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Abstract

A branch at a vertex x in a tree is a maximal subtree containing x as
an endvertex. The branch-weight of x is the maximum number of edges
in any branch at x. The branch-weight sequence of a tree is the multiset
consisting of the branch-weights of all vertices arranged in nonincreasing
order. Non-isomorphic trees may have the same branch-weight sequence. A
tree T is said to be branch-weight unique in a family of trees if T is uniquely
determined in the family by its branch-weight sequence. A spider is a tree in
which exactly one vertex has degree exceeding two. It is known that spiders
are branch-weight unique in the family of spiders but not in the family of all
trees. In this study, a necessary and sufficient condition is obtained whereby
a spider may be branch-weight unique in the family of all trees. Moreover,
two types of trees are proposed to be branch-weight unique in the family of
all trees.
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1. Introduction

Let T be a non-trivial tree and x ∈ V (T ). The degree of x is denoted by degT (x).
An endvertex of T is a vertex with degree one. A branch at x in T is a max-
imal subtree of T containing x as an endvertex. There are k branches at x if
degT (x) = k. Let B be a branch at x. If degT (x) ≥ 2, then x is the only
endvertex of B that is not an endvertex of T . The branch-weight of x, denoted
by bw(x), is the maximum number of edges in any branch at x, or equivalently,
the maximum number of vertices in any component of T − x. A multiset is a
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set in which an element may appear several times. A sequence is a multiset of
ordered numbers. The branch-weight sequence of T is the sequence consisting of
the branch-weights of all vertices of T arranged in nonincreasing order. A cater-

pillar is a tree of order at least three containing a path such that each vertex
not on the path is adjacent to a vertex on the path. A spider is a tree in which
exactly one vertex has degree exceeding two. Skurnick [8, 10] obtained necessary
and sufficient conditions whereby a given finite sequence of positive integers may
be realizable as the branch-weight sequence of a caterpillar, or more generally,
of a non-trivial tree [8]. Non-isomorphic trees may have the same branch-weight
sequence. Figure 1 shows a caterpillar and a non-caterpillar tree with the same
branch-weight sequence {10, 10, 10, 10, 10, 10, 10, 8, 8, 7, 4}. Figure 2 shows cater-
pillars with the same branch-weight sequence {8, 8, 8, 8, 8, 7, 6, 5, 4}, and Figure
3 exhibits a spider and a non-spider tree with the same branch-weight sequence
{9, 9, 9, 9, 9, 8, 8, 8, 7, 3}. We note that each number beside a vertex in these trees
is the branch-weight of the vertex. Let F be a family of trees and T ∈ F . Then
T is said to be branch-weight unique in F if T is uniquely determined in F by
its branch-weight sequence. That is, whenever T ′ ∈ F , and T ′ and T have the
same branch-weight sequence, then T ′ is isomorphic to T . According to Figures
1 and 2, caterpillars are neither branch-weight unique in the family of all trees,
nor branch-weight unique in the family of caterpillars. By contrast, spiders are
branch-weight unique in the family of spiders. In [7], it is proved that any two
spiders with the same branch-weight sequence are isomorphic. However, Figure
3 shows that spiders are not branch-weight unique in the family of all trees. This
study is concerned with branch-weight unique trees in the family of all trees. In
the following section, a necessary and sufficient condition is obtained whereby a
spider may be branch-weight unique in the family of all trees. Moreover, two types
of trees that are branch-weight unique in the family of all trees are introduced.
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2. Main Results

Let T be a non-trivial tree of order n and {bw(xi)}
n
i=1 be the branch-weight

sequence of T , where V (T ) = {x1, x2, . . . , xn} and bw(x1) ≥ bw(x2) ≥ · · · ≥
bw(xn). The complementary-weight of xi, denoted by cw(xi), is defined by
cw(xi) = n − bw(xi). The complementary-weight sequence of T is defined by
{cw(xi)}

n
i=1. We note that the complementary-weight sequence of T is in nonde-

creasing order. Clearly, T is uniquely determined by its branch-weight sequence
in a family of trees if and only if it is uniquely determined by its complementary-
weight sequence in the family. Complementary-weights and complementary-
weight sequences were introduced in [8, 10]. In this study, they are used to clarify
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the proofs. The centroid of T , denoted by Cen(T ), is the set of vertices of T with
minimum branch-weight, or equivalently, with maximum complementary-weight.
Branch-weights and centroids were introduced and studied in [2], a comprehen-
sive text on distance in graphs. These concepts were subsequently extended to
connected graphs [5, 6, 9, 11]. Jordan proved the following well-known theorem
about the centroid of a tree. It will be used later in the main results.

