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Abstract

Given a graph G = (V,E), a set B ⊆ V (G) is a packing in G if the closed
neighborhoods of every pair of distinct vertices in B are pairwise disjoint.
The packing number ρ(G) of G is the maximum cardinality of a packing
in G. Similarly, open packing sets and open packing number are defined
for a graph G by using open neighborhoods instead of closed ones. We
give several results concerning the (open) packing number of graphs in this
paper. For instance, several bounds on these packing parameters along with
some Nordhaus-Gaddum inequalities are given. We characterize all graphs
with equal packing and independence numbers and give the characterization
of all graphs for which the packing number is equal to the independence
number minus one. In addition, due to the close connection between the
open packing and total domination numbers, we prove a new upper bound
on the total domination number γt(T ) for a tree T of order n ≥ 2 improving
the upper bound γt(T ) ≤ (n + s)/2 given by Chellali and Haynes in 2004,
in which s is the number of support vertices of T .
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1. Introduction and Preliminaries

Throughout this paper, we consider G as a finite simple graph with vertex set
V (G) and edge set E(G). We use [23] as a reference for such terminologies
and notations which are not explicitly defined here. The open neighborhood of
a vertex v is denoted by NG(v), and the closed neighborhood of v is NG[v] =
NG(v) ∪ {v}. The minimum and maximum degree of G are denoted by δ(G)
and ∆(G), respectively. Let A and B be two subsets of V (G). The diameter
diam(G) of a graph G is the largest distance between two vertices of G. We
consider [A,B] as the set of edges having one end point in A and the other in B.
A vertex v in V (G) is called a private neighbor of u with respect to S ⊆ V (G)
if NG[v] ∩ S = {u}. The set of all private neighbors of u with respect to S is
denoted by pnG(u, S). For a positive integer t, the t-corona of G is the graph
of order (t + 1)|V (G)| obtained from G by attaching a path of length t to each
vertex of G so that the resulting paths are vertex disjoint. The corona of two
graphs G1 and G2 is the graph G1 ◦G2 formed from one copy of G1 and |V (G1)|
copies of G2, where the ith vertex of G1 is adjacent to every vertex in the ith
copy of G2. The bistar Br,r is a graph obtained from K2 by joining r pendant
edges to both end vertices of K2. From now on, whenever it is not confusing, we
will omit the subindex G in all the notations defined above.

A subset S of V (G) is k-independent if the maximum degree of the subgraph
induced by the vertices in S is less than or equal to k − 1. The k-independence
number αk(G) is the maximum cardinality of any k-independent set. Note that
α1(G) = α(G) is the well-known independence number of G.

A set S ⊆ V (G) is a dominating set (a total dominating set) if each vertex in
V (G)\S (in V (G)) has at least one neighbor in S. The domination number γ(G)
(total domination number γt(G)) is the minimum cardinality of a dominating set
(a total dominating set) in G. For more information on domination and total
domination we suggest [10] and [12], respectively.

A subset B ⊆ V (G) is a packing in G if for every pair of vertices u, v ∈ B,
N [u] ∩ N [v] = ∅. The packing number ρ(G) is the maximum cardinality of a
packing in G. The open packing, as it is defined in [11], is a subset B ⊆ V (G)
for which the open neighborhoods of the vertices of B are pairwise disjoint in G
(clearly, B is an open packing if and only if |N(v) ∩ B| ≤ 1, for all v ∈ V (G)).
The open packing number, denoted ρo(G), is the maximum cardinality among all
open packings in G.

Gallant et al. [8] introduced the concept of limited packing in graphs. They
exhibited some real-world applications of it to network security, market satu-
ration, NIMBY and codes. In fact, as it is defined in [8], a set of vertices
B ⊆ V (G) is called a k-limited packing in G provided that for all v ∈ V (G), we
have |N [v]∩B| ≤ k. The k-limited packing number, denoted Lk(G), is the largest
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number of vertices in a k-limited packing set. It is easy to see that L1(G) = ρ(G).
For the sake of convenience, given any parameter ϑ in a graph G, a set of vertices
of cardinality ϑ(G) is called a ϑ(G)-set.

Once the concepts of domination and total domination were formally intro-
duced in [17] and [5], respectively, the topics attracted the attention of a large
number of researchers during the past decades, and by now, they are very well
studied. On the other hand, the concepts of packing and open packing, as their
dual versions respectively, are now well known topics in domination theory, al-
though still not very well studied. Based on the inherent properties of these two
pairs of dual problems, any advance in one parameter may result in an advance
in the dual version. For more information about these parameters and their in-
teractions the reader can consult [10, 11, 14, 21]. It is then our aim to study these
two pairs of dual problems throughout finding several relationships between some
different kinds of packing parameters and other graph parameters and/or invari-
ants, which show the richness of the so-called packing parameters. We hence
remark that some results in this work are precisely showing this richness through
the several existent relationships we have found, instead of central results around
which the exposition is developed.

