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Abstract

The notion of a 12-representable graph was introduced by Jones, Kitaev,
Pyatkin and Remmel in [Representing graphs via pattern avoiding words,
Electron. J. Combin. 22 (2015) #P2.53]. This notion generalizes the notions
of the much studied permutation graphs and co-interval graphs. It is known
that any 12-representable graph is a comparability graph, and also that a
tree is 12-representable if and only if it is a double caterpillar. Moreover,
Jones et al. initiated the study of 12- representability of induced subgraphs
of a grid graph, and asked whether it is possible to characterize such graphs.
This question of Jones et al. is meant to be about induced subgraphs of a grid
graph that consist of squares, which we call square grid graphs. However,
an induced subgraph in a grid graph does not have to contain entire squares,
and we call such graphs line grid graphs.

In this paper we answer the question of Jones et al. by providing a com-
plete characterization of 12-representable square grid graphs in terms of for-
bidden induced subgraphs. Moreover, we conjecture such a characterization
for the line grid graphs and give a number of results towards solving this
challenging conjecture. Our results are a major step in the direction of char-
acterization of all 12-representable graphs since beyond our characterization,
we also discuss relations between graph labelings and 12-representability, one
of the key open questions in the area.

1The corresponding author.
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1. Introduction

Let P = {1, 2, . . .} and P
∗ be the set of all words over P. Given a word w =

w1w2 · · ·wn ∈ P, denote by A(w) the set of integers occurring in w. For example,
A(315353) = {1, 3, 5}. For B ⊂ A(w), let wB be the word obtained from w
by removing all the letters in A(w)\B. For example, if B = {2, 3} and w =
12315251 then wB = 232. Let red(w) be the word that results from w by replacing
each occurrence of the i-th smallest letter that occurs in w by i. For example,
red(3729) = 2314.

Let u = u1u2 · · ·um ∈ P
∗ with red(u) = u. Then we say that a word w =

w1w2 · · ·wn ∈ P
∗ contains an occurrence of the pattern u if there exist integers 1 ≤

i1 < i2 < · · · < im ≤ n such that red(wi1wi2 · · ·wim) = u. For example, the word
624635 contains two occurrences of the pattern 4231, namely the subsequences
6452 and 6352. The pattern u is consecutive, if in each of its occurrences it+1−it =
1 for all 1 ≤ t ≤ m− 1.

Given a labeled graph G = (V,E) and a pattern u, we say that G is u-pattern
representable if there is a word w ∈ P

∗ such that A(w) = V , and for all x, y ∈ V ,
xy /∈ E if and only if w{x,y} contains an occurrence of u. In such a situation, we
say that w u-pattern represents G, and w is called a u-pattern-representant of G.
An unlabeled graph H is u-pattern representable if it admits a labeling resulting
in a u-pattern representable labeled graph H ′. We say that H ′ realizes u-pattern
representability of H.

Requiring from u to be a consecutive pattern, we obtain the notion of a
u-representable graph introduced in [2]. In this case, similarly to the above,
we can define u-representability and u-representants, or just representants if u
is clear from the context. The class of u-representable graphs generalizes the
much studied class of word-representable graphs [3, 5], which is precisely 11-
representable graphs. It was shown in [3] that if a consecutive pattern u is of
length at least 3, then any graph can be u-represented. Also, note that a word
avoids the pattern 12 if and only if it avoids the consecutive pattern 12, and
thus the notion of a 12-pattern representable graph is equivalent to that of a
12-representable graph, which is the subject of interest in this paper.

Jones et al. [2] showed that the notion of a 12-representable graph generalizes
the notions of the much studied permutation graphs (e.g. see [1, 6] and references
therein) and co-interval graphs (e.g. see [7, 8]). Also, Jones et al. [2] showed that
any 12-representable graph is a comparability graph (i.e., such a graph admits a
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transitive orientation), and also that a tree is 12-representable if and only if it is
a double caterpillar (see [2] for definition). More relevant to this paper, Jones et
al. [2] initiated the study of 12-representability of induced subgraphs of a grid
graph, and asked whether it is possible to characterize such graphs. Examples of
a grid graph and some of its possible induced subgraphs are given in Figure 1.1
which also appears in [2]. Jones et al. [2] showed that corner and skew ladder
graphs, and thus ladder graphs, are 12-representable, while any graph with an
induced cycle of size at least 5 is not 12-representable, so for example, the first
two, and the last graphs in Figure 1.1 are not 12-representable.
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-.$/&!"##$%&'%"()&

'%0#&'%"()&

121&'%0#&'%"()&
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Figure 1.1. Induced subgraphs of a grid graph.

