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Abstract

We consider Laplacian fractional revival between two vertices of a graph
X. Assume that it occurs at time τ between vertices 1 and 2. We prove
that for the spectral decomposition L =

∑q

r=0
θrEr of the Laplacian matrix

L of X, for each r = 0, 1, . . . , q, either Ere1 = Ere2, or Ere1 = −Ere2,
depending on whether eiτθr equals to 1 or not. That is to say, vertices 1
and 2 are strongly cospectral with respect to L. We give a characterization
of the parameters of threshold graphs that allow for Laplacian fractional
revival between two vertices; those graphs can be used to generate more
graphs with Laplacian fractional revival. We also characterize threshold
graphs that admit Laplacian fractional revival within a subset of more than
two vertices. Throughout we rely on techniques from spectral graph theory.

Keywords: Laplacian matrix, spectral decomposition, quantum informa-
tion transfer, fractional revival.
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1. Introduction

Transferring a quantum state from one location to another reliably, or generating
entangled states, play important roles in quantum spin systems. We model a
quantum spin system by an undirected weighted graph: assign a vertex to each
spin, and two vertices are adjacent if and only if the two corresponding spins
are interacting with each other, with the edge weight equal to the interaction
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strength between the two spins. The system evolves with time due to its own
dynamics; for the one excitation subspace, the adjacency matrix of the graph
serves as the Hamiltonian of the system under XY dynamics, and the Laplacian
matrix of the graph serves as the Hamiltonian of the system under Heisenberg
dynamics. Here we focus on the latter case, and refer to quantum state transfer
on graphs instead of in a quantum system.

For a graph X on n vertices with labelling {1, . . . , n}, its adjacency matrix

A(X) is an n-by-n matrix with (j, k) entry 1 if vertices j and k are adjacent, and 0
otherwise. Its Laplacian matrix is L = D−A, where D is a diagonal matrix with
j-th diagonal entry being the j-th row sum of A. LetH denote the Hamiltonian of
the system (A or L, depending on the dynamics), and let U(t) = eitH. Then the
fidelity of state transfer from vertex u to vertex v is given by pu,v(t) = |U(t)u,v|

2,
and is a measurement of the closeness of the state at vertex v at time t to the state
at vertex u at time 0. If there is some time t1 > 0, such that pu,v(t1) = 1 for two
distinct vertices u and v, then we say that there is perfect state transfer (PST)
from u to v at time t1. It means that, up to a phase factor, with probability 1 the
state at vertex v at time t1 is identical to the initial state at vertex u at time 0.
There is a lot of research on perfect state transfer on graphs, including quantum
state transfer properties with respect to graph operations, of weighting schema to
obtain weighted graphs with PST where the unweighted ones do not, of adding
potentials to graphs, and some special classes of graphs with PST; we refer the
interested reader to [2,4,9,10,13,15,16]. Another phenomenon related to quantum
state transfer is called fractional revival. If there is some time t2 > 0 and two
distinct vertices u and v, such that U(t2)eu = αeu + βev for some α, β ∈ C with
|α|2 + |β|2 = 1 and β 6= 0, we say there is fractional revival (FR) from u to v at
time t2. Further, if |α| = |β|, the fractional revival is called balanced [7] (observe
that FR generalizes PST). More generally, if there is some time t3 > 0 and a
proper subset S of V (X), such that for any vertex u ∈ S, U(t3)u,v = 0 if v /∈ S,
and the unweighted graph associated to the submatrix U(t3)[S,S] is connected,
we say there is generalized fractional revival between vertices in S (here U(t3)[S,S]
is the submatrix of entries that lie in the rows and columns of U(t3) indexed by
elements in S).

Fractional revival between two end vertices of a spin chain (where the un-
derlying graph is a path) can also be used to transfer quantum states efficiently,
and balanced fractional revival can be used to generate entangled states. For
adjacency fractional revival to occur at the two end vertices of a quantum spin
chain with weighted loops, the spectrum of the Hamiltonian H = A must take
the form of a bi-lattice [11]. It is shown that spin chains with adjacency fractional
revival can be obtained from isospectral deformations of spin chains with PST (a
characterization of the spectrum of H for a spin chain to exhibit PST at the end
vertices is known), and the deformation only changes the middle couplings (also
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weights of the loops on the middle two vertices of the path when n is even) of the
chain with PST to get a chain with FR. In [5], a class of cubelike graphs and some
weighted graphs obtained from hypercubes are found to exhibit fractional revival.
In [7], some properties of adjacency fractional revival (Hamiltonian H = A) on
general graphs are studied; in particular, a characterization of fractional revival
between cospectral vertices is given.

