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Abstract

For 0 ≤ α < 1 and a uniform hypergraph G, the α-spectral radius of G is
the largest H-eigenvalue of αD(G)+(1−α)A(G), where D(G) and A(G) are
the diagonal tensor of degrees and the adjacency tensor of G, respectively.
We give upper bounds for the α-spectral radius of a uniform hypergraph,
propose some transformations that increase the α-spectral radius, and de-
termine the unique hypergraphs with maximum α-spectral radius in some
classes of uniform hypergraphs.
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1. Introduction

Let G be a hypergraph on n vertices with vertex set V (G) and edge set E(G). If
|e| = k for each e ∈ E(G), then G is said to be a k-uniform hypergraph. For a
vertex v ∈ V (G), the set of the edges containing v in G is denoted by EG(v), and
the degree of v in G, denoted by dG(v) or dv, is the size of EG(v). We say that
G is regular if all vertices of G have equal degrees. Otherwise, G is irregular.

For u, v ∈ V (G), a walk from u to v in G is defined to be an alternating
sequence of vertices and edges (v0, e1, v1, . . . , vs−1, es, vs) with v0 = u and vs = v
such that edge ei contains vertices vi−1 and vi, and vi−1 6= vi for i = 1, . . . , s. The
value s is the length of this walk. A path is a walk with all vi distinct and all ei
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distinct. A cycle is a walk containing at least two edges, all ei are distinct and all
vi are distinct except v0 = vs. If there is a path from u to v for any u, v ∈ V (G),
then we say that G is connected. A hypertree is a connected hypergraph with no
cycles. For k ≥ 2, the number of vertices of a k-uniform hypertree with m edges
is 1 + (k − 1)m.

The distance between vertices u and v in a connected hypergraph G is the
length of a shortest path from u to v in G. The diameter of connected hypergraph
G is the maximum distance between any two vertices of G.

For positive integers k and n, a tensor T = (Ti1···ik) of order k and dimension
n is a multidimensional array with entries Ti1···ik ∈ C for ij ∈ [n] = {1, . . . , n}
and j ∈ [k], where C is the complex field.

Let M be a tensor of order k ≥ 2 and dimension n, and N a tensor of order
ℓ ≥ 1 and dimension n. The product MN is the tensor of order (k−1)(ℓ−1)+1
and dimension n with entries [22]

(MN )ij1···jk−1
=

∑

i2,...,ik∈[n]

Mii2···ikNi2j1 · · · Nikjk−1
,

with i ∈ [n] and j1, . . . , jk−1 ∈ [n]ℓ−1. Then for a tensor T of order k and dimen-
sion n and an n-dimensional vector x = (x1, . . . , xn)

⊤, T x is an n-dimensional
vector whose i-th entry is

(T x)i =
n
∑

i2,...,ik=1

Tii2···ikxi2 · · ·xik ,

where i ∈ [n]. For some complex λ, if there is a nonzero vector x such that

T x = λ
(

xk−1
1 , . . . , xk−1

n

)⊤
,

then λ is called an eigenvalue of T , and x is called an eigenvector of T correspond-
ing to λ. Moreover, if both λ and x are real, then we call λ an H-eigenvalue and
x an H-eigenvector of T . See [10, 18, 20] for more details. The spectral radius
of T is the largest modulus of its eigenvalues, denoted by ρ(T ).

Let G be a k-uniform hypergraph with vertex set V (G) = {v1, . . . , vn}, where
k ≥ 2. The adjacency tensor of G is defined in [1] as the tensor A(G) of order
k and dimension n whose (i1, . . . , ik)-entry is 1

(k−1)! if {vi1 , . . . , vik} ∈ E(G), and

0 otherwise. The degree tensor of G is the diagonal tensor D(G) of order k
and dimension n with (i, . . . , i)-entry to be the degree of vertex vi ∈ [n]. Then
Q(G) = D(G) + A(G) is the signless Laplacian tensor of G [20]. Motivated by
work of Nikiforov [14] (see also [5, 15]), Lin et al. [11] proposed to study the
convex linear combinations Aα(G) of D(G) and A(G) defined by

Aα(G) = αD(G) + (1− α)A(G),
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where 0 ≤ α < 1. The α-spectral radius of G is the spectral radius of Aα(G),
denoted by ρα(G). Note that ρ0(G) is the spectral radius of G, while 2ρ1/2(G) is
the signless Laplacian spectral radius of G.

For k ≥ 2, let G be a k-uniform hypergraph with V (G) = [n], and x a
n-dimensional column vector. Let xV =

∏

v∈V xv for V ⊆ V (G). Then

x⊤(Aα(G)x) = α
∑

u∈V (G)

dux
k
u + (1− α)k

∑

e∈E(G)

xe,

or equivalently,

x⊤(Aα(G)x) =
∑

e∈E(G)

(

α
∑

u∈e

xku + (1− α)kxe

)

.

