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Abstract

Let G = (V,E) be a simple, undirected and connected graph. A con-
nected dominating set S ⊆ V is a secure connected dominating set of G,
if for each u ∈ V \ S, there exists v ∈ S such that (u, v) ∈ E and the set
(S \ {v}) ∪ {u} is a connected dominating set of G. The minimum size of a
secure connected dominating set of G denoted by γsc(G), is called the secure
connected domination number of G. Given a graph G and a positive integer
k, the Secure Connected Domination (SCDM) problem is to check whether
G has a secure connected dominating set of size at most k. In this paper, we
prove that the SCDM problem is NP-complete for doubly chordal graphs, a
subclass of chordal graphs. We investigate the complexity of this problem
for some subclasses of bipartite graphs namely, star convex bipartite, comb
convex bipartite, chordal bipartite and chain graphs. The Minimum Secure
Connected Dominating Set (MSCDS) problem is to find a secure connected
dominating set of minimum size in the input graph. We propose a (∆(G)+1)-
approximation algorithm for MSCDS, where ∆(G) is the maximum degree
of the input graph G and prove that MSCDS cannot be approximated within
(1− ǫ) ln(|V |) for any ǫ > 0 unless NP ⊆ DTIME

(

|V |O(log log |V |)
)

even for
bipartite graphs. Finally, we show that the MSCDS is APX-complete for
graphs with ∆(G) = 4.

Keywords: secure domination, complexity classes, tree-width, chordal
graphs.

2010 Mathematics Subject Classification: 05C69, 68Q25.

https://doi.org/10.7151/dmgt.2260


1180 J. Pavan Kumar and P.V.S. Reddy

1. Introduction

Throughout this paper, all graphs G = (V,E) should be finite, simple (i.e.,
without self-loops and multiple edges), undirected and connected with vertex
set V and edge set E. The (open) neighborhood of a vertex v ∈ V is the set
N(v) = {u ∈ V | (u, v) ∈ E}. If X ⊆ V , then the open neighborhood of X is the
set N(X) =

⋃

v∈X N(v). The closed neighborhood of X is N [X] = X ∪ N(X).
The degree of a vertex v is |N(v)| and is denoted by d(v). If d(v) = 1, then v is
called a pendant vertex of G and the support vertex of a pendant vertex v is the
unique vertex s such that (v, s) ∈ E. The maximum degree of vertices in V is
denoted by ∆(G). For a graph G, and a set S ⊆ V, the subgraph of G induced

by S is defined as G[S] = (S,ES), where ES = {(x, y) ∈ E |x, y ∈ S}. If G[S],
where S ⊆ V , is a complete subgraph of G, then it is called a clique of G. A
set S ⊆ V is an independent set if G[S] has no edge. A split graph is a graph in
which the vertices can be partitioned into a clique and an independent set. For
undefined terminology and notations we refer to [25].

A set S ⊆ V is a dominating set (DS) in G if for every u ∈ V \S, there exists
v ∈ S such that (u, v) ∈ E, i.e., N [S] = V . The minimum size of dominating
set in G is called the domination number of G and is denoted by γ(G). A set
S ⊆ V is a connected dominating set (CDS) of G if G[S] is connected and every
vertex not in S is adjacent to a vertex in S. The minimum size of CDS in G
is called the connected domination number of G and is denoted by γc(G). The
study of domination and related problems is one of the fastest growing areas
in graph theory. The study of literature on various domination parameters in
graphs has been surveyed and outlined in [12, 13]. An important domination
parameter called secure domination has been introduced by Cockayne et al. in
[6]. A set S ⊆ V is a secure dominating set (SDS) of G if, for each vertex
u ∈ V \ S, there exists a neighboring vertex v of u in S such that (S \ {v})∪ {u}
is a dominating set of G (in which case v is said to defend u). The decision version
of secure domination problem is known to be NP-complete for general graphs [9]
and remains NP-complete even for various restricted families of graphs such as
bipartite, doubly chordal and split graphs [17, 24]. Recently, Wang et al. [24]
obtained some approximation results related to secure domination. A CDS S of
G is called a secure connected dominating set (SCDS) in G if, for each u ∈ V \S,
there exists v ∈ S such that (u, v) ∈ E and (S \ {v}) ∪ {u} is a CDS in G (in
which case v is said to be S-defender). The secure connected domination number

of graph G is the minimum size of a SCDS, and is denoted by γsc(G) [4]. Given
a graph G and a positive integer k, the secure connected Domination (SCDM)
problem is to check whether G has a SCDS of size at most k. It is known that
SCDM is NP-complete for bipartite graphs and split graphs, whereas it is linear
time solvable for block graphs and threshold graphs [22]. The Minimum Secure
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Connected Dominating Set (MSCDS) problem is to find a SCDS of minimum size
in the input graph.

Preliminaries. In a graph G, a vertex v is simplicial if its closed neighborhood
NG[v] induces a complete subgraph of G. An ordering {v1, v2, . . . , vn} of the
vertices of V is a perfect elimination ordering (PEO), if vi is a simplicial of the
induced subgraph Gi = G[{vi, vi+1, . . . , vn}] for every i, 1 ≤ i ≤ n. A graph
G is chordal if and only if G admits a PEO. A vertex u ∈ N [v] is a maximum

neighbor of v in G if N [w] ⊆ N [u] holds for each w ∈ N [v]. A vertex v ∈ V is
called doubly simplicial if it is a simplicial vertex and has a maximum neighbor.
An ordering {v1, v2, . . . , vn} of the vertices of V is a doubly perfect elimination

ordering (DPEO) of G if vi is a doubly simplicial vertex of the induced subgraph
Gi = G[{vi, vi+1, . . . , vn}] for every i, 1 ≤ i ≤ n. A graph G is doubly chordal if
and only if it has a DPEO [18]. Alternatively, doubly chordal graphs are chordal
and dually chordal graphs. An undirected graph is a tree if it is connected and
cycle-free. A star is a tree T = (A,F ), where A = {a0, a1, . . . , an} and F =
{(a0, ai) | 1 ≤ i ≤ n}. A comb is a tree T = (A,F ), where A = {a1, a2, . . . , a2n}
and F = {(ai, ai+1) | 1 ≤ i ≤ n− 1} ∪ {(ai, an+i) | 1 ≤ i ≤ n}. A bipartite graph
G = (A,B,E) is called tree convex bipartite graph if there is an associated tree
T = (A,F ) such that for each vertex b in B, its neighborhood NG(b) induces a
subtree of T [15]. If T is a star (or comb), then G is called as star convex bipartite