Not many graphs are known to exhibit fractional revival. Here we focus
on Laplacian dynamics, and characterize the parameters of a family of graphs
— threshold graphs — that admit fractional revival under Laplacian dynam-
ics. With these threshold graphs, we can produce more graphs with Laplacian
fractional revival. Recall that a threshold graph can be constructed from the
one-vertex graph by repeatedly adding a single vertex of two possible types: an
isolated vertex, i.e., a vertex without incident edges, or a dominating vertex, i.e.,
a vertex connected to all other vertices. A characterization of PST in threshold
graphs is known (see Theorem 3 below), and consequently our results on FR in
threshold graphs, which rely heavily on techniques from spectral graph theory,
can be seen as an extension of that theorem.

The outline of the paper is as follows. In Section 2, we review almost equitable
partitions of a graph, some basic graph theory, and related results about threshold
graphs. In Section 3, we consider Laplacian fractional revival between two vertices
of a graph X, where we deduce that the two vertices are strongly cospectral
with respect to L. In Section 4, we characterize threshold graphs that admit
(generalized) Laplacian fractional revival within a subset of the vertex set. In
Section 5, we produce more graphs with Laplacian fractional revival by making
use of threshold graphs.

2. Preliminaries

Some graphs admit some special partitions of their vertex set, and these partitions
play important roles in quantum state transfer under Laplacian dynamics. First
we introduce the characteristic matrix of a partition of the vertex set V (X) of
the graph X, and a special partition of V (X) that X may admit.

Definition [12]. If π = (C1, . . . , Ck) is a partition of V (X), the characteristic

matrix P of π is the n× k matrix

Pjℓ =

{

1 if vj ∈ Cℓ,
0 otherwise.

If we scale each column of P so that its norm is 1, the resulting matrix is called
the normalized characteristic matrix of the partition π, and is denoted by P̂ .
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Definition [6]. For the graph X = (V,E), a partition π = (C1, . . . , Ck) of its
vertex set V , is called an almost equitable partition if for all j, ℓ ∈ {1, . . . , k} with
j 6= ℓ, the number of neighbours of a vertex v ∈ Cj has in the cell Cℓ does not
depend on the choice of v. The generalized Laplacian matrix L(X)π with respect
to the almost equitable partition π is the k × k matrix such that

L(X)πj,ℓ =

{

−cjℓ if j 6= ℓ,
sj , otherwise,

where cjℓ is the number of neighbours a vertex in cell Cj has in cell Cℓ, and
sj =

∑

ℓ6=j cjℓ.

If the condition in the definition of almost equitable partition above also
holds whenever j = ℓ, then this special almost equitable partition is called an
equitable partition, which plays an important role in quantum state transfer under
adjacency dynamics.

An almost equitable partition of a graph X has the following characterization
by using its characteristic matrix and the Laplacian matrix of the graph X.

Proposition 1 [6]. Let G be a graph, L its Laplacian matrix, π = (C1, . . . , Ck)
a k-partition of V (G) and P the characteristic matrix of π. Then π is an almost

equitable partition if and only if there is a k × k matrix M such that

LP = PM.

If π is an almost equitable k-partition, then M is the generalized Laplacian matrix

L(G)π.

Now we review some graph operations: complement, union and join.
Let X = (V,E) denote the graph with vertex set V and edge set E. Then

the complement Xc of X is the graph that has the same vertex set as X, and two
vertices of Xc are adjacent if and only if they are not adjacent in X. Assume
X1 = (V1, E1) and X2 = (V2, E2) are two graphs with disjoint vertex sets. Then
the union X1 ∪X2 of X1 and X2 is the graph with vertex set V1 ∪ V2 and edge
set E1 ∪ E2, i.e., X1 ∪X2 = (V1 ∪ V2, E1 ∪ E2). The join X1 ∨X2 of X1 and X2

is X1 ∨X2 = (Xc
1 ∪Xc

2)
c, which is the graph obtained by taking the union of X1

with X2 first, then connecting every vertex of X1 to every vertex of X2.
By using the above two binary graph operations — union and join, we have

the following characterization of connected threshold graphs, where Kp denotes
the complete graph on p vertices, and Op denotes the empty graph on p vertices.

Proposition 2 [17]. Let X be a connected graph on at least two vertices. Then

X is a connected threshold graph if and only if one of the following two conditions

is satisfied:
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(1) there are indices m1, . . . ,m2k ∈ N with m1 ≥ 2 such that X = ((((Om1
∨

Km2
) ∪Om3

) ∨Km4
) · · · ) ∨Km2k

≡ Γ(m1, . . . ,m2k);

(2) there are indices m1, . . . ,m2k+1 ∈ N with m1 ≥ 2 such that X = ((((Km1
∪

Om2
) ∨Km3

) ∪Om4
) · · · ) ∨Km2k+1

≡ Γ(m1, . . . ,m2k+1).

The Laplacian PST properties of threshold graphs are known.