For a uniform hypergraph G, bounds for the spectral radius ρ0(G) have been
given in [1, 12, 13, 29], and bounds for the signless Laplacian spectral radius
2ρ1/2(G) may be found in [6, 12, 21]. Recently, Lin et al. [11] gave upper bounds
for α-spectral radius of connected irregular k-uniform hypergraphs, extending
some known bounds for ordinary graphs. Some hypergraph transformations have
been proposed to investigate the change of the 0-spectral radius, and the unique
hypergraphs that maximize or minimize the 0-spectral radius have been deter-
mined among some classes of uniform hypergraphs (especially for hypertrees),
see, e.g., [2, 4, 8, 16, 24, 25, 28, 31].

In this paper, we give upper bounds for the α-spectral radius of a uniform hy-
pergraph, propose some hypergraph transformations that increase the α-spectral
radius, and determine the unique hypergraphs with maximum α-spectral radius
in some classes of uniform hypergraphs such as the class of k-uniform hypercacti
with m edges and r cycles for 0 ≤ r ≤

⌊

m
2

⌋

, and the class of k-uniform hypertrees
with m edges and diameter d ≥ 3.

2. Preliminaries

A tensor T of order k ≥ 2 and dimension n is said to be weakly reducible, if
there is a nonempty proper subset J of [n] such that for i1 ∈ J and ij ∈ [n] \ J
for some j = 2, . . . , k, Ti1···ik = 0. Otherwise, T is weakly irreducible.

For k ≥ 2, an n-dimensional vector x is said to be k-unit if
∑n

i=1 x
k
i = 1.

Lemma 1 [3, 27]. Let T be a nonnegative tensor of order k ≥ 2 and diminsion n.
Then ρ(T ) is an eigenvalue of T and there is a k-unit nonnegative eigenvector

corresponding to ρ(T ). If furthermore T is weakly irreducible, then there is a

unique k-unit positive eigenvector corresponding to ρ(T ).
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IfG is a k-uniform hypergraph with k ≥ 2, thenAα(G) is weakly irreducible if
and only if G is connected (see [17, 20] for the treatment of A0(G) and 2A1/2(G),
respectively). Thus, if G is connected, then by Lemma 1, there is a unique k-unit
positive H-eigenvector x corresponding to ρα(G), which is called the α-Perron
vector of G.

For a nonnegative tensor T of order k ≥ 2 and dimension n, let ri(T ) =
∑n

i2···ik=1 Tii2···ik for i = 1, . . . , n.

Lemma 2 [7, 27]. Let T be a nonnegative tensor of order k ≥ 2 and dimension

n. Then

ρ(T ) ≤ max
1≤i≤n

ri(T )

with equality when T is weakly irreducible if and only if r1(T ) = · · · = rn(T ).

For two tensors M and N of order k ≥ 2 and dimension n, if there is an
n × n nonsingular diagonal matrix U such that N = U−(k−1)MU , then we say
that M and N are diagonal similar.

Lemma 3 [22]. Let M and N be two diagonal similar tensors of order k ≥ 2
and dimension n. Then M and N have the same real eigenvalues.

Let G be a connected k-uniform hypergraph on n vertices, where k ≥ 2. Let
0 ≤ α < 1. For an n-dimensional k-unit nonnegative vector x, by [19, Theorem 2]
(and its proof) and Lemma 1, we have ρα(G) ≥ x⊤(Aα(G)x) with equality if and
only if x is the α-Perron vector of G. If x is the α-Perron vector of G, then for
any v ∈ V (G),

ρα(G)xk−1
v = αdvx

k−1
v + (1− α)

∑

e∈Ev(G)

xe\{v},

which is called the eigenequation of G at v.

For a hypergraph G with ∅ 6= X ⊆ V (G), let G[X] be the subhypergraph
induced by X, i.e., G[X] has vertex set X and edge set {e ⊆ X : e ∈ E(G)}. If
E′ ⊆ E(G), then G−E′ is the hypergraph obtained from G by deleting the edges
in E′. If E′ is set of subsets of V (G) and no element of E′ is an edge of G, then
G+ E′ is the hypergraph obtained from G by adding elements of E′ as edges.

A k-uniform hypertree with m edges is a hyperstar, denoted by Sm,k, if all
edges share a common vertex. A k-uniform loose path with m ≥ 1 edges, denoted
by Pm,k, is the k-uniform hypertree whose vertices and edges may be labelled as
(v0, e1, v1, . . . , vm−1, em, vm) such that the vertices v1, . . . , vm−1 are of degree 2,
and all the other vertices of G are of degree 1.

If P is a path or a cycle of a hypergraph G, V (P ) denotes the vertex set of
the hypergraph P .
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3. Upper Bounds for α-Spectral Radius

For a connected irregular k-uniform hypergraph G with n vertices, maximum
degree ∆ and diameter D, where 2 ≤ k < n, it was shown in [11] that for
0 ≤ α < 1,

ρα(G) < ∆−
4(1− α)

((4D − 1− 2α)(k − 1) + 1)n
.

For a k-uniform hypergraph G, upper bounds on ρ0(G) and 2ρ1/2(G) have been
given in [12, 29].

Theorem 4. Let G be a k-uniform hypergraph on n vertices with maximum degree

∆ and second maximum degree ∆′, where k ≥ 2. For α = 0, let δ =
(

∆
∆′

)
1
k , and

for 0 < α < 1, let δ = 1 if ∆ = ∆′ and δ be a root of h(t) = 0 in (( ∆
∆′ )

1
k ,+∞) if

∆ > ∆′, where h(t) = (1 − α)∆′tk + α(∆′ −∆)tk−1 − (1 − α)∆ for 0 ≤ α < 1.
Then

(1) ρα(G) ≤ α∆+ (1− α)∆δ−(k−1).