2. Diameter-Related Results

A high number of results on domination theory have relationship with the di-
ameter of graphs (see for instance [10]). In this section we exhibit tight bounds
on Lk(G) (k = 1, 2), as a more general parameter than the standard packing
number. We also bound the sum and product of the packing and open packing
numbers of a graph G and its complement G involving the diameter, in which is
known in the literature as Nordhaus-Gaddum results. The following well-known
lower bound on the domination number of a connected graph G was given in [10]

(1) γ(G) ≥
⌈

1 + diam(G)

3

⌉
.

In the next result we bound from below the k-limited packing numbers, for
k ∈ {1, 2}, of a general connected graph G, just in terms of k and its diameter.

Proposition 1. For any connected graph G and an integer k ∈ {1, 2},

Lk(G) ≥
⌈
k + k · diam(G)

3

⌉
.

Proof. Let P be a diametral path in the graph G formed by the set of vertices
V (P ) =

{
v1, . . . , v1+diam(G)

}
. If k = 1, then clearly the subset of vertices V1(P ) =



336 D.A. Mojdeh, B. Samadi and I.G. Yero

{
v1, . . . , v3i+1, . . . , v3bdiam(G)/3c+1

}
is a packing in G. That is, if there exists a

vertex v adjacent to at least two vertices in V1(P ), then we obtain a path between
v1 and v1+diam(G) which passes throughout v and with length less than diam(G),
which is a contradiction. Thus, we deduce ρ(G) ≥ |V1(P )| = d(1 + diam(G))/3e.

On the other hand, if k = 2, then V2(P ) = V (P ) \
{
v3, . . . , v3b(1+diam(G))/3c

}
is a 2-limited packing in G, by a similar fashion. Therefore, L2(G) ≥ |V2(P )| =
d(2 + 2diam(G))/3e.

We must recall at this point the following fact. In [13], Kang provided a
counter-example to a crucial assertion in the proof of (1) given in [10], and then
presented a correct proof to it. Since ρ(G) ≤ γ(G) (see [8]), Proposition 1 provides
another proof of (1) and improves it, simultaneously. It is immediate from the
definitions that ρ(G) ≤ ρo(G), for each graph G. So, Proposition 1 also improves
the following theorem given in [19].

Theorem 2 [19]. For any connected graph G, ρo(G) ≥
⌈

1+diam(G)
3

⌉
.

Nordhaus and Gaddum [16] in 1956, gave lower and upper bounds on the sum
and product of the chromatic numbers of a graph and its complement in terms of
the order. Since then, bounds on Ψ(G)+Ψ(G) or Ψ(G)Ψ(G) are called Nordhaus-
Gaddum inequalities, where Ψ is any graph parameter. For more information
about this subject the reader can consult [1].

Nordhaus-Gaddum inequalities for limited packing parameters were initiated
by exhibiting the sharp upper bound L2(G) + L2(G) ≤ n + 2 in [21]. Next we
establish upper bounds on the sum and product of the packing and open packing
numbers of a graph and its complement. To do so, we first need the following
useful observation.

Observation 3. For any graph G, ρ(G) = 1 if and only if diam(G) ≤ 2.

Clearly ρ(G) + ρ(G) = 2 (ρ(G)ρ(G) = 1) if and only if both diam(G) and
diam(G) are at most 2, by Observation 3. Thus, we restrict our attention to the
case max{diam(G), diam(G)} ≥ 3. First, for the sake of convenience we define
M and ∆′ as follows.

M = max{diam(G), diam(G)}

and

∆′ =

{
∆(G) if diam(G) > diam(G),

∆(G) if diam(G) > diam(G).

Since diam(G) ≥ 3 results in diam(G) ≤ 3, it is clear that diam(G) =
diam(G) only when diam(G) = 3 = diam(G). Accordingly, we consider this case
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separately. That is, we did not consider the case diam(G) = diam(G) in the
definition of ∆′.

We need to recall now that a partial version of the following theorem can
be found in [15], although the difference between both results are not that high.
Taking into account that we further on present a total version of it (see The-
orem 6), where we refer to the proof of our next theorem, and for the sake of
completeness of our exposition, we point it out in detail.

Theorem 4. Let G and G be both connected with M ≥ 3.

(i) ρ(G) + ρ(G) = ρ(G)ρ(G) = 4 if and only if diam(G) = diam(G) = 3.

(ii) If diam(G) 6= diam(G), then

ρ(G)+ρ(G) ≤ n−
⌈

2M + 3∆′ − 11

3

⌉
and ρ(G)ρ(G) ≤ n−

⌈
2M + 3∆′ − 8

3

⌉
.

Furthermore, these bounds are sharp.