Theorem 3 [17]. Let X be a threshold graph. When X ≡ Γ(m1, . . . ,m2k)
(respectively, X ≡ Γ(m1, . . . ,m2k+1)), then there is PST between vertex j and

ℓ at time t ∈ [0, 2π] if and only if {j, ℓ} = {1, 2} and in addition: t = π/2,
m1 = 2, m2 ≡ 2 (mod 4), and mr ≡ 0 (mod 4) for r = 3, . . . , 2k (respectively,
j = 3, . . . , 2k + 1).

Throughout, we use e1, . . . , en to denote the standard basis vectors in the n-
dimensional vector space, where for each j = 1, . . . , n, ej = (0, . . . , 0, 1, 0, . . . , 0)T .
We use Jm,n to denote the all ones matrix of size m × n, use 1n to denote the
all ones vector of size n, and use In to denote the identity matrix of size n. We
denote a p × q zero matrix by 0p,q and the zero vector in Cp by 0p. Subscripts
denoting the sizes of matrices and vectors will be suppressed when they are clear
from the context.

3. Laplacian Fractional Revival Between Two Vertices

Assume that X is a graph on n vertices and that it admits Laplacian fractional
revival from vertex u to vertex v at time τ . Without loss of generality, assume that

vertices u and v are labelled 1 and 2, respectively. Then U(τ) = eiτL =

[

U1 0
0 U2

]

for some complex symmetric unitary matrices U1 of order 2 and U2 of order
n − 2, and the union of the spectrum of U1 and the spectrum of U2 gives the
spectrum of U(τ). Denote the (j, ℓ) entry of U1 by Uj,ℓ, then for j = 1, 2, eiτLej =
U1je1 + U2je2. Now assume the spectral decomposition of L is L =

∑q
r=0 θrEr

with θ0 = 0. Then eiτL =
∑q

r=0 e
iτθrEr, and eiτLeu =

∑q
r=0 e

iτθrEreu for any
vertex u of X. Therefore

∑q
r=0 e

iτθrErej = eiτLej = U1je1 + U2je2 for j = 1, 2.
Premultiplying Er on both sides of the equation, combined with the facts that eiτL

and Er commute, and that ErEℓ = δr,ℓEr, gives e
iτθrErej = U1jEre1 + U2jEre2

for j = 1, 2. Putting them together, we have [Ere1Ere2]
(

U1 − eiτθrI
)

= 0 for
r = 0, 1, . . . , q. Therefore if Cr = [Ere1Ere2] 6= 0, then eiτθr is an eigenvalue of
U1, and any nonzero row of Cr is a real left eigenvector of U1 associated to the
eigenvalue eiτθr . In particular, for θ0 = 0, we have C0 =

1
n
Jn,2 6= 0, and therefore

eiτθ0 = eiτ0 = 1 is an eigenvalue of U1. Furthermore, 1 is a simple eigenvalue of
U1, since the only 2-by-2 diagonalizable matrix that has 1 as a multiple eigenvalue
is the identity matrix I2.
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Note that for a complex symmetric matrix, each of its real eigenvectors is a
left eigenvector at the same time, and the real eigenvectors associated to distinct
eigenvalues are orthogonal. To see this, assume U is a complex symmetric matrix,
with a real eigenvector x associated to λ, and a real eigenvector y associated to
µ 6= λ. Taking the transpose of Ux = λx we have xTU = xTUT = (Ux)T = λxT ,
that is to say, x is also a left eigenvector of U . From λxT y = (xTU)y = xT (Uy) =
µxT y and λ 6= µ, we conclude that xT y = 0, i.e., x and y are orthogonal to each
other.

Now consider any eigenvalue θr. Then if eiτθr 6= 1, from the facts that U1

is symmetric and that Er is a real matrix for r = 0, 1, . . . , q, we know Cr12 =
[Ere1, Ere2]12 = 0, i.e., Ere1+Ere2 = 0. Since 1 is a simple eigenvalue of U1, we
have that for each r such that eiτθr = 1, all the rows of Cr are scalar multiples of
1T2 . That is to say, [Ere1, Ere2] = [Ere1, Ere1], or Ere1 = Ere2. The following
theorem summarizes those observations.

Theorem 4. If there is Laplacian fractional revival between two vertices u and

v at time τ in graph X, then vertices u and v are strongly cospectral with respect

to the Laplacian matrix L. That is, if the spectral decomposition of L is L =
∑

r θrEr, then for each r, either Ereu = Erev (if τθr
2π ∈ Z) or Ereu = −Erev (if

τθr
2π /∈ Z) holds.

While preparing this manuscript, we learned that Chan and Teitelbaum [8]
have also proved the necessity of strong cospectrality for Laplacian FR.

Remark 5. For generalized Laplacian fractional revival between m ≥ 3 vertices,
1 is not necessarily a simple eigenvalue of U1, but if it is, then with a similar
argument as above, we have the following.