Moreover, if G is connected, then equality holds in (1) if and only if G is a regular

hypergraph or G ∼= G′, where V (G′) = V (H)∪{v}, E(G′) = {e∪{v} : e ∈ E(H)},
and H is a regular (k − 1)-uniform hypergraph on n− 1 vertices with v /∈ V (H).

Proof. By Theorem 2.1 and Lemma 2.2 in [22], we may assume that d1 ≥ · · · ≥
dn. Then ∆ = d1 and ∆′ = d2.

If d1 = d2, then δ = 1, and by Lemma 2, we have

ρα(G) ≤ max
1≤i≤n

ri(Aα(G)) = max
1≤i≤n

di = d1 = αd1 + (1− α)d1δ
−(k−1),

and when G is connected, Aα(G) is weakly irreducible, thus by Lemma 2, equal-
ity (1) holds if and only if r1(Aα(G)) = · · · = rn(Aα(G)), i.e., G is a regular
hypergraph.

Suppose in the following that d1 > d2. Let U = diag(t, 1, . . . , 1) be an
n × n diagonal matrix, where t > 1 is a variable to be determined later. Let
T = U−(k−1)Aα(G)U . By Lemma 3, Aα(G) and T have the same real eigenvalues.
Obviously, both Aα(G) and T are nonnegative tensors of order k and dimension
n. By Lemma 1, ρ(Aα(G)) is an eigenvalue of Aα(G) and ρ(T ) is an eigenvalue
of T . Therefore ρα(G) = ρ(Aα(G)) = ρ(T ). For i ∈ [n] \ {1}, let d1,i = |{e : 1,
i ∈ e ∈ E(G)}|. Obviously, d1,i ≤ di. Note that
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r1(T ) =
∑

i2,...,ik∈[n]

T1i2···ik

= αD1···1 + (1− α)
∑

i2,...,ik∈[n]

U
−(k−1)
11 A1i2···ikUi2i2 · · ·Uikik

= αd1 + (1− α)
∑

i2,...,ik∈[n]\{1}

1

tk−1
A1i2···ik = αd1 +

(1− α)d1
tk−1

,

and for 2 ≤ i ≤ n,

ri(T ) =
∑

i2,...,ik∈[n]

Tii2···ik = αDi···i + (1− α)
∑

i2,...,ik∈[n]

U
−(k−1)
ii Aii2···ikUi2i2 · · ·Uikik

= αdi + (1− α)
∑

i2,...,ik∈[n]

1∈{i2,...,ik}

U
−(k−1)
ii Aii2···ikUi2i2 · · ·Uikik

+ (1− α)
∑

i2,...,ik∈[n]

1 6∈{i2,...,ik}

U
−(k−1)
ii Aii2···ikUi2i2 · · ·Uikik

= αdi + (1− α)
∑

i2,...,ik∈[n]

1∈{i2,...,ik}

Aii2···ikt+ (1− α)
∑

i2,...,ik∈[n]

1 6∈{i2,...,ik}

Aii2···ik

= αdi + (1− α)td1,i + (1− α)(di − d1,i)

= di + (1− α)(t− 1)d1,i ≤ (1 + (1− α)(t− 1))di ≤ (1 + (1− α)(t− 1))d2

with equality if and only if d1,i = di = d2.

Note that h

(

(

d1
d2

) 1
k

)

= α(d2 − d1)
(

d1
d2

)
k−1
k

≤ 0 with equality if and only if

α = 0, and that h(+∞) > 0. Thus h(t) = 0 does have a root δ, as required. Let
t = δ. Then t > 1,

αd1 +
(1− α)d1

tk−1
= (1 + (1− α)(t− 1))d2,

and thus for 1 ≤ i ≤ n,

ri(T ) ≤ αd1 + (1− α)d1δ
−(k−1).

Now by Lemma 2,

ρα(G) = ρ(T ) ≤ max
1≤i≤n

ri(T ) ≤ αd1 + (1− α)d1δ
−(k−1).

This proves (1).
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Suppose that G is connected. Then Aα is weakly irreducible, and so is T .
Suppose that equality holds in (1). From the above arguments and by

Lemma 2, we have r1(T ) = · · · = rn(T ) = αd1+(1−α)d1δ
−(k−1), and d1,i = di =

d2 for i = 2, . . . , n. Then vertex 1 is contained in each edge of G. LetH be the hy-
pergraph with V (H) = V (G)\{1} = {2, . . . , n} and E(H) = {e\{1} : e ∈ E(G)}.
Then H is a regular (k−1)-uniform hypergraph on vertices 2, . . . , n of degree d2.
Therefore G ∼= G′, where V (G′) = V (H) ∪ {1}, E(G′) = {e ∪ {v} : e ∈ E(H)},
and H is a regular (k − 1)-uniform hypergraph on vertices 2, . . . , n of degree d2.

