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Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

e-mail: sandi.klavzar@fmf.uni-lj.si

and

Gregor Rus

Faculty of Organizational Sciences, University of Maribor, Slovenia

Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

e-mail: gregor.rus4@um.si

Abstract

A vertex subset S of a graph G is a general position set of G if no vertex
of S lies on a geodesic between two other vertices of S. The cardinality
of a largest general position set of G is the general position number (gp-
number) gp(G) of G. The gp-number is determined for some families of
Kneser graphs, in particular for K(n, 2), n ≥ 4, and K(n, 3), n ≥ 9. A
sharp lower bound on the gp-number is proved for Cartesian products of
graphs. The gp-number is also determined for joins of graphs, coronas over
graphs, and line graphs of complete graphs.
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1. Introduction

A general position problem in graph theory is to find a largest set of vertices that
are in a general position. More precisely, if G = (V (G), E(G)) is a graph, then
S ⊆ V (G) is a general position set if for any triple of pairwise different vertices
u, v, w ∈ S we have dG(u, v) 6= dG(u,w) + dG(w, v), where dG is the standard
shortest path distance function in the graph G. A set S is called a gp-set of G if
S has the largest cardinality among the general position sets of G. The general

position number (gp-number for short) gp(G) of G is the cardinality of a gp-set
of G.

This concept was introduced—under the present name—in [14] in part moti-
vated by the Dudeney’s 1917 no-three-in-line problem [5] (see [12, 16, 20] for re-
cent related results) and by a corresponding problem in discrete geometry known
as the general position subset selection problem [7, 19]. Independently geodetic
irredundant sets were earlier introduced in [21], a concept which is equivalent to
the general position sets.

We will use n(G) to denote the order of G. In [21] graphs G with gp(G) ∈
{2, n(G) − 1, n(G)} were classified and some other results presented. Then, in
[14], several general bounds on the gp-number were presented, proved that set of
simplicial vertices of a block graph form its gp-set, and proved that the problem
is NP-complete in general. The gp-number of a large class of subgraphs of the
infinite grid graph and of the infinite diagonal grid has been determined in [15].
In the paper [1] a formula for the gp-number of graphs of diameter 2 was given
which in particular implies that gp(G) of a cograph G can be determined in
polynomial time. Moreover, a formula for the gp-number of the complement of a
bipartite graph was also deduced. The main result of [1] gives a characterization
of general position sets (see Theorem 1.2 below). The general position problem
has also been connected with the so-called strong resolving graphs [11].

We proceed as follows. In the rest of this section further definitions are given,
and known results needed are stated. In Section 2 the gp-number is determined
for some families of Kneser graphs. In particular, if n ≥ 7, then gp(K(n, 2)) =
n− 1 and if n ≥ 9, then gp(K(n, 3)) =

(
n−1
2

)
. In the subsequent section the gp-

number of Cartesian products is bounded from below. The bound is proved to be
sharp on the Cartesian product of two complete graphs. We conclude the paper
with Section 4 in which the gp-number is determined for joins of graphs, coronas
over graphs, and line graphs of complete graphs, where the first two results are
stated as functions of the corresponding invariants of factor graphs.
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For a positive integer n let [n] = {1, . . . , n}. Graphs in this paper are finite,
undirected, and simple. The maximum distance between all pairs of vertices of
G is the diameter, diam(G) of G. A u, v-path of length dG(u, v) is called an u, v-
geodesic. The interval IG(u, v) between vertices u and v of a graph G is the set
of vertices x such that there exists a u, v-geodesic which contains x. A subgraph
H of G is convex if for every u, v ∈ V (H), all the vertices from IG(u, v) belong
to V (H).

The size of a largest complete subgraph of a graph G and the size of its largest
independent set are denoted by ω(G) and α(G), respectively. The complement
of a graph G will be denoted with G and the subgraph of G induced by S ⊆
V (G) with G[S]. Let η(G) denote the maximum order of an induced complete
multipartite subgraph of G. We will use the following result.

Theorem 1.1 [1, Theorem 4.1]. If diam(G) = 2, then gp(G) = max{ω(G), η(G)}.