Proof. (i) Let diam(G) = diam(G) = 3 and let u and v be the end vertices of a
diametral path of length 3 in G. It is easy to see that {u, v} is a dominating set
in G. Therefore, γ(G) ≤ 2. On the other hand, ρ(G) ≤ γ(G). Now, Observation
3 implies that ρ(G) = 2. A similar argument shows that ρ(G) = 2.

Conversely, ρ(G) + ρ(G) = ρ(G)ρ(G) = 4 implies ρ(G) = ρ(G) = 2. There-
fore, by Observation 3, we have diam(G) ≥ 3 and diam(G) ≥ 3. On the other
hand, diam(G) ≥ 3 implies diam(G) ≤ 3 (see [23]). Therefore, diam(G) =
diam(G) = 3.

(ii) Assume diam(G) 6= diam(G). Without loss of generality, we may assume
that diam(G) > diam(G). Since diam(G) ≥ 3 implies diam(G) ≤ 3, we have
diam(G) ≥ 3 and diam(G) ≤ 2 since they are different. Thus, ρ(G) = 1. Now,
let B be a maximum packing in G and let u be a vertex of maximum degree.
Then, at most one of the vertices in N [u] belongs to B. Let x and y be the
end vertices of a diametral path P of length `(P ) = diam(G) ≥ 3 in G. Since
diam(G[N [u]]) ≤ 2, at least one of the end vertices, say x, is in G \N [u] and at
most three vertices of P are in N [u]. Let Px and Py be the largest subpaths of
P \ N [u] beginning at x and y, respectively. Clearly, Py = ∅ if y ∈ N [u]. Also
note that V (P \N [u]) satisfies the following.

• It is formed by the disjoint union of V (Px) and V (Py), or

• it is formed by the disjoint union of V (Px), V (Py) and a singleton {z}, for
some z ∈ V (P ).

Therefore, at most three vertices of P do not belong to P \N [u] and so, |V (Px)|+
|V (Py)| ≥ diam(G)− 2.
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Since ρ(Pm) = dm3 e (see [8]), at most d|V (Px)|/3e + d|V (Py)|/3e vertices of
Px ∪ Py belong to B and so, at least b2|V (Px)|/3c + b2|V (Py)|/3c vertices of
Px ∪ Py belong to V (G) \B. Thus,

|V (G) \B| ≥ ∆(G) + b2|V (Px)|/3c+ b2|V (Py)|/3c
= ∆(G) + d(2|V (Px)| − 2)/3e+ d(2|V (Py)| − 2)/3e
≥ ∆(G) + d2(|V (Px)|+ |V (Py)| − 2)/3e
≥ ∆(G) + d(2diam(G)− 8)/3e.

Therefore, ρ(G) = |B| ≤ n−
⌈

2diam(G)+3∆(G)−8
3

⌉
. This implies the upper bounds.

That these bounds are sharp may be seen as follows. Let H be a graph
obtained from the star K1,t, t ≥ 3, with central vertex u, by adding new edges
among its pendant vertices provided that there exist two non-adjacent vertices u1

and u2 in N(u) and a vertex w ∈ N(u) which is neither adjacent to u1 nor to u2.
We add two paths P ′x and P ′y with end vertices x, x′ and y, y′, respectively, whose
lengths satisfy that `(P ′x) ≥ `(P ′y) and `(P ′x) ≡ 0 (mod 3). Then, we add edges
between x′ and u1, and between y′ and u2. Hence, ∆(H) = t, diam(H) = d(x, y)
and the three vertices u, u1 and u2 of the diametral path between x and y belong
to N [u]. It is easy to see that the subset B ⊆ V (H) containing one vertex of N [u],
say w, and d|V (P ′x)|/3e + d|V (P ′y)|/3e vertices of V (P ′x) ∪ V (P ′y) is a maximum
packing in H. Hence, we have

(2) |V (H) \B| = ∆(H) + d(2|V (P ′x)| − 2)/3e+ d(2|V (P ′y)| − 2)/3e.

Moreover, since `(P ′x) ≡ 0 (mod 3) and |V (P ′x)| + |V (P ′y)| = diam(H) − 2, we
deduce

|V (H) \B| = ∆(H) + d2(|V (P ′x)|+ |V (P ′y)| − 2)/3e
= ∆(H) + d(2diam(H)− 8)/3e,

by (2). Hence, |B| = n −
⌈

2diam(H)+3∆(G)−8
3

⌉
. Taking into account this, the

sharpness of the upper bounds follows from the fact that ρ(H) = 1.

A result somehow similar to Theorem 4 (but different in details) can be
proved in connection with the open packing number. To this end, we first need
the following lemma.

Lemma 5 [18]. Let G be a graph of order at least 3. Then ρo(G) = 1 if and only
if diam(G) ≤ 2 and every edge of G lies on a triangle.

Before presenting the next theorem, we have the following straightforward
fact. If diam(G) ≤ 2, then ρo(G) ≤ 2. Now, as an immediate consequence we
have ρo(G) + ρo(G), ρo(G)ρo(G) ≤ 4 when M ≤ 2. In this sense, from now on we
are only interested in the case M ≥ 3.
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Theorem 6. Let G and G be both connected with M ≥ 3.