Conversely, if G ∼= G′, where V (G′) = V (H) ∪ {1}, E(G′) = {e ∪ {v} : e ∈
E(H)}, and H is a regular (k − 1)-uniform hypergraph on vertices 2, . . . , n of
degree d2, then by the above arguments, we have ri(T ) = αd1 + (1− α)d1(

1
δ )

k−1

for 1 ≤ i ≤ n, and thus by Lemma 3, ρ(Aα(G)) = ρ(T ) = αd1+(1−α)d1δ
−(k−1),

i.e., (1) is an equality.

As δ ≥
(

d1
d2

) 1
k
with equality if and only if d1 = d2, we have by Theorem 4

that ρα(G) ≤ αd1 + (1− α)d
1
k

1 d
1− 1

k

2 with equality if and only if G is regular.

Letting α = 0 in Theorem 4, we have δ =
(

d1
d2

) 1
k
and thus (1) becomes

ρ0(G) ≤ d
1
k

1 d
1− 1

k

2 , see [29]. Letting α = 1
2 in Theorem 4, δ is the root of d2t

k +

(d2 − d1)t
k−1 − d1 = 0, and (1) becomes 2ρ1/2(G) ≤ d1 + d1δ

−(k−1), see [12].
Let G be a connected k-uniform hypergraph with n vertices, m edges, max-

imum degree ∆ and diameter D, where k ≥ 2. For 0 ≤ α < 1, let x be the
maximum entry of the α-Perron vector of G. From [11], we have

ρα(G) ≤ ∆−
(1− α)k(n∆− km)

2(n∆− km)(k − 1)D + (1− α)k
xk,

and if D = 1 and k ≥ 3, then

ρα(G) ≤ ∆−
(1− α)(n∆− km)n

2(n∆− km)(k − 1) + (1− α)n
xk.

Theorem 5. Let G be a connected k-uniform hypergraph on n vertices with m
edges and maximum degree ∆, where k ≥ 2. Let x be the α-Perron vector of G
with maximum entry x. For 0 ≤ α < 1, we have

ρα(G) ≤ α∆+ (1− α)kmxk

ρα(G) ≤ α∆+ (1− α)





∑

i∈V (G)

d
k

k−1

i





k−1
k

xk−1

with either equality if and only if G is regular.
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Proof. From the eigenequation of G at i ∈ V (G), we have

(ρα − α∆)xk−1
i ≤ (ρα − αdi)x

k−1
i = (1− α)

∑

e∈Ei(G)

∏

v∈e\{i}

xv ≤ (1− α)dix
k−1

with equality if and only if for v ∈ e \ {i} with e ∈ Ei(G), xv = x. Then

(ρα − α∆)xki ≤ (1− α)dix
k,

and thus
ρα − α∆ ≤ (1− α)xk

∑

i∈V (G)

di = (1− α)kmxk

with equality if and only if all entries of x are equal, or equivalently, G is regular.
On the other hand, we have

(ρα − α∆)
k

k−1xki ≤ (1− α)
k

k−1d
k

k−1

i xk,

and thus

(ρα − α∆)
k

k−1 ≤ (1− α)
k

k−1xk
∑

i∈V (G)

d
k

k−1

i ,

implying that

ρα(G) ≤ α∆+ (1− α)





∑

i∈V (G)

d
k

k−1

i





k−1
k

xk−1

with equality if and only if G is regular.

Let α = 0 in Theorem 5, we have x ≥
ρ

1
k−1
0

(

∑

i∈V (G) d
k

k−1
i

) 1
k

, which has been

reported in [9].

4. Transformations Increasing α-Spectral Radius

In the following, we propose several types of hypergraph transformations that
increase the α-spectral radius.

Theorem 6. For k ≥ 2, let G be a k-uniform hypergraph with u, v1, . . . , vr ∈
V (G) and e1, . . . , er ∈ E(G) for r ≥ 1 such that u /∈ ei and vi ∈ ei for i =
1, . . . , r, where v1, . . . , vr are not necessarily distinct. Let e′i = (ei \{vi})∪{u} for

i = 1, . . . , r. Suppose that e′i 6∈ E(G) for i = 1, . . . , r. Let G′ = G−{e1, . . . , er}+
{e′1, . . . , e

′
r}. Let x the α-Perron vector of G. If xu ≥ max{xv1 , . . . , xvr}, then

ρα(G
′) > ρα(G) for 0 ≤ α < 1.
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Proof. Note that ρα(G) = x⊤(Aα(G)x) and ρα(G
′) ≥ x⊤(Aα(G

′)x) with equal-
ity if and only if x is also the α-Perron vector of G′. Thus

ρα(G
′)− ρα(G) ≥ x⊤(Aα(G

′)x)− x⊤(Aα(G)x)

= α

(

rxku −
r
∑

i=1

xkvi

)

+ (1− α)k
r
∑

i=1

(xu − xvi)xei\{vi} ≥ 0,

and thus ρα(G
′) ≥ ρα(G). Suppose that ρα(G

′) = ρα(G). Then ρα(G
′) =

x⊤(Aα(G
′)x), and thus x is the α-Perron vector of G′. From the eigenequations

of G′ and G at u and noting that Eu(G
′) = Eu(G) ∪ {e′1, . . . , e

′
r}, we have

ρα(G
′)xk−1

u = α(du + r)xk−1
u + (1− α)

∑

e∈Eu(G′)

xe\{u}

> αdux
k−1
u + (1− α)

∑

e∈Eu(G)

xe\{u} = ρα(G)xk−1
u ,

a contradiction. It follows that ρα(G
′) > ρα(G).

