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Abstract

For 0 < a < 1 and a uniform hypergraph G, the a-spectral radius of G is
the largest H-eigenvalue of aD(G)+ (1 —a)A(G), where D(G) and A(G) are
the diagonal tensor of degrees and the adjacency tensor of G, respectively.
We give upper bounds for the a-spectral radius of a uniform hypergraph,
propose some transformations that increase the a-spectral radius, and de-
termine the unique hypergraphs with maximum a-spectral radius in some
classes of uniform hypergraphs.
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1. INTRODUCTION

Let G be a hypergraph on n vertices with vertex set V(G) and edge set E(G). If
le] = k for each e € E(G), then G is said to be a k-uniform hypergraph. For a
vertex v € V(G), the set of the edges containing v in G is denoted by Eg(v), and
the degree of v in G, denoted by dg(v) or dy, is the size of Eg(v). We say that
G is regular if all vertices of G have equal degrees. Otherwise, GG is irregular.
For u,v € V(G), a walk from u to v in G is defined to be an alternating
sequence of vertices and edges (vo, e1,v1,...,Vs—1, €s,Vs) With vg = u and vs = v
such that edge e; contains vertices v;_1 and v;, and v;_1 # v; fori =1,...,s. The
value s is the length of this walk. A path is a walk with all v; distinct and all e;
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distinct. A cycle is a walk containing at least two edges, all e; are distinct and all
v; are distinct except vy = vs. If there is a path from u to v for any u,v € V(G),
then we say that G is connected. A hypertree is a connected hypergraph with no
cycles. For k > 2, the number of vertices of a k-uniform hypertree with m edges
is 14 (k—1)m.

The distance between vertices v and v in a connected hypergraph G is the
length of a shortest path from u to v in G. The diameter of connected hypergraph
G is the maximum distance between any two vertices of G.

For positive integers k and n, a tensor 7 = (7;,...4,,) of order k and dimension
n is a multidimensional array with entries 7;,..;, € C for i; € [n] = {1,...,n}
and j € [k], where C is the complex field.

Let M be a tensor of order k£ > 2 and dimension n, and N a tensor of order
¢ > 1 and dimension n. The product MAN is the tensor of order (k—1)(/—1)+1
and dimension n with entries [22]

(MN)igioges = > Miigeiy Nigiy -+ Nigj

i2,...,i €[n]
with i € [n] and ji,...,jx_1 € [n]*"'. Then for a tensor 7 of order k and dimen-
sion n and an n-dimensional vector x = (x1,...,2,)", Tz is an n-dimensional

vector whose i-th entry is

n
(Tﬂ;’)z = Z 7;12%1’12 cee .%'ik,

2y yip=1

where ¢ € [n]. For some complex ), if there is a nonzero vector = such that
T
Tx=2A (w’f‘l, . ,x’;_l) ,

then ) is called an eigenvalue of T, and z is called an eigenvector of T correspond-
ing to A. Moreover, if both A and z are real, then we call A an H-eigenvalue and
x an H-eigenvector of T. See [10, 18, 20] for more details. The spectral radius
of T is the largest modulus of its eigenvalues, denoted by p(7).

Let G be a k-uniform hypergraph with vertex set V(G) = {v1,...,v,}, where
kE > 2. The adjacency tensor of G is defined in [1] as the tensor A(G) of order
k and dimension n whose (i1, ...,i)-entry is ﬁ if {vi,..., v } € E(G), and
0 otherwise. The degree tensor of G is the diagonal tensor D(G) of order k
and dimension n with (7,...,7)-entry to be the degree of vertex v; € [n]. Then
9(G) = D(G) + A(G) is the signless Laplacian tensor of G [20]. Motivated by
work of Nikiforov [14] (see also [5, 15]), Lin et al. [11] proposed to study the
convex linear combinations A, (G) of D(G) and A(G) defined by

Aa(G) = aD(G) + (1 — ) A(G),
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where 0 < o < 1. The a-spectral radius of G is the spectral radius of A (G),
denoted by pa(G). Note that po(G) is the spectral radius of G, while 2p;/5(G) is
the signless Laplacian spectral radius of G.