Even though it was not stated explicitly, the concern of Jones at al. in [2]
was induced subgraphs of a grid graph that consist of a number of squares, which
we call square grid graphs. In Section 2 we provide a complete characterization in
terms of forbidden induced subgraphs of 12-representable square grid graphs (see
Theorem 2.12). However, induced subgraphs of a grid graph may also contain
edges (called by us “lines”) that do not belong to any squares, for example, as in
the graph in Figure 1.2. We refer to such subgraphs as line grid graphs (not to
be confused with taking the line graph operation!) and think of the set of square
grid graphs be disjoint with the set of line grid graphs. In Section 3 we give a
number of results on 12-representation of line grid graphs and state a conjecture
on the complete characterization related to 12-representability in this case (see
Conjecture 3.6).

Figure 1.2. An example of a line grid graph.

We conclude the introduction by reviewing some basic definitions and results
given in [2], which will be used frequently in our paper.
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A graph H = (V ′, E′) is an induced subgraph of G = (V,E) if V ′ ⊂ V and for
all x, y ∈ V ′, xy ∈ E′ if and only if xy ∈ E. Also, similarly to the definition of
red(w) for a word w, the reduced form red(H) of H is obtained from the graph
H by replacing the i-th smallest label by i.

Observation 1.1 [2]. If G is 12-representable and H = (V ′, E′) is an induced
subgraph of G, then H is 12-representable.

Theorem 1.2 [2]. For a labeled 12-representable graph G, there exists a word-
representant w in which each letter occurs at most twice. Also, G can be repre-
sented by a permutation if and only if G is a permutation graph.

• • •
1 2 3

I3 =

• •

• •

1 3

2 4

J4 =

• •

• •

1 4

2 3

Q4 =

Figure 1.3. The graphs I3, J4 and Q4.

Lemma 1.3 [2]. Let G = (V,E) be a labeled graph. If G has an induced subgraph
H such that red(H) is equal to one of I3, J4 or Q4 in Figure 1.3, then G is not
12-representable.

Definition 1.4. A labeling of a graph is good if it contains no induced subgraphs
equal to I3, J4 or Q4 in the reduced form.

For two sets of integers A,B, we write A < B if every element of A is less
than each element in B. Also, a subset U of V is called a cutset of G = (V,E) if
G \ U is disconnected.

Lemma 1.5 [2]. Let G = (V,E) be a labeled graph and U be a cutset of G.
Assume that G1 = (V1, E1) and G2 = (V2, E2) are two components of G \ U . If
G is 12-representable, |V1| ≥ 2, |V2| ≥ 2, and the smallest element of V1 ∪ V2 is
in V1, then V1 < V2.

Theorem 1.6 [2]. The cycle graph of length larger than 4 is not 12-representable.
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Finally, throughout this paper we assume that the graphs in question are
connected since a graph is 12-representable if and only if each of its connected
components is 12-representable. Indeed, ifG is 12-representable, then clearly each
of its connected componets is 12-representable using the hereditary nature of 12-
representation. Conversely, label the connected componentsG1, G2, . . . of a graph
G in a proper way, respectively, by {1, . . . , |G1|}, {|G1|+ 1, . . . , |G1|+ |G2|}, . . .,
and then use the respective word-representants w1, w2, . . . to obtain the word
w1w2 · · · 12-representing G.

2. 12-Representability of Square Grid Graphs

Because the grid graph given in Figure 2.4 can be 12-represented by 3412, in all
our arguments in this section, we always assume that the grid graphs are of size
larger that 4. Note that the labeling of the square graph in Figure 2.4 is the only
good labeling up to rotation and swapping 1 and 2, and 3 and 4.

3

1 4

2

Figure 2.4. A labeled square grid graph with 4 nodes.

Let F = {X}∪{C2n}n≥4, where X is given in Figure 2.5 and C2n is the cycle
graph on 2n nodes. Then we have the following lemma.

a
b

c

d e

g h

if

Figure 2.5. The non-12-representable graph X.

Lemma 2.1. If a graph G = (V,E) has an induced subgraph H in F , then G is
not 12-representable.