To complete the introduction, we recall a characterization of general position
sets from [1], for which some preparation is required. If G is a connected graph,
S ⊆ V (G), and P = {S1, . . . , Sp} a partition of S, then P is distance-constant

(named “distance-regular” in [9, p. 331]) if for any i, j ∈ [p], i 6= j, the distance
dG(u, v), where u ∈ Si and v ∈ Sj , is independent of the selection of u and v. This
distance is then the distance dG(Si, Sj) between the parts Si and Sj . A distance-
constant partition P is in-transitive if dG(Si, Sk) 6= dG(Si, Sj) + dG(Sj , Sk) holds
for arbitrary pairwise different i, j, k ∈ [p]. Then we have the following result.

Theorem 1.2 [1, Theorem 3.1]. Let G be a connected graph. Then S ⊆ V (G) is a
general position set if and only if the components of G[S] are complete subgraphs,

the vertices of which form an in-transitive, distance-constant partition of S.

Theorem 1.2 is illustrated in Figure 1 on the Petersen graph P . It is known
(cf. [14]) that gp(P ) = 6, the end-vertices of the red edges form its gp-set. Note
that these six vertices induce three (complete subgraphs) K2, and that the dis-
tance between each pair of these complete subgraphs is 2.

2. Kneser Graphs

If n and k are positive integers with n ≥ k, then the Kneser graph K(n, k) has
as vertices all the k-element subsets of the set [n], vertices being adjacent if the
corresponding sets are disjoint. For more on Kneser graph see [2, 3, 17, 22].

In this section we are interested in the gp-number of Kneser graphs, for which
the following result will be useful.

Theorem 2.1 [22, Theorem 1]. If k ≥ 1 and n ≥ 2k + 1, then diam(K(n, k)) =
⌈(k − 1)/(n− 2k)⌉+ 1.



1202 Ghorbani, Maimani, Momeni, Rahimi Mahid, Klavžar and Rus

Figure 1. A gp-set of the Petersen graph.

Recall also that the celebrated Erdős-Ko-Rado theorem [6] asserts that if
n ≥ 2k, then α(K(n, k)) ≤

(
n−1
k−1

)
, cf. also [13, Theorem 6.4].

In our first result of the section we determine the gp-number of the Kneser
graphs K(n, 2) as follows.

Theorem 2.2. If n ≥ 4, then

gp(K(n, 2)) =

{
6, 4 ≤ n ≤ 6,
n− 1, n ≥ 7.

Proof. Since K(4, 2) = 3K2, clearly we have gp(K(4, 2)) = 6. The Kneser
graph K(5, 2) is the Petersen graph for which it has been proven in [14] that
gp(K(5, 2)) = 6.

We now claim that gp(K(n, 2)) ≤ n−1 for every n ≥ 7, and that gp(K(6, 2))
≤ 6. For this sake let S be an arbitrary general position set of K(n, 2). By
Theorem 1.2 the components of K(n, 2)[S] are complete graphs. We distinguish
the following cases based on the cardinality of a largest component, say H, of
K(n, 2)[S].

Let n(H) ≥ 3, and assume without loss of generality that {1, 2}, {3, 4}, and
{5, 6} are vertices of H. Then an arbitrary vertex x from V (K(n, 2)) \V (H) can
have a non-empty intersection with at most two of the vertices {1, 2}, {3, 4}, and
{5, 6}. This implies that x is adjacent to at least one vertex of H. It follows that
K(n, 2)[S] has only one (complete) component, and consequently |S| ≤

⌊
n
2

⌋
.

Let n(H) = 2. Assume without loss of generality that V (H) = {{1, 2}, {3, 4}}.
Since no other vertex of S is adjacent with the vertices of K2, the other vertices
of S must be 2-subsets of [4]. Hence in this case |S| ≤ 6.

Let n(H) = 1, that is, S is an independent set. Then the Erdős-Ko-Rado
theorem implies that |S| ≤ n− 1.