Theorem 1 [2, 3]. The centroid of a tree consists of either a single vertex or a

pair of adjacent vertices.

We now state some preliminary results.

Proposition 2 [4]. (1) Let x1x2 · · ·xk (k ≥ 3) be a path in a tree T , where

bw(x1) ≤ bw(x2). Then bw(x2) < bw(x3) < · · · < bw(xk).
(2) Let x1x2 · · ·xk (k ≥ 3) be a path in a tree T , where cw(x1) ≥ cw(x2).

Then cw(x2) > cw(x3) > · · · > cw(xk).

We note that Theorem 1 follows immediately from Proposition 2.

Proposition 3 [1, 3]. Let T be a tree of order n and v ∈ V (T ). Then the

following holds.

(1) v ∈ Cen(T ) if and only if bw(v) ≤ n
2 .

(2) Cen(T ) = {v} if and only if bw(v) < n
2 .

(3) v ∈ Cen(T ) if and only if cw(v) ≥ n
2 .

(4) Cen(T ) = {v} if and only if cw(v) > n
2 .

Proposition 4 [4]. Let T be a tree and x ∈ V (T ). We assume that B is a

component of T − x such that bw(x) = |V (B)|. Then the following holds.

(1) cw(y) < cw(x) for each y ∈ V (T )\(V (B) ∪ {x}).

(2) If y ∈ V (T )\{x} and cw(y) ≥ cw(x), then y ∈ V (B).

For a tree T and x ∈ V (T ), let N(x) denote the set {v ∈ V (T ) : vx ∈ E(T )}.
It is seen that degT (x) = |N(x)|. Suppose x /∈ Cen(T ). The following lemma
shows that there exists exactly one vertex y in N(x) with cw(y) > cw(x), and the
sum of the complementary-weights of the other vertices in N(x) equals cw(x)−1
if degT (x) ≥ 2.

Lemma 5. Let T be a tree and x ∈ V (T )\Cen(T ). Then there exists y ∈ N(x)
such that cw(y) > cw(x) and

∑

v∈N(x)\{y} cw(v) = cw(x) − 1 if degT (x) ≥ 2.

Proof. Let k = degT (x) and N(x) = {x1, x2, . . . , xk}, and let the components of
T −x be B1, B2, . . . , Bk, with xi ∈ V (Bi) and bw(x) = |V (B1)|. Let u ∈ Cen(T ).
Then cw(u) > cw(x). By Proposition 4(2), u ∈ V (B1). Now claim that we can
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take y = x1 and obtain cw(y) > cw(x). First if x and u are adjacent, then u is
exactly the vertex x1 and cw(x1) > cw(x). If x and u are not adjacent, there is a
path u · · ·x1x. By Proposition 2(2), cw(x1) > cw(x) as cw(u) ≥ cw(x1). Next, if
k ≥ 2 we claim that cw(xi) = |V (Bi)| for i ≥ 2. As bw(x) = |V (B1)|, we see that
|V (B1)| ≥ |V (Bi)|. It is obvious that for i ≥ 2 the maximum component of T −xi
has vertex set {x} ∪

(
⋃

j 6=i V (Bj)
)

. That is, bw(xi) = 1 +
∑

j 6=i |V (Bj)|. Then

cw(xi) = |V (T )| − bw(xi) = |V (Bi)| for i ≥ 2, where |V (T )| = 1 +
∑k

j=1 |V (Bj)|.

We conclude that
∑k

i=2 cw(xi) =
∑k

i=2 |V (Bi)| = |V (T )|−|V (B1)|−1 = |V (T )|−
bw(x)−1 = cw(x)−1. That is,

∑

v∈N(x)\{y} cw(v) = cw(x)−1 if degT (x) ≥ 2.

The following lemma can be obtained from Lemma 5.