For k > 2, let G be a k-uniform hypergraph with V(G) = [n], and = a
n-dimensional column vector. Let xy =[], oy @, for V.C V(G). Then

2" (An(G)z) = Z dyzt + (1 - a)k Z Te,

uweV(G) ecE(G)

or equivalently,

2" (An(G)z) = Z <a2xﬁ + (1 - a)kxe> .

e€E(G) u€e

For a uniform hypergraph G, bounds for the spectral radius po(G) have been
given in [1, 12, 13, 29], and bounds for the signless Laplacian spectral radius
2p1/2(G) may be found in [6, 12, 21]. Recently, Lin et al. [11] gave upper bounds
for a-spectral radius of connected irregular k-uniform hypergraphs, extending
some known bounds for ordinary graphs. Some hypergraph transformations have
been proposed to investigate the change of the 0-spectral radius, and the unique
hypergraphs that maximize or minimize the 0-spectral radius have been deter-
mined among some classes of uniform hypergraphs (especially for hypertrees),
see, e.g., [2, 4, 8, 16, 24, 25, 28, 31].

In this paper, we give upper bounds for the a-spectral radius of a uniform hy-
pergraph, propose some hypergraph transformations that increase the a-spectral
radius, and determine the unique hypergraphs with maximum «-spectral radius
in some classes of uniform hypergraphs such as the class of k-uniform hypercacti
with m edges and r cycles for 0 < r < L%J, and the class of k-uniform hypertrees
with m edges and diameter d > 3.

2. PRELIMINARIES

A tensor T of order k£ > 2 and dimension n is said to be weakly reducible, if
there is a nonempty proper subset J of [n] such that for i; € J and i; € [n] \ J
for some j = 2,...,k, Tj;..;,, = 0. Otherwise, T is weakly irreducible.

For k > 2, an n-dimensional vector z is said to be k-unit if > " | zk = 1.

Lemma 1 [3, 27]. Let T be a nonnegative tensor of order k > 2 and diminsion n.
Then p(T) is an eigenvalue of T and there is a k-unit nonnegative eigenvector
corresponding to p(T). If furthermore T is weakly irreducible, then there is a
unique k-unit positive eigenvector corresponding to p(T).
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If G is a k-uniform hypergraph with k& > 2, then A, (G) is weakly irreducible if
and only if G is connected (see [17, 20] for the treatment of Ag(G) and 2.4 /5(G),
respectively). Thus, if G is connected, then by Lemma 1, there is a unique k-unit
positive H-eigenvector x corresponding to p,(G), which is called the a-Perron
vector of G.

For a nonnegative tensor 7 of order & > 2 and dimension n, let r;(7) =
En 7;12% for i = 1,...,77,.

ig-ip=1

Lemma 2 [7, 27]. Let T be a nonnegative tensor of order k > 2 and dimension

n. Then
p(T) < max ri(T)

T 1<i<n

with equality when T is weakly irreducible if and only if ri(T) =+ =r,(T).

For two tensors M and N of order £ > 2 and dimension n, if there is an
n X n nonsingular diagonal matrix U such that N’ = U~*~D MU, then we say
that M and N are diagonal similar.

Lemma 3 [22]. Let M and N be two diagonal similar tensors of order k > 2
and dimension n. Then M and N have the same real eigenvalues.

Let G be a connected k-uniform hypergraph on n vertices, where k > 2. Let
0 < a < 1. For an n-dimensional k-unit nonnegative vector x, by [19, Theorem 2]
(and its proof) and Lemma 1, we have p,(G) > 2 (A, (G)z) with equality if and
only if x is the a-Perron vector of G. If x is the a-Perron vector of GG, then for
any v € V(G),

e€E,(G)

which is called the eigenequation of G at v.

For a hypergraph G with § # X C V(G), let G[X] be the subhypergraph
induced by X, i.e., G[X] has vertex set X and edge set {e C X : e € E(G)}. If
E' C E(G), then G — E' is the hypergraph obtained from G by deleting the edges
in E'. If E' is set of subsets of V(G) and no element of E’ is an edge of G, then
G + E’ is the hypergraph obtained from G by adding elements of E’ as edges.

A k-uniform hypertree with m edges is a hyperstar, denoted by S, j, if all
edges share a common vertex. A k-uniform loose path with m > 1 edges, denoted
by Py, i, is the k-uniform hypertree whose vertices and edges may be labelled as
(V0, €1,V1, -+, Um—1,€m, Up,) such that the vertices v1,...,v,_1 are of degree 2,
and all the other vertices of G are of degree 1.

If P is a path or a cycle of a hypergraph G, V(P) denotes the vertex set of
the hypergraph P.
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3. UPPER BOUNDS FOR a-SPECTRAL RADIUS

For a connected irregular k-uniform hypergraph G with n vertices, maximum
degree A and diameter D, where 2 < k < n, it was shown in [11] that for
0<ax<l,

41 — )
(4D —-1-2a)(k—1)+1)n

pa(G) <A -

For a k-uniform hypergraph G, upper bounds on po(G) and 2p; /5(G) have been
given in [12, 29].