(i) If diam(G) = diam(G) = 3, then ρo(G) + ρo(G) = ρo(G)ρo(G) = 4.

(ii) If diam(G) 6= diam(G), then

ρo(G) + ρo(G) ≤ n−
⌈
M + 2∆′ − 10

2

⌉
and

ρo(G)ρo(G) ≤ 2n− 2

⌈
M + 2∆′ − 6

2

⌉
.

Furthermore, these bounds are sharp.

Proof. (i) Let diam(G) = diam(G) = 3 and let u, v be the end vertices of a
diametral path in G (in G) of length 3. It is easy to see that {u, v} is a total
dominating set in G (in G). Therefore, γt(G) ≤ 2 (γt(G) ≤ 2). On the other
hand, ρo(G) ≤ γt(G) ≤ 2 (ρo(G) ≤ γt(G) ≤ 2). Thus, ρo(G) + ρo(G) ≤ 4
and ρo(G)ρo(G) ≤ 4. Since ρ(G) ≤ ρo(G) for all graph G, Theorem 4 implies
ρo(G) + ρo(G) = ρo(G)ρo(G) = 4.

(ii) Let diam(G) 6= diam(G). Similarly to the proof of Theorem 4, we may
assume that diam(G) ≥ 3 and diam(G) ≤ 2. Thus, ρo(G) ≤ 2. Now, let B be
a maximum open packing in G and consider u, x, y, P, Px and Py defined in the
same way as in the proof of Theorem 4. Note that at most two vertices in N [u]
belong to B. Since

(3) ρo(Pn) = γt(Pn) = bn/2c+ dn/4e − bn/4c ≤ bn/2c+ 1

(see [7]), at most b|V (Px)|/2c + b|V (Py)|/2c + 2 vertices of Px ∪ Py belong to
B and so, at least d|V (Px)|/2e + d|V (Py)|/2e − 2 vertices of Px ∪ Py belong to
V (G) \B. In order to complete our proof, let us make a claim.

Claim A. The following three statements do not hold simultaneously.

(a) |V (Px) ∩B| = b|V (Px)|/2c+ 1 and |V (Py) ∩B| = b|V (Py)|/2c+ 1,

(b) d|V (Px)|/2e+ d|V (Py)|/2e = d(|V (Px)|+ |V (Py)|)/2e,
(c) |N [u] ∩B| = 2.

Proof. Suppose, to the contrary, that (a), (b) and (c) hold simultaneously. It
follows from (a) and the inequality (3) that the cardinalities |V (Px)| and |V (Py)|
are congruent to 1, 2 or 3 (mod 4). Also, (b) implies that at least one of |V (Px)|
and |V (Py)|, say |V (Px)|, is an even number. Thus, |V (Px)| = 4k + 2 for some
integer k ≥ 0. Since |V (Px) ∩ B| = b|V (Px)|/2c + 1 = 2k + 2, we note that
the first two and the last two vertices of Px must be in B. On the other hand,
|N [u]∩B| = 2 implies that u ∈ B. Assume now that z is a vertex in N(u) which
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is adjacent to the end vertex x′ of Px. Hence {u, x′} ⊆ N(z) ∩ B, which is a
contradiction. This completes the proof of Claim A. �

The argument before Claim A yields the following.

(4)

|V (G) \B| ≥ |N [u]| − 2 + d|V (Px)|/2e+ d|V (Py)|/2e − 2

≥ ∆(G)− 3 + d(|V (Px)|+ |V (Py)|)/2e
≥ ∆(G)− 3 + d(diam(G)− 2)/2e
= d(2∆ + diam(G)− 8)/2e.

We infer now from Claim A, that at least one of the first two inequalities in (4)
is strict. Thus, ρo(G) = |B| ≤ n− d(2∆ + diam(G)− 8)/2e − 1. This implies the
upper bound.

To see that the bounds are sharp, consider the star K1,t for t ≥ 2 with central
vertex u. Identify the end vertex v4 of the path v1v2v3v4 to a vertex in N(u). Let
G be the obtained graph. Clearly, ρo(G) = 4. Moreover, {u, v2} is a dominating
set in G. Therefore, the edge uv2 does not lie on a triangle in G. Now, Lemma
5 shows that ρo(G) = 2, and the upper bounds are attained for such graph G.
This completes the proof.

In contrast with Theorem 4(i), we observe that the converse of Theorem 6(i)
does not hold. To see this, it suffices to consider G = C5 = G.