Assume X is a graph that admits generalized Laplacian fractional revival be-
tween vertices in S = {1, 2, . . . ,m} ⊂ V (X) at time τ , and that U1 = U(τ)[S,S] =

(eiτL)[S,S] has 1 as a simple eigenvalue. Let L =
∑q

r=0 θrEr be the spectral de-
composition of the Laplacian matrix L of X. Then for each r = 1, . . . ,m, the
vectors Ere1, Ere2, . . . , Erem are linearly dependent, and either

(1) Ere1 = Ere2 = · · · = Erem if eiτθr = 1, or

(2) Ere1 + Ere2 + · · ·+ Erem = 0 if eiτθr 6= 1.

Example 6. Let X be the graph as shown in Figure 1, and write the spectral
decomposition of its Laplacian as L(X) =

∑4
r=0 θrEr, with θ0 = 0, θ1 = 1, θ2 = 3,

θ3 = 4, and θ4 = 5. There is Laplacian fractional revival between vertices v1 and
v2, and generalized fractional revival between vertices {v3, v4, v5, v6} at time 2π

3 .
Direct observation shows that v1 and v2 are strongly cospectral with respect to
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L: Ere1 = Ere2 for r = 0, 2, Ere1 = −Ere2 for r = 1, 3, and E4e1 = E4e2 = 06,
which is in accordance with Theorem 4. There is also generalized Laplacian
fractional revival between vertices {v1, v4, v5}, and between vertices {v2, v3, v6} at
time π. Since 1 is a simple eigenvalue of U1 = U(π)[{1,4,5},{1,4,5}], Remark 5 implies

that Ere1 = Ere4 = Ere5 for r = 0, 3 (eiπθr = 1) and that Ere1+Ere4+Ere5 = 0
for r = 1, 2, 4 (since eiπθr 6= 1), which can be confirmed by checking the orthogonal
projection matrices Er directly.

Figure 1

v1

v3

v6 v5

v4

v2

4. Laplacian Fractional Revival in Threshold Graphs

We will only give detailed consideration to connected threshold graphs of the form
Γ(m1,m2, . . . ,m2k) in this section; note that similar results hold for the connected
threshold graphs Γ(m1,m2, . . . ,m2k,m2k+1), and we state them without proof.

As shown in [17], for the threshold graph Γ(m1,m2, . . . ,m2k), its eigenvalues
are:

(3) λ0 = 0,

(4) λj = mj+1 +mj+3 + · · ·+m2k for any odd integer j ∈ {1, . . . , 2k},

(5) and λj = σj +mj+2 + · · ·+m2k for any even integer j ∈ {1, . . . , 2k},

where σj = m1 +m2 + · · ·+mj for j = 1, 2, . . . , 2k. The multiplicity of λj is






1 if j = 0,
m1 − 1, if j = 1,
mj otherwise.

The orthogonal idempotents for L corresponding to λ0 = 0, λ = λ1 and λ = λj

for j = 2, 3, . . . , 2k are: E0 =
1

σ2k
Jσ2k,σ2k

,

E1 =











Im1
− 1

m1
Jm1,m1

0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











,
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Ej =







mj

σj−1σj
Jσj−1,σj−1

− 1
σj
Jσj−1,mj

0σj−1,σ2k−σj

− 1
σj
Jmj ,σj−1

Imj
− 1

σj
Jmj ,mj

0mj ,σ2k−σj

0σ2k−σj ,σj−1
0σ2k−σj ,mj

0σ2k−σj ,σ2k−σj






, respectively.

We partition the vertex set of Γ(m1, . . . ,m2k) according to the indices m1,m2,
. . . ,m2k; denote the corresponding cells by C1, C2, . . . , C2k, and denote the par-
tition by π.

Lemma 7. If Γ(m1, . . . ,m2k) admits Laplacian fractional revival between two

vertices u and v, then they must belong to the same cell of the partition π.

Proof. From Theorem 4 we know that if there is fractional revival between two
vertices u and v of Γ(m1, . . . ,m2k), then the two vertices are strongly cospectral
with respect to L. Assume u ∈ Cj , v ∈ Cℓ, j < ℓ, and u is the s-th entry of cell

Cj . Then Ejev = 0σ2k
and for es ∈ Rmj , Ejeu =

[

eTs − 1
m1

1Tm1
0Tσ2k−m1

]T
if

j = 1; Ejeu =
[

− 1
σj
1Tσj−1

eTs − 1
σj
1Tmj

0Tσ2k−σj

]T

if j > 1. In either case, u

and v are not strongly cospectral with respect to L. Therefore u and v must be
in the same cell of the partition π.

Lemma 8. If X = Γ(m1, . . . ,m2k) admits Laplacian fractional revival between

two vertices u and v, then {u, v} = {1, 2} and m1 = 2.