Lemma 6. Let T be a tree and x ∈ V (T ). If x is a non-endvertex and x /∈
Cen(T ), then the following holds.

(1)
∑

v∈N(x),
cw(v)<cw(x)

cw(v) = cw(x) − 1.

(2) degT (x) = 2 if and only if x is adjacent to a vertex with complementary-

weight cw(x) − 1.

In a spider, the vertex with degree exceeding two is called the body of the
spider.

Proposition 7 [7]. We assume that S is a spider of order n. Let x1x2x3 · · ·xpxp+1

be a path in S, where x1 is an endvertex of S and xp+1 is the body of S. Then

the following holds.

(1) If p ≤
[

n
2

]

, then cw(xi) = i for 1 ≤ i ≤ p.

(2) If p ≥
[

n
2

]

+ 1, then

cw(xi) =

{

i for 1 ≤ i ≤
[

n
2

]

,

n− i + 1 for
[

n
2

]

+ 1 ≤ i ≤ p + 1.

Proof. It is obvious that bw(xi) = max{i − 1, n − i} for 1 ≤ i ≤ p. We assume
that i ≤

[

n
2

]

. Then 2i ≤ n, which implies i − 1 < n − i. Thus, bw(xi) = n − i
and cw(xi) = i. We now assume that i ≥

[

n
2

]

+ 1. Then 2i > n, which implies
i− 1 ≥ n− i. Thus, bw(xi) = i− 1 and cw(xi) = n− i + 1.

(1) As p ≤
[

n
2

]

and 1 ≤ i ≤ p, we have i ≤
[

n
2

]

. Hence, cw(xi) = i.
(2) We now assume that p ≥

[

n
2

]

+ 1. If 1 ≤ i ≤
[

n
2

]

, then cw(xi) = i. If
[

n
2

]

+ 1 ≤ i ≤ p, then cw(xi) = n− i+ 1. We evaluate cw(xp+1). As p ≥
[

n
2

]

+ 1,
we see that among the components of T − xp+1, the path x1x2x3 · · ·xp has the
largest order. Hence, bw(xp+1) = p and cw(xp+1) = n− p.

Let S be a spider and b the body of S. Then, each component of S − b
is called a leg of S. Obviously, each leg is a path. If a spider has k legs, and
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these legs have orders l1, l2, . . . , lk, where l1 ≤ l2 ≤ · · · ≤ lk, then the spider is
denoted by SP (l1, l2, · · · , lk). An average spider is a spider SP (l1, l2, . . . , lk) with
lk ≤ l1 + l2.

Proposition 8. We assume that S is an average spider of order n. Let

x1x2x3 · · ·xpxp+1 be a path in S, where x1 is an endvertex of S and xp+1 is the

body of S. Then Cen(S) = {xp+1} and cw(xi) = i for i = 1, 2, . . . , p.

Proof. Let S = SP (l1, l2, . . . , lk). By assumption, p = lt for some 1 ≤ t ≤ k. As
S is an average spider, we have 2p ≤ 2lk ≤ lk + l1 + l2 ≤ n− 1. That is, p ≤ n−1

2 .
This implies that every component of S − xp+1 has order less than n

2 ; hence,
bw(xp+1) < n

2 . By Proposition 3(2), Cen(S) = {xp+1}. As p ≤ n−1
2 ≤

[

n
2

]

, by
Proposition 7(1), cw(xi) = i for i = 1, 2, . . . , p.

We will make use of the following notations. A nondecreasing sequence con-
sisting of n multiplicities of ai for i = 1, 2, . . . , r, where a1 < a2 < · · · < ar, is
denoted by {a1, a2, . . . , ar}

n. The superscript n can be omitted if n = 1. For
two nondecreasing sequences A and B, we use A ∪ B to denote the nondecreas-
ing sequence consisting of all the elements of A and B. Thus, if c ∈ A ∪ B,
then the multiplicities of c in A ∪ B equal the sum of the multiplicities of c in
A and the multiplicities of c in B. For instance, using these notations, the non-
decreasing sequence {1, 1, 1, 2, 2, 2, 5} can also be written in the following forms:
{1}3 ∪ {2}3 ∪ {5}, {1, 2}3 ∪ {5}, {1, 2}2 ∪ {1, 2, 5}, etc.