From the above three cases we conclude that gp(K(6, 2)) ≤ 6, and that
gp(K(n, 2)) ≤ n− 1 holds for every n ≥ 7. It remains to prove that for n ≥ 6 we
can construct large enough general position sets.
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Suppose that n = 6. Then the six 2-subsets of [4] induce three indepen-
dent edges, hence gp(K(6, 2)) ≥ 6. By the above argument we conclude that
gp(K(6, 2)) = 6 because diam(K(6, 2)) = 2.

Let n ≥ 7. Then by the above discussion, gp(K(n, 2)) ≤ n − 1. On the
other hand, the set {{1, 2}, {1, 3}, . . . , {1, n}} is an independent set of K(n, 2)
of cardinality n − 1. Since diam(K(n, 2)) = 2, Theorem 2.1 implies that this
independent set is a general position set, hence we conclude that gp(K(n, 2)) ≥
n− 1.

In summary, if n ≥ 7, then gp(K(n, 2)) = n− 1.

Theorem 2.3. Let n, k ∈ N and n ≥ 3k − 1. If for all t, where 2 ≤ t ≤ k, the
inequality kt

(
n−t
k−t

)
+ t ≤

(
n−1
k−1

)
holds, then

gp(K(n, k)) =

(
n− 1

k − 1

)

.

Proof. Since n ≥ 3k − 1, Theorem 2.1 implies that diam(K(n, k)) = 2.
Let S be the set of all k-subsets of [n] that contain 1. Clearly, |S| =

(
n−1
k−1

)

and S form an independent set of K(n, k). Hence, as diam(K(n, k)) = 2, we infer
that S is a general position set and consequently gp(K(n, k)) ≥

(
n−1
k−1

)
.

Let T be a general position set of K(n, k), and let H be a largest component
of K(n, k)[T ]. By Theorem 1.2 we know that H is a complete subgraph. Let
n(H) = t. If t > k, then every vertex V (K(n, k))\V (H) must have a neighbor in
H. This implies that T is the only component of K(n, k)[T ], but then we clearly
have n(H) ≤

(
n−1
k−1

)
. Hence assume in the rest that t ≤ k.

If t = 1, then K(n, k)[T ] is a disjoint union of K1s and hence |T | ≤
(
n−1
k−1

)
by

the Erdős-Ko-Rado theorem.
Suppose now 2 ≤ t ≤ k. We wish to determine the upper bound on the

number of k-subsets A, such that A ∩B 6= ∅ holds for all B ∈ V (H). Such a set
A must have at least one element from each of the sets B ∈ V (H), and since the

sets B are pairwise disjoint, there are
(
k
1

)t
possibilities to select representatives

from the sets B ∈ V (H) that are at the same time elements of A. The remaining
k − t elements of A are then selected from a set of cardinality n − t. Therefore,
there exist at most

(
k

1

)(
k

1

)

. . .

(
k

1

)

︸ ︷︷ ︸

t-times

(
n− t

k − t

)

= kt
(
n− t

k − t

)

k-sets A, such that A ∩B 6= ∅ for all B ∈ V (H). Hence,

|T | ≤ t+ kt
(
n− t

k − t

)

≤

(
n− 1

k − 1

)

,
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where the second inequality holds by the theorem’s assumption. We conclude
that gp(K(n, k)) =

(
n−1
k−1

)
.

For the Kneser graphs K(n, 3) we have the following result.

Theorem 2.4. If n ≥ 9, then gp(K(n, 3)) =
(
n−1
2

)
.

Proof. Let T be a general position set of K(n, 3). By Theorem 1.2, every compo-
nent of K(n, 3)[T ] is a clique, and let H be a largest such clique. We first prove
that gp(K(n, 3)) ≤

(
n−1
2

)
(for n ≥ 9), for which we distinguish the following

cases.

Case 1. n(H) ≥ 4. Let x be an arbitrary vertex from T \V (H). Since x must
contain a vertex from each of the sets from V (H) and the latter sets are pairwise
disjoint, x would contain at least four elements. Since this is not possible, T
consists of the single clique H. It follows that n(H) ≤ ⌊n/3⌋ ≤

(
n−1
2

)
.