Proof. From Lemma 7 we know vertices u and v are in the same cell of π;
assume u, v ∈ Cj , with u being the s-th vertex in Cj , and v the r-th vertex

in Cj . Let σ0 = 0, then Ejeu =
[

− 1
σj
1Tσj−1

(

es −
1
σj
1mj

)T

0Tσ2k−σj

]T

and

Ejev =
[

− 1
σj
1Tσj−1

∣

∣

∣

(

er −
1
σj
1mj

)T ∣
∣

∣
0Tσ2k−σj

]T

, where es, er ∈ Rmj . By Theorem

4, Laplacian fractional revival between u and v implies Ejeu = ±Ejev, which is
possible only if j = 1 and σ1 = m1 = 2.

Now we are going to characterize the parameters mj such that Laplacian
fractional revival occurs between vertices 1 and 2 in the graph Γ(m1, . . . ,m2k)
by using the spectral decomposition of L shown at the beginning of this section.
Since all the eigenvalues of L are integers, we know that L is periodic at all
vertices at time 2π, i.e., e2πiL is a scalar multiple of the identity matrix (in fact
it is the identity matrix here). In the following we will not consider this case.

Theorem 9. The threshold graph X = Γ(m1, . . . ,m2k) admits Laplacian frac-

tional revival between two vertices u and v at time τ if and only if

(i) {u, v} = {1, 2} and m1 = 2, and
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(ii) (a) m1
τ
π
= 2 τ

π
/∈ Z,

(b) (m1 +m2)
τ
2π ,mj

τ
2π ∈ Z for j = 3, . . . , 2k.

Proof. Assume that there is Laplacian fractional revival between vertices u and
v at time τ > 0. Then Lemmas 7 and 8 imply that (i) holds. Using the spectral
decomposition of L we have

(

eiτL
)

1,1
= eiτλ1

(

1−
1

2

)

+ eiτλ2

(

m2

σ1σ2

)

+ eiτλ3

(

m3

σ2σ3

)

+ · · ·

+ eiτλ2k−1

(

m2k−1

σ2k−2σ2k−1

)

+ eiτλ2k

(

m2k

σ2k−1σ2k

)

+
1

σ2k
,

(

eiτL
)

1,2
= eiτλ1

(

−
1

2

)

+ eiτλ2

(

m2

σ1σ2

)

+ eiτλ3

(

m3

σ2σ3

)

+ · · ·

+ eiτλ2k−1

(

m2k−1

σ2k−2σ2k−1

)

+ eiτλ2k

(

m2k

σ2k−1σ2k

)

+
1

σ2k
,

(

eiτL
)

1,w
= eiτλj

(

−
1

σj

)

+ eiτλj+1

(

mj+1

σjσj+1

)

+ · · ·

+ eiτλ2k

(

m2k

σ2k−1σ2k

)

+
1

σ2k
for w ∈ Cj with j = 2, . . . , 2k.

Since
(

eiτL
)

1,w
= 0 for w 6= 1, 2, then considering w ∈ C2k, w ∈ C2k−1, . . . , w ∈

C3, w ∈ C2, we find that τσ2k, τm2k, τ(σ2k−2+m2k), . . . , τ(m4+m6+ · · ·+m2k),
and τ(σ2+m4+ · · ·+m2k) are all even integer multiples of π, which is equivalent
to the fact that τm2k, τm2k−1, τm2k−2, . . . , τm3, and τσ2 are all even integer
multiples of π. In this case,

(6)
(

eiτL
)

1,1
=

1

2
eiτm2 +

1

2
, and

(

eiτL
)

1,2
= −

1

2
eiτm2 +

1

2
.

Hence, if in addition,

• τm2 and therefore τm1 = 2τ is an even integer multiple of π, then the graph
X is periodic at vertex 1 (and vertex 2);

• τm2 and therefore τm1 = 2τ is an odd integer multiple of π, then the graph
X admits Laplacian perfect state transfer between vertices 1 and 2;

• τm2 and therefore τm1 = 2τ is not an integer multiple of π, then the graph
X admits Laplacian fractional revival between vertices 1 and 2.

Therefore the conditions are necessary. It is straightforward to show that the
conditions are sufficient.

With the same argument as above, we have the following.
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Remark 10. The threshold graph X = Γ(m1, . . . ,m2k,m2k+1) admits Laplacian
fractional revival between two vertices u and v at time τ if and only if

(i) {u, v} = {1, 2} and m1 = 2, and

(ii) (a) m1
τ
π
= 2 τ

π
/∈ Z,

(b) (m1 +m2)
τ
2π ,mj

τ
2π ∈ Z for j = 3, . . . , 2k, 2k + 1.