Let S be an average spider of order n with k legs. Assume that for i =
1, 2, . . . , r there are ti legs of order ℓi in S, with ℓ1 < ℓ2 < · · · < ℓr and

∑r
i=1 ti =

k, where r, ti ∈ N . Let b be the body of S. We see that bw(b) = ℓr and
cw(b) = n − ℓr. By Proposition 8, it is seen that the complementary-weight
sequence of S is {1, 2, . . . , ℓ1}

t1 ∪ {1, 2, . . . , ℓ2}
t2 ∪ · · · ∪ {1, 2, . . . , ℓr}

tr ∪ {n− ℓr}.
It is easy to see that this sequence can also be written in the following form. The
proof is omitted.

Proposition 9. The aforementioned average spider has complementary-weight

sequence

{1, 2, . . . , ℓ1}
k ∪ {n− ℓ1} if r = 1, or

{1, 2, . . . , ℓ1}
k ∪ {ℓ1 + 1, ℓ1 + 2, . . . , ℓ2}

k−t1 ∪ {ℓ2 + 1, ℓ2 + 2, . . . , ℓ3}
k−(t1+t2)

∪ · · · ∪ {ℓr−1 + 1, ℓr−1 + 2, . . . , ℓr}
k−

∑r−1
j=1 tj ∪ {n− ℓr} if r ≥ 2.

Theorem 10. An average spider is branch-weight unique in the family of all

trees.

Proof. Let S be an average spider assumed as in Proposition 9, and C be the
complementary-weight sequence of S. It suffices to show that if we construct a
tree T with complementary-weight sequence C, then T is isomorphic to S. We
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divide the construction of T into three parts. In each part, an assertion is made
followed by its proof.

Part 1. For j = 2, 3, . . . , ℓ1, a vertex with complementary-weight j is adjacent
to a vertex with complementary-weight j − 1.

First from C we see that for j = 1, 2, . . . , ℓ1, T has exactly k multiplicities of
vertices with complementary-weight j. If ℓ1 = 1, there is nothing to prove. So
let ℓ1 ≥ 2. By Lemma 6(1), a vertex with complementary-weight 2 is adjacent
to a vertex with complementary-weight 1. Next, if ℓ1 ≥ 3, we consider a vertex
with complementary-weight 3. As each vertex with complementary-weight 1 is an
endvertex of degree one and is already adjacent to a vertex with complementary-
weight 2, by Lemma 6(1) we see that a vertex with complementary-weight 3
is adjacent to a vertex with complementary-weight 2. Now suppose that for
j = 2, 3, . . . , a, some a, where 3 ≤ a < ℓ1, a vertex with complementary-weight
j is adjacent to a vertex with complementary-weight j − 1. By Lemma 6(2), it
is seen that each vertex with complementary-weight j, where 2 ≤ j ≤ a − 1, is
of degree two and has been adjacent to two vertices, one is with complementary-
weight j − 1 and the other is with complementary-weight j + 1. So for a vertex
with complementary-weight a+1, by Lemma 6(1) it must be adjacent to a vertex
with complementary-weight a. Thus by induction this part holds.

Part 2. For j = ℓ1 + 1, ℓ1 + 2, . . . , ℓr, a vertex with complementary-weight j is
adjacent to a vertex with complementary-weight j − 1.

From C we see that there is no vertex with complementary-weight ℓ1 + 1 if
r = 1. So let r ≥ 2. Distinguish two cases: t1 ≥ 2 and t1 = 1.

Case 1. t1 ≥ 2. We have ℓr ≤ 2ℓ1 as S is an average spider. Therefore, for
any j = ℓ1 + 1, ℓ1 + 2, . . . , ℓr, no vertex with complementary-weight j is adjacent
to two or more vertices with complementary-weights at least ℓ1 by Lemma 6(1).
Hence, the assertion of Part 2 follows from the assertion of Part 1.