Theorem 4. Let G be a k-uniform hypergraph on n vertices with mazximum degree

1
A and second mazimum degree A, where k > 2. For a =0, let § = (%) k and

forO<a<l1,letd=1if A=A" and § be a root of h(t) =0 in ((%)%,—i-oo) if
A > A, where h(t) = (1 — a)A'tF + (A — A)tF1 — (1 —a)A for0 < a < 1.
Then

(1) pa(G) < aA + (1 —a)As~ kD),

Moreover, if G is connected, then equality holds in (1) if and only if G is a regular
hypergraph or G = G', where V(G') = V(H)U{v}, E(G') = {eU{v}:e € E(H)},
and H is a regular (k — 1)-uniform hypergraph on n — 1 vertices with v ¢ V(H).

Proof. By Theorem 2.1 and Lemma 2.2 in [22], we may assume that d; > --- >
dy,,. Then A = dy and A’ = ds.
If d1 = ds, then 6 = 1, and by Lemma 2, we have

pa(G) < max 7i(As (@) = max d; = di = ad; + (1 — a)d 6~ * Y,

~ 1<i<n 1<i<n

and when G is connected, A, (G) is weakly irreducible, thus by Lemma 2, equal-
ity (1) holds if and only if 1 (An(G)) = -+ = r(Aa(G)), ie., G is a regular
hypergraph.

Suppose in the following that d; > dy. Let U = diag(¢,1,...,1) be an
n X n diagonal matrix, where ¢ > 1 is a variable to be determined later. Let
T = U~ 1A, (G)U. By Lemma 3, A, (G) and T have the same real eigenvalues.
Obviously, both A, (G) and T are nonnegative tensors of order k and dimension
n. By Lemma 1, p(A,(G)) is an eigenvalue of A, (G) and p(T) is an eigenvalue
of T. Therefore po(G) = p(Aa(G)) = p(T). For i € [n]\ {1}, let di; = [{e : 1,
i € e € E(G)}|. Obviously, d;; < d;. Note that
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r(T) = Z Tig-wiy,

12777//66[’”’]

=aDjy.1+ (1 — Oé) Z Uﬁ(kil)Aliz---ik Uiz’iz U Ulklk
12,1k E[N]
1 (1 — Oé)dl
12, ip €M\ {1}
and for 2 <1i¢ <n,
—(k—1
i) = Y Ty =Dii+ (1) Y U7 " AigyilUinsy, Ui,

12,...,i €[] 12,...,i €[]

19,00y i €[n]
LE{ig,enyig }
(k-1
+ (=) > Ui Uigiy - Ui,
19,ens i, €[n]
1¢{ig, e yip }
= ad; + (1 — Oé) Z Aiig---ikt + (1 — a) Z .,4”2%
19 5eny i €[n] 195neey i €[n]
1e{ig,..., i} 1¢{ig,..., i}

= ad; + (1 — a)td; + (1 — a)(d; — duy)
—di+(1—a)(t—1)dis <1+ (1-a)t—1)d <1+ 1—a)t—1))d
with equality if and only if dy; = d; = da.
Note that & ( (g;)’i> = a(dy — dy) (j;)k’“l < 0 with equality if and only if

a = 0, and that h(+oc0) > 0. Thus h(t) = 0 does have a root 9, as required. Let
t=9. Thent >1,

ady + (1;0‘1)6[1 =(1+(1—a)(t—1))ds,

and thus for 1 <i < n,
T‘Z(T) < ad] + (1 - Oz)dlfsf(kil).
Now by Lemma 2,

Pa(G) = p(T) < lréla<x 'ri(’T) < ady + (1 _ oz)dlé_(k_l).

This proves (1).
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Suppose that G is connected. Then A, is weakly irreducible, and so is T .

Suppose that equality holds in (1). From the above arguments and by
Lemma 2, we have 71 (T) = - - = r,(T) = adi + (1 —a)di6~ %Y and dy; = d; =
ds for i = 2,...,n. Then vertex 1 is contained in each edge of G. Let H be the hy-
pergraph with V(H) = V(G)\{1} ={2,...,n} and E(H) = {e\{1} : e € E(G)}.
Then H is a regular (k — 1)-uniform hypergraph on vertices 2,...,n of degree ds.
Therefore G = G', where V(G') = V(H) U {1}, E(G') = {eU{v} : e € E(H)},
and H is a regular (k — 1)-uniform hypergraph on vertices 2,...,n of degree ds.