Corollary 11. There is balanced Laplacian fractional revival between vertices u
and v in the threshold graph X = Γ(m1, . . . ,m2k) at time τ , if and only if

(i) m1 = 2 with {u, v} = {1, 2},

(ii) τ = 2ℓ+1
4 π for some non-negative integer ℓ,

(iii) m2 =
2(2s+1)
2ℓ+1 , for the same integer ℓ as in (ii), and for a non-negative integer

s of distinct parity from ℓ such that (2ℓ + 1) | (2s + 1) (in fact when this is

true, then 2s+1
2ℓ+1 ≡ 3 (mod 4)), and

(iv) mj ≡ 0 (mod 8) for j = 3, . . . , 2k.

Proof. From Theorem 9 and equation (6), we know that if balanced fractional
revival in X takes place between vertices u and v, then it is between vertices 1
and 2. In this case, m1 = 2, cos (m2τ) = 0, and τ(m1 +m2), τm3, . . . , τm2k are
all even integer multiples of π. Therefore τm2 =

2s+1
2 π for some integer s. Since

τ(m1+m2) is an even integer multiple of π, we have 2τ = 2ℓ+1
2 π for some integer

ℓ, where ℓ has different parity than s. Hence τ = 2ℓ+1
4 π and m2 = 2(2s+1)

2ℓ+1 for
integers s and ℓ with distinct parity. Combining with the fact that τmj is an
even integer multiple of π for j = 3, . . . , 2k, we find that mj ≡ 0 (mod 8) for
j ≥ 3.

Conversely, if mj ≡ 0 (mod 8) for j ≥ 3, and τ = 2ℓ+1
4 π for some integer ℓ,

then mjτ = mj
2ℓ+1
4 π is an even integer multiple of π for j ≥ 3. Furthermore, if

m2 = 2(2s+1)
2ℓ+1 for integer s of different parity than ℓ such that (2ℓ + 1)|(2s + 1),

then (m1 +m2)τ = (s+ ℓ+1)π is an even integer multiple of π, and cos(m2τ) =
cos

(

2s+1
2 π

)

= 0. Again from Theorem 9 and equation (6), we know that there is
balanced fractional revival in X between vertices 1 and 2 at time τ .

Remark 12. There is balanced Laplacian fractional revival between vertices u
and v in the threshold graph X = Γ(m1, . . . ,m2k,m2k+1) at time τ , if and only
if

(i) m1 = 2 with {u, v} = {1, 2},

(ii) τ = 2ℓ+1
4 π for some non-negative integer ℓ,

(iii) m2 =
2(2s+1)
2ℓ+1 , for the same integer ℓ as in (ii), and for a non-negative integer

s of distinct parity from ℓ such that (2ℓ + 1) | (2s + 1) (in fact when this is
true, then 2s+1

2ℓ+1 ≡ 3 (mod 4)), and
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(iv) mj ≡ 0 (mod 8) for j = 3, . . . , 2k, 2k + 1.

Remark 13. Since if there is PST between vertices u and v, then u and v are
strongly cospectral [13], the proof of Theorem 9 can be used to prove Theorem 3
— the second of the three cases in the proof gives us Theorem 3.

Now we address generalized Laplacian fractional revival within some subset
of vertices in threshold graphs.

Theorem 14. Consider the threshold graph X = Γ(m1, . . . ,m2k), and let Cℓ, ℓ =
1, . . . , 2k denote the cells of the partition π of V (X) according to the parameters

mℓ, ℓ = 1, . . . , 2k. Then X admits generalized Laplacian fractional revival between

vertices in S ⊂ V (X) at some time τ > 0 if and only if, for some integer

j < 2k, τm2k, τm2k−1, . . . , τmj+2 and τσj+1 are all even integer multiple of π,
while τmj+1 is not. In this case, S = C1 ∪ · · · ∪ Cj, and X is periodic at all

vertices in the cells Cj+1, . . . , C2k.

Proof. Assume X admits generalized Laplacian fractional revival between ver-
tices in S at time τ , with j being the largest index of the cells such that S∩Cj 6= ∅.
Let u be any vertex in S ∩ Cj . Now

(

eiτL
)

u,w

= eiτλℓ

(

−
1

σℓ

)

+ eiτλℓ+1

(

mℓ+1

σℓσℓ+1

)

+ · · ·+ eiτλ2k

(

m2k

σ2k−1σ2k

)

+
1

σ2k

= eiτλℓ

(

−
1

σℓ

)

+ eiτλℓ+1

(

1

σℓ
−

1

σℓ+1

)

+ · · ·+ eiτλ2k

(

1

σ2k−1
−

1

σ2k

)

+
1

σ2k
,

for any w ∈ Cℓ, with ℓ = j + 1, . . . , 2k, and

(

eiτL
)

u,v
= eiτλj

(

−
1

σj

)

+ eiτλj+1

(

1

σj
−

1

σj+1

)

+ · · ·

+ eiτλ2k

(

1

σ2k−1
−

1

σ2k

)

+
1

σ2k
,

for any v ∈ C1 ∪ C2 ∪ · · · ∪ Cj with v 6= u, and

(

eiτL
)

x,x
= eiτλℓ

(

1−
1

σℓ

)

+ eiτλℓ+1

(

1

σℓ
−

1

σℓ+1

)

+ · · ·

+ eiτλ2k

(

1

σ2k−1
−

1

σ2k

)

+
1

σ2k
,

for any x ∈ Cℓ, with ℓ = 1, . . . , 2k.
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Since (eiτL)u,w = 0 for w ∈ C2k, C2k−1, . . . , Cj+1, we find that

(7)
τm2k

2π
,
τm2k−1

2π
, . . . ,

τmj+2

2π
,
τσj+1

2π
∈ Z.