Proof. In view of Theorem 1.6, it suffices to show that X is not 12-representable.
We prove this by showing that there is no good labeling for X. If 1 ∈ {a, b},

then viewing {c, f} as a cutset, we have {d, e} > {h, i} by Lemma 1.5. While,
choosing {f, g} as a cutset, we have {h, i} > {d, e}, a contradiction. Hence,
1 /∈ {a, b}. If 1 ∈ {h, i}, then viewing {c, f} as a cutset, we have {d, e} > {a, b}.
While, choosing {c, g} as a cutset, we have {a, b} > {d, e}, a contradiction. Hence,
1 /∈ {h, i}. By symmetry, 1 /∈ {d, e}.
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Now, assume that g = 1. To avoid I3, J4 and Q4, there are two choices for
2, namely, i = 2 or a = 2. If i = 2, then it can be checked that h = 3 and c = 4.
To avoid I3, we have 5 /∈ {b, d, f}. To avoid J4 and Q4, we have 5 /∈ {a, e}. This
means that there is no position for 5. Hence, i 6= 2. Similarly, setting a = 2
makes us find no place for 3. It follows that g 6= 1. By symmetry, c 6= 1.

Assume that f = 1, then h = 2 or d = 2. Without loss of generality assume
that h = 2. Then i = 3. Then, to avoid I3, J4 and Q4, there is no position for 4.
Hence, we deduce that f 6= 1.

Thus, there exists no good labeling for X, which completes the proof.

If a graph G does not contain an induced subgraph in F , then we say that
G is F -avoiding. By Lemma 2.1, any 12-representable graph is F -avoiding.

Definition 2.2. A square S in a grid graph is called an end-square if it is incident
with an edge ab such that neither a nor b is a corner point of a square different
from S.

a b c d

hgfe

i j

a d

cb
e f

kjg

h i

Figure 2.6. The graphs G1 and G2, respectively. Non-12-representability of these graphs
follows from the fact that they contain X as an induced subgraph.

For example, in Figure 2.6, all squares in G1 but bcgf are end-squares, and
all squares in G2 but cgje are end-squares. In Lemma 2.8 below we will show
that each F -avoiding square grid graph contains an end-square.

Lemma 2.3. Let G = (V,E) be a labeled 12-representable square grid graph.
Then 1 must be the label of a node of an end-square in G.

Proof. To prove this lemma, we assume to the contrary that 1 is not a label of
a node of an end-square of G. Since G is 12-representable, G must be F -avoiding
by Lemma 2.1, so each node of G belongs to at most three squares. We consider
the following three cases.

Case 1. The node labeled by 1 belongs to only one square. Possible situations
in this case are given schematically in Figure 2.7, where the ovals indicate the rest
of the respective graphs. For the first subcase, it is easy to see that the number
of nodes in A or B are at least 2. Choosing {x, y} as a cutset, by Lemma 1.5 we
see that all labels of the nodes in A are larger than those of B. While, choosing
{y, z} as a cutset, we have all labels of the nodes in B are larger than those of A,
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a contradiction. Hence, this subcase is impossible. Similarly, by viewing {a, c}
and {b} as a cutset, respectively, we prove that the second subcase is impossible.
Viewing {d} and {e} as a cutset, respectively, we obtain that the third subcase
is impossible as well.

x

1 z

y

A

B a

1 b

c d

1 e

Figure 2.7. Three subcases when 1 belongs to only one square.

Case 2. The node labeled by 1 belongs to exactly two squares. Possible
situations in this case are given in Figure 2.8. For the first subcase, the number
of nodes in C is at least 5 and the number of nodes in D is at least 4, which follows
from the fact that the two squares 1 belongs to are not end-squares. Choosing
{x, y} as a cutset, we see that all labels in C except x, y are larger than those in
D. Choosing {y, z} as a cutset, we see that all labels in C except y are smaller
than those in D except z, a contradiction. Thus, this subcase is impossible.
Similarly, by viewing {a, c} and {b, d} as a cutset, respectively, we can prove that
the second subcase is impossible.

x 1 z

y

C

D a
1 b

c

d

Figure 2.8. Two subcases when 1 belongs to exactly two squares.

Case 3. The node labeled 1 belongs to three squares. There is only one
possibility here shown schematically in Figure 2.9. Since the three squares 1
belongs to are not end-squares, we see that the number of nodes in E, as well
as that in F , is at least 4. Choosing {x, y} as a cutset, all labels in E except x
are larger than those in F . On the other hand, choosing {z, k} as a cutset, all
labels in E are larger than those in F except k, a contradiction. Hence, this case
is impossible.
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x 1 z

y

k

E

F

Figure 2.9. The situation when 1 belongs to three squares.

Summarizing the cases above, we see that 1 is never the label of a node of a
non-end-square.

Lemma 2.4. Given a labeled 12-representable square grid graph G = (V,E) with
an end-square S shown schematically in Figure 2.10, with neither 2 nor 3 being
a node of another square and 1 being a node of another square, we can assume
that a representant of G is w = 3w12w212w3 with any letter in w1, w2, w3 being
at least 4.

2

3
1

Figure 2.10. An end-square with 2 and 3 belonging to a single square.