Conversely, if G = G', where V(G') = V(H)U {1}, E(G') = {eU{v}:e €
E(H)}, and H is a regular (k — 1)-uniform hypergraph on vertices 2,...,n of
degree da, then by the above arguments, we have 7;(7) = ad; + (1 — a)dy (§)*1
for 1 < i <n, and thus by Lemma 3, p(A(G)) = p(T) = ady + (1 — a)dy 5~ F=D),
i.e., (1) is an equality. |

1

As o > (%)E with equality if and only if d; = ds, we have by Theorem 4
191
that po(G) < ady + (1 — a)df d; ¥ with equality if and only if G is regular.
1
Letting @ = 0 in Theorem 4, we have § = (%) * and thus (1) becomes
191
po(G) < df d; *, see [29]. Letting o = 5 in Theorem 4, § is the root of dot* +
(do — dy)t*~1 —dy = 0, and (1) becomes 2p1/5(G) < di + dy6~ =1 see [12].
Let G be a connected k-uniform hypergraph with n vertices, m edges, max-
imum degree A and diameter D, where k > 2. For 0 < a < 1, let T be the
maximum entry of the a-Perron vector of G. From [11], we have
(1 — a)k(nA — km) &
z
(nA —km)(k—1)D+ (1 — )k’

< —

and if D =1 and k > 3, then

(1 —a)(nA — km)n -
(nA —km)(k—1)+ (1 —a)n

pal@) < B
Theorem 5. Let G be a connected k-uniform hypergraph on n vertices with m

edges and mazimum degree A, where k > 2. Let x be the a-Perron vector of G
with mazimum entry T. For 0 < a < 1, we have

pa(G) < aA + (1 — a)kmz*

with either equality if and only if G is reqular.
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Proof. From the eigenequation of G at i € V(G), we have

(po — @)z < (po — ady)zb 1 = (1 - «) Z H 2, < (1 —a)d;z" !
e€FE;(G) vee\{i}

with equality if and only if for v € e\ {i} with e € E;(G), x, = Z. Then
(pa — aA)zF < (1 - a)dz",
and thus
po —aA < (1 —a)T Zd—lfozkmz
1€V (G)

with equality if and only if all entries of x are equal, or equivalently, G is regular.
On the other hand, we have

k

(Po — GA) e < (1 - a)FTdf T,

and thus
(Pa —aA) §(1—ak1xk del
i€V (G)
implying that
pa(G) <aA+(1—a)| > df" zh!
1€V (Q)
with equality if and only if G is regular. ]
_1
Let a = 0 in Theorem 5, we have T > po”! r, which has been

A L

=1
(ZiGV(G) d;

B

reported in [9)].

4. TRANSFORMATIONS INCREASING a-SPECTRAL RADIUS

In the following, we propose several types of hypergraph transformations that
increase the a-spectral radius.

Theorem 6. For k > 2, let G be a k-uniform hypergraph with w,vi,...,v, €
V(G) and ey,...,e, € E(G) for r > 1 such that u ¢ e; and v; € e; for i =

1,...,7, where vi,...,v, are not necessarily distinct. Let ¢} = (e;\{v;})U{u} for
i=1,...,7r. Suppose that €, ¢ E(G) fori=1,...,r. Let G' = G—{e1,...,e } +
{€},...,el}. Let x the a-Perron vector of G. If x, > max{xy,,..., &y, }, then

Pa(G') > pa(G) for 0 < a < 1.
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Proof. Note that po(G) = 2" (Ao(G)z) and po(G') > 2T (AL (G")x) with equal-
ity if and only if x is also the a-Perron vector of G’. Thus

pa(G') = pa(G) 2 2" (Aa(G)2) — 2" (Aa(G)2)

r

=« (m;ﬁ — in) +(1—a)k Z(aﬁu — T,)Te\ {v;} = 0,
i=1

i=1

and thus po(G’) > pa(G). Suppose that po(G') = po(G). Then p,(G') =
1" (Ao(G")x), and thus z is the a-Perron vector of G’. From the eigenequations
of G' and G at u and noting that E,(G’) = E,(G) U {e),...,e.}, we have

pa(GN2Et = a(dy + r)zi 1+ (1-a) Z T\ fu)
e€Ey.(G")