In this case, we have

(

eiτL
)

w,w
= 1, for w ∈ Cj+1 ∪ · · · ∪ C2k

(8)
(

eiτL
)

u,u
= eiτλj

(

1−
1

σj

)

+
1

σj
, and

(

eiτL
)

u,v
= eiτλj

(

−
1

σj

)

+
1

σj
for v ∈ C1 ∪ · · · ∪ Cj and v 6= u.

Therefore X is periodic at any vertex w ∈ Cj+1 ∪ · · · ∪ C2k. The fact that u
is involved in generalized Laplacian fractional revival implies that |(eiτL)u,u| 6= 1.
Combining with (7) and (8), we find

τmj+1

2π /∈ Z irrespective of whether j is even
or odd, and therefore (eiτL)u,v 6= 0 for any v ∈ C1, . . . , Cj−1, Cj (if (eitL)u,u = 0,
then σj = 2, j = 1 and there is Laplacian PST between vertices 1 and 2, which
is not the case we are considering). Hence S = C1 ∪ · · · ∪ Cj and the conditions
are necessary. The other direction follows directly.

Remark 15. For the threshold graph X = Γ(m1, . . . ,m2k,m2k+1), let Cℓ, ℓ =
1, . . . , 2k+1, denote the cells of the partition of V (X) according to the parameters
mℓ, ℓ = 1, . . . , 2k + 1. Then X admits generalized Laplacian fractional revival
between vertices in S ⊂ V (X) at some time τ > 0 if and only if, for some integer
j < 2k + 1, τm2k+1, τm2k, τm2k−1, . . . , τmj+2 and τσj+1 are all even integer
multiples of π, while τmj+1 is not. In this case, S = C1 ∪ · · · ∪ Cj , and X is
periodic at all vertices in the cells Cj+1, . . . , C2k, C2k+1.

Example 16. Consider the threshold graph X = Γ(2, 2, 2, 2, 4, 4), direct compu-
tation shows that there is generalized Laplacian fractional revival between the set
S = {1, 2, . . . , 6} at τ = π/2. The result agrees with the one stated in Theorem
14, since τm5 = τm6 and τσ4 = 8τ are even integer multiples of π, while τm4 = π
is not. Similarly Γ(1, 2, 1, 4) admits Laplacian fractional revival between the first
4 vertices at time τ = π

4 , and Γ(2, 2, 6, 2, 4, 4) admits Laplacian fractional revival
between the first 10 vertices at time τ = π

2 .

Remark 17. Note that Theorem 14 implies Theorem 9, but the strong cospec-
trality of the two vertices involved in Laplacian fractional revival makes the proof
more clear as shown in Theorem 9.
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5. Constructing Graphs with Laplacian Fractional Revival

More graphs with Laplacian fractional revival can be obtained from those thresh-
old graphs that admit Laplacian fractional revival. For this result, we need to
make use of almost equitable partitions of a graph. First note that apart from
Proposition 1, there are other characterizations of an almost equitable partition
of a graph. The proof is essentially the same as that for the characterization for
equitable partitions [14], but we include it for completeness.

Proposition 18. Suppose π = (C1, . . . , Ck) is a partition of the vertices of the

graph X, and that P̂ is its normalized characteristic matrix. Denote the Laplacian

of X by L(X). Then the following are equivalent:

(a) π is an almost equitable partition.

(b) The column space of P̂ is L(X)-invariant.

(c) There is a matrix B of order k × k such that L(X)P̂ = P̂B.

(d) L(X) and P̂ P̂ T commute.

Proof. Assume P is the characteristic matrix of the partition π. From Theorem
1 we know that π is an almost equitable partition if and only if L(X)P = PM ,
i.e., the column space of P is L(X)-invariant. Since P and P̂ have the same
column space, it follows that (a) and (b) are equivalent.

Since (c) is an equivalent way of saying that the column space of P̂ is L(X)-
invariant, (b) and (c) are equivalent. Furthermore, L(X)P̂ = P̂B implies that
P̂ TL(X)P̂ = P̂ T P̂B = IkB = B, from which we see that the matrix B in (c) is
symmetric.