Proof. Let w be a 12-representant of G. Firstly, note that erasing all 3s in w
and placing a 3 at the beginning of the obtained word, we have a 12-representant
of G since 3 is only connected to 1 and 2 and no other connections are changed.

Secondly, we claim that we can assume that 1 occurs only once in w. This can
be verified by removing all but the leftmost 1 in w. Since 1 is the smallest letter,
and the labels of the nodes connected to it must be to the left of the leftmost 1
in w, nothing will be changed after this operation.

Thirdly, we can assume that there are two copies of 2 in w and 1 is between
the 2s. Indeed, by Theorem 1.2, we can assume that 2 occurs at most twice in w,
and clearly since there is no edge between 1 and 2, after 1 there must be at least
one 2. However, the other 2 must be before 1, since there exist nodes connected
to 1 but not to 2.

Lastly, we claim that the only 1 and the 2 after it can be assumed to be next
to each other in w. If not, we can move all the letters between 1 and the second
2 right after 2 keeping their relative order. This operation is allowable since all
letters between 1 and 2 must be not connected to 2 because of the 2 before 1.
Hence, moving the letters does not introduce any change. This completes the
proof.
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Proposition 2.5. Let G = (V,E) be a 12-representable square grid graph. Then
there exists a labeled copy G′ of G, which realizes 12-representability of G, with
an end-square given in Figure 2.11, with neither 1 nor 3 belonging to another
square.

1

3
2

Figure 2.11. An end-square with neither 1 nor 3 belonging to another square.

Proof. By Lemma 2.3, 1 must be the label of a node in an end-square. Then for
the labeling of the end-square, it is easy to check that there are only two cases
up to symmetry, which are given in Figures 2.10 and 2.11, respectively. If it is
the case given in Figure 2.11, we are done. If not, by Lemma 2.4 we assume that
a 12-representant of G is w = 3w12w212w3. Let G′′ be the graph obtained from
G′ by exchanging the labels 1 and 2. We claim that G′′ is also 12-representable
and its representant is given by w = 3w11w22w3. This can be verified by the fact
that the nodes connected to both 1 and 2 in G′ remain connected to 1 and 2 in
G′′, while the nodes connected to 1 but not 2 in G′ become connected to 2 but
not 1 in G′′. This completes the proof.

As a by-product of the above lemma, we obtain the following corollary, which
will be frequently used in the rest of the paper.

Corollary 2.6. Let G = (V,E) be a 12-representable square grid graph with
an end-square given in Figure 2.11. Then G can be represented by some w =
3w11w22w3 with each letter in w1, w2, w3 being at least 4.

Lemma 2.7. Given a 12-representable square grid graph G, we can obtain a new
12-representable square grid graph G′ by extending G in the five ways presented
schematically in Figure 2.12, where the extensions are applied to end-squares,
which are indicated by dashed lines, and the assumption is that the dashed edges
are the only new edges in the obtained graph.

Proof. In view of Corollary 2.6, we may assume that a 12-representant of G
is w = 3w11w22w3, with each letter in w1, w2, w3 being larger than 3. It is
enough to find the corresponding 12-representant of G′ obtained under each ex-
tension. Assume that π′ is obtained from π by adding 2 to each letter of π,
while π′′ is obtained from π by adding 3 to each letter of π. Then it is not
difficult to see that a representant of G′ for Cases 1–5 is, respectively, w =
351w′

14w
′
224w

′
3, w = 35w′

1152w
′
24w

′
3, w = 351w′

12w
′
24w

′
3, w = 3612w′′

14w
′′
25w

′′
3 ,

and w = 3416w′′
12w

′′
25w

′′
3 . Hence, in each of the five cases, G′ is 12-representable.
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Lemma 2.8. Each F -avoiding square grid graph G has an end-square.

Proof. We consider two cases for a square grid graph G. If no two squares in
G have a common edge, then G must be as in Figure 2.13. Clearly, since G is

1

3 2
Case 1.

4

5 2

31

1

3 2
Case 2.

3

2

45

1

1

3 2
Case 3.

3

1 5

2

4

1

3 2
Case 4.

1

3 2

6
5

4

1

3 2
Case 5.

3

1 4

2

6 5

Figure 2.12. Five ways in extending a 12-representable square grid graph.