> Oédu.ﬁﬁ_l +(1-a) Z Le\{u} = pa(G)l'Z_l,
e€Ey,(G)

a contradiction. It follows that po(G’) > pa(G). u

We say that the hypergraph G’ in Theorem 6 is obtained from G by moving
edges eq,...,e, from vy,...,v, to u. Theorem 6 has been established in [8] for
a € {0, %}

Theorem 7. Let G be a connected k-uniform hypergraph with k > 2, and e and
[ be two edges of G with e N f = (. Let x be the a-Perron vector of G. Let
UcCeandV C fwithl <|U =1|V|<k—-1. Lete =UU(f\V) and
"=V uU(e\U). Suppose that ¢, f' ¢ E(G). Let G =G —{e, f} +{e, f'}. If
Ty >y, Tay < xpy and one is strict, then po(G) < pa(G') for 0 <a < 1.

Proof. Note that
pa(G') = pa(G) = 2" (Aa(G)z) — 2" (Aa(G)2)

(1—-a)k Z zg— (1 —a)k Z Zg

geE(G") geE(G)

= (1 — Oé)k (.TUSCf\V + mvxe\U — xee\U — xva:f\v)

(1 —a)k(zy —zv) (zpy — zay) > 0.

Thus pa(G') > pa(G). Suppose that po(G') = pa(G). Then po(G) =2 (A (G))x)
and thus z is the a-Perron vector of G’. Suppose without loss of generality that
oy < Tp\y. Then for u € U

~To\(u) + T fu) = —T0\ () (Te\w — 2pv) > 0.
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From the eigenequations of G’ and G at a vertex u € U, we have

(Gl = adyzh P+ (1-a) Y 2w

gEEL(G)
= adumﬁ_l + (1 — a) ( Z Tg\{u} — Te\{u} + xe/\{u}>
gEEL(G)
> adyz 1+ (1 - ) Z T\ (u) = pa(G)zk=1t
9EEL(G)
a contradiction. It follows that p,(G') > pa(G). n

The above result has been known for k£ = 2 in [5] and a = 0 [25].

A path P = (vg,e1,v1,...,0s-1, €s,0s) in a k-uniform hypergraph G is called
a pendant path at vg, if dg(vo) > 2, dg(v;)) =2 for 1 <i<s—1, dg(v) =1 for
veE e\ {vie1,v} with 1 <i <s, and dg(vs) = 1. If s = 1, then we call P or e;
a pendant edge of G (at vg). A pendant path of length 0 at vg is understood as
the trivial path consisting of a single vertex vg.

If P is a pendant path at u in a k-uniform hypergraph G, we say G is obtained
from H by attaching a pendant path P at u with H = G[V(G) \ (V(P) \ {u})].
In this case, we write G = H,(s) if the length of P is s. Let H,(0) = H.

For a k-uniform hypergraph G with u € V(G), and p > ¢ > 0, let Gy(p,q) =

(Gu(P))u(q)-

Theorem 8. For k > 2, let G be a connected k-uniform hypergraph with |E(G)|
>1andu € V(G). Forp>q>1and 0 < a < 1, we have po(Gu(p,q)) >
pa(Gulp+ 1,4 = 1)).

Proof. Let (u,eq,u1,...,Up, ept1,Upy1) and (u, f1,v1,...,04—2, fg—1,Vq—1) be the
pendant paths of G, (p + 1, — 1) at u of lengths p + 1 and ¢ — 1, respectively.
Let vg = u. Let z be the a-Perron vector of G, (p+1,q — 1).

Suppose that po(Gu(p,q)) < pa(Gulp + 1, —1)). We prove that z,, , >
Ty,_,_, fori=0,...,q—1.

Suppose that @y, _, > wy,. Let H be the k-uniform hypergraph obtained
from G,(p+1,¢— 1) by moving ep41 from u, to vy—1. By Theorem 6 and noting
that H = Gyu(p,q), we have pa(Gu(p,q)) = pa(H) > pa(Gulp + 1,4 — 1)), a
contradiction. Thus y, > Ty,_,.