(or comb convex bipartite) graph. A graph G is chordal bipartite if G is bipartite
and each cycle of G of length greater than 4 has a chord. Alternatively, chordal
bipartite graphs are weakly chordal and bipartite graphs.

2. Complexity Results

In this section, we show that the complexity of SCDM in doubly chordal, star
convex bipartite, comb convex bipartite, and chordal bipartite graphs is NP-
complete. Also, we prove that SCDM is linear time solvable in chain graphs,
a subclass of bipartite graphs. The decision version of domination and secure
connected domination problems are defined as follows.

Domination Decision Problem (DOMINATION)

Instance: A simple, undirected graph G and a positive integer k.
Question: Does there exist a dominating set of size at most k in G?

Secure Connected Domination Problem (SCDM)

Instance: A simple, undirected and connected graph G and a positive integer l.
Question: Does there exist a SCDS of size at most l in G?

Domination decision problem for bipartite graphs has been proved as NP-complete
[2]. Let P (G) and S(G) be the set of pendant and support vertices of G, respec-
tively.
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Proposition 1 [4]. Let G be a connected graph of order n ≥ 3 and let X be a

secure connected dominating set of G. Then

(i) P (G) ⊆ X and S(G) ⊆ X,

(ii) no vertex in P (G) ∪ S(G) is an X-defender.

2.1. Secure connected domination for doubly chordal graphs

To prove the NP-completeness of the SCDM for doubly chordal graphs we con-
sider the following SET-COVER decision problem which has been proved as
NP-complete [16].

Set Cover Decision Problem (SET-COVER)

Instance: A finite set X of elements, a family of m subsets of elements C and a
positive integer k.

Question: Does there exist a subfamily of k subsets C ′ whose union equals X?

Theorem 2. SCDM is NP-complete for doubly chordal graphs.

Proof. Clearly, SCDM is in NP. If a set S ⊆ V , such that |S| ≤ l is given as a
witness to a yes instance, then it can be verified in polynomial time that S is a
SCDS of G.

Let X = {x1, x2, . . . , xn}, C = {C1, C2, . . . , Cm} be an instance of SET-
COVER problem. We now construct an instance of SCDM from the given in-
stance of SET-COVER as similar to the reduction in [24] as follows. Construct
a graph G with the following vertices: (i) a vertex xi for each element xi ∈ X,
(ii) vertex cj for each subset Cj ∈ C and let C∗ = {cj | 1 ≤ j ≤ m} and (iii) two
vertices p and q. Add the following edges in G: (i) if xi ∈ Cj , then add edge
(xi, cj), where 1 ≤ i ≤ n and 1 ≤ j ≤ m, (ii) edges between every pair of vertices
in the set C∗ ∪ {p}, (iii) edges between xi and p, where 1 ≤ i ≤ n and (iv) edge
between p and q. Since G admits a DPEO {x1, x2, . . . , xn, c1, c2, . . . , cm, p, q},
it is a doubly chordal graph and the construction of G can be accomplished in
polynomial time.

Now we show that the given instance of SET-COVER problem < X,C > has
a set cover of size at most k if and only if the constructed graph G has a SCDS
of size at most l = k + 2. Suppose C ′ ⊆ C is a set cover of X, with |C ′| ≤ k.
Then it is easy to verify that the set

S =
{

cj |Cj ∈ C ′
}

∪ {p, q}

is a SCDS of size at most k + 2 in G.
Conversely, suppose S ⊆ V is a SCDS of size at most l = k + 2 in G.

From Proposition 1, it is clear that |S ∩ {p, q}| = 2. Let X∗ = S ∩ X and
S∗ = S ∩ {cj | 1 ≤ j ≤ m}. If |X∗| = 0, then we are done, that is respective
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subsets of vertices of S∗ form the solution for SET-COVER and clearly |S∗| ≤ k.
Otherwise, since X is an independent set, every vertex in X∗ can be replaced
with its adjacent vertex in the set C∗ and size of the resultant set is at most k.
Therefore, there exists a set cover of size at most k.

2.2. Secure connected domination for subclasses of bipartite graphs

Theorem 3. SCDM is NP-complete for star convex bipartite graphs.

Proof. It is known that SCDM is in NP. We reduce the Domination problem
for bipartite graphs to SCDM for star convex bipartite graphs as follows. The
reduction is similar to the construction given in [24]. Given an instance G =
(A,B,E) of Domination problem for bipartite graphs, where A = {a1, a2, . . . , ap}
and B = {b1, b2, . . . , bq}, we construct an instance G′ = (A′, B′, E′) of SCDM,
where A′ = A ∪ {ax, ay}, B

′ = B ∪ {bx, by}, and E′ = E ∪ {(ax, bi) | 1 ≤ i ≤
q} ∪ {(bx, ai) | 1 ≤ i ≤ p} ∪ {(ax, bx), (ax, by), (bx, ay)}. It can be verified that
G′ is a star convex bipartite graph with its associated star T = (A′, F ), where
F = {(ax, ai) | 1 ≤ i ≤ p} ∪ {(ax, ay)}. Note that the construction of graph G′

can be done in polynomial time.
Next we show that G has a dominating set of size at most k if and only if

G′ has a SCDS of size at most l = k + 4. Suppose D is a dominating set in G of
size at most k. Then it can be easily verified that the set D ∪ {ax, ay, bx, by} is
a SCDS in G′ of size at most k + 4.