Figure 2.13. Grid graph with no common edges.

finite, it has an end-square. So, assume that at least two squares in G have a
common edge. We start with one of such squares. If it is an end-square, we are
done. If it is not, we go to the second square which has a common edge with
it. If it is an end-square, we are done. Otherwise, we go to the third one which
shares an edge with the second square but not the first one, if such a square
exists. If there is no such square, we choose the third square to be the square
that shares a node with the second square but not the first one. Thus, squares
with common edges always come first, and then squares with common nodes.
Continue in this fashion. Figure 2.14 illustrates possible cases in the (i + 1)-th
step up to symmetry.
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i − 1 i

i − 1 i

i + 1

i − 1 i

i + 1

i − 1 i i + 1

i − 1

i

i − 1

i i + 1

i − 1

i

i + 1

i − 1

i

i + 1

Figure 2.14. Possible cases in the (i+ 1)-th step of searching for an end-square. Squares
are labeled according to the step on which they were added.

Since we avoid the cycle graphs C2n for n ≥ 4, the square labeled by i + 1
will never be connected to that labeled by a smaller number. Because the graph
is finite, sooner or latter we will find an end-square.

Actually, we can prove the following stronger version of Lemma 2.8.

Lemma 2.9. In any 12-representable square grid graph G with more than 4
nodes, there exist exactly two end-squares.

Proof. Firstly, we show that there exist at least two end-squares in G. This
can be done essentially by repeating the arguments in the proof of Lemma 2.8.
Begin with considering the square labeled by 1. If it is an end-square, then there
exists a square different from 1 connected to it since G has more than 4 nodes.
Repeating the entire argument given in Lemma 2.8, we can find another end-
square labeled by, say, t. If the square labeled by 1 is not an end-square, then
there exists another square different from square 2 connected to it, which we label
by t + 1. Repeating the entire argument given in Lemma 2.8 again, we obtain
another end-square.

Next, we will show that the number of end-squares is no more than two.
Indeed, assume that G has at least three end-squares, which implies that the
number of nodes in G is more than 12 as no two of end-squares can share a node
to be F -avoiding; see Figure 2.15 for a schematic representation of G.

By Lemma 2.3, 1 must be the label of a node of an end-square. Without
loss of generality assume that 1 ∈ {a, b, x1, x2}. Viewing {x3, x4} as a cutset,
we deduce that {c, d} > {e, f} by Lemma 1.5. On the other hand, if we choose
{x5, x6} as a cutset, we obtain that {c, d} < {e, f}, a contradiction. Thus, there
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x1 x2

ba

x4

x3
c

d

x5

x6
f

e

Figure 2.15. Square grid graph with at least three end-squares.

is no place for the label 1 in G assuming G has at least three end-squares, so G
must have at most two squares.

Let u = u1 · · ·uj ∈ {1, . . . , n}∗ and red(u) = u. Let the reverse of u be the
word ur = ujuj−1 · · ·u1 and the complement of u be the word uc = (n + 1 −
u1) · · · (n+1−uj). Jones et al. [2] introduced the definition of the supplement of
a graph. Given a graph G = ({1, . . . , n}, E), let the supplement of G be defined
by G = (V,E) where for all x, y ∈ V , xy ∈ E if and only if n+ 1− x is adjacent
to n+1− y in E. One can think of the supplement of G = (V,E) as a relabeling
of G by replacing each label x by the label n+ 1− x.

The following observation can be obtained by combining Observations 2 and
3 in [2].

Observation 2.10. Let G = (V,E) be a 12-representable graph and w be a 12-
representant of G. Then G is also 12-representable with a 12-representant (wr)c.

Corollary 2.11. Let G = (V,E) be a 12-representable square grid graph with
|V | = n. Then there exists a labeled graph G′, which realizes 12-representability
of G, with one end-square given in Figure 2.11 and the other end-square given in
Figure 2.16.

n−1 n− 2

n

Figure 2.16. An end-square with neither n nor n− 2 being a node of another square.

Proof. By Proposition 2.5, there exists a labeled copy G′ of G, which realizes
12-representability of G with one end-square given in Figure 2.11. By Observa-
tion 2.10, we can relabel G so that it remains 12-representable with an end square
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being as in Figure 2.16. By Lemma 2.9, there is another end-square in G, and
by Lemma 2.3, 1 must the label of one of its nodes. If this endpoint as in Figure
2.11, we are done. Otherwise, it must be like in Figure 2.10, and the arguments
in the proof of Proposition 2.5 can be applied to relabel the square of the form
in Figure 2.10 into that in Figure 2.11. We are done.

Our main result in this section is the following characterization theorem.

Theorem 2.12. A square grid graph is F -avoiding if and only if it is 12-repre-
sentable.

Proof. Following from Oberservation 1.1 and Lemma 2.1, it is easy to check that
12-representable square grid graph is F -avoiding. In the following, we proceed to
show that an F -avoiding square grid graph is 12-representable by induction on
the number of squares.