Case 2. t1 = 1. We have ℓr ≤ ℓ1 + ℓ2 as S is an average spider. Using the
similar arguments as in Part 1, we see that a vertex with complementary-weight
j′ = ℓ1 + 1, ℓ1 + 2, . . . , ℓ2 is adjacent to a vertex with complementary-weight
j′ − 1. Therefore, no vertex with complementary-weight j = ℓ2 + 1, ℓ2 + 2, . . . , ℓr
is adjacent to a vertex with complementary-weight 1, 2, . . . , ℓ1 − 1 or ℓ1 + 1, ℓ1 +
2, . . . , ℓ2 − 1, from which the assertion of Part 2 follows by Lemma 6(1), as
j ≤ ℓr ≤ ℓ1 + ℓ2.

Part 3. T is taken to be a spider and T is isomorphic to S.

Till now, there are k + 1 vertices in T that have not been completed the
adjacency. Among the k + 1 vertices, one is with complementary-weight n − ℓr,
the others are ti vertices with complementary-weight ℓi, for i = 1, 2, . . . , r. From
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the previous two parts, we see that each of these ti vertices with complementary-
weight ℓi is not yet adjacent to a vertex with complementary-weight greater than
ℓi. We note that for i = 2, 3, . . . , r, all these ti vertices with complementary-
weight ℓi are of degree two; and the t1 vertices with complementary-weight ℓ1 are
either of degree two if ℓ1 ≥ 2, or of degree one if ℓ1 = 1. By Lemma 5, it is seen
that all the aforementioned ti vertices with complementary-weight ℓi are adjacent
to the vertex with complementary-weight n − ℓr. Then the construction of T is
complete. We see that T is a spider with ti legs of order ℓi for i = 1, 2, . . . , r.
The assertion of Part 3 holds.

The following lemma provides the complementary-weight sequence of a non-
average spider with three legs.

Lemma 11. We assume that a spider SP (a, b, p) has order n and a+ b < p. Let

C be the complementary-weight sequence of SP (a, b, p). Then

C = {1, 2, . . . , a}3 ∪ {a + 1, a + 2, . . . , b}2 ∪ {b + 1, b + 2, . . . , b + a} ∪
{

b + a + 1,

b + a + 2, . . . ,
[

n
2

] }2
if n is even; or

C = {1, 2, . . . , a}3 ∪ {a + 1, a + 2, . . . , b}2 ∪ {b + 1, b + 2, . . . , b + a} ∪
{

b + a + 1,

b+a+2, . . . ,
[

n
2

] }2
∪
{[

n
2

]

+ 1
}

if n is odd. We note that if a = b, the subsequence
{a + 1, a + 2, . . . , b}2 of C is the empty set.

Proof. Let the three legs of SP (a, b, p) be paths x1x2 · · ·xa, y1y2 · · · yb and
z1z2 · · · zp, where x1, y1, z1 are endvertices and xa, yb, zp are vertices adjacent to
the body. We denote the body by zp+1. Then bw(zp+1) = p and cw(zp+1) = n−p.
If b ≥

[

n
2

]

+1, then n > 2b > n, which is a contradiction. Hence, a ≤ b ≤
[

n
2

]

. By
Proposition 7(1), cw(xi) = i and cw(yj) = j for i = 1, 2, . . . , a and j = 1, 2, . . . , b.
By the assumption a + b < p, we have n < 2p + 1. Then p > n−1

2 . Distinguish
two cases.

Case 1. p =
[

n
2

]

, where n is even. By Proposition 7(1), cw(zk) = k for
k = 1, 2, . . . ,

[

n
2

]

. We have C = {1, 2, . . . , a} ∪ {1, 2, . . . , b} ∪ {1, 2, . . . , b + a}∪
{b + a + 1}2, where b + a + 1 =

[

n
2

]

.

Case 2. p ≥
[

n
2

]

+ 1. By Proposition 7(2),

cw(zi) =

{

i for 1 ≤ i ≤
[

n
2

]

,

n− i + 1 for
[

n
2

]

+ 1 ≤ i ≤ p + 1.

Then C = {1, 2, . . . , a} ∪ {1, 2, . . . , b} ∪ {1, 2, . . . , b + a} ∪
{

b + a + 1, b + a +

2, . . . ,
[

n
2

] }2
if n is even; or C = {1, 2, . . . , a} ∪ {1, 2, . . . , b} ∪ {1, 2, . . . , b + a} ∪

{

b + a + 1, b + a + 2, . . . ,
[

n
2

]}2
∪
{[

n
2

]

+ 1
}

if n is odd.