On the other hand, let S be a SCDS in G′ with |S| ≤ l = k + 4. From
Proposition 1, it is clear that |S∩{ax, ay, bx, by}| = 4. Let S∗ = S\{ax, ay, bx, by}.
Thus, |S∗| ≤ k. Since S is a SCDS and ax and bx are support vertices, for every
vertex ai ∈ A, for 1 ≤ i ≤ p, |S∗∩NG′ [ai]| ≥ 1. Similarly, for every vertex bi ∈ B,
for 1 ≤ i ≤ q, |S∗∩NG′ [bi]| ≥ 1. Therefore, S∗ is a dominating set of size at most
k in G.

Theorem 4. SCDM is NP-complete for comb convex bipartite graphs.

Proof. It is known that SCDM is in NP. To prove the NP-hardness of SCDM
for comb convex bipartite graphs we reduce from Domination problem for bi-
partite graphs. Given an instance G = (A,B,E) of Domination problem for
bipartite graphs, where A = {a1, a2, . . . , ap} and B = {b1, b2, . . . , bq}, we con-
struct an instance G′ = (A′, B′, E′) of SCDM, where A′ = A ∪ {a′p+1, a

′
p+2, . . . ,

a′2p} ∪ {ax, ay}, B
′ = B ∪ {b′p+1, b

′
p+2, . . . , b

′
2p} ∪ {bx}, and E′ = E ∪ {(a′i, bj) |

p + 1 ≤ i ≤ 2p, 1 ≤ j ≤ q} ∪ {(a′i, b
′
i) | p + 1 ≤ i ≤ 2p} ∪ {(ai, bx) | 1 ≤ i ≤

p} ∪ {(a′p+i, bx) | 1 ≤ i ≤ p} ∪ {(ax, bx), (ay, bx)}. It can be verified that G′ is a
comb convex bipartite graph with its associated comb T = (A′, F ), with back-
bone {a′p+1, a

′
p+2, . . . , a

′
2p, ax} and teeth {a1, a2, . . . , ap, ay}. It can be noted that

the construction of graph G′ can be done in polynomial time.
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Next we show that G has a dominating set of size at most k if and only if G′

has a SCDS of size at most l = k + 2p+ 3. Suppose D is a dominating set in G
of size at most k. Then it can be easily verified that the set D ∪ {a′p+i, b

′
p+i | 1 ≤

i ≤ p} ∪ {ax, ay, bx} is a SCDS in G′ of size at most k + 2p+ 3.
Conversely, let S be a SCDS of size at most k + 2p + 3 in G′. Let A∗ =

{a′p+i | 1 ≤ i ≤ p} and B∗ = {b′p+i | 1 ≤ i ≤ p}. From Proposition 1, it is clear that
|S ∩A∗| = p, |S ∩B∗| = p and |S ∩ {ax, ay, bx}| = 3. Suppose S∗ = S ∩ V . Then
|S∗| ≤ k. Since S is a SCDS of G′, it can be easily verified that for every vertex
v ∈ A∪B, N [v]∩S∗ 6= ∅. Therefore, S∗ is a dominating set of size at most k.

The following Vertex-Cover problem has been proved as NP-complete [16], which
will be used to show SCDM for chordal bipartite graphs as NP-complete.
A vertex cover of an undirected graph G = (V,E) is a subset of vertices V ′ ⊆ V
such that if edge (u, v) ∈ E, then either u ∈ V ′ or v ∈ V ′ or both.

Vertex Cover Decision Problem (Vertex-Cover)

Instance: A simple, undirected graph G and a positive integer k.
Question: Does there exist a vertex cover of size at most k in G?

Theorem 5. SCDM is NP-complete for chordal bipartite graphs.

Proof. It is known that SCDM is in NP. To prove NP-hardness of SCDM for
chordal bipartite graphs we reduce from Vertex-Cover. The reduction is similar
to the construction given in [19]. Given an instance G = (V,E) of Vertex-Cover,
where |V | = n and |E| = m, we construct an instance G′ = (V ′, E′) of SCDM as
follows.

1. Replace each vertex i ∈ V by a component Gi = (Vi, Ei).

•
ai

•
bi

•
zi

•
di

•
fi

•
xi

•
yi

•
ci

•
ei

2. Replace each edge (i, j) ∈ E by the following components Gij = (Vij , Eij)
(Figure (a)) and Gji = (Vji, Eji) (Figure (b)).

•yj
•rij

•sij

•
xi

•
pij

•
qij

(a)

•
yi

•rji
•sji

•
xj

•
pji

•
qji

(b)

Let X = {xi | i = 1, . . . , n}, Y = {yi | i = 1, . . . , n}, Z = {zi | i = 1, . . . , n},
K = X ∪ Y ∪ Z, A = {ai, bi, ci, di, ei, fi | i = 1, . . . , n}, and B = {pij , qij , pji,
qji, rij , sij , rji, sji | (i, j) ∈ E}.
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3. Add two more additional vertices t and u such that V ′ = K ∪A ∪B ∪ {t, u},
E′ =

⋃n
i=1Ei ∪

⋃

(i,j)∈E(Eij ∪ Eji) ∪ {(xi, yj), (zi, yj) | i = 1, . . . , n and j = 1,
. . . , n} ∪ {(xi, u), (zi, u), (yi, t) | i = 1, . . . , n} ∪ {(t, u)}.

Since V ′ can be partitioned into two independent sets X ∪ Z ∪ {ai, ci, fi | i =
1, . . . , n} ∪ {qij , qji, rij , rji | (i, j) ∈ E} ∪ {t} and Y ∪ {bi, di, ei | i = 1, . . . , n} ∪
{pij , pji, sij , sji | (i, j) ∈ E} ∪ {u}, the constructed graph G′ is a bipartite graph.