We say that the hypergraph G′ in Theorem 6 is obtained from G by moving
edges e1, . . . , er from v1, . . . , vr to u. Theorem 6 has been established in [8] for
α ∈

{

0, 12
}

.

Theorem 7. Let G be a connected k-uniform hypergraph with k ≥ 2, and e and

f be two edges of G with e ∩ f = ∅. Let x be the α-Perron vector of G. Let

U ⊂ e and V ⊂ f with 1 ≤ |U | = |V | ≤ k − 1. Let e′ = U ∪ (f \ V ) and

f ′ = V ∪ (e \ U). Suppose that e′, f ′ /∈ E(G). Let G′ = G − {e, f} + {e′, f ′}. If

xU ≥ xV , xe\U ≤ xf\V and one is strict, then ρα(G) < ρα(G
′) for 0 ≤ α < 1.

Proof. Note that

ρα(G
′)− ρα(G) ≥ x⊤(Aα(G

′)x)− x⊤(Aα(G)x)

= (1− α)k
∑

g∈E(G′)

xg − (1− α)k
∑

g∈E(G)

xg

= (1− α)k
(

xUxf\V + xV xe\U − xUxe\U − xV xf\V
)

= (1− α)k(xU − xV )
(

xf\V − xe\U
)

≥ 0.

Thus ρα(G
′)≥ρα(G). Suppose that ρα(G

′)=ρα(G). Then ρα(G
′)=x⊤(Aα(G

′)x)
and thus x is the α-Perron vector of G′. Suppose without loss of generality that
xe\U < xf\V . Then for u ∈ U

−xe\{u} + xe′\{u} = −xU\{u}

(

xe\U − xf\V
)

> 0.
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From the eigenequations of G′ and G at a vertex u ∈ U , we have

ρα(G
′)xk−1

u = αdux
k−1
u + (1− α)

∑

g∈Eu(G′)

xg\{u}

= αdux
k−1
u + (1− α)

(

∑

g∈Eu(G)

xg\{u} − xe\{u} + xe′\{u}

)

> αdux
k−1
u + (1− α)

∑

g∈Eu(G)

xg\{u} = ρα(G)xk−1
u ,

a contradiction. It follows that ρα(G
′) > ρα(G).

The above result has been known for k = 2 in [5] and α = 0 [25].

A path P = (v0, e1, v1, . . . , vs−1, es, vs) in a k-uniform hypergraph G is called
a pendant path at v0, if dG(v0) ≥ 2, dG(vi) = 2 for 1 ≤ i ≤ s − 1, dG(v) = 1 for
v ∈ ei \ {vi−1, vi} with 1 ≤ i ≤ s, and dG(vs) = 1. If s = 1, then we call P or e1
a pendant edge of G (at v0). A pendant path of length 0 at v0 is understood as
the trivial path consisting of a single vertex v0.

If P is a pendant path at u in a k-uniform hypergraph G, we say G is obtained
from H by attaching a pendant path P at u with H = G[V (G) \ (V (P ) \ {u})].
In this case, we write G = Hu(s) if the length of P is s. Let Hu(0) = H.

For a k-uniform hypergraph G with u ∈ V (G), and p ≥ q ≥ 0, let Gu(p, q) =
(Gu(p))u(q).

Theorem 8. For k ≥ 2, let G be a connected k-uniform hypergraph with |E(G)|
≥ 1 and u ∈ V (G). For p ≥ q ≥ 1 and 0 ≤ α < 1, we have ρα(Gu(p, q)) >
ρα(Gu(p+ 1, q − 1)).

Proof. Let (u, e1, u1, . . . , up, ep+1, up+1) and (u, f1, v1, . . . , vq−2, fq−1, vq−1) be the
pendant paths of Gu(p + 1, q − 1) at u of lengths p + 1 and q − 1, respectively.
Let v0 = u. Let x be the α-Perron vector of Gu(p+ 1, q − 1).

Suppose that ρα(Gu(p, q)) < ρα(Gu(p + 1, q − 1)). We prove that xup−i
>

xvq−i−1 for i = 0, . . . , q − 1.

Suppose that xvq−1 ≥ xup . Let H be the k-uniform hypergraph obtained
from Gu(p+1, q− 1) by moving ep+1 from up to vq−1. By Theorem 6 and noting
that H ∼= Gu(p, q), we have ρα(Gu(p, q)) = ρα(H) > ρα(Gu(p + 1, q − 1)), a
contradiction. Thus xup > xvq−1 .

