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Abstract

Let D be a strong digraph. An arc subset S is a k-restricted arc cut
of D if D − S has a strong component D′ with order at least k such that
D\V (D′) contains a connected subdigraph with order at least k. If such a
k-restricted arc cut exists in D, then D is called λk-connected. For a λk-
connected digraph D, the k-restricted arc connectivity, denoted by λk(D),
is the minimum cardinality over all k-restricted arc cuts of D. It is known
that for many digraphs λk(D) ≤ ξk(D), where ξk(D) denotes the minimum
k-degree of D. D is called λk-optimal if λk(D) = ξk(D). In this paper, we
will give some sufficient conditions for digraphs and bipartite digraphs to be
λ3-optimal.
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1. Introduction

It is well-known that the network can be modelled as a digraph D with vertices
V (D) representing sites and arcs A(D) representing links between sites of the
network. Let v ∈ V (D), the out-neighborhood of v is the set N+(v) = {x ∈
V (D) : vx ∈ A(D)} and the out-degree of v is d+(v) = |N+(v)|. The in-
neighborhood of v is the set N−(v) = {x ∈ V (D) : xv ∈ A(D)} and the in-degree
of v is d−(v) = |N−(v)|. The neighborhood of v is N(v) = N+(v) ∪ N−(v).
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Let δ+(D), δ−(D) and δ(D) denote, respectively, the minimum out-degree, the
minimum in-degree and the minimum degree of D.

For a pair nonempty vertex sets X and Y of D, [X,Y ] = {xy ∈ A(D) : x ∈
X, y ∈ Y }. Specially, if Y = X, where X = V (D)\X, then we write ∂+(X)
or ∂−(Y ) instead of [X,Y ]. For X ⊆ V (D), the subdigraph of D induced by
X is denoted by D[X]. The underlying graph U(D) of D is the unique graph
obtained from D by deleting the orientation of all arcs and keeping one edge of
a pair of multiple edges. D is connected if U(D) is connected and D is strongly
connected (or, just, strong) if there exists a directed (x, y)-path and a directed
(y, x)-path for any x, y ∈ V (D). We define a digraph with one vertex to be
strong. A connected (strong) component of D is a maximal induced subdigraph
of D which is connected (strong). If D has p strong components, then these
strong components can be labeled D1, . . . , Dp such that there is no arc from Dj

to Di unless j < i. We call such an ordering an acyclic ordering of the strong
components of D.

In a strong digraph D, we often use arc connectivity of D to measure the
reliability. An arc set S is a arc cut of D if D − S is not strong. The arc
connectivity λ(D) is the minimum cardinality over all arc cuts of D. The arc cut
S ofD with cardinality λ(D) is called a λ-cut. Whitney’s inequality shows λ(D) ≤
δ(D). A strong digraph D with λ(D) = δ(D) is called λ-optimal. However, only
using arc connectivity to measure the reliability is not enough. In [12], Volkmann
introduced the concept of restricted arc connectivity. An arc subset S of D is
a resrtricted arc cut if D − S has a strong component D′ with order at least 2
such that D\V (D′) contains an arc. If such an arc cut exists in D, then D is
called λ′-connected. For a λ′-connected digraphD, the restricted arc connectivity,
denoted by λ′(D), is the minimum cardinality over all restricted arc cuts of D.
The restricted arc cut S of D with cardinality λ′(D) is called a λ′-cut. In [13],
Wang and Lin introduced the notion of minimum arc degree. Let xy ∈ A(D).
Then

Ω({x, y}) = {∂+({x, y}), ∂−({x, y}), ∂+({x}) ∪ ∂−({y}), ∂+({y}) ∪ ∂−({x})}.

The arc degree of xy is ξ′(xy) = min{|S| : S ∈ Ω({x, y})} and the minimum arc
degree of D is ξ′(D) = min{ξ′(xy) : xy ∈ A(D)}.

It was proved in [3, 13] that for many λ′-connected digraphs, ξ′(D) is an
upper bound of λ′(D). In [13], Wang and Lin introduced the concept of λ′-
optimality. A λ′-connected digraph D with ξ′(D) = λ′(D) is called λ′-optimal.
As a generalization of restricted arc connectivity, in [10], Lin et al. introduced
the concept of k-restricted arc connectivity.