From Cases 1 and 2, we see that this lemma holds.
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Theorem 12. Every spider with three legs is branch-weight unique in the family

of all trees.

Proof. Let S = SP (a, b, p), where a ≤ b ≤ p. It suffices to consider the case
a + b < p, as S is an average spider if p ≤ a + b and, by Theorem 10, is branch-
weight unique in the family of all trees. Thus, we assume that a + b < p. Let
n = a+b+p+1 and C be the complementary-weight sequence of S. We complete
the proof by showing that if we construct a tree T with complementary-weight
sequence C, then T and S are isomorphic. First, using arguments similar to those
in the proof of Theorem 10, we see that a vertex in T with complementary-weight
j is adjacent to a vertex with complementary-weight j − 1 for j = 2, 3, . . . , b + a.
Now consider the two vertices with complementary-weight b + a + 1. By Lemma
6(1), we see that one is adjacent to the two vertices with complementary-weights
a and b, the other is adjacent to the vertex with complementary-weight b+a. As
seen in the following figure.

r r r r r

1 2 3 a− 1 a

. . .r r r r r

1 2 3 b− 1 b

. . .

rHHH

���
b+ a+ 1

r r r r r r

1 2 3 b+ a− 1 b+ a b+ a+ 1

. . .

Next consider the two vertices with complementary weight b + a + 2. As all
vertices with complementary-weights less than b+a+ 1 have been completed the
adjacency, by Lemma 6(1) we see that each of the two vertices is adjacent to a
vertex with complementary-weight b + a + 1. Using this argument several times,
we see that for j = b+a+ 3, b+a+ 4, . . . ,

[

n
2

]

, each vertex with complementary-
weight j is adjacent to a vertex with complementary-weight j− 1. As seen in the
following figure.

r r r r r

1 2 3 a− 1 a

. . .r r r r r

1 2 3 b− 1 b

. . .

rHHH

��� b+ a+ 1

r

b+ a+ 2

. . . r r

[

n
2

]

− 1
[

n
2

]

r r r r r r

1 2 3 b+ a− 1 b+ a b+ a+ 1

r

b+ a+ 2

. . . r r

[

n
2

]

− 1
[

n
2

]

. . .
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If n is an even number, by Theorem 1, both vertices with complementary-
weight

[

n
2

]

are in the centroid and are adjacent by an edge; if n is an odd number,
by Lemmas 6(2) and 5, the two vertices are of degree two, and each one is adjacent
to a vertex with complementary-weight larger than

[

n
2

]

. As there is the only
vertex, with complementary-weight

[

n
2

]

+ 1, outside the exhibition as shown in
the above figure, so, both vertices with complementary-weight

[

n
2

]

are adjacent
to the vertex with complementary-weight

[

n
2

]

+ 1. Hence, T is constructed to be
a spider with three legs of orders a, b, and p. That is, T is isomorphic to S.

Lemma 13. Let S be a spider with at least four legs. If S is not an average

spider, then there exists a tree T such that T and S have the same branch-weight

sequence and T is not isomorphic to S.