Suppose that q ≥ 2 and xup−i
> xvq−i−1 , where 0 ≤ i ≤ q − 2. We

want to show that xup−(i+1)
> xvq−(i+1)−1

. Suppose that this is not true, i.e.,
xvq−i−2 ≥ xup−i−1 . Suppose that xep−i\{up−i−1,up−i} ≤ xfq−i−1\{vq−i−2,vq−i−1}. Then
xep−i\{up−i} ≤ xfq−i−1\{vq−i−1}. Let H ′ = Gu(p + 1, q − 1) − {ep−i, fq−i−1} +
{e′, f ′}, where e′ = {up−i} ∪ (fq−i−1 \ {vq−i−1}) and f ′ = {vq−i−1} ∪ (ep−i \
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{up−i}). Obviously, H ′ ∼= Gu(p, q). By Theorem 7, we have ρα(Gu(p, q)) =
ρα(H

′) > ρα(Gu(p + 1, q − 1)), a contradiction. Thus xep−i\{up−i−1,up−i} >
xfq−i−1\{vq−i−2,vq−i−1}, and then xep−i\{up−i−1} > xfq−i−1\{vq−i−2}. Let H ′′ =
Gu(p+1, q−1)−{ep−i, fq−i−1}+{e′′, f ′′}, where e′′ = (ep−i\{up−i−1})∪{vq−i−2}
and f ′′= (fq−i−1 \ {vq−i−2}) ∪ {up−i−1}. Obviously, H ′′ ∼= Gu(p, q). By Theo-
rem 7, we have ρα(Gu(p, q)) = ρα(H

′′) > ρα(Gu(p+1, q−1)), also a contradiction.
It follows that xup−i−1 > xvq−i−2 , i.e., xup−(i+1)

> xvq−(i+1)−1
.

Therefore xup−i
> xvq−i−1 for i = 0, . . . , q − 1. Particularly, xup−q+1 > xv0 .

Now let H∗ be the k-uniform hypergraph obtained from Gu(p + 1, q − 1)
by moving all the edges containing u except e1 and f1 from u to up−q+1. By
Theorem 6 and noting that H∗ ∼= Gu(p, q), we have ρα(Gu(p, q)) > ρα(Gu(p +
1, q − 1)), a contradiction. Therefore ρα(Gu(p, q)) > ρα(Gu(p+ 1, q − 1)).

The above result has been reported for k = 2 in [5] and α = 0 in [25].

Theorem 9. Let G be a k-uniform hypergraph with k ≥ 2, e = {v1, . . . , vk} be

an edge of G with dG(vi) ≥ 2 for i = 1, . . . , r, and dG(vi) = 1 for i = r+1, . . . , k,
where 3 ≤ r ≤ k. Let G′ be the hypergraph obtained from G by moving all

edges containing v3, . . . , vr but not containing v1 from v3, . . . , vr to v1. Then

ρα(G
′) > ρα(G) for 0 ≤ α < 1.

Proof. Let x be the α-Perron vector of G, and xvt = max{xvi : 3 ≤ i ≤ r}. If
xv1 ≥ xvt , then by Theorem 6, ρα(G

′) > ρα(G). Suppose that xv1 < xvt . Let G
′′

be the hypergraph obtained from G by moving all edges containing vi but not
containing vt from vi to vt for all 3 ≤ i ≤ r with i 6= t, and moving all edges
containing v1 but not containing vt from v1 to vt. It is obvious that G

′′ ∼= G′. By
Theorem 6, we have ρα(G

′) = ρα(G
′′) > ρα(G).

5. Hypergraphs with Large α-Spectral Radius

A hypercactus is a connected k-uniform hypergraph in which any two cycles
(viewed as two hypergraphs) have at most one vertex in common. Let Hm,r,k be
a k-uniform hypergraph consisting of r cycles of length 2 and m − 2r pendant
edges with a vertex in common. If r = 0, then Hm,r,k

∼= Sm,k.

Theorem 10. For k ≥ 2, let G be a k-uniform hypercactus with m edges and

r cycles, where 0 ≤ r ≤
⌊

m
2

⌋

and m ≥ 2. For 0 ≤ α < 1, we have ρα(G) ≤
ρα(Hm,r,k) with equality if and only if G ∼= Hm,r,k.

Proof. Let G be a k-uniform hypercactus with maximum α-spectral radius
among k-uniform hypercacti with m edges and r cycles.

Let x be the α-Perron vector of G.
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Suppose first that r = 0, i.e., G is a hypertree with m edges. Let d be
diameter of G. Obviously, d ≥ 2. Suppose that d ≥ 3. Let (u0, e1, u1, . . . , ed, ud)
be a diametral path of G. Choose u ∈ ed−1 with xu = max{xv : v ∈ ed−1}. Let G1

be the hypertree obtained from G by moving all edges (except ed−1) containing a
vertex of ed−1 different from u from these vertices to u. By Theorem 6, we have
ρα(G1) > ρα(G), a contradiction. Thus d = 2, implying that G ∼= Sm,k = Hm,0,k.

Suppose in the following that r ≥ 1.

If there exists an edge e with at least three vertices of degree at least 2,
then let e = {v1, . . . , vk} with dG(vi) ≥ 2 for i = 1, . . . , ℓ, and dG(vi) = 1
for i = ℓ + 1, . . . , k, where 3 ≤ ℓ ≤ k. Let G′ be the hypergraph obtained
from G by moving all edges containing v3, . . . , vℓ except e from v3, . . . , vℓ to
v1. Obviously, G′ is a k-uniform hypercactus with m edges and r cycles. By
Theorem 9, ρα(G

′) > ρα(G), a contradiction. Thus, every edge in G has k − 2
vertices of degree 1.