Suppose that ¢ > 2 and Tu,_; > Tyg_; q, where 0 < 7 < ¢ — 2. We
want to show that Tuy (1) > Tog_(ig1)_1- Suppose that this is not true, i.e.,
Tyy_i_y = Tu,_;_,- Suppose that Tep Nup—i1ip—i} < Tfy i 1\{vg—i—20q—i—1}" Then
Tep iMup—i} S Tfuiii\{vg—iz1}- Let H' = Gu(p+ 1, — 1) — {epi, fy—im1} +
{e/, f'}, where ¢ = {up—i} U (fg—i-1 \ {vg—i—1}) and f" = {vg—i—1} U (ep—i \
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{up—i}). Obviously, H = Gy(p,q). By Theorem 7, we have p,(Gy(p,q))
pa(H) > pa(Gu(p + 1,9 — 1)), a contradiction. Thus Tep \upi—1up_i}
L fyioi\fvgmicavg_ima}r ANd then To oy, 1y > @, \(u, ). Let "
Gulp+1,q—1)—{ep—i, fe—i—1} +{e", f"}, where " = (ep—i \ {up-i—1}) U{vg—i—2}
and f"= (fg—i—1 \ {vg—i—2}) U {up—i—1}. Obviously, H”" = Gy(p,q). By Theo-
rem 7, we have po(Gu(p, Q) = pa(H") > pa(Gu(p+1,q—1)), also a contradiction.
It follows that ., ;, | > @y, ,_,, i.e., Tu, 41y > Tog_(ig1)_1-

Therefore z,,_; > xy,_,_, for i =0,...,q — 1. Particularly, zy, ,,, > Ty,.

Now let H* be the k-uniform hypergraph obtained from G,(p + 1,9 — 1)
by moving all the edges containing u except e; and fi from u to up—q+1. By
Theorem 6 and noting that H* = G, (p,q), we have po(Gu(p,q)) > pa(Gu(p +
1,q — 1)), a contradiction. Therefore p(Gu(p,q)) > pa(Gu(p + 1,4 — 1)). u

>

The above result has been reported for k£ =2 in [5] and o = 0 in [25].

Theorem 9. Let G be a k-uniform hypergraph with k > 2, e = {vy,..., v} be
an edge of G with dg(v;) > 2 fori=1,...,r, anddg(v;) =1 fori=r+1,...k,
where 3 < r < k. Let G’ be the hypergraph obtained from G by moving all
edges containing vs,...,v,. but not containing vy from vs,...,v,. to vi. Then
Pa(G") > pu(G) for 0 < a < 1.

Proof. Let z be the a-Perron vector of G, and z,, = max{x,, : 3 <i <r}. If
Ty, > Ty, then by Theorem 6, po(G') > po(G). Suppose that z,, < z,,. Let G”
be the hypergraph obtained from G by moving all edges containing v; but not
containing v; from v; to v; for all 3 < ¢ < r with ¢ # ¢, and moving all edges
containing v; but not containing v; from v; to v;. It is obvious that G” = G’. By
Theorem 6, we have po(G') = po(G") > pa(G). n

5. HYPERGRAPHS WITH LARGE a-SPECTRAL RADIUS

A hypercactus is a connected k-uniform hypergraph in which any two cycles
(viewed as two hypergraphs) have at most one vertex in common. Let Hy, , 1 be
a k-uniform hypergraph consisting of r cycles of length 2 and m — 2r pendant
edges with a vertex in common. If » = 0, then H,, ;1. = Sy, k.

Theorem 10. For k > 2, let G be a k-uniform hypercactus with m edges and
r cycles, where 0 < r < L%J and m > 2. For 0 < a < 1, we have po(G) <
Po(Hp r ) with equality if and only if G = Hy, ;. j.

Proof. Let G be a k-uniform hypercactus with maximum a«-spectral radius
among k-uniform hypercacti with m edges and r cycles.
Let x be the a-Perron vector of G.
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Suppose first that » = 0, i.e., G is a hypertree with m edges. Let d be
diameter of G. Obviously, d > 2. Suppose that d > 3. Let (ug, e1,u1,- .., €4, uq)
be a diametral path of G. Choose u € e4_1 with x,, = max{x, : v € e4_1}. Let G4
be the hypertree obtained from G by moving all edges (except e4_1) containing a
vertex of eg_; different from u from these vertices to u. By Theorem 6, we have
pa(G1) > pa(G), a contradiction. Thus d = 2, implying that G = S, ;, = Hy, 0 k-

Suppose in the following that r > 1.

If there exists an edge e with at least three vertices of degree at least 2,
then let e = {v1,...,vx} with dg(v;)) > 2 for ¢ = 1,...,¢, and dg(v;) = 1
for i = £+ 1,...,k, where 3 < £ < k. Let G’ be the hypergraph obtained
from G by moving all edges containing ws,..., vy except e from wvs,...,vp to
v1. Obviously, G’ is a k-uniform hypercactus with m edges and r cycles. By
Theorem 9, po(G') > pa(G), a contradiction. Thus, every edge in G has k — 2
vertices of degree 1.