•
1
•
2

•
3
•
4

Graph G

⇒

•
x1

•
y1

•
c1

•
e1

•
b1

•
z1

•
d1

•
f1

•
a1

•
x2

•
y2

•
c2

•
e2

•
b2

•
z2

•
d2

•
f2

•
a2

•
b3

•
z3

•
d3

•
f3

•
a3

•
x3

•
y3

•
c3

•
e3

•
b4

•
z4

•
d4

•
f4

•
a4

•x4 •
y4

•
c4

•
e4

•p12 •r12

•
q12

•
s12

•
r21 •

p21

•s21 •q21

•
p31

•
r31

•
q31

•
s31

•
r13

•
p13

•
s13

•
q13

•p34 •r34

•q34 •s34

•r43 •p43
•s43 •q43

Graph G′

•
u

•
t

Figure 1. Example construction of graph G′ from graph G.

Let C be a cycle in G′ of length greater than 4. If C is a cycle within a
component Gi for some i, then clearly it contains yi. Otherwise, if C is a cycle
formed with vertices from more than one Gi component, then it contains either
edge (xk, yl) or (zk, yl). Therefore, each cycle of length greater than 4 contains
at least one vertex yi ∈ Y. If C contains exactly one yi ∈ Y, (i) if C = Gi,
then (yi, zi) is a chord, (ii) if C contains u, then (u, zj) is a chord, and (iii) if
C contains t, then (yi, zj) is a chord. If C contains at least two vertices yi, yj
from Y and (i) if C contains ci or cj , then (yi, zi) or (yj , zj) is a chord, (ii)
if C contains rij or rji, then (yi, cj) is a chord, (iii) since vertices u and t are
adjacent to every vertex v′ ∈ X ∪ Z and u′ ∈ Y , respectively, if C contains t or
u, then there exists a chord. Therefore, G′ is a chordal bipartite graph and can
be constructed in polynomial time. An example construction of graph G′ from
graph G is illustrated in Figure 1.

We show that G has a vertex cover of size at most k if and only if G′ has a
SCDS of size at most 7n+8m+k+2. Let V C be a vertex cover of G of size at most
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k. Let S = {ai, bi, ci, di, ei, fi | i ∈ V } ∪ {pij , qij , rij , sij , pji, qji, rji, sji | (i, j) ∈
E} ∪ {xi, yi | i ∈ V C} ∪ {zi | i /∈ V C} ∪ {t, u}. It can be verified that S forms a
SCDS of G′ and |S| = 6n+ 8m+ 2k + (n− k) + 2 = 7n+ 8m+ k + 2.

Conversely, suppose S′ is a SCDS of size at most 7n+ 8m+ k + 2.

Claim 6. If xi ∈ S′, then without loss of generality, yi ∈ S′ and vice versa.

Proof. Let xi ∈ S′. Since S′ is a CDS, it is true that either yi ∈ S′ or zi ∈ S′.
Then, take without loss of generality, yi ∈ S′. Analogously, if yi ∈ S′, then either
xi ∈ S′ or zi ∈ S′. Then, take without loss of generality, xi ∈ S′.

Claim 7. If S′ is a SCDS of G′ with |S′ ∩ {t, u}| < 2, then there exists a SCDS

of G′ with the same size and |S′ ∩ {t, u}| = 2.

Proof. Since X ∪ Z ∪ {t} and Y ∪ {u} forms a complete bipartite subgraph in
G′, if S′ is a SCDS of G′ and t, u /∈ S′, then there exists two vertices v1 ∈ S′ ∩Y ,
v2 ∈ S′ ∩ (X ∪Z) such that (S′ \ {v1, v2})∪{t, u} is also a SCDS of G′. With the
similar argument, if t /∈ S′ (or u /∈ S′), then there exists a vertex v1 ∈ S′ ∩ Y (or
v2 ∈ S′ ∩X) such that (S′ \ {v1}) ∪ {t} (or (S′ \ {v2}) ∪ {u}) is a SCDS of G′.
Hence the claim.

Let S1 = {ai, bi, ci, di, ei, fi | 1 ≤ i ≤ n} and S2 = {pij , qij , rij , sij , pji, qji, rji,
sji | (i, j) ∈ E}. From Proposition 1, it is true that S1 ⊂ S′, and also S2 ⊂ S′. Let
S∗ = S′ \ (S1 ∪S2 ∪ {t, u}). Clearly, |S

∗| ≤ n+ k. Let |S∗ ∩X| = k′. From Claim
6, clearly |S∗ ∩ (X ∪ Y )| = 2k′. Since S′ is also a CDS of G′, |S∗ ∩ Z| = n − k′.
Thus,

2k′ + (n− k′) ≤ n+ k

(1) k′ ≤ k.

Claim 8. If V C = {i |xi, yi ∈ S′}, then V C forms a vertex cover in G.

Proof. Let (i, j) ∈ E. From the construction of G, it can be observed that there
is no path from pij to bi without xi or yj . Since S′ is connected, it should
contain either xi or yj for each Gij . Similar argument can be made for each Gji.
Therefore, for each (i, j) ∈ E either xi, yi ∈ S′ or xj , yj ∈ S′. Hence, V C is a
vertex cover in G.

Therefore, from above claim and equation (1), clearly there exists a vertex
cover of size at most k.

2.3. Secure connected domination for chain graphs

In this section, we propose a method to compute a minimum SCDS of a chain
graph in linear time. A bipartite graph G = (X,Y,E) is called a chain graph if
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the neighborhoods of the vertices of X form a chain, that is, the vertices of X can
be linearly ordered say, x1, x2, . . . , xp, such that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xp).
If a bipartite graph G = (X,Y,E) is a chain graph, then the neighborhoods of
the vertices of Y also form a chain. An ordering α = (x1, x2, . . . , xp, y1, y2, . . . , yq)
of X ∪ Y is called a chain ordering if NG(x1) ⊆ NG(x2) ⊆ · · · ⊆ NG(xp) and
NG(y1) ⊇ NG(y2) ⊇ · · · ⊇ NG(yq). Every chain graph admits a chain order-
ing [26].