Definition [10]. Let D be a strong digraph. An arc subset S is a k-restricted
arc cut of D if D− S has a strong component D′ with order at least k such that
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D\V (D′) contains a connected subdigraph with order at least k. If such a k-
restricted arc cut exists in D, then D is called λk-connected. For a λk-connected
digraph D, the k-restricted arc connectivity, denoted by λk(D), is the minimum
cardinality over all k-restricted arc cuts of D. The k-restricted arc cut S of D
with cardinality λk(D) is called a λk-cut.

Definition [10]. Let D be a strong digraph. For any X ⊆ V (D), let Ω(X) =
{∂+(X1) ∪ ∂−(X\X1) : X1 ⊆ X} and ξ(X) = min{|S| : S ∈ Ω(X)}. Define the
minimum k-degree of D to be

ξk(D) = min{ξ(X) : X ⊆ V (D), |X| = k,D[X] is connected}.

Clearly, λ1(D) = λ(D), λ2(D) = λ′(D), ξ1(D) = δ(D) and ξ2(D) = ξ′(D).
Let D be a λk-connected digraph, where k ≥ 2. Then D is λk−1-connected and
λk−1(D) ≤ λk(D). It was shown in [10] that ξk(D) is an upper bound of λk(D)
for many digraphs. And a λk-connected digraph D with λk(D) = ξk(D) is called
λk-optimal.

The research on the λk-optimality of digraphD is considered to be a hot issue.
In [11], Hellwig and Volkmann concluded many sufficient conditions for digraphs
to be λ-optimal. Besides, sufficient conditions for digraphs to be λ′-optimal were
also given by several authors, for example by Balbuena et al. [1–4], Chen et al.

[5,6], Grüter and Guo [7,8], Liu and Zhang [9], Volkmann [12] and Wang and Lin
[13]. However, closely related conditions for λ3-optimal digraphs have received
little attention until recently. In [10], Lin et al. gave some sufficient conditions for
digraphs to be λ3-optimal. In this paper, we will give some sufficient conditions
for digraphs to be λ3-optimal. As corollaries, degree conditions or degree sum
conditions for a digraph or a bipartite digraph to be λ3-optimal are given. The
main contributions in this paper are as following.

Theorem 1. Let D be a digraph with |V (D)| ≥ 6. If |N+(u) ∩ N−(v)| ≥ 5 for

any u, v ∈ V (D) with uv /∈ A(D), then D is λ3-optimal.

Theorem 2. Let D = (X,Y,A(D)) be a bipartite digraph with |V (D)| ≥ 6. If

|N+(u)∩N−(v)| ≥
⌈

|V (D)|
4

⌉

+1 for any u, v ∈ V (D) in the same partite, then D

is λ3-optimal.

2. Proof of Theorem 1

We first introduce three useful lemmas.

Lemma 3 (Theorem 1.4 in [10]). Let D be a strong digraph with δ+(D) ≥ 2k−1
or δ−(D) ≥ 2k − 1. Then D is λk-connected and λk(D) ≤ ξk(D).
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Lemma 4. Let D be a strong digraph with δ+(D) ≥ 2k − 1 or δ−(D) ≥ 2k − 1,
and let S = ∂+(X) be a λk-cut of D, where X is a subset of V (D). If D[X]
contains a connected subdigraph B with order k such that |N+(x) ∩ X| ≥ k for

any x ∈ X\V (B) or D[X] contains a connected subdigraph C with order k such

that |N−(y) ∩X| ≥ k for any y ∈ X\V (C), then D is λk-optimal.

Proof. By Lemma 3, D is λk-connected and λk(D) ≤ ξk(D). By symmetry, we
only prove the case that D[X] contains a connected subdigraph B with order k
such that |N+(x) ∩X| ≥ k for any x ∈ X\V (B). The hypotheses imply that

ξk(D) ≤ |∂+(V (B))| = |[V (B), X\V (B)]|+ |[V (B), X]|

≤ k|X\V (B)|+ |[V (B), X]| ≤
∑

x∈X\V (B)

|N+(x) ∩X|+ |[V (B), X]|

= |[X\V (B), X]|+ |[V (B), X]| = |[X,X]| = |S| = λk(D).