Suppose that there exist two vertex-disjoint cycles. We choose two such
cycles C1 and Cy by requiring that dg(C1,C3) is as small as possible, where
da(Ch,Ce) = min{dg(u,v) : u € V(C1),v € V(C9)}. Let u € V(Cy) and v €
V(Cs) with dg(C1,Cs) = dg(u,v). We may assume that z, > x,. Let G” be
the hypergraph obtained from G by moving edges containing v in Cs from v to
u. Obviously, G” is a k-uniform hypercactus with m edges and r cycles. By
Theorem 6, po(G”) > pa(G), a contradiction. Thus, if » > 2, then all cycles in
G share a common vertex, which we denote by w. If r = 1, then w is a vertex of
degree 2 of the unique cycle.

Let (vg,e1,v1,...,v0—-1,€0,00) be a cycle of G of length ¢ > 2, where vy = w.
Suppose that ¢ > 3. Assume that z,, > x,,. Let G* be the hypergraph obtained
from G by moving the edge ez from vy to vg. Obviously, G* is a k-uniform
hypercactus with m edges and r cycles. By Theorem 6, po(G*) > pa(G), a
contradiction. Thus, every cycle of G is of length 2, and there are exactly m — 2r
edges that are not on any cycle.

Suppose that G 2 H,, , . Then there exists a vertex z such that dg(w, z) =
2. Let 2’ be the unique vertex such that dg(w,?2’) = dg(Z',2z) = 1. There are
two cases. First suppose that 2’ lies on some cycle. Let e; and ey be the cycle
containing w and z’. Let H be the hypergraph obtained from G by moving all
edges containing 2’ except e; and ey from 2’ to w if x,, > ./, and the hypergraph
obtained from G by moving all edges containing w except e; and ez from w to
z otherwise. Now suppose that z’ does not lie on any cycle. Let e be the edge
containing w and z’. Let H be the hypergraph obtained from G by moving all
edges containing 2’ except e from 2’ to w if z,, > z./, and the hypergraph obtained
from G by moving all edges containing w except e from w to z otherwise. In either
case, H is a k-uniform hypercactus with m edges and r cycles. By Theorem 6,
pa(H) > pa(G), a contradiction. It follows that G = H,, ;. [
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Corollary 11. Suppose that k > 2.

(i) If G is a k-uniform hypertree with m > 1 edges, then po(G) < pa(Smk) for
0 < o <1 with equality if and only if G = Sy, k.

(ii) If G is a k-uniform unicyclic hypergraphs with m > 2 edges, then po(G) <
pPa(Hma k) for 0 < o < 1 with equality if and only if G = Hyy, 1 k-

The cases when a = 0 in Corollary 11 (i) and (ii) have been known in [8, 2].

For 2 < d < m, let S,, 4% be the k-uniform hypertree obtained from the k-
uniform loose path Py = (vo, e1,v1,...,04-1, €4, vq) by attaching m — d pendant
edges at v g Obviously, Sy 2k = S k-

Theorem 12. For k > 2, let G be a k-uniform hypertree with m edges and
diameter d > 2. For 0 < o < 1, we have po(G) < pa(Sm,ak) with equality if and
only if G = Syyd k-

Proof. 1t is trivial for d = 2. Suppose that d > 3.

Let G be a k-uniform hypertree with maximum a-spectral radius among
hypertrees with m edges and diameter d.

Let P = (vg,e1,v1,...,€4,v4) be a diametral path of G. Let x be the a-
Perron vector of G.

Claim 1. FEvery edge of G has at least k — 2 vertices of degree 1.

Proof. Suppose that there is at least one edge with at least three vertices of
degree at least 2. Let f = {uy,...,ur} be such an edge. First suppose that
f is not an edge on P. We may assume that dg(ui, P) = dg(u;, P) — 1 for
i=2,...,k, where dg(w, P) = min{dg(w,v) : v € V(P)}. Then dg(u1) > 2. We
may assume that dg(u;) > 2 for i =2,...,7 and dg(u;) =1 fori=r+1,...,k,
where 3 < r < k. Let G’ be the hypertree obtained from G by moving all
edges containing us, ..., u, except f from us,...,u, to u;. Obviously, G’ is a
hypertree with m edges and diameter d. By Theorem 9, po(G') > pa(G), a
contradiction. Thus f is an edge on P, i.e., f = ¢; for some ¢ with 2 <1¢ < d— 1.
Let e; \ {vi—1,vi} = {vi1,...,vik—2}. We may assume that v;1,...,v;s are
precisely those vertices with degree at least 2 among v;1,...,v; x—2, where 1 <
s < k—2. Let G” be the hypertree obtained from G by moving all edges containing
Vils--.,Vis except e; from v;1,...,v; s to v;. Obviously, G” is a hypertree with
m edges and diameter d. By Theorem 9, po(G”) > pa(G), also a contradiction.
It follows that all edges of G have at most two vertices of degree at least 2. Claim
1 follows. O

Claim 2. Any edge not on P is a pendant edge.