Firstly, if a square grid graph G has at most two squares, which is certainly
F -avoiding, then it can be easily checked that G is 12-representable as G is then
either a square, or a two-square ladder graph, or two squares joint in a node.
So, we assume that any F -avoiding square grid graph with n, n > 2, squares is
12-representable. We wish to show that this still holds for an F -avoiding square
grid graph G with n+ 1 squares.

Since G is F -avoiding, it must contain an end-square S1 by Lemma 2.8. Let
G′ be a graph obtained form G by removing S1. Clearly, G

′ is F -avoiding, which
implies that G′ is 12-representable by the induction hypothesis. We claim that
removing S1 from G produces a new end-suquare S2 which is connected to S1.
Since n > 2, the number of nodes of G is not less than 8. We see that S2 cannot
be an end-square of G since G is connected. Then it is easy to check this claim
through the following five cases up to symmetry. We omit the details here.

S2

S1

S2

S1 S2

S1

S2

S1

S2

S1

Figure 2.17. Five cases up to symmetry when removing an end-square of G.

By Corollary 2.11, there exists a labeling with square S2 being labeled as
given in Figure 2.11 or Figure 2.16. Viewing Obeservation 2.10, we can always
assume that S2 is labeled as given in Figure 2.11, otherwise, we will take its
supplement to obtain a labeling of S2 as in Figure 2.11. Thus, by Lemma 2.7, we
can simply find a labeling of G, as well as its 12-representant. This shows that
G is 12-representable and the proof is completed.
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Remark 2.13. We note that Theorem 2.12 is still true if in F the graph X will
be replaced by the square grid graphs G1 and G2 in Figure 2.6. However, such a
change would not result in a set of minimal forbidden induced subgraphs.

By Theorem 2.12, if a square grid graph is F -avoidng, then it is 12-represen-
table, and thus it has a good labeling. On the other hand, by Lemma 2.1 we know
that if a square grid graph has a good labeling, then it is F -avoiding, and thus it is
12-representable by Theorem 2.12. This leads us to the following corollary, which
is still an open question in the case of arbitrary (not necessarily grid) graphs.

Corollary 2.14. A square grid graph has a good labeling if and only if it is
12-representable.

In fact, we can prove a stronger version of Corollary 2.14, which is again
an open question in the case of arbitrary graphs (no counter-example to this
statement is known).

Theorem 2.15. For any good labeling of a square grid graph G, there exists a
word w 12-representing G.

Proof. We prove, by induction on the number of squares, even a stronger state-
ment that any such w begins with the only occurrence of the third smallest letter.

The base case is given in Figure 2.4, and its 12-representant is 3412. Now,
assume that this theorem holds for square grid graphs with n squares. We wish
to show that it still holds for n+1 squares. Notice that in a good labeling of G, 1
is always the label of a node in an end-square. Hence, we need to consider three
cases in Figure 2.18, where the labels arrowed to each other can be swapped.

3

1 x

2

G′
Case 1.

2

3
1

x

G′

Case 2.

1

3
2

x

G′

Case 3.

Figure 2.18. Three cases for a gooding labeling square grid graph.

For Case 1, let G be the graph in Figure 2.19 with exactly two squares. Then
its 12-representant is 36712645, which is what we need to show.

Otherwise, we claim that x is always the third smallest label in G′. Indeed,
consider four possible subcases in Figure 2.20. Remove the nodes labeled 1, 2 and
3. Then, by induction hypothesis, G′ can be represented by w′ = 6w′′. But then
it can be checked that G is represented by w = 3612w′′.

For Case 2, if x is the third smallest label in G′, then w′ = xw′′ represents
G′ and 3x12w′′ represents G. Now, we suppose that x is not the third smallest
in G′. Consider four possible subcases given in Figure 2.21.
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3

1
7

2

4 6

5

Figure 2.19. A special subcase in Case 1.
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Figure 2.20. Four other subcases in Case 1.

For Subcase (1), remove the nodes labeled by 2, 3, 4, and by induction hy-
pothesis, the left graph G′ is represented by some word w′. Let w be the word
obtained from w′ by appending 342 to w′ to the left, and inserting 2 directly after
the leftmost 1 in w′. Clearly, w ensures that 3 and 4 are connected with 1 and
2 only, and 2 is disconnected from any other node. Moreover, the third smallest
letter 3 occurs once at the first place of w.

For Subcase (2), clearly, its 12-representant is w = 35625124.

2

3 1

4

(1)

2

3 1 5

46

(2)

2

3 1 5

6
4

(4)

2

3 1 5

x 4

(3)

Figure 2.21. Four other subcases in Case 2.