Case 2. n(H) = 3. Let H1, . . . , Hℓ be the components of K(n, 3)[T ] of car-
dinality 3. As the sets (=vertices) from every Hi are pairwise disjoint, we may
without loss of generality assume that H1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. This in
particular implies that n ≥ 9. Then each vertex from every Hi contains elements
from [9]. Suppose now that the pair {1, 2} appears in some vertex y different
from {1, 2, 3}. Then y is adjacent to at least one of the vertices {4, 5, 6} and
{7, 8, 9}. By symmetry it follows that each pair of elements {i, j} ∈

(
[9]
2

)
appears

in at most one vertex from V (H1)∪ · · · ∪ V (Hℓ). Since there are 36 such pairs it
follows that ℓ ≤ 4.

First assume that ℓ = 4. By the argument above, T contains no other vertex
but those in H1, . . . , H4. Then |T | = 12 ≤

(
n−1
2

)
because n ≥ 9. Let next ℓ = 3.

Then at most three vertices can have non-empty intersection with all the vertices
from H1, H2, H3. Again, |T | ≤

(
n−1
2

)
. Suppose next that ℓ = 2. Then each of

the cliques allows 27 further vertices to belong to T . The list of possible vertices
intersects in only 6 vertices that can lie in T besides the vertices from the two H1

and H2. Finally, assume that ℓ = 1. Then again 27 other vertices can belong to
T . Every pair of disjoint vertices from this set of 27 vertices excludes one vertex
that has empty intersection with both sets. Therefore, at most 18 vertices can lie
in T besides the vertices of the unique K3, so at most 21 in total. Since n ≥ 9,
we again conclude that |T | ≤

(
n−1
2

)
.

Case 3. n(H) = 2. We may without loss of generality assume that H =
{{1, 2, 3}, {4, 5, 6}} is a component of K(n, 3)[T ]. Every other vertex of T must
have non-empty intersection with both vertices x = {1, 2, 3} and y = {4, 5, 6}.
The number of 3-subsets of [n] that have exactly one element in common with
each of x and y is equal to

(
3
1

)(
3
1

)
(n − 6). In addition, there exist exactly 18

3-subsets of [n] that have two elements in common with one of x and y (and,
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of course, exactly one element with the other vertex). Hence there are precisely
9(n− 4) vertices of K(n, 3) that have non-empty intersection with both x and y.
If follows that |T | ≤ 2 + 9(n− 4).

To further improve the last inequality, consider arbitrary pairwise different
integers a, b, c ∈ [n] \ [6]. There are exactly 27 subsets of cardinality 3 which
contain one of a, b, and c, and have non-empty intersection with x and y, they
are listed in Table 1.

A B C

1, 4, a 1, 4, b 1, 4, c 1, 5, a 1, 5, b 1, 5, c 1, 6, a 1, 6, b 1, 6, c
2, 5, b 2, 5, c 2, 5, a 2, 6, b 2, 6, c 2, 6, a 2, 4, b 2, 4, c 2, 4, a
3, 6, c 3, 6, a 3, 6, b 3, 4, c 3, 4, a 3, 4, b 3, 5, c 3, 5, a 3, 5, b

Table 1. 3-subsets containg one of a, b, c ∈ [n] \ [6] and having non-empty intersection
with x and y.

Consider the nine sets in part A of Table 1. Since we are in the case n(H) = 2,
from each of the columns of part A, at most two subsets can lie in T . Moreover,
if two subsets of a fixed column of part A lie in T , then at most four subsets of
part A can belong to T . The same conclusion holds for parts B and C of Table 1
which in turn implies that at most 12 subsets from Table 1 can lie in T . Putting
it other way, at least 15 vertices from Table 1 do not lie in T . Since a, b, and c
are arbitrary integers from [n] \ [6], it follows that

|T | ≤ 2 + 9(n− 4)− 15

⌊
n− 6

3

⌋

.

This implies that |T | ≤
(
n−1
2

)
holds for n ≥ 12. Finally, for n ∈ {9, 10, 11} notice

that selecting two sets from part A of Table 1 one can select at most 11 sets from
Table 2.