Thus λk(D) = ξk(D) and D is λk-optimal.

Lemma 5 (Lemma 4.1 in [10]). Let D be a strong digraph with |V (D)| ≥ 6 and

δ(D) ≥ 4, and let S be a λ3-cut of D. If D is not λ3-optimal, then there exists a

subset of vertices X ⊂ V (D) such that S = ∂+(X) and both induced subdigraphs

D[X] and D[X] contain a connected subdigraph with order 3.

Proof of Theorem 1. Clearly,D is a strong digraph with δ(D) ≥ 5. By Lemma
3, D is λ3-connected and λ3(D) ≤ ξ3(D). Suppose, on the contrary, that D is not
λ3-optimal, that is, λ3(D) < ξ3(D). Let S be a λ3-cut of D. By Lemma 5, there
exists a subset of vertices X ⊂ V (D) such that S = ∂+(X) and both induced
subdigraphs D[X] and D[X] contain a connected subdigraph with order 3.

Let Y = X, and let Xi = {x ∈ X : |N+(x) ∩ Y | = i}, Yi = {y ∈ Y :
|N−(y) ∩ X| = i}, i = 0, 1, 2, and let X3 = {x ∈ X : |N+(x) ∩ Y | ≥ 3}, Y3 =
{y ∈ Y : |N−(y) ∩X| ≥ 3}.

Claim 1. min{|X|, |Y |} ≥ 4.

Proof. Suppose that |X| = 3. Then λ3(D) = |S| = |∂+(X)| ≥ ξ(X) ≥ ξ3(D),
contrary to the assumption. Suppose that |Y | = 3. Then λ3(D) = |S| =
|∂−(Y )| ≥ ξ(Y ) ≥ ξ3(D), contrary to the assumption. Claim 1 follows. �

Claim 2. X0 = Y0 = ∅.

Proof. By symmetry, we only prove that X0 = ∅ by contradiction. Suppose
X0 6= ∅ and let x ∈ X0. Then for any x ∈ Y , xx /∈ A(D) and we have that
5 ≤ |N+(x)∩N−(x)| = |N+(x)∩N−(x)∩X|+ |N+(x)∩N−(x)∩Y | ≤ |N−(x)∩
X| + |N+(x) ∩ Y | = |N−(x) ∩ X|. It implies that |N−(x) ∩ X| ≥ 5. Therefore
Y ⊆ Y3. So D is λ3-optimal by Lemma 4, a contradiction to our assumption. �
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Combining Claim 2 with Lemma 4, we have that Y1∪Y2 6= ∅ and X1∪X2 6= ∅.
Otherwise we will obtain that D is λ3-optimal, which is a contradiction. Next,
we consider two cases.

Case 1. X1 6= ∅. Let x′ ∈ X1 and suppose N+(x′) ∩ Y = {y′}. Then
for any y ∈ Y \{y′}, x′y /∈ A(D), so we have that 5 ≤ |N+(x′) ∩ N−(y)| =
|N+(x′) ∩N−(y) ∩X|+ |N+(x′) ∩N−(y) ∩ Y | ≤ |N−(y) ∩X|+ |N+(x′) ∩ Y | =
|N−(y) ∩ X| + 1. So |N−(y) ∩ X| ≥ 4 and Y \{y′} ⊆ Y3. On the other hand,
since Y1 ∪ Y2 6= ∅, so y′ ∈ Y1 ∪ Y2. Besides, 5 ≤ δ(D) ≤ δ−(y′) = |N−(y′)| =
|N−(y′) ∩ Y | + |N−(y′) ∩ X| ≤ |N−(y′) ∩ Y | + 2, thus |N−(y′) ∩ Y | ≥ 3. Let
y1, y2 ∈ N−(y′) ∩ Y , then D[y′, y1, y2] is connected and |N−(y) ∩X| ≥ 4 for any
y ∈ Y \{y′, y1, y2}. By Lemma 4, we have that D is λ3-optimal, a contradiction.