Proof. Let S = SP (l1, l2, . . . , lk), where l1 ≤ l2 ≤ · · · ≤ lk and |V (S)| = n.
By assumption, l1 + l2 < lk and k ≥ 4. Let b be the body of S, and let the
three legs of S with orders l1, l2 and lk be the paths x1x2 · · ·xl1 , y1y2 · · · yl2 , and
z1z2 · · · zlk , respectively, where x1, y1, z1 are endvertices and xl1 , yl2 and zlk are
vertices adjacent to b. We now construct a tree T by deleting the three edges xl1b,
yl2b, and zl1+l2zl1+l2+1 from S, and adding three new edges xl1zl1+l2+1, yl2zl1+l2+1,
and zl1+l2b to the remaining graph. We now prove that any two vertices in both
T and S with the same notation have the same branch-weight. In the following,
we use bwS(v) and bwT (v) to denote the branch-weights of a vertex v in S and
T , respectively. Clearly, bwS(b) = lk. Let B be the component of T − b with
V (B) = {x1, x2, . . . , xl1 , y1, y2, . . . , yl2 , zl1+l2+1, zl1+l2+2, . . . , zlk}. It is seen that
|V (B′)| ≤ |V (B)| for every component B′ of T − b. Hence bwT (b) = lk. Next
claim that for each vertex in V (S)\{b, zl1+l2+1}, with the same notation v, we
have bwS(v) = bwT (v). For i = 1, 2, . . . , k, let vi,1vi,2 · · · vi,li be the leg of S with
order li, where vi,1 is the endvertex and vi,li is the vertex adjacent to b. We note
that v1,1v1,2 · · · v1,l1 , v2,1v2,2 · · · v2,l2 and vk,1vk,2 · · · vk,lk are the legs x1x2 · · ·xl1 ,
y1y2 · · · yl2 and z1z2 · · · zlk , respectively. For i = 1, 2, . . . , k, in both S and T we
have deg(vi,1) = 1, and deg(vi,j) = 2 for all j ≥ 2 and vi,j 6= vk,l1+l2+1 = zl1+l2+1.
Then for i = 1, 2, . . . , k, bwS(vi,1) = bwT (vi,1) = n − 1; and the graphs S − vi,j
and T − vi,j both have two components, where j ≥ 2 and vi,j 6= zl1+l2+1. It is
seen that the two components of S − vi,j have orders j − 1 and n − j, and the
two components of T − vi,j also have orders j − 1 and n − j, where j ≥ 2 and
vi,j 6= zl1+l2+1. So we have bwS(vi,j) = bwT (vi,j) for j ≥ 2 and vi,j 6= zl1+l2+1.
Now claim that bwS(zl1+l2+1) = bwT (zl1+l2+1). It is seen that S − zl1+l2+1 have
two components with orders l1 + l2 and n− l1 − l2 − 1, respectively; T − zl1+l2+1

have three components with orders l1, l2 and n − l1 − l2 − 1, respectively. As
n− l1 − l2 − 1 ≥ l3 + lk > lk > l1 + l2, we have bwS(zl1+l2+1) = bwT (zl1+l2+1) =
n − l1 − l2 − 1. Thus for each vertex in V (S) with the same notation v, we
have bwS(v) = bwT (v). That is, T and S have the same branch-weight sequence.
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Clearly, T is not isomorphic to S because T has two vertices (b and zl1+l2+1) with
degrees greater than two.

In fact, an example of Lemma 13 has already been exhibited in Figure 3.

Theorem 14. A spider with k legs is branch-weight unique in the family of all

trees if and only if either k = 3 or the spider is an average spider and k ≥ 4.

Proof. (⇐) By Theorems 12 and 10.
(⇒) Let S = SP (l1, l2, . . . , lk). We assume that k ≥ 4 and S is not an average
spider. By Lemma 13, there exists a tree T such that T and S have the same
branch-weight sequence and T is not isomorphic to S. That is, S is not branch-
weight unique in the family of all trees.

We now introduce two types of trees that are branch-weight unique in the
family of all trees. For two vertices u and v in a graph, we use d(u, v) to denote
the distance between u and v. A rooted tree is a tree with a specific vertex
designated as the root. Let T be a rooted tree with root r. Then, T is called a
perfect symmetry tree of type I if degT (x) = degT (y) whenever d(x, r) = d(y, r),
where x, y ∈ V (T ). Figure 4 shows a perfect symmetry tree of type I. Therein,
the degree of a vertex u equals four if d(u, z) = 1, and the degree of a vertex v
equals one if d(v, z) = 2, where z is the root. Let now T1 be a perfect symmetry
tree of type I with root z1 and T2 be a copy of T1 with the root renamed z2.
Let T ′ be a tree constructed from T1 and T2 by joining the two vertices z1 and
z2 with a new edge. We call such a tree T ′ a perfect symmetry tree of type II.
Figure 5 shows a perfect symmetry tree of type II that is formed by joining with
an edge the two roots of two copies of the tree in Figure 4. Using arguments
similar to those in the proof of Theorems 10 and 12, it is not difficult to see that
the following theorem holds. The proof is left to the reader.
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Theorem 15. Perfect symmetry trees of type I and type II are branch-weight

unique in the family of all trees.
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