1, 2, 4 1, 2, 5 1, 2, 6 1, 3, 4 1, 3, 5 1, 3, 6 2, 3, 4 2, 3, 5 2, 3, 6
3, 5, 6 3, 4, 6 3, 4, 5 2, 5, 6 2, 4, 6 2, 4, 5 1, 5, 6 1, 4, 6 1, 4, 5

Table 2. Specific 3-subsets.

Thus |T | ≤ 2+ 9(n− 4)− 15− 7 and we conclude that |T | ≤
(
n−1
2

)
holds also for

n ∈ {9, 10, 11}.

Case 4. n(H) = 1. In this case T is an independent set, hence |T | ≤
(
n−1
2

)

holds by the Erdős-Ko-Rado theorem.

We have thus proved that gp(K(n, 3)) ≤
(
n−1
2

)
holds for every n ≥ 9. On the

other hand, α(K(n, 3)) =
(
n−1
2

)
. By Theorem 2.1, we have diam(K(n, 3)) ≤ 3
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which implies that every independent set of K(n, 3) is a general position set.
Therefore, gp(K(n, 3)) ≥

(
n−1
2

)
.

To conclude the section we add (while preparing the revised version) that
very recently more general developments on the gp-number of Kneser graphs
were reported in [18].

3. Cartesian Products

In this section we prove a general lower bound on the gp-number of Cartesian
product graphs. The bound is sharp as follows from the exact gp-number of the
Cartesian product of two complete graphs.

The Cartesian product G�H of graphs G andH has the vertex set V (G�H)
= V (G) × V (H) and the edge set E(G�H) = {(g, h)(g′, h′) : gg′ ∈ E(G) and
h = h′, or, g = g′ and hh′ ∈ E(H)}. If (g, h) ∈ V (G�H), then the G-layer

Gh through the vertex (g, h) is the subgraph of G�H induced by the vertices
{(g′, h) : g′ ∈ V (G)}. Similarly, the H-layer gH through (g, h) is the subgraph
of G�H induced by the vertices {(g, h′) : h′ ∈ V (H)}. It is well-known that
for given vertices u = (g1, h1) and v = (g2, h2) of G�H we have dG�H(u, v) =
dG(g1, g2) + dH(h1, h2). For more on the Cartesian product see the book [8].

The announced lower bound reads as follows.

Theorem 3.1. If G and H are connected graphs, then

gp(G�H) ≥ gp(G) + gp(H)− 2.

Proof. Let SG ⊆ V (G) and SH ⊆ V (H) be gp-sets of G and H, respectively.
Let g ∈ SG and h ∈ SH . We claim that

S = ((SG × {h}) ∪ ({g} × SH)) \ {(g, h)}

is a general position set in G�H.
Let u, v ∈ S. Suppose first that u and v lie in the layer Gh. Since layers in

Cartesian products are convex, it follows that an arbitrary shortest u, v-path Puv

lies completely in Gh. Since Gh is isomorphic to G, it follows that V (Puv) ∩ S =
{u, v}. Hence (SG×{h})\{(g, h)} is a general position set in G�H. Analogously,
({g} × SH) \ {(g, h)} is a general position set.

Suppose now that u = (g′, h) ∈ Gh, v = (g, h′) ∈ gH, and let Puv be a
shortest u, v-path in G�H. Suppose on the contrary that Puv contains some
vertex w of S different from u and v. We may without loss of generality assume
that w = (g′′, h). Clearly, g′′ 6= g′. Furthermore, since (g, h) /∈ S, we also
have g′′ 6= g. Since the projection P ′ of Puv on Gh is a shortest path between
u = (g′, h) and (g, h), we infer that P ′ passes through the vertex (g′′, h). This in
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turn implies that there exists a shortest g′, g-path in G that contains g′′. This is
a contradiction since g, g′, and g′′ are pairwise different vertices.

We have thus proved that S is a general position set. Since |S| = |SG| +
|SH | − 2 = gp(G) + gp(H)− 2 we are done.