Case 2. X2 6= ∅. Let x′ ∈ X2 and suppose N+(x′) ∩ Y = {y′, y′′}. Then for
any y ∈ Y \{y′, y′′}, x′y /∈ A(D), thus 5 ≤ |N+(x′)∩N−(y)| = |N+(x′)∩N−(y)∩
X| + |N+(x′) ∩ N−(y) ∩ Y | ≤ |N−(y) ∩X| + |N+(x′) ∩ Y | = |N−(y) ∩X| + 2.
So |N−(y) ∩X| ≥ 3 and Y \{y′, y′′} ⊆ Y3. On the other hand, since Y1 ∪ Y2 6= ∅,
y′ ∈ Y1∪Y2 or y

′′ ∈ Y1∪Y2. If |Y1∪Y2| = 1, then we can prove thatD is λ3-optimal
by a proof similar to Case 1, which is a contradiction. If Y1 ∪ Y2 = {y′, y′′}, then
we consider two subcases.

Subcase 2.1. y′y′′ ∈ A(D) or y′′y′ ∈ A(D). Since y′′ ∈ Y1 ∪ Y2 and δ(D) ≥ 5,
then there exists y1 ∈ N−(y′′) ∩ Y such that y1 6= y′. Therefore D[y′, y′′, y1] is
connected and |N−(y)∩X| ≥ 3 for any y ∈ Y \{y′, y′′, y1}. By Lemma 4, we have
that D is λ3-optimal, a contradiction.

Subcase 2.2. y′y′′ /∈ A(D) and y′′y′ /∈ A(D). Since y′y′′ /∈ A(D) and y′′y′ /∈
A(D), then 5 ≤ |N+(y′)∩N−(y′′)| = |N+(y′)∩N−(y′′)∩X|+ |N+(y′)∩N−(y′′)∩
Y | ≤ |N−(y′′)∩X|+|N+(y′)∩N−(y′′)∩Y | ≤ 2+|N+(y′)∩N−(y′′)∩Y |. Therefore
|N+(y′) ∩ N−(y′′) ∩ Y | ≥ 3. Let y1 ∈ N+(y′) ∩ N−(y′′) ∩ Y . Then D[y′, y′′, y1]
is connected and |N−(y) ∩X| ≥ 3 for any y ∈ Y \{y′, y′′, y1}. By Lemma 4, we
have that D is λ3-optimal, a contradiction.

The proof is complete.

From Theorem 1, we have following corollaries.

Corollary 6. Let D be a digraph with |V (D)| ≥ 6. If d+(u)+d−(v) ≥ |V (D)|+3
for any u, v ∈ V (D) with uv /∈ A(D), then D is λ3-optimal.

Corollary 7 (Theorem 1.7 in [10]). Let D be a digraph with |V (D)| ≥ 6. If

δ(D) ≥ |V (D)|+3
2 , then D is λ3-optimal.

Remark 8. To show the condition that “|N+(u)∩N−(v)| ≥ 5 for any u, v ∈V (D)
with uv /∈ A(D) ”in Theorem 1 is sharp, we give a class of digraphs. Let m, k
be positive integers with m ≥ 3, and let D be a digraph with |V (D)|= 4m + 4.
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Define the vertex set of D as V (D) = B ∪ C, where B = {x0, . . . , xm, w0, . . . ,
wm} and C = {y0, . . . , ym, z0, . . . , zm}. And define the arc set of D as A(D) =
A(D[B]) ∪ A(D[C]) ∪ M1 ∪ M2 ∪ M3 ∪ M4, where A(D[B]) ∪ A(D[C]) = {uv :
for any u, v ∈ B or C}, M1 =

{

xiyk(mod m+1) : 0 ≤ i ≤ m and 0 ≤ k − i ≤ 1
}

,
M2 =

{

wizk(mod m+1) : 0 ≤ i ≤ m and 0 ≤ k − i ≤ 2
}

, M3 =
{

yixk(mod m+1) :
0 ≤ i ≤ m and 0 ≤ k − i ≤ 2

}

and M4 =
{

ziwk(mod m+1) : 0 ≤ i ≤ m and
0 ≤ k − i ≤ 2

}

.
Clearly, D is strong and there exists 0 ≤ i, j ≤ m such that |N+(xi) ∩

N−(yj)| = 4 and xiyj /∈ A(D). And ∂+(B) is a 3-restricted edge cut with
|∂+(B)| = (2+3)·(m+1) = 5m+5. On the other hand, ξ3(D) = ξ({xl, xp, xq}) =
|∂+({xl, xp, xq})| = 3 · (2m + 3) − 6 = 6m + 3, where 0 ≤ l, p, q ≤ m. So λ3(D)
≤ |∂+(B)| = 5m+ 5 < 6m+ 3 = ξ3(D) for m ≥ 3. Thus D is not λ3-optimal.