Theorem 9. SCDM is linear time solvable for chain graphs.

Proof. Let G = (X,Y,E) be a chain graph with chain ordering {x1, x2, . . . , xp,
y1, y2, . . . , yq}. If p = 1 or q = 1, then G is a complete bipartite graph and clearly,
γsc(G) = |X ∪ Y |. Otherwise, let S = {y1, y2, xp−1, xp} ∪ P , where P contains
all the pendant vertices of G. It can be observed that for every vertex u ∈ V \ S
there exists a vertex v ∈ S such that (S \ {v}) ∪ {u} is a CDS of G. Hence, S is
a SCDS of G and γsc(G) ≤ |S|.

Let S′ be any SCDS of G. Then we show that |S′| ≥ |S|. Note that if
X ∩ P 6= ∅ (Y ∩ P 6= ∅), then y1 (xp) is a support vertex. It is known that every
SCDS contains all the pendant and support vertices of G. If P 6= ∅ (Figure 2(a)
and (b)), then clearly |S′| ≥ |S|. Otherwise, if |(S′ ∩ Y )| < 2, then there exists a
vertex u ∈ X \S′ for which there is no vertex v ∈ S′ such that (S′ \ {v})∪ {u} is
a CDS of G. Thus, |(S′ ∩ Y )| ≥ 2 (Figure 2(c)). Similarly, |(S′ ∩X)| ≥ 2. Hence,
|S′| ≥ |S|.

•y1
•y2

•y3

•
x1 •

x2 •
x3

(a)

•y1
•y2

•y3
•y4

•
x1 •

x2 •
x3 •

x4

(b)

•y1
•y2

•y3
•y4

•
x1 •

x2 •
x3 •

x4

(c)

Figure 2. SCDS in chain graphs.

In a chain graph G = (X,Y,E), a chain ordering and the set P of all pendant
vertices can be computed in linear time [23]. Therefore, SCDM in chain graphs
can be solved in linear time.

2.4. Secure connected domination for bounded tree-width graphs

Let G be a graph, T be a tree and v be a family of vertex sets Vt ⊆ V (G) indexed
by the vertices t of T . The pair (T, v) is called a tree-decomposition of G if it
satisfies the following three conditions.
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(i) V (G) =
⋃

t∈V (T ) Vt,

(ii) for every edge e ∈ E(G) there exists a t ∈ V (T ) such that both ends of
e lie in Vt,

(iii) Vt1 ∩ Vt3 ⊆ Vt2 whenever t1, t2, t3 ∈ V (T ) and t2 is on the path in T
from t1 to t3.

The width of (T, v) is the number max{|Vt| − 1 | t ∈ T}, and the tree-width
tw(G) of G is the minimum width of any tree-decomposition of G. By Courcelle’s
Thoerem, it is well known that every graph problem that can be described by
counting monadic second-order logic (CMSOL) can be solved in linear-time in
graphs of bounded tree-width, given a tree decomposition as input [8]. We show
that SCDM problem can be expressed in CMSOL.

Theorem 10 (Courcelle’s Theorem [8]). Let P be a graph property expressible

in CMSOL and let k be a constant. Then, for any graph G of tree-width at most

k, it can be checked in linear-time whether G has property P .

Theorem 11. Given a graph G and a positive integer k, SCDM can be expressed

in CMSOL.

Proof. First, we present the CMSOL formula which expresses that the graph G
has a dominating set of size at most k.

Dominating(S) = (|S| ≤ k) ∧ (∀p)((∃q)(q ∈ S ∧ adj(p, q))) ∨ (p ∈ S)

where adj(p, q) is the binary adjacency relation which holds if and only if, p, q are
two adjacent vertices of G. Dominating(S) ensures that for every vertex p ∈ V ,
either p ∈ S or p is adjacent to a vertex in S and the cardinality of S is at most
k. For a set S ⊆ V, the induced subgraph G[S] is disconnected if and only if
the set S can be partitioned into two sets S1 and S2 such that there is no edge
between a vertex in S1 and a vertex in S2. The CMSOL formula to express that
the induced subgraph G[S] is connected as follows.

Connected(S) = ¬(∃S1, S1 ⊆ S,¬(∃e ∈ E, ∃u ∈ S1, ∃v ∈ S \ S1, (inc(u, e) ∧ inc(v, e))))

where inc(v, e) is the binary incidence relation which holds if and only if edge e
is incident to vertex v in G. Now, by using the above two CMSOL formulas we
can express SCDM in CMSOL formula as follows.

SCDM(S) = Dominating(S) ∧ Connected(S) ∧ (∀x)((x ∈ S)∨

((∃y)(y ∈ S∧Dominating((S \{y})∪{x})∧Connected((S \{y})∪{x})))).

Therefore, SCDM can be expressed in CMSOL.

Now, the following result is immediate from Theorems 10 and 11.

Theorem 12. SCDM can be solvable in linear time for bounded tree-width graphs.
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3. Approximation Results

In this section, we obtain upper and lower bounds on the approximation ratio of
the MSCDS problem. We also show that the MSCDS problem is APX-complete
for graphs with maximum degree 4.

3.1. Approximation Algorithm

Here, we propose a ∆(G) + 1 approximation algorithm for the MSCDS prob-
lem. In this, we will make use of two known optimization problems, MINIMUM
DOMINATION and MINIMUM CONNECTED DOMINATION. The following
two theorems are the approximation results which have been obtained for these
two problems.

Theorem 13 [7]. The MINIMUM DOMINATION problem in a graph with max-

imum degree ∆(G) can be approximated with an approximation ratio of 1 +
ln(∆(G) + 1).