Suppose that there exist two vertex-disjoint cycles. We choose two such
cycles C1 and C2 by requiring that dG(C1, C2) is as small as possible, where
dG(C1, C2) = min{dG(u, v) : u ∈ V (C1), v ∈ V (C2)}. Let u ∈ V (C1) and v ∈
V (C2) with dG(C1, C2) = dG(u, v). We may assume that xu ≥ xv. Let G′′ be
the hypergraph obtained from G by moving edges containing v in C2 from v to
u. Obviously, G′′ is a k-uniform hypercactus with m edges and r cycles. By
Theorem 6, ρα(G

′′) > ρα(G), a contradiction. Thus, if r ≥ 2, then all cycles in
G share a common vertex, which we denote by w. If r = 1, then w is a vertex of
degree 2 of the unique cycle.

Let (v0, e1, v1, . . . , vℓ−1, eℓ, v0) be a cycle of G of length ℓ ≥ 2, where v0 = w.
Suppose that ℓ ≥ 3. Assume that xv0 ≥ xv2 . Let G

∗ be the hypergraph obtained
from G by moving the edge e2 from v2 to v0. Obviously, G∗ is a k-uniform
hypercactus with m edges and r cycles. By Theorem 6, ρα(G

∗) > ρα(G), a
contradiction. Thus, every cycle of G is of length 2, and there are exactly m− 2r
edges that are not on any cycle.

Suppose that G 6∼= Hm,r,k. Then there exists a vertex z such that dG(w, z) =
2. Let z′ be the unique vertex such that dG(w, z

′) = dG(z
′, z) = 1. There are

two cases. First suppose that z′ lies on some cycle. Let e1 and e2 be the cycle
containing w and z′. Let H be the hypergraph obtained from G by moving all
edges containing z′ except e1 and e2 from z′ to w if xw ≥ xz′ , and the hypergraph
obtained from G by moving all edges containing w except e1 and e2 from w to
z otherwise. Now suppose that z′ does not lie on any cycle. Let e be the edge
containing w and z′. Let H be the hypergraph obtained from G by moving all
edges containing z′ except e from z′ to w if xw ≥ xz′ , and the hypergraph obtained
from G by moving all edges containing w except e from w to z otherwise. In either
case, H is a k-uniform hypercactus with m edges and r cycles. By Theorem 6,
ρα(H) > ρα(G), a contradiction. It follows that G ∼= Hm,r,k.



On the α-Spectral Radius of Uniform Hypergraphs 571

Corollary 11. Suppose that k ≥ 2.

(i) If G is a k-uniform hypertree with m ≥ 1 edges, then ρα(G) ≤ ρα(Sm,k) for

0 ≤ α < 1 with equality if and only if G ∼= Sm,k.

(ii) If G is a k-uniform unicyclic hypergraphs with m ≥ 2 edges, then ρα(G) ≤
ρα(Hm,1,k) for 0 ≤ α < 1 with equality if and only if G ∼= Hm,1,k.

The cases when α = 0 in Corollary 11 (i) and (ii) have been known in [8, 2].

For 2 ≤ d ≤ m, let Sm,d,k be the k-uniform hypertree obtained from the k-
uniform loose path Pd,k = (v0, e1, v1, . . . , vd−1, ed, vd) by attaching m−d pendant
edges at v⌊ d

2⌋
. Obviously, Sm,2,k

∼= Sm,k.

Theorem 12. For k ≥ 2, let G be a k-uniform hypertree with m edges and

diameter d ≥ 2. For 0 ≤ α < 1, we have ρα(G) ≤ ρα(Sm,d,k) with equality if and

only if G ∼= Sm,d,k.

Proof. It is trivial for d = 2. Suppose that d ≥ 3.

Let G be a k-uniform hypertree with maximum α-spectral radius among
hypertrees with m edges and diameter d.

Let P = (v0, e1, v1, . . . , ed, vd) be a diametral path of G. Let x be the α-
Perron vector of G.

Claim 1. Every edge of G has at least k − 2 vertices of degree 1.

Proof. Suppose that there is at least one edge with at least three vertices of
degree at least 2. Let f = {u1, . . . , uk} be such an edge. First suppose that
f is not an edge on P . We may assume that dG(u1, P ) = dG(ui, P ) − 1 for
i = 2, . . . , k, where dG(w,P ) = min{dG(w, v) : v ∈ V (P )}. Then dG(u1) ≥ 2. We
may assume that dG(ui) ≥ 2 for i = 2, . . . , r and dG(ui) = 1 for i = r + 1, . . . , k,
where 3 ≤ r ≤ k. Let G′ be the hypertree obtained from G by moving all
edges containing u3, . . . , ur except f from u3, . . . , ur to u1. Obviously, G′ is a
hypertree with m edges and diameter d. By Theorem 9, ρα(G

′) > ρα(G), a
contradiction. Thus f is an edge on P , i.e., f = ei for some i with 2 ≤ i ≤ d− 1.
Let ei \ {vi−1, vi} = {vi,1, . . . , vi,k−2}. We may assume that vi,1, . . . , vi,s are
precisely those vertices with degree at least 2 among vi,1, . . . , vi,k−2, where 1 ≤
s ≤ k−2. LetG′′ be the hypertree obtained fromG by moving all edges containing
vi,1, . . . , vi,s except ei from vi,1, . . . , vi,s to vi. Obviously, G′′ is a hypertree with
m edges and diameter d. By Theorem 9, ρα(G

′′) > ρα(G), also a contradiction.
It follows that all edges of G have at most two vertices of degree at least 2. Claim
1 follows. �

Claim 2. Any edge not on P is a pendant edge.

