2,2-free for R is an induced subgraph of a graph
in {N2,2,4, B2,6, B3,4, Z8}, {R,S} � {N2,2,4, T2,2,1}, {B2,6, T2,2,1}, {B3,4, T2,2,1} or
{Z8, T2,2,1}. Since G4 is {B1,1, Z6, P8}-free, {R,S} � {Z5, T2,2,2}.

Case 2. R is not a tree. Then R contains only a C3 or C4 as an induced
subgraph since G1 is Ck-free for k ≥ 5.

Subcase 2.1. R contains C4 as an induced subgraph. If R contains K2,3 as an
induced subgraph, then G2, G8, G11 are K2,3-free, and G2 is P6-free, which means
S is an induced subgraph of P5, a contradiction. Then R is an induced subgraph
of M1. Note that G8, G5, G11 are C4-free and G5 is P7-free, which means S is an
induced subgraph of P6. Therefore, {R,S} � {M1, P6}.
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Subcase 2.2. R contains Kr (r ≥ 4). Note that G3, G8, G11 are K4-free, G8

is {K1,3, C4}-free and G11 is C3-free. Then R is an induced subgraph of path.
Since G3 is P6-free, S ⊆ P5, a contradiction.

1
G

2
G

3
G

4
G

5
G

6
G

7
G

8
G

9
G

10
G

11
G

12
G 13

G
14

G

nK
nK nK

nK
nK

nK
nK

,m nK
,m nK,m nK

,m nK

nK nKnK nKnKnK

nK

Figure 4. The graphs that are nonsupereulerian.

Subcase 2.3. R is K4-free and C4-free. Then R contains C3 as an induced
subgraph and R is 4C3-free. If R contains 3C3 as an induced subgraph, then R is
an induced subgraph of M2. Since G5, G8, G11 are M2-free, {R,S} � {M2, P6}.

If R contains 2C3 as an induced subgraph, then R is an induced subgraph
of M1. If R is 2C3-free, then R is an induced subgraph of Z3. Note that
G11, G12, G13, G14 are C3-free. Since G11 is Ck-free for k ≥ 5, G13 is C4-free
and ∆(G14) = 3, S is a tree with ∆(S) ≤ 3 and |V3(S)| ≤ 3. Then S is an
induced subgraph of the common induced subgraphs of G11 and G12 which is one
of {T1, . . . , T6}.

Considering the proof idea of Theorem 3(1), we believe the existence of a
connected spanning even subgraph in a 2-edge-connected {Z5, T2,2,2}-free graph
G with δ(G) ≥ 3.



Forbidden Subgraphs for Collapsible and Supereulerian Graphs 441

Conjecture 34. Every 2-edge-connected {Z5, T2,2,2}-free graph G with δ(G) ≥ 3
is supereulerian.
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