Theorem 14 [11]. The MINIMUM CONNECTED DOMINATION problem in

a graph with maximum degree ∆(G) can be approximated with an approximation

ratio of 3 + ln∆(G).

By theorems 13 and 14, let us consider APPROX-DOM-SET and APPROX-
CDS are the approximation algorithms to approximate the solutions for MINI-
MUM DOMINATION and MINIMUM CONNECTED DOMINATION with ap-
proximation ratios of 1 + ln(∆(G) + 1) and 3 + ln∆(G), respectively.

Now, we propose an algorithm APPROX-SCDS to produce an approximate
solution for the MSCDS problem. In APPROX-SCDS, first we compute CDS Dc

of a given graph G using APPROX-CDS. Next, we obtain the induced subgraph
G′ from V \Dc. By using APPROX-DOM-SET, we compute dominating set D of
G′. Let Dsc = Dc∪D. It can be easily observed that for every vertex u ∈ V \Dsc

there exists a vertex v ∈ D such that (Dsc \ {v})∪{u} is a CDS of G. Therefore,
Dsc is a SCDS of G.

Algorithm 1 APPROX-SCDS(G)

Input: A simple and undirected bipartite graph G
Output: A SCDS Dsc of G.
1: Dc ← APPROX-CDS (G)
2: Let G′ = G[V \Dc]
3: D ← APPROX-DOM-SET (G′)
4: Dsc ← Dc ∪D
5: return Dsc.
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Theorem 15. The MSCDS problem in a graph G with maximum degree ∆(G)
can be approximated with an approximation ratio of (∆(G) + 1).

Proof. To prove the theorem, we show that SCDS produced by our algorithm
APPROX-SCDS, Dsc, is of size at most (∆(G) + 1) times of γsc(G), i.e.,

|Dsc| ≤ (∆(G) + 1)γsc(G)

From the algorithm,

|Dsc| = |Dc ∪D| = |Dc|+ |D| ≤ n

≤ (∆(G) + 1)γ(G) ≤ (∆(G) + 1)γsc(G).

Since the MSCDS problem in a graph with maximum degree ∆(G) admits
an approximation algorithm that achieves the approximation ratio of (∆(G)+1),
we immediately have the following corollary of Theorem 15.

Corollary 16. The MSCDS problem is in the class of APX when the maximum

degree ∆(G) is fixed.

3.2. Lower bound on approximation ratio

To obtain a lower bound, we provide an approximation preserving reduction from
the MINIMUM DOMINATION problem, which has the following lower bound.

Theorem 17 [5]. For a graph G = (V,E), the MINIMUM DOMINATION

problem cannot be approximated within (1 − ǫ) lnn for any ǫ > 0 unless NP ⊆
DTIME

(

nO(log logn)
)

, where n = |V |.

The above result holds in bipartite and split graphs as well [5].

Theorem 18. For a graph G = (V,E), the MSCDS problem cannot be approxi-

mated within (1− ǫ) ln |V | for any ǫ > 0 unless NP ⊆ DTIME
(

|V |O(log log |V |)
)

.

Proof. In order to prove the theorem, we propose the following approximation
preserving reduction. Let G = (V,E), where V = {v1, v2, . . . , vn} be an instance
of the MINIMUM DOMINATION problem. From this we construct an instance
G′ = (V ′, E′) of MSCDS, where V ′ = V ∪ {w, z}, and E′ = E ∪ {(vi, w) | vi ∈
V } ∪ {(w, z)}.

Let D∗ be a minimum dominating set of a graph G and S∗ be a minimum
SCDS of a graph G′. It can be observed from the reduction that by using any
dominating set of G, a SCDS of G′ can be formed by adding w and z vertices to
it. Hence |S∗| ≤ |D∗|+ 2.

Let algorithm A be a polynomial time approximation algorithm to solve the
MSCDS problem on graph G′ with an approximation ratio α = (1− ǫ) ln |V ′| for
some fixed ǫ > 0. Let k be a fixed positive integer. Next, we propose the following
algorithm, DOM-SET-APPROX to find a dominating set of a given graph G.
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Algorithm 2 DOM-SET-APPROX(G)

Input: A simple and undirected graph G
Output: A dominating set D of G.
1: if there exists a dominating set D′ of size at most k then
2: D ← D′

3: else
4: construct the graph G′

5: compute a SCDS S of G′ by using algorithm A
6: D ← S ∩ V
7: end if
8: return D.

The algorithm DOM-SET-APPROX runs in polynomial time. It can be
noted that if D is a minimum dominating set of size at most k, then it is optimal.
Next, we analyze the case where D is not a minimum dominating set of size at
most k.

Let S∗ be a minimum SCDS of G′. Then |S∗| ≥ k. Given a graph G, DOM-
SET-APPROX computes a dominating set of size |D| ≤ |S| ≤ α|S∗| ≤ α(|D∗|+
2) = α(1 + 2/|D∗|)|D∗| ≤ α(1 + 2/k)|D∗|. Therefore, DOM-SET-APPROX
approximates a dominating set within a ratio α(1 + 2/k). If 2/k < ǫ/2, then
the approximation ratio α(1 + 2/k) < (1 − ǫ)(1 + ǫ/2) lnn = (1− ǫ′) lnn, where
ǫ′ = ǫ/2 + ǫ2/2.

By Theorem 17, if the MINIMUM DOMINATION problem can be approxi-
mated within a ratio of (1− ǫ′) lnn, then NP ⊆ DTIME(nO(log logn)). Similarly,
if the MSCDS problem can be approximated within a ratio of (1 − ǫ) lnn, then
NP ⊆ DTIME(nO(log log n)). For large values of n, lnn ≅ ln(n+ 2), for a graph
G′ = (V ′, E′), where |V ′| = |V | + 2, MSCDS problem cannot be approximated
within a ratio of (1− ǫ) ln |V ′| unless NP ⊆ DTIME

(

|V ′|O(log log |V ′|)
)

.