Proof. Suppose that e is an edge not on P and it is not a pendant edge. Then
there are two vertices, say v and v, in e such that d, > 2 and d, > 2. Suppose
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without loss of generality that dg(u, P) < dg(v, P). Let w be the vertex on P
with dg(u, P) = dg(u,w). Let G* be the hypertree obtained from G by moving
all edges containing v except e from v to w if x,, > x,,, and the hypertree obtained
from G by moving all edges containing w (except the edge in the path connecting
w and v) from w to v otherwise. By Theorem 6, po(G*) > po(G), a contradiction.

This proves Claim 2. U
Claim 3. There is at most one vertex of degree greater than two in G.

Proof. Suppose that there are two vertices, say s and ¢, on P with degree greater
than two. We may assume that zs > x;. Let H be the hypertree obtained from
G by moving all pendant edges containing ¢ from ¢ to s. By Theorem 6, we have
pa(H) > pa(G), a contradiction. Claim 3 follows. O

Combing Claims 1-3, G is a hypertree obtained from the path P by attaching
m — d pendant edges at some v; with 1 <i <d — 1, and by Theorem 8, we have
G = Sm,d,k- |

The above result for a = 0 has been proved in [25] by a relation between the
0-spectral radius of a power hypergraph and the O-spectral radius of its graph.
Recall that for &« = 0 and k = 2, Simi¢ and one author of this paper [23] deter-
mined the tree on n vertices and diameter d with kth largest O-spectral radius
fork=1,..., L%J +lifda<d<n—4andfork=1,..., ng ifd=n-3.

Suppose that m > d > 3. Let H be the hypergraph obtained from S, 41 by
moving edge ey from vy_1 to vl 4| if va%J > Ty, ,, and the hypergraph obtained
from Sy, 4% by moving edges containing U4 except €ld|41 from U4 to vg_1
otherwise. Obviously, H = S, 41 4. By Theorem 6, po(Sm.dak) < Pa(Sm.d—1k)-
Now by Theorem 12, Corollary 11(i) follows. Moreover, if G is a k-uniform
hypertree with m > 3 edges and G 2 Sy, i, pPa(G) < pa(Sm3k) with equality if
and only if G 2 S, 3 1, which has been known for a = 0 in [8].

For 2 <t <m, let T}, ;. be the k-uniform hypertree consisting of ¢ pendant
paths of almost equal lengths (i.e., t — (m —t L%J) pendant paths of length L%J
and m—t L%J pendant paths of length L%J +1) at a common vertex. Particularly,
Tin 2k is just the k-uniform loose path P, ;.

Theorem 13. Let G be a k-uniform hypertree with m edges and t > 2 pendant
edges. For 0 < a < 1, we have po(G) < pa(Tmtr) with equality if and only if
G=Thik-

Proof. Let G be a k-uniform hypertree with maximum a-spectral radius among
hypertrees with m edges and ¢ pendant edges. Let x be the a-Perron vector of G.

Suppose that there exists an edge e = {uy, ..., u} with at least three vertices
of degree at least 2. Assume that dg(u;) > dg(ujpq) fori =1,...,k—1. Let G’ be
the hypertree obtained from G by moving all edges containing us, . .., ux except
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e from these vertices to u;. Obviously, G’ is a hypertree with m edges and ¢
pendant edges. By Theorem 9, po(G’) > po(G), a contradiction. It follows that
each edge of G has at most two vertices of degree at least 2.

Suppose that there are two vertices, say u,v with degree greater than 2. We
may assume that x, > x,. Let H be the hypertree obtained from G by moving an
edge not on the path connecting v and v containing v from v to u. By Theorem 6,
we have po(H) > po(G), a contradiction. Thus, there is at most one vertex of
degree greater than 2 in G.

If there is no vertex of degree greater than 2, then ¢t = 2, and G is the k-
uniform loose path P, ;. If there is exactly one vertex of degree greater than 2,
then t > 3, G is a hypertree consisting of ¢ pendant paths at a common vertex,
and by Theorem 8, we have G = T}, ¢ . [ |

For a = 0, this is known in [26, 30].
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