Now if (c) is true, and using the fact thatB is symmetric, we have L(X)P̂ P̂ T =
P̂BP̂ T = P̂ (P̂B)T = P̂ (L(X)P̂ )T = P̂ P̂ TL(X), and therefore (c) implies (d).

To prove that (d) implies (b), we note that if L(X) commutes with a matrix
S, then the column space of S is L(X)-invariant. Combined with the fact that
P̂ P̂ T and P̂ have the same column space, we get the desired result.

If a graph X1 admits an equitable partition π1 with vertices a and b being

singletons, then
(

eitA(X1)
)

a,b
=

(

eit
̂A(X1)π1

)

{a},{b}
, where ̂A(X1)π1 = P̂ TA(X1)P̂ ,

with rows and columns indexed by the cells of the partition π1, and the undirected

weighted graph with adjacency matrix ̂A(X1)π1 is called the symmetrized quotient

graph of X with respect to π1 [4]. Now if a graph X admits an almost equitable

partition π, then a parallel result holds between L(X) and L̂(X)π with exactly the

same argument, where L̂(X)π = P̂ TL(X)P̂ (note that L̂(X)π is not a Laplacian
matrix in general).
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Theorem 19. Let X = (V,E) be a graph with an almost equitable partition π
where two distinct vertices a and b belong to singleton cells. Let L(X) denote its

Laplacian matrix. Let u, v be either a or b, then for any time t,
(

eitL(X)
)

u,v
=

(

eitL̂(X)π
)

{u},{v}

where {u} and {v} are the corresponding singleton cells of π, and are used to

index the rows and columns of L̂(X)π. Therefore, the system with Hamiltonian

L(X) has fractional revival (respectively, perfect state transfer) from a to b at time

t if and only if the system with Hamiltonian L̂(X)π = P̂ TL(X)P̂ has fractional

revival (respectively, perfect state transfer) from {a} to {b} at time t.

The above result was used in an example in [1]. Now we can construct more
graphs with Laplacian fractional revival (respectively, Laplacian perfect state
transfer) from given graphs.

Corollary 20. Suppose that the graph X = (V,E) has an almost equitable par-

tition π of V , with vertices a and b belonging to singleton cells. If there is Lapla-

cian fractional revival (respectively, Laplacian perfect state transfer) from a to

b in X, then for any graph Y obtained from X by adding or deleting any col-

lection of edges within the cells of π, Y also admits Laplacian fractional revival

(respectively, Laplacian perfect state transfer) from a to b.

Proof. The almost equitable partition of the vertex set of X is also an almost
equitable partition of V (Y ). From the fact that P̂ TL(Y )P̂ = P̂ TL(X)P̂ and
Theorem 19, the result follows.

Remark 21. The partition π of a threshold graph according to the parameters
mj is an almost equitable partition, and so is any refinement of this partition.
In particular, for a threshold graph X that admits Laplacian fractional revival
at time τ , partitioning the cell C1 = {1, 2} of π into two smaller cells C1,1 = {1}
and C1,2 = {2} and keeping all the other cells unchanged, results in the partition
π′, that is still an almost equitable partition of V (X), but now the two vertices
involved in Laplacian fractional revival are singletons. Therefore, we can produce
more graphs with Laplacian fractional revival from the threshold graph X by
adding or deleting edges inside the cells of the partition π′ of V (X). Similarly,
if a threshold graph X admits generalized Laplacian fractional revival at time τ
between vertices {1, . . . , ℓ} = C1 ∪ · · · ∪ Cj , where C1, . . . , C2k (C2k+1) are the
cells of the partition π, then the refinement π′′ of π, which partitions C1∪· · ·∪Cj

into singletons as {1}, . . . , {ℓ} and keeps the other cells of π unchanged, is still
an almost equitable partition of V (X), but with all the vertices involved in the
revival as singletons. Again, adding or deleting vertices inside the cells of the
partition π′′ results in graphs that admit generalized Laplacian fractional revival
between vertices {1, . . . , ℓ} at time τ .
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Example 22. For any threshold graph X = Γ(m1, . . . ,m2k) with Laplacian
fractional revival (respectively, Laplacian PST), and for odd integer p > 1, even
integer q ≥ 2, the graph Y obtained from X by adding edges in the induced
subgraph Omp on cell Cp or deleting edges in the induced subgraph Kmq on cell
Cq of the equitable partition π, still admits Laplacian fractional revival between
the two vertices, by Corollary 20 and Remark 21. For example, we know without
calculations that the complete bipartite graph K2,6 admits Laplacian fractional
revival at time π/4 (and admits Laplacian PST at time π/2), since it can obtained
from the threshold graph O2 ∨K6 (which admits Laplacian fractional revival at
time π/4 by Theorem 9, and which admits Laplacian PST at time π/2 by Theorem
3) by removing all the edges inside K6.
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