3. Other Packing-Related Parameters

We next continue by relating the packing and open packing numbers of graphs
with other domination parameter, that is, with the Roman domination number.
The concepts concerning Roman domination in graphs were formally defined
by Cockayne et al. in [6] motivated, in some sense, by an article in Scientific
American of Ian Stewart entitled “Defend the Roman Empire” [22]. A Roman
dominating function on a graph G is a function f : V (G) → {0, 1, 2} such that
every vertex u with f(u) = 0 is adjacent to a vertex v with f(v) = 2. The
weight of f is defined as ω(f) =

∑
v∈V (G) f(v). The Roman domination number,

denoted γR(G), is the minimum weight of any Roman dominating function on G.

A Roman dominating function f , generates three sets V f
i = {v ∈ V (G) : f(v) = i}

for i = 0, 1, 2. Since these sets determine f and viceversa, we can equivalently
write f =

(
V f

0 , V
f

1 , V
f

2

)
.

Observation 7. Let G be a graph of order n and minimum degree δ. Then the
following statements hold.

(i) If δ ≥ 2, then ρ(G) ≤
⌊
n−γR(G)
δ−1

⌋
.
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(ii) If δ ≥ 3, then ρo(G) ≤
⌊
n−γR(G)
δ−2

⌋
.

Furthermore, these bounds are tight.

Proof. Let B and B′ be a packing set and an open packing set of cardinality ρ(G)
and ρo(G), respectively. According to the definitions, it is readily seen that the
function f = (N [B] \B, V (G) \N [B], B) and f ′ = (N [B′] \B′, V (G) \N [B′], B′)
are Roman dominating functions. Thus,

γR(G) ≤ w(f) = 2|B|+ |V (G)| − |N [B]| ≤ 2|B|+n− (δ+ 1)|B| = n− (δ− 1)|B|,

and

γR(G) ≤ w(f ′) = 2|B′|+ |V (G)| − |N [B′]| ≤ 2|B′|+ n− δ|B′| = n− (δ − 2)|B′|.

Since |B| = ρ(G) and |B′| = ρo(G), we deduce the bounds. The tightness of
the bounds can be easily checked by considering any graph of maximum degree
n−1 and minimum degree larger than n/2+ 1. In such a case, it clearly happens
γR(G) = 2 and ρ(G) = ρo(G) = 1. Also, any cycle of order 3t satisfies γR(C3t) =
2t and ρ(C3t) = t, which again shows the tightness of the first bound.

Other parameter closely related to the packing number is the independence
number of graphs, and clearly, ρ(G) ≤ α(G) for every graph G. In what follows,
we characterize all graphs G for which the upper bound holds with equality. For
this purpose, we first construct the family Ω of graphs G as follows. Let G′ be a
graph and Kn1 , . . . ,Knr be a decomposition of it into complete subgraphs. Let
G be obtained from G′ by adding r new vertices v1, . . . , vr and joining vi to all
vertices of Kni , for all 1 ≤ i ≤ r, and some isolated vertices.

On the other hand, it follows directly from the definition that ρo(G) ≤ α2(G),
for every graph G. We introduce the family Ωo of all graphs G constructed as
follows in order to characterize all graphs for which the equality holds. Let
H ′ = aP1 + bP2 + cP3 +dC4 (disjoint union) for some non-negative integers a, b, c
and d. We denote the ith copy of the path P3 by v1iv2iv3i and the jth copy of
the cycle C4 by u1ju2ju3ju4ju1j . Now, let G be the graph obtained from H by
adding some edges with one end in {v3i}ci=1 and the other end in {u3j , u4j}dj=1.

Theorem 8. Let G be a graph of order n ≥ 2. Then, the following statements
hold.

(i) ρ(G) = α(G) if and only if G ∈ Ω.

(ii) ρo(G) = α2(G) if and only if G ∈ Ωo.

Proof. (i) We prove (i) in the case of graphs with no isolated vertices since the
isolated vertices belong to every maximum packing and maximum independent
set.
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We assume first that G ∈ Ω. Clearly, B = {v1, . . . , vr} is a packing in G.
Thus, it suffices to prove that B is an α(G)-set. Suppose, to the contrary, that
there exists an independent set A in G with |A| > |B|. So, A = B1 ∪ A1 for
some ∅ 6= B1 ⊆ B and ∅ 6= A1 ⊆ V (G) \ B. Since A is an independent set and
|A| > |B|, the vertices in A1 ⊆ A must be chosen from

⋃
v∈B\B1

pn(v,B \ B1)
and at least two vertices of pn(u,B \B1), for some u ∈ B \B1, belong to A. This
contradicts the independence of A. Therefore, B is an α(G)-set, implying the
equality.

Conversely, let ρ(G) = α(G). Suppose that B is a ρ(G)-set. So, B is an
α(G)-set as well. Therefore, each vertex in V (G) \B has exactly one neighbor in
B. Suppose that there is u ∈ B for which there exist two non-adjacent vertices
x, y ∈ pn(u,B). Now, B′ = (B\{u})∪{x, y} is an independent set with |B′| > |B|
which is a contradiction. Therefore, pn(u,B) induces a clique, for all u ∈ B and
so, G ∈ Ω.