Theorem 19. For a bipartite graph G = (X,Y,E), the MSCDS problem cannot

be approximated within (1−ǫ) lnn for any ǫ > 0 unless NP ⊆ DTIME
(

nO(log logn)
)

,

where n = |X ∪ Y |.

Proof. In order to prove the theorem, we propose the following approximation
preserving reduction. Consider G = (X,Y,E), where X = {x1, x2, . . . , xp} and
Y = {y1, y2, . . . , yq} be an instance of the MINIMUM DOMINATION problem.
From this we construct an instance G′ = (X ′, Y ′, E′) of MSCDS, where X ′ =
X ∪ {w1, z2}, Y

′ = Y ∪ {z1, w2} and E′ = E ∪ {(xi, z1) |xi ∈ X} ∪ {(yi, w1) | yi ∈
Y } ∪ {(w1, w2), (z1, z2), (w1, z1)}. An example construction of graph G′ from a
bipartite graph G = (X,Y,E) with X = {x1, x2, x3, x4, x5}, and Y = {y1, y2,
y3, y4, y5} is illustrated in Figure 3.
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Let D∗ be a minimum dominating set of a graph G and S∗ be a minimum
SCDS of a graph G′. It can be observed from the reduction that by using any
dominating set of G, a SCDS of G′ can be formed by adding {w1, w2, z1, z2}
vertices to it. Hence, |S∗| ≤ |D∗|+4. The rest of the proof is similar to the proof
of Theorem 18.

•x5

•x4

•x3

•
x2

•
x1

•y5

•y4

•y3

•y2

•
y1

•z1
•w1

•z2
•w2

Figure 3. Example construction of a graph G′.

3.3. APX-completeness

In this subsection, we prove that the MSCDS problem is APX-complete for graphs
with maximum degree 4. This can be proved using an L-reduction, which is
defined as follows.

Definition 1 (L-reduction). Given two NP optimization problems F and G and
a polynomial time transformation f from instances of F to instances of G, one
can say that f is an L-reduction if there exists positive constants α and β such
that for every instance x of F the following conditions are satisfied.

1. optG(f(x)) ≤ α.optF (x).

2. For every feasible solution y of f(x) with objective value mG(f(x), y) = c2 in
polynomial time one can find a solution y′ of x with mF (x, y

′) = c1 such that
|optF (x)− c1| ≤ β|optG(f(x))− c2|.

Here, optF (x) represents the size of an optimal solution for an instance x of an
NP optimization problem F .

An optimization problem π is APX-complete if

1. π ∈ APX, and

2. π ∈ APX-hard, i.e., there exists an L-reduction from some known APX-
complete problem to π.
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By Theorem 15, it is known that the MSCDS problem can be approximated
within a constant factor for graphs with maximum degree 4. Thus, this problem
is in APX for graphs with maximum degree 4. To show APX-hardness of MSCDS,
we give an L-reduction from MINIMUM DOMINATING SET problem in graphs
with maximum degree 3 (DOM-3) which has been proved as APX-complete [1].

Theorem 20. The MSCDS problem is APX-complete for graphs with maximum

degree 4.

Proof. It is known that MSCDS is in APX. Given an instance G = (V,E) of
DOM-3, where V = {v1, v2, . . . , vn}, we construct an instance G′ = (V ′, E′) of
MSCDS as follows. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. In graph
G′, V ′ = V ∪X ∪ Y and E′ = E ∪ {(vi, xi), (xi, yi) : 1 ≤ i ≤ n} ∪ {(xi, xi+1) | 1 ≤
i ≤ n − 1}. Note that G′ is a graph with maximum degree 4. An example
construction of a graph G′ from a graph G is shown in Figure 4.

G

•
v2

•
x2

•
y2

•
v1

•
x1

•
y1

•
x3

•
y3

•
v3

•
x4

•
y4

•
v4

Figure 4. Construction of G′ from G.

Claim 21. If D∗ is a minimum dominating set of G and S∗ is a minimum SCDS

of G′, then |S∗| = |D∗|+ 2n, where n = |V |.

Proof. Suppose D∗ is a minimum dominating set of G. Then D∗ ∪ X ∪ Y is
a SCDS of G′. Further, if S∗ is a minimum SCDS of G′, then it is clear that
|S∗| ≤ |D∗|+ 2n.

Next, we show that |S∗| ≥ |D∗| + 2n. Let S be any SCDS of G′. From
Proposition 1, it is clear that X ∪ Y ⊂ S, and no vertex w ∈ X ∪ Y is an S-
defender. Therefore, for every vertex u /∈ S there exists a vertex v ∈ S ∩ V such
that (S \ {v}) ∪ {u} is a CDS of G′. Hence D = S ∩ V is a dominating set of G
and |D| ≥ |D∗| which implies |S| ≥ |D∗| + 2n. Since |S| ≥ |S∗|, it is clear that
|S∗| ≥ |D∗|+ 2n.

Let D∗ and S∗ be a minimum dominating set and minimum SCDS of G and
G′, respectively. It is known that for any graph H with maximum degree ∆(H),
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γ(H) ≥ n
∆(H)+1 , where n = |V (H)|. Thus, |D∗| ≥ n

4 . From above claim it is

evident that, |S∗| = |D∗|+ 2n ≤ |D∗|+ 8|D∗| = 9|D∗|.

Now, consider a SCDS S of G′. Clearly, the set D = S∩V is a dominating set
of G. Therefore, |D| ≤ |S| − 2n. Hence, |D| − |D∗| ≤ |S| − 2n− |D∗| = |S| − |S∗|.
This proves that there is an L-reduction with α = 9 and β = 1.