For Subcase (3), remove the nodes labeled 2 and 3 and let the obtained graph
be G′. By the induction hypothesis, assume that the 12-representant of G′ is w′.
Notice that the node labeled by x is the only node connected to both 1 and 4,
except the node labeled by 5. Then, by Corollary 2.6, we may assume that the
12-representant of G′ is w′ = 5x1w24w3 with each letter in w2 and w3 being larger
than 5. Let w = 35x2512w24w3. It can be checked readily that w 12-represents
G given in Subcase (3). The same construction is still valid for Subcase (4), and
hence, we omit the details.
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For Case 3, we swap the labels 1 and 2 in G. Then we are led to a new
graph G′′, which is just the graph given in Case 2. It should be mentioned that
the labeling after swaping is still good, because 1 and 2 are indistinguishable
with respect to the other elements. Then, following from the result of Case 2,
we see that there is alway a 12-representant for G′′, which implies that G′′ is
12-representable. By the proof of Proposition 2.5, we see that there is a 12-
representant for G.

Remark 2.16. We have proved that the existence of a good labeling for a square
grid graph is equivalent to the square grid graph being 12-representable. More-
over, we have shown that any good labeling of a square grid graph can be used to
find a word 12-representing the graph. It is an interesting open question if such
a property holds for any other graph. Namely, is the existence of a good labeling
in a graph equivalent to the graph being 12-representable? If so, then can any
good labeling be turned into a word-representant?

Definition 2.17. A corner node in a 12-representable square grid graph is a
node that belongs to exactly one square, which is a non-end square and shares
edges with two other squares.

For example, in the leftmost graph in Figure 2.7, the node labeled by 1 is a
corner node, but the nodes labeled by x, y and z are not.

Theorem 2.18. Let G be a 12-representable square grid graph. Then there exists
a word-representant w of G, such that in w,

• the label of each corner node is repeated twice (for no good labeling it can
appear only once in w);

• between the two copies of the label of a corner node there are exactly two other
letters, and

• the label of any other (non-corner) node appears exactly once.

Proof. We wish to prove this by induction on the number of squares. The base
case is given in Figure 2.22 and its 12-representant is w = 351748246.

4

5

1
3

7 6

82

Figure 2.22. The base case in the proof of Theorem 2.18.

Now, assuming that the theorem holds for square grid graphs with n squares,
we proceed to show that it still holds for n + 1 squares. This can be done by
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going through the cases given in Lemma 2.7. In the generation of square grid
graphs, only Cases 1 and 2 will bring new corner nodes. In Case 1, 4 is labeled at
the corner and repeats in the 12-representant w = 351w′

14w
′
224w

′
3, with letters in

w′
1, w

′
2 and w′

3 larger than 5. Notice that the elements in w′
2 are connected with

2, but not connected with 1, 3, 4, 5. Hence, actually, there is exactly one element
in w′

2. This completes the proof of this case.
For the second case, 5 is labeled at the corner and repeats in the 12-represen-

tant w = 35w′
1152w

′
24w

′
3, with letters in w′

1, w
′
2 and w′

3 larger than 5. Notice that
the elements in w′

1 are connected with 1, 2, 4, but not connected with 3, 5. Hence,
there is exactly one element in w′

1.

3. 12-Representability of Line Grid Graphs

In this section, we study the 12-representability of induced subgraphs of a grid
graph with “lines” (i.e., edges not belonging to any square), which we call line
grid graphs. Unfortunately, we cannot give a characterization in this case (we
can only conjecture it; see Conjecture 3.6). Still, we give a number of results
on 12-representability of line grid graphs that should be useful in achieving the
desired characterization.

Definition 3.1. Given a line grid graph G, we call a node v in G k-suitable if
there is a way to attach an induced path to v of length k that would result in
a line grid graph. We refer to such induced paths as lines in what follows for
brevity.

Proposition 3.2. Let G be a 12-representable square grid graph, and G′ be ob-
tained from G by attaching a line of length k, k ≥ 2, to a k-suitable node in G. If
G′ is 12-representable, then the line must be attached to a node of an end-square
in G.

x1

a
b

x3

x2
c

d

x4

x5
f

e

Figure 3.23. A line grid graph with a line of length k, k ≥ 2, attached to a k-suitable
node not belonging to an end-square.
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Proof. We show that a line of length k, k ≥ 2, cannot be attached to a node
of a non-end-square. Indeed, assume to the contrary, that this was the case, as
illustrated schematically in Figure 3.23. Clearly, xi, i = 1, . . . , 5, are distinct.
If 1 is the label of a node on the line, then viewing {x2, x3} as a cutset, we
have {c, d} > {e, f}. On the other hand, viewing {x4, x5} as a cutset, we have
{c, d} < {e, f}, a contradiction. If 1 ∈ {x2, x3, c, d}, then viewing {x1} as a
cutset, we deduce that {a, b} > {e, f}. However, viewing {x4, x5} as a cutset,
we deduce that {a, b} < {e, f}, a contradiction. Similarly, we can prove that
1 6∈ {x4, x5, e, f}. Summarising the cases, and combining with Lemma 2.3, we
see that there is no place for the label 1, as desired.