(ii) We prove (ii) in the case of graphs with no isolated vertices and disjoint
copies of P2 since all isolated vertices and disjoint copies of P2 belong to every
maximum open packing and maximum 2-independent set. Hence, when dealing
with Ωo, we have H ′ = cP3 + dC4.

Let G ∈ Ωo. Clearly, B = V (H ′) \
((⋃c

i=1{v3i}
)
∪
(⋃d

j=1{u3j , u4j}
))

is an
open packing in G. It is not difficult to see that B is an α2(G)-set. Therefore,
α2(G) ≤ ρo(G) implying the equality.

Conversely, assume that the equality holds and B is a ρo(G)-set. So, B is an
α2(G)-set as well. Therefore, every vertex in V (G) \B has exactly one neighbor
in B. Now, consider an edge uv with end vertices in B. Suppose one of the end
vertices, say u, has at least two private neighbors, say x and y, lying outside
B. Then, B′ = (B \ {u}) ∪ {x, y} is a 2-independent set in G with |B′| > |B|,
which is a contradiction. Therefore, each vertex in G[B] has at most one private
neighbor lying outside B. Suppose now that both the end vertices u and v of the
edge uv have such private neighbors, say u′ and v′, respectively. Then u′ must
be adjacent to v′, for otherwise (B \ {u})∪ {u′, v′} would be a 2-independent set
of cardinality |B|+ 1, a contradiction. These arguments show that G ∈ Ωo.

The following classic result was proved by Meir and Moon in 1975.

Theorem 9 [14]. If T is a tree, then ρ(T ) = γ(T ).

We now deduce the following result due to Borowiecki (see [2]), as an imme-
diate consequence of Part (i) of Theorem 8 and Theorem 9.

Corollary 10 [2]. If T is a tree, then γ(T ) = α(T ) if and only if T = K1 or
T = T ′ ◦K1 for some tree T ′.

By Theorem 8, ρ(G) + 1 ≤ α(G) whether G /∈ Ω. In the next theorem, we
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characterize those graphs G for which ρ(G) + 1 = α(G). For this purpose, we
introduce a couple of special families of graphs.

Θ1: The family of all graphs G constructed from a graph H ∈ Ω, with the set of
isolated vertices I, by adding a new clique K(H) and some edges with one end
vertex in V (H) \ ({v1, . . . , vr} ∪ I) and the other in V (K(H)) such that V (H)
dominates V (K(H)).

Θ2: The family of all graphs G constructed as follows. Let H1, . . . ,Hr be a
sequence of graphs such that α(Hi) ≤ 2 for all 1 ≤ i ≤ r, and α(Hi) = 2 for at
least one index 1 ≤ i ≤ r. Add new vertices v1, . . . , vr and join vi to all vertices of
Hi, for all 1 ≤ i ≤ r. We now add some edges with one end vertex in V (Hi) and
the other in V (Hj), 1 ≤ i 6= j ≤ r, such that for every two non-adjacent vertices
ui, wi ∈ V (Hi), {ui, wi} dominates at least one vertex of the other similar type
of (non-adjacent) vertices in V (Hj) if they exist, for 1 ≤ i 6= j ≤ r. Now let G
be obtained as above by adding some isolated vertices.

Θ3: The family of all graphs G constructed from a graph H ∈ Θ2, with the set of
isolated vertices I, by adding a new clique K(H) and some edges with one end
vertex in V (H) \ ({v1, . . . , vr} ∪ I) and the other one in V (K(H)) such that for
every two non-adjacent vertices ui, wi ∈ V (Hi), {ui, wi} dominates all vertices of
K(H).

We are now in a position to present the characterization theorem above
mentioned.

Theorem 11. Let G be a graph with no isolated vertices. Then, ρ(G)+1 = α(G)
if and only if G ∈ Θ1 ∪Θ2 ∪Θ3.

Proof. Without loss of generality, we may consider just the graphs with no
isolated vertices. Let ρ(G) + 1 = α(G) and let B = {v1, . . . , v|B|} be a ρ(G)-set.
We distinguish two cases depending on N [B].

Case 1. N [B] = V (G). Since B is a packing of G, N(v1), . . . , N(v|B|) are
pairwise vertex-disjoint. If Gi = G[N(vi)] is a complete graph for each 1 ≤
i ≤ |B|, then G ∈ Ω and so, ρ(G) = α(G) by Theorem 8, which is not possible.
Therefore, α(Gi) ≥ 2 for at least one index 1 ≤ i ≤ |B|. Suppose that there exists
an index i for which α(Gi) ≥ 3. Let x1, x2 and x3 be three independent vertices
of Gi. It is easy to see that B′ = (B \ {vi}) ∪ {x1, x2, x3} is an independent set
with α(G) ≥ |B′| = ρ(G) + 2, a contradiction. So, α(Gi) ≤ 2, for all 1 ≤ i ≤ |B|.