4. Complexity Difference in Domination and Secure Connected

Domination

Although secure connected domination is one of the several variants of domination
problem, however they differ in computational complexity. In particular, there
exist graph classes for which the first problem is polynomial-time solvable whereas
the second problem is NP-complete and vice versa. Similar study has been made
between domination and other domination parameters in [14, 20, 21].

The DOMINATION problem is linear time solvable for doubly chordal graphs
[3], but the SCDM problem is NP-complete for this class of graphs which is proved
in Section 2.1. Now, we construct a class of graphs in which the MSCDS problem
can be solved trivially, whereas the DOMINATION problem is NP-complete.

Definition 2 (GC graph). A graph is GC graph if it can be constructed from a
connected graph G = (V,E) where |V | = n, in the following way.

1. Create n complete graphs each with 3 vertices, such that ith complete graph
contains vertices {ai, bi, ci}.

2. Create n vertices, {x1, x2, . . . , xn}.

3. Add edges {(xi, vi), (xi, ai) : vi ∈ V }.

•v2
•x2

•a2

•
b2

•c2

•v1
•x1

•a1

•b1

•c1

•x3
•a3

•b3

•c3

•v3

•x4
•a4

•c4

•b4
•v4

G

Figure 5. GC graph construction.

Theorem 22. If G′ is a GC graph obtained from a graph G = (V,E) (|V | = n),
then γsc(G

′) = 4n.
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Proof. Let G′ = (V ′, E′) be a GC graph. An example construction of GC graph
is illustrated in Figure 5. Let S = V ∪ {x1, x2, . . . , xn} ∪ {ai, bi | 1 ≤ i ≤ n}. It
can be observed that S is a SCDS of G′ of size 4n and hence γsc(G

′) ≤ 4n.
Let S be any SCDS in G′. It is known that every SCDS of a graph G is also a

CDS of G and every CDS should contain all the cut-vertices of G. Thus, it can be
easily observed that for 1 ≤ i ≤ n, the vertices vi, xi and ai are cut-vertices in G′

and these vertices should be included in every SCDS of G′. Therefore, |S| ≥ 3n.
It can also be noted that these cannot defend any other vertex in G′. Therefore,
either bi or ci, for each i, where 1 ≤ i ≤ n, should be included in every SCDS of
G′, and hence, |S| ≥ 4n.

Lemma 23. Let G′ be a GC graph constructed from a graph G = (V,E). Then
G has a dominating set of size at most k if and only if G′ has a dominating set

of size at most k + n.

Proof. Let A contain the degree 3 vertex from each copy of K3. Suppose D is a
dominating set of G of size at most k. Then it is clear that D∪A is a dominating
set of G′ of size at most k + n.

Conversely, suppose D′ is a dominating set of G′ of size k+ n. Then at least
one vertex from each k3 must be included in D′. Let D′′ be the set formed by
replacing all xi’s in D′ with corresponding vi’s. Clearly, D′′ is a dominating set
of size at most k in G.

The following result is well known for the DOMINATION problem.

Theorem 24 [10]. The DOMINATION problem is NP-complete for general

graphs.

Theorem 25. The DOMINATION problem is NP-complete for GC graphs.

Proof. The proof directly follows from above theorem and Lemma 23.

It is identified that the two problems, DOMINATION and SCDM are not
equivalent in aspects of computational complexity. For example, when the input
graph is either doubly chordal or a GC graph, then complexities differ. Thus,
there is a scope to study each of these problems on its own for particular graph
classes.
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[19] H. Müller and A. Brandstädt, The NP-completeness of Steiner tree and dominating

set for chordal bipartite graphs, Theoret. Comput. Sci. 53 (1987) 257–265.
https://doi.org/10.1016/0304-3975(87)90067-3

[20] B.S. Panda and A. Pandey, Algorithm and hardness results for outer-connected dom-

inating set in graphs, J. Graph Algorithms Appl. 18 (2014) 493–513.
https://doi.org/10.7155/jgaa.00334

[21] B.S. Panda, A. Pandey and S. Paul, Algorithmic aspects of b-disjunctive domination

in graphs, J. Comb. Optim. 36 (2018) 572–590.
https://doi.org/10.1007/s10878-017-0112-6

[22] J. Pavan Kumar, P. Venkata Subba Reddy and S. Arumugam, Algorithmic com-

plexity of secure connected domination in graphs , AKCE Int. J. Graphs Comb. 17
(2020) 1010–1013.
https://doi.org/10.1016/j.akcej.2019.08.012

[23] R. Uehara and Y. Uno, Efficient algorithms for the longest path problem, in: Inter-
national Symposium on Algorithms and Computation, Lecture Notes in Comput.
Sci. 3341 (2004) 871–883.
https://doi.org/10.1007/978-3-540-30551-4 74

[24] H. Wang, Y. Zhao and Y. Deng, The complexity of secure domination problem in

graphs, Discuss. Math. Graph Theory 38 (2018) 385–396.
https://doi.org/10.7151/dmgt.2008

[25] D.B. West, An Introduction to Graph Theory, vol. 2 (Prentice Hall, Upper Saddle
River, 2001).

[26] M. Yannakakis, Node-and edge-deletion NP-complete problems, in: Proc. of the
Tenth Annual ACM Symposium on Theory of Computing (ACM, New York, 1978)
253–264.
https://doi.org/10.1145/800133.804355

Received 25 March 2019
Revised 17 October 2019

Accepted 19 October 2019

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1016/j.ipl.2015.05.006
https://doi.org/10.1002/net.3230230108
https://doi.org/10.1016/0304-3975\(87\)90067-3
https://doi.org/10.7155/jgaa.00334
https://doi.org/10.1007/s10878-017-0112-6
https://doi.org/10.1016/j.akcej.2019.08.012
https://doi.org/10.1007/978-3-540-30551-4_74
https://doi.org/10.7151/dmgt.2008
https://doi.org/10.1145/800133.804355
http://www.tcpdf.org