The bound of Theorem 3.1 is sharp as demonstrated by the equality case of
the following result.

Theorem 3.2. If k ≥ 2 and n1, . . . , nk ≥ 2, then

gp(Kn1
� · · · �Knk

) ≥ n1 + · · ·+ nk − k.

Moreover, gp(Kn1
�Kn2

) = n1 + n2 − 2.

Proof. To simplify the notation set G = Kn1
� · · · �Knk

. Let further V (Kn) =
[n], so that V (G) = {(j1, . . . , jk) : ji ∈ [ni], i ∈ [k]}.

For i ∈ [k] set Xi = {(1, . . . , 1, j, 1, . . . , 1) : j ∈ {2, . . . , ni}}, where j is in the
ith coordinate. Clearly, |Xi| = ni − 1. We claim that X =

⋃

i∈[k]Xi is a general
position set of G.

Let u, v, and w be pairwise different vertices of X, and let u ∈ Xp, v ∈ Xq,
and w ∈ Xr. If p = q = r, then u, v, and w are in the same Knp-layer and
thus induce a triangle. So they are in a general position. Suppose next that
p = q 6= r. Then dG(u, v) = 1, dG(u,w) = 2, and dG(v, w) = 2, hence these
three vertices are again in a general position in G. Finally, if p 6= q 6= r, then
dG(u, v) = dG(u,w) = dG(v, w) = 2, and we have the same conclusion. This
proves the claim.

Since X is a general position set and, clearly, |X| =
∑

i∈k |Xi| = n1 + · · · +
nk − k, the lower bound is proved.

Let now k = 2, so that G = Kn1
�Kn2

and V (G) = {(i, j) : i ∈ [n1], j ∈
[n2]}. Since diam(G) = 2, Theorem 1.1 applies. Clearly, ω(G) = max{n1, n2}.

In the rest we are going to prove that η(G) = n1+n2− 2. We will prove this
assertion by induction on n1 + n2, the basic case n1 = n2 = 2 is clear. Note also
that if n2 = 2 and n1 ≥ 3, then the result also holds, that is, η(G) = n1 in this
case.

Let H be a complete multipartite subgraph of G and let X1, . . . , Xk be the
partite sets of H. We first claim that each Xi is a subset of the vertex set of some
layer. If |X1| = 1, there is nothing to prove. Hence let |X1| ≥ 2 and suppose
without loss of generality that (1, 1) ∈ X1. Since X1 is an independent set, we
have ({2, . . . , n1} × {2, . . . , n2}) ∩X1 = ∅. We may further suppose without loss
of generality that X1 contains another vertex from K1

n1
, say (i, 1). Since (i, 1) is

adjacent to all the vertices from {1}×{2, . . . , n2}, we conclude thatX1 ⊆ V (K1
n1
).

This proves the claim, that is, each Xi is a subset of the vertex set of some layer.
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By the claim above we may without loss of generality assume that X1 =
{(1, 1), . . . , (r, 1)}, where r ∈ [n1]. We now distinguish the following cases.

Case 1. r = n1. In this case H consists of a single complete component, that
is, k = 1. Hence n(H) = n1 and since n2 ≥ 2, we infer that n(H) ≤ n1 + n2 − 2.

Case 2. r < n1. In this case none of the vertices from ({1, . . . , r} × {2, . . . ,
n2})∪ ({r+1, . . . , n1}× {1}) lies in H. If follows that X2, . . . , Xk lie in the sub-
graph induced by {r+1, . . . , n1}×{2, . . . , n2}. The latter subgraph is isomorphic
to Kn1−r �Kn2−1.

Case 2.1. n1−r ≥ 2 and n2−1 ≥ 2. In this subcase the induction hypothesis
implies that

η
(
Kn1−r �Kn2−1

)
= (n1 − r) + (n2 − 1)− 2 = n1 + n2 − r − 3.

It follows that

n(H) ≤ (n1 + n2 − r − 3) + r = n1 + n2 − 3.