Now let ui and wi be two non-adjacent vertices of Gi, for some 1 ≤ i ≤
|B|. Then, B′′ = (B \ {vi}) ∪ {ui, wi} is an independent set of the cardinality
|B′′| = α(G) = ρ(G) + 1. If there exist two non-adjacent vertices uj and wj in
V (Gj) for which [{ui, wi}, {uj , wj}] = ∅ (note that [{ui, wi}, {uj , wj}] stands for
the set of edges having one endpoint in {ui, wi} and other in {uj , wj}), then B′′′ =
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(B′′ \ {vj}) ∪ {uj , wj} is an independent set with |B′′′| > α(G), a contradiction.
Therefore, {ui, wi} dominates at least one vertex in the other similar type of
(non-adjacent) vertices in V (Hj), for each 1 ≤ j 6= i ≤ |B|. Thus, G ∈ Θ2.

Case 2. N [B] 6= V (G). Let S = V (G)\N [B]. We now consider two subcases.

Subcase 2.1. Suppose first that G1, . . . , G|B| are complete graphs. If G[S] is
not complete, choose two non-adjacent vertices x, y ∈ S. Then, B ∪ {x, y} would
be an independent set of cardinality |B|+ 2 which is a contradiction. So, G[S] is
a clique. On the other hand, if N(B) does not dominate a vertex x ∈ S, then G
is an element of Ω. This contradicts ρ(G) + 1 = α(G). Therefore, G ∈ Θ1.

Subcase 2.2. Suppose that α(Gi) ≥ 2, for some 1 ≤ i ≤ |B|. Similar to
Subcase 2.1, we deduce that G[S] is a clique. Also, similar to Case 1, for each
two non-adjacent vertices ui, wi ∈ V (Gi), {ui, wi} dominates at least one vertex
in the other similar type of (non-adjacent) vertices in V (Hj), for 1 ≤ j 6= i ≤ r.
Therefore, G − S ∈ Θ2. Suppose that there are two non-adjacent vertices ui, wi
of Gi such that {ui, wi} does not dominate a vertex x ∈ S. Then, B′ = (B \
{vi}) ∪ {x, ui, wi} is an independent set in G of cardinality |B′| = ρ(G) + 2, a
contradiction. Therefore, G ∈ Θ3.

Conversely, let G ∈ Θ1 ∪ Θ2 ∪ Θ3. Then we have ρ(G) + 1 ≤ α(G), by
Theorem 8. We now consider two cases.

Case 3. G ∈ Θ1. Applying an argument similar to that of the proof of
Theorem 8, we find an α(G)-set {v1, . . . , vr} ∪ {x} of cardinality r + 1, in which
x is a vertex in S. Since {v1, . . . , vr} is a packing, ρ(G) + 1 ≥ α(G) implying the
equality.

Case 4. G ∈ Θ2 ∪ Θ3. Choose an index 1 ≤ i ≤ r for which α(Gi) ≥ 2. We
claim that for each two non-adjacent vertices ui, wi of Gi, the independent set
Bi = ({v1, . . . , vr} \ {vi}) ∪ {ui, wi} is an α(G)-set. Otherwise, there exists an
independent set B′i such that |B′i| > |Bi|. It is not difficult to show that such a set
must contain either at least two pairs uj ,wj and uk,wk of non-adjacent vertices
of Hj and Hk, respectively, for some 1 ≤ j 6= k ≤ r, or a vertex x ∈ S and a pair
of such non-adjacent vertices uj and wj . In such cases, there would be at least
one edge in [{uj , wj}, {uk, wk}] or [{uj , wj}, {x}], respectively. This contradicts
the independence of B′i. So, Bi is an α(G)-set. Thus, ρ(G) + 1 ≥ r + 1 = α(G).
Note that in the case G ∈ Θ3, {v1, . . . , vr} ∪ {x} is an α(G)-set of cardinality at
most ρ(G) + 1 as well, in which x is an arbitrary vertex in S. Therefore, again
ρ(G) + 1 ≥ r + 1 = α(G). This completes the proof.

4. Packing-Related Parameters in Trees

The following inequality was independently proved by Gentner and Rautenbach
[9], and Desormeaux and Henning [7].
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(5) γt(G) ≥ min{k | d1 + · · ·+ dk ≥ n},

for any graph G with no isolated vertices and order n with the non-increasing
degree sequence d1 ≥ · · · ≥ dn. The authors in [7] denoted the lower bound in
(5) by ords(G) and called it the order-sum number of G. They proved that

ords(T ) ≥ (n− `+ 2)/2,

in which T is a tree of order n ≥ 2 with ` leaves, which strengthens γt(T ) ≥
(n− `+ 2)/2 given in [3].