We believe that in Proposition 3.2 the “if then” statement can be replaced
by an “if and only if” statement, but we were not able to prove it.

Proposition 3.3. Let G be the line grid graph obtained by adding a line A to a
node x on another line B as shown in Figure 3.24. If G is 12-representable, then
the length of A is at most 2, or the smallest distance between x and an endpoint
of B is at most 2.

i p x q

r

j

A

B

Figure 3.24. A line grid graph with a line of length k, k ≥ 2, not attached to a node of
an end-square.

Proof. Assume that the part of line B between i and x (respectively, x and j) is
called C (respectively, D). We wish to prove that if all of the lengths of A, C and
D are larger than 2, then G is not 12-representable. We prove this by showing
that there is no good labeling for G in this case. If 1 is the label of a node on
A, then choosing p as a cutset, we see that the nodes on C, except for p and x,
are larger than those on D. Choosing q as a cutset, we see that the nodes in D,
except for q and x, are larger than those on C, which is a contradiction. Hence,
1 cannot be the label of a node on A. By a similar analysis, we can also show
that 1 cannot be the label of a node on C or D, as desired.

Note that the graph in Figure 3.24 is a subdivision of the claw K1,3. Denote
a graph of this form with three branches of length s, t, p by B(s, t, p) and observe
that Proposition 3.3 proves that B(3, 3, 3), the 3-subdivision of K1,3 presented
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in Figure 3.25, is not 12-representable. Once again, we believe that in Proposi-
tion 3.3 the “if then” statement can be replaced by an “if and only if” statement,
but we were not able to prove it.

Figure 3.25. The non-12-representable graph B(3, 3, 3).

Theorem 3.4. Given a 12-representable line grid graph G, G′ is obtained by
gluing a line of length 1 to a node of G which is not a corner node and is 1-
suitable. Then G′ is 12-representable.

Proof. First, we claim that each node in G is either a local maximum or a local
minimum, and moreover, a local maximum must connect to a local minimum.
Otherwise, there will occur an induced subgraph equal to I3, which contradicts
to the fact that G is 12-representable.

By Theorem 2.18, we may find a labeling of G with w being its 12-represen-
tant, where each non-corner label occurs only once. Assume that the node we
glue to is i. Now, we consider two cases as follows.

Case 1. i is a local maximum. Labeling the node new added i and increasing
each label in G not less than i by 1, we obtain a labeling of G′. Let w′ be the
word obtained from w by increasing each letter in w larger than i by 1, changing
i to (i+ 1)i and insering an i at the end of the word.

We claim that w′ 12-represents G′. Since i is a local maximum of G, all
letters larger than i + 1 will occur after (i + 1)i in w′. This implies that i is
disconnected with all letters larger than i + 1. The i at the end of w′ kills all
smaller letters. Lastly, i and i+ 1 are connected. The claim is verified.

Case 2. i is a local minimum. Labeling the node new added i + 1 and in-
creasing each label in G larger than i by 1, we obtain a labeling of G′. Let w′ be
the word obtained from w by increasing each letter in w larger than i by 1. Then
changing i to (i + 1)i and lastly inserting an i + 1 at the begining of the word.
By a similar analysis as given in Case 1, we may see that w′ 12-represents G′.

Summarizing, in each case, we find a 12-representant for G′. Hence, G′ is
12-representable and we complete the proof.

Proposition 3.5. Assume that G′ is obtained by gluing a line of length 1 to a
corner node which is 1-suitable in G. Then G′ is not 12-representable.
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Proof. The statement follows from non-12-representability of the graph X in
Figure 2.5.

G3 G4

G5 G6

Figure 3.26. The non-12-representable graphs Gi, i ∈ {3, 4, 5, 6}; non-12-representability
of these graphs follows from Proposition 3.2.

We end up this paper with the following conjecture.

Conjecture 3.6. A line grid graph is 12-representable if and only if it is P -
avoiding, where P = F ∪ {B(3, 3, 3), G3, G4, G5, G6} with B(3, 3, 3) and Gi, i ∈
{3, 4, 5, 6}, given in Figures 3.25 and 3.26, respectively.
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