Case 2.2. n1 − r ≤ 1. In this subcase we have n1 − r = 1 and k = 2. Then
X2 ⊆ {(n1, 2), . . . , (n1, n2)}. Moreover, the set {(1, 1), . . . , (n1 − 1, 1)} ∪ {(n1, 2),
. . . , (n1, n2)} induces a complete bipartite graph of G which is of order (n1−1)+
(n2 − 1) = n1 + n2 − 2.

Case 2.3. n2 − 1 ≤ 1. This means that n2 ≤ 2, and so n2 = 2, the case that
was already considered.

In all the above cases we have thus proved that a complete multipartite
subgraph of G is of order at most n1 + n2 − 2. Moreover, in Case 2.2 we have
also found a complete multipartite subgraph of G of order exactly n1 + n2 − 2.
We can conclude that η(G) = n1 + n2 − 2.

Note that the lower bound of Theorem 3.2 for at least three factors is stronger
than the bound one can deduce by induction from Theorem 3.1. However, as
recently proved in [10] by a probabilistic argument, the bound of Theorem 3.2
becomes very non-sharp as k grows.

4. The gp-Number of Some Graph Operations

In this section we consider the gp-number of joins of graphs, of coronas over
graphs, and of line graphs. For this sake the following concept will be useful.
Complete subgraphs Q and Q′ in a graph G are independent if dG(u, u

′) ≥ 2 for
every u ∈ V (Q) and every u′ ∈ V (Q′). (This concept has been very recently
introduced and applied in [4].) Note that the complete subgraphs from Theorem
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1.2 are independent by definition. Setting ρ(G) to denote the maximum number
of vertices in a union of pairwise independent complete subgraphs of G, we have
the following result.

Theorem 4.1. If diam(G) ∈ {1, 2}, then gp(G) = ρ(G).

Proof. The assertion is clear if diam(G) = 1, that is, if G is a complete graph.

Let G be a graph of diameter 2. Clearly, ρ(G) ≥ ω(G), and ρ(G) ≥ η(G).
Theorem 1.1 thus implies that ρ(G) ≥ gp(G). Conversely, the ρ(G) vertices from
a largest union of pairwise independent cliques form a general position set by
Theorem 1.2. Therefore, gp(G) ≥ ρ(G).

The reason that in Theorem 4.1 gp(G) is expressed only with ρ(G), while in
Theorem 1.1 two invariants are used, is that ρ(G) encapsulates ω(G) while η(G)
does not.

4.1. Joins and coronas

If G and H are disjoint graphs, then the join G + H of G and H is the graph
with the vertex set V (G + H) = V (G) ∪ V (H), and the edge set E(G + H) =
E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)}. If both G and H are complete, so
it is G + H, and hence gp(G + H) = gp(Kn(G) + Kn(H)) = gp(Kn(G)+n(H)) =
n(G +H). Otherwise, that is, if at least one of G and H is not complete, then
diam(G+H) = 2. In this case we have the following.

Proposition 4.2. If G and H are graphs, then

gp(G+H) = max
{
ω(G) + ω(H), η(G), η(H)

}

= max
{
ω(G) + ω(H), ρ(G), ρ(H)

}
.

Proof. Since diam(G+H) = 2, Theorem 1.1 applies. It is straightforward that
ω(G +H) = ω(G) + ω(H), and that η(G +H) = max{η(G), η(H)}. Hence the
first equality follows.

A complete subgraph Q of G +H lies completely in G, or completely in H
or is a join of a complete subgraph of G, and a complete subgraph of H. If Q is
of the latter form, then it is at distance 1 to every other complete subgraph of
G+H. It follows that ρ(G+H) = max{ω(G) + ω(H), ρ(G), ρ(H)}. The second
equality then follows by Theorem 4.1.

Let G and H be graphs where V (G) = {v1, . . . , vn(G)}. The corona G ◦ H
of graphs G and H is obtained from the disjoint union of G, and n(G) disjoint
copies of H, say H1, . . . , Hn(G), where for all i ∈ [n(G)], the vertex vi ∈ V (G) is
adjacent to each vertex of Hi.
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Theorem 4.3. If G is a connected graph with n(G) ≥ 2, and H is a graph, then

gp(G ◦H) = n(G)ρ(H).