The discussion above motivates us to introduce a graph parameter in order
to give a new upper bound on γt(T ). Let T be a tree of order n ≥ 2 with s
support vertices and let L(T ) be the set of leaves of T . Let d1 ≤ · · · ≤ dp be
the non-decreasing degree sequence of vertices in V (T ) \ L(T ). We define the
parameter ρ̂o for a tree T as

ρ̂o(T ) = max{k | d1 + · · ·+ dk−s ≤ n− s}.

We make use of the following result due to Rall [20] which will be useful for
our purposes.

Lemma 12 [20]. For any tree T of order at least two, γt(T ) = ρo(T ).

Theorem 13. Let T be a tree of order n ≥ 2 with s support vertices. Then, the
following statements hold.

(i) γt(T ) ≤ ρ̂o(T ) ≤ (n+ s)/2.

(ii) ρ̂o(T ) = (n+ s)/2 if and only if n+ s is even and d(n−s)/2 = 2.

(iii) If T has the non-increasing degree sequence d1 ≥ · · · ≥ dn, then ords(T ) ≤
γt(T ) ≤ 2ords(T ) − 2 (see [7]). Moreover, all integer values between the
lower and upper bounds are realizable.

Proof. (i) Let B be a maximum open packing in G. Let u be a support vertex
and Lu be the set of all leaves adjacent to u. If Lu ∩ B = ∅, then there exists a
vertex w ∈ B ∩ N(u), for otherwise B ∪ {v} is an open packing in G in which
v ∈ Lu, and this is a contradiction. Now, (B \ {w}) ∪ {v} is an open packing in
G. So, in what follows we may assume that B contains exactly one leaf adjacent
to each support vertex of T . Let {v1, . . . , vs} be the set of such leaves and
B = {v1, . . . , vs, vs+1, . . . , v|B|} be the maximum open packing. By Lemma 12,
we have γt(T ) = |B|. On the other hand, the definition of open packing implies

(6)

s+ d1 + · · ·+ d|B|−s ≤ s+ deg(vs+1) + · · ·+ deg(v|B|)

= deg(v1) + · · ·+ deg(v|B|)

=

|B|∑
i=1

|N(vi) ∩B|+
|B|∑
i=1

|N(vi) ∩ (V (G) \B)|

≤ |B|+ n− |B| = n.
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So, γt(T ) = |B| ≤ ρ̂o(T ).
Now let t = ρ̂o(T ). Then,

(7) 2(t− s) ≤ d1 + · · ·+ dt−s ≤ n− s.

This results in the desired upper bound.
(ii) Let ρ̂o(T ) = (n + s)/2 and t = ρ̂o(T ). Clearly, n + s is even. By using

(n+ s)/2 instead of t in (7), we have

(8) d1 + · · ·+ d(n−s)/2 = n− s.

Since 2 ≤ d1 ≤ · · · ≤ d(n−s)/2, the equality (8) implies d1 = · · · = d(n−s)/2 = 2.
Conversely, since d(n−s)/2 = 2, we get d1 + · · ·+ d(n−s)/2 = n− s. Therefore,

(n+ s)/2 ≤ ρ̂o(T ).
(iii) The lower and upper bounds were proved in [7]. To show that all integer

values between the lower and upper bounds are realizable, it suffices to prove the
following claim.

Claim B. For any integers a ≥ 2 and 0 ≤ b ≤ a − 2, there exists a tree T such
that ords(T ) = a and γt(T ) = a+ b.

Proof. Let T be a tree obtained from T ′ = Pa ◦ K2a by subdividing exactly
one pendant edge for each one of the first b support vertices on Pa. Then, n =
2a2+a+b. Let {v1, . . . , va} be the set of vertices of the path Pa and V (T )\V (T ′) =
{u1, . . . , ub}. We have,

a∑
i=1

deg(vi) = 2a2 + 2a− 2 ≥ 2a2 + a+ b = n.

Therefore, ords(T ) ≤ a.
Now let us suppose ords(T ) = k ≤ a − 1 and let {w1, . . . , wk} be the set of

vertices for which
∑k

i=1 deg(wi) ≥ n. Hence,

k∑
i=1

deg(wi) ≤
a−1∑
i=1

deg(vi) = 2a2 − 3 < n,

which is a contradiction. Thus, ords(T ) = a.
On the other hand, it is easy to check that {v1, . . . , va} ∪ {u1, . . . , ub} is a

minimum total dominating set in T . So, γt(T ) = a + b. This completes the
proof.

Note that, as an immediate consequence of Theorem 13(i), we have improved
the following result, that was proved by Chellali and Haynes by induction on the
order n.
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Theorem 14 [4]. If T is a tree of order n ≥ 3 with s support vertices, then
γt(T ) ≤ (n+ s)/2 and this bound is sharp.

Note that the difference between (n+ s)/2 and ρ̂o(T ) can be arbitrary large.
Indeed, for any positive integer b there exists a tree T for which (n+s)/2−ρ̂o(T ) =
b. To see this, it suffices to consider the bistar Bb+1,b+1.
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