Besides, in D, there exists 0 ≤ i, j ≤ m such that xiyj /∈ A(D) and d+(xi) +
d−(yj) = 2 · (2m + 3) = |V (D)| + 2 < |V (D)| + 3, and δ(D) = 2m + 3 =
|V (D)|

2 + 1 < |V (D)|+3
2 . So this example also shows that the conditions that

“d+(u) + d−(v) ≥ |V (D)|+ 3 for any u, v ∈ V (D) with uv /∈ A(D)” in Corollary

6 and “δ(D) ≥ |V (D)|+3
2 ” in Corollary 7 are sharp.

3. Proof of Theorem 2

We first introduce several useful lemmas.

Lemma 9 (Lemma 2.1 in [10]). Let D be a strong digraph and X1, Y1 disjoint

subsets of V (D). If D[X1] contains a connected subdigraph with order at least

k and D[Y1] contains a strong subdigraph with order at least k, then D is λk-

connected and each arc set in {∂−(Y1), ∂
+(Y1)} ∪Ω(X1) is a k-restricted arc cut

of D.

Lemma 10. Let D = (X,Y,A(D)) be a strong bipartite digraph with δ+(D) ≥ 3
or δ−(D) ≥ 3. Then D is λ3-connected and λ3(D) ≤ ξ3(D).

Proof. By symmetry, we only consider the case that δ−(D) ≥ 3. Let X ′ be a
subset of V (D) with |X ′| = 3 such that D[X ′] is connected and ξ3(D) = ξ(X ′).
Without loss of generality, assume that |X ′ ∩ X| = 1 and |X ′ ∩ Y | = 2. Let
X ′ ∩X = {x} and X ′ ∩ Y = {y, z}. Let D1, . . . , Dp be an acyclic ordering of the
strong components of D\X ′.

First, we claim that V (D1)∩Y 6= ∅. Otherwise, we have that V (D1) ⊆ X and
|V (D1)| = 1. Let V (D1) = {u}. Then N−(u) ⊆ {y, z}. So 3 ≤ δ−(D) ≤ d−(u) =
|N−(u)| ≤ |{y, z}| = 2, a contradiction. Next, we aim to prove |V (D1)| ≥ 3.

Since N−(v) ⊆ {x} ∪ (V (D1) ∩ X) for any v ∈ V (D1) ∩ Y , we have 3 ≤
δ−(D) ≤ d−(v) = |N−(v)| ≤ |{x} ∪ (V (D1) ∩ X)| = |{x}| + |V (D1) ∩ X| =
1+ |V (D1) ∩X|. Thus |V (D1) ∩X| ≥ 2 and |V (D1)| = |V (D1) ∩X|+ |V (D1) ∩
Y | ≥ 2 + 1 = 3. It follows that |V (D1)| ≥ 3. Since D[X ′] is connected and
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D[X ′] ⊆ D\V (D1), by Lemma 9, each arc set in Ω(X ′) is a 3-restricted arc cut
of D. Therefore, D is λ3-connected and λ3(D) ≤ ξ(X ′) = ξ3(D).

Lemma 11. Let D = (X,Y,A(D)) be a strong bipartite digraph with δ+(D) ≥ 3
or δ−(D) ≥ 3, and let S = ∂+(X ′) be a λ3-cut of D, where X ′ is a subset of

V (D). If D[X ′] contains a connected subdigraph B with order 3 such that |N+(x)
∩X ′| ≥ 2 for any x ∈ X ′\V (B) or D[X ′] contains a connected subdigraph C with

order 3 such that |N−(y) ∩X ′| ≥ 2 for any y ∈ X ′\V (C), then D is λ3-optimal.