Proof. Let V (G) = {v1, . . . , vn(G)}, and let H1, . . . , Hn(G) be the corresponding
copies of H in G ◦ H. Note first that the statement is clear for the corona
K2 ◦K1 = P4. So we may assume in the rest that if n(G) = 2, then n(H) ≥ 2.

Let S be a gp-set of G◦H. Suppose first that S∩V (G) 6= ∅. We may assume
without loss of generality that v1 ∈ S. If there exists a vertex w ∈ S ∩ V (H1),
w 6= v1, then for any vertex x ∈ V (G ◦H) \ (V (H1)∪ {v1}), the vertex v1 lies on
a shortest w, x-path. Consequently, S ⊆ V (H1) ∪ {v1}. Suppose that n(G) = 2.
If x ∈ V (H1) and y ∈ V (H2), then dG◦H(x, y) = 3. It follows that the union of a
general position set of H1 and a general position set of H2 is a general position
set of G ◦ H. But then the union of a gp-set of H1 and a gp-set of H2 has
cardinality bigger than S because gp(H) ≥ 2, and if n(G) ≥ 3, then we get a
similar contradiction. It follows that if v1 ∈ S, then S ∩ V (H1) = ∅. But then
S′ = S ∪ {w} \ {v1}, where w is an arbitrary vertex of H1 is also a gp-set. In
summary, we have proved that we may without loss of generality assume that
S ∩ V (G) = ∅.

So let now S be a gp-set of G ◦ H with S ∩ V (G) = ∅. By Theorem 1.2,
the components of (G ◦H)[S] are independent complete graphs. Let H ′

i be the
subgraph of G◦H induced by the vertices from V (Hi)∪{vi}. Since diam(H ′

i) ≤ 2,
Theorem 4.1 implies that S restricted to Hi has at most ρ(H) vertices. On the
other hand, since independent complete subgraphs of Hi are pairwise at distance
2, they form (in view of Theorem 1.2) a general position set. But then taking such
complete subgraphs in everyHi yields a general position set of order n(G)ρ(H).

4.2. Line graphs of complete graphs

If G is a graph, then the line graph L(G) of G is the graph with V (L(G)) = E(G),
two different vertices of L(G) being adjacent if the corresponding edges share a
vertex in G.

Theorem 4.4. If n ≥ 3, then

gp(L(Kn)) =

{
n, 3 | n,
n− 1, 3 ∤ n.

Proof. Let n ≥ 3 and V (Kn) = [n]. To simplify the notation set Gn = L(Kn).
Since ω(Gn) = n− 1, we have gp(Gn) ≥ n− 1.

We next claim that gp(T (n)) ≤ n. Let S be a gp-set of Gn and let Kn1
, . . . ,

Knk
be the connected components of Gn[S], so that gp(Gn) = |S| = n1+ · · ·+nk.
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A vertex u of Gn corresponds to an edge of Kn, that is, to a pair of vertices {j, j′}
and we may identify u with {j, j′}. Using this convention, for i ∈ [k] set

Xi =
⋃

{j,j′}∈V (Kni
)

{
j, j′

}
.

Since the complete subgraphs Kni
are pairwise independent, it follows that if

i 6= i′, then Xi ∩Xi′ = ∅. Setting xi = |Xi| we infer that xi ≥ ni and hence

(1) gp(Gn) = |S| = n1 + · · ·+ nk ≤ x1 + · · ·+ xk ≤ n ,

and the claim is proved.

If 3 | n, then

S =
{

{3i+ 1, 3i+ 2}, {3i+ 1, 3i+ 3}, {3i+ 2, 3i+ 3} : 0 ≤ i ≤
n

3
− 1

}

is a gp-set of Gn, and hence gp(Gn) = n.

Suppose now that 3 ∤ n. Then at least one ni 6= 3 and for it we have ni < xi.
In view of (1) this means that gp(Gn) < n. As we have already observed that
gp(Gn) ≥ n− 1, the argument is complete.
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