Proof. Suppose that e is an edge not on P and it is not a pendant edge. Then
there are two vertices, say u and v, in e such that du ≥ 2 and dv ≥ 2. Suppose
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without loss of generality that dG(u, P ) < dG(v, P ). Let w be the vertex on P
with dG(u, P ) = dG(u,w). Let G∗ be the hypertree obtained from G by moving
all edges containing v except e from v to w if xw ≥ xv, and the hypertree obtained
from G by moving all edges containing w (except the edge in the path connecting
w and v) from w to v otherwise. By Theorem 6, ρα(G

∗) > ρα(G), a contradiction.
This proves Claim 2. �

Claim 3. There is at most one vertex of degree greater than two in G.

Proof. Suppose that there are two vertices, say s and t, on P with degree greater
than two. We may assume that xs ≥ xt. Let H be the hypertree obtained from
G by moving all pendant edges containing t from t to s. By Theorem 6, we have
ρα(H) > ρα(G), a contradiction. Claim 3 follows. �

Combing Claims 1–3, G is a hypertree obtained from the path P by attaching
m− d pendant edges at some vi with 1 ≤ i ≤ d− 1, and by Theorem 8, we have
G ∼= Sm,d,k.

The above result for α = 0 has been proved in [25] by a relation between the
0-spectral radius of a power hypergraph and the 0-spectral radius of its graph.
Recall that for α = 0 and k = 2, Simić and one author of this paper [23] deter-
mined the tree on n vertices and diameter d with kth largest 0-spectral radius
for k = 1, . . . ,

⌊

d
2

⌋

+ 1 if 4 ≤ d ≤ n− 4 and for k = 1, . . . ,
⌊

d
2

⌋

if d = n− 3.
Suppose that m ≥ d ≥ 3. Let H be the hypergraph obtained from Sm,d,k by

moving edge ed from vd−1 to v⌊ d
2⌋

if xv⌊ d
2⌋

≥ xvd−1
, and the hypergraph obtained

from Sm,d,k by moving edges containing v⌊ d
2⌋

except e⌊ d
2⌋+1 from v⌊ d

2⌋
to vd−1

otherwise. Obviously, H ∼= Sm,d−1,k. By Theorem 6, ρα(Sm,d,k) < ρα(Sm,d−1,k).
Now by Theorem 12, Corollary 11(i) follows. Moreover, if G is a k-uniform
hypertree with m ≥ 3 edges and G ≇ Sm,k, ρα(G) ≤ ρα(Sm,3,k) with equality if
and only if G ∼= Sm,3,k, which has been known for α = 0 in [8].

For 2 ≤ t ≤ m, let Tm,t,k be the k-uniform hypertree consisting of t pendant
paths of almost equal lengths (i.e., t−

(

m− t
⌊

m
t

⌋)

pendant paths of length
⌊

m
t

⌋

andm−t
⌊

m
t

⌋

pendant paths of length
⌊

m
t

⌋

+1) at a common vertex. Particularly,
Tm,2,k is just the k-uniform loose path Pm,k.

Theorem 13. Let G be a k-uniform hypertree with m edges and t ≥ 2 pendant

edges. For 0 ≤ α < 1, we have ρα(G) ≤ ρα(Tm,t,k) with equality if and only if

G ∼= Tm,t,k.

Proof. Let G be a k-uniform hypertree with maximum α-spectral radius among
hypertrees with m edges and t pendant edges. Let x be the α-Perron vector of G.

Suppose that there exists an edge e = {u1, . . . , uk} with at least three vertices
of degree at least 2. Assume that dG(ui) ≥ dG(ui+1) for i = 1, . . . , k−1. Let G′ be
the hypertree obtained from G by moving all edges containing u3, . . . , uk except
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e from these vertices to u1. Obviously, G′ is a hypertree with m edges and t
pendant edges. By Theorem 9, ρα(G

′) > ρα(G), a contradiction. It follows that
each edge of G has at most two vertices of degree at least 2.

Suppose that there are two vertices, say u, v with degree greater than 2. We
may assume that xu ≥ xv. Let H be the hypertree obtained from G by moving an
edge not on the path connecting u and v containing v from v to u. By Theorem 6,
we have ρα(H) > ρα(G), a contradiction. Thus, there is at most one vertex of
degree greater than 2 in G.

If there is no vertex of degree greater than 2, then t = 2, and G is the k-
uniform loose path Pm,k. If there is exactly one vertex of degree greater than 2,
then t ≥ 3, G is a hypertree consisting of t pendant paths at a common vertex,
and by Theorem 8, we have G ∼= Tm,t,k.

For α = 0, this is known in [26, 30].
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