Proof. By Lemma 10, D is λ3-connected and λ3(D) ≤ ξ3(D). By symmetry, we
only prove the case that D[X ′] contains a connected subdigraph B with order 3
such that |N+(x) ∩X ′| ≥ 2 for any x ∈ X ′\V (B). The hypotheses imply that

ξ3(D) ≤ |∂+(V (B))| =
∣

∣[V (B), X ′\V (B)]|+ |[V (B), X ′]
∣

∣

≤ 2|X ′\V (B)|+
∣

∣[V (B), X ′]
∣

∣ ≤
∑

x∈X′\V (B)

∣

∣N+(x) ∩X ′
∣

∣+
∣

∣[V (B), X ′]
∣

∣

=
∣

∣[X ′\V (B), X ′]
∣

∣+
∣

∣[V (B), X ′]
∣

∣ =
∣

∣[X ′, X ′]
∣

∣ = |S| = λ3(D).

Thus λ3(D) = ξ3(D) and D is λ3-optimal.

By a proof similar to that of Lemma 4.1 shown in [10], we can get the following
Lemma 12.

Lemma 12. Let D = (X,Y,A(D)) be a strong bipartite digraph with δ(D) ≥ 3,
and let S be a λ3-cut of D. If D is not λ3-optimal, then there exists a subset of

vertices X ′ ⊂ V (D) such that S = ∂+(X ′) and both induced subdigraphs D[X ′]
and D[X ′] contain a connected subdigraph with order 3.

Proof of Theorem 2. Since |V (D)| ≥ 6, for any u, v ∈ V (D) in the same

partite, |N+(u)∩N−(v)| ≥
⌈

|V (D)|
4

⌉

+1 ≥ 3. Therefore D is strong and δ(D) ≥ 3.

By Lemma 10, D is λ3-connected and λ3(D) ≤ ξ3(D). Suppose, on the contrary,
that D is not λ3-optimal, that is, λ3(D) < ξ3(D). Let S be a λ3-cut of D. Then
by Lemma 12, there exists a subset of vertices X ′ ⊂ V (D) such that S = ∂+(X ′)
and both induced subdigraphs D[X ′] and D[X ′] contain a connected subdigraph
with order 3.

Let X ′ = X ′′, and let X ′
X = X ′ ∩ X, X ′

Y = X ′ ∩ Y , X ′′
X = X ′′ ∩ X and

X ′′
Y = X ′′ ∩ Y . And let X ′

Xi =
{

x ∈ X ′
X : |N+(x) ∩X ′′

Y | = i
}

, X ′
Y i =

{

y ∈ X ′
Y :

|N+(y) ∩ X ′′
X | = i

}

, X ′′
Xi =

{

x ∈ X ′′
X : |N−(x) ∩ X ′

Y | = i
}

, X ′′
Y i =

{

y ∈ X ′′
Y :

|N−(y) ∩ X ′
X | = i

}

, i = 0, 1, and X ′
X2 =

{

x ∈ X ′
X : |N+(x) ∩ X ′′

Y | ≥ 2
}

,
X ′

Y 2 =
{

y ∈ X ′
Y : |N+(y) ∩ X ′′

X | ≥ 2
}

, X ′′
X2 =

{

x ∈ X ′′
X : |N−(x) ∩ X ′

Y | ≥ 2
}

,
X ′′

Y 2 =
{

y ∈ X ′′
Y : |N−(y) ∩X ′

X | ≥ 2
}

.

Claim 1. min
{

|X ′
X |, |X ′

Y |, |X
′′
X |, |X ′′

Y |
}

≥ 2.
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Proof. If, on the contrary |X ′
X | = 1, let X ′

X = {v}. Then |N(v) ∩X ′
Y | ≥ 2 for

D[X ′] contains a connected subdigraph with order 3. Let y1, y2 ∈ N(v) ∩ X ′
Y .

Then D[v, y1, y2] is connected, and for any x′ ∈ X ′\{v, y1, y2}, N
+(x′) ⊆ {v} ∪

(N+(x′)∩X ′′), we have 3 ≤ δ(D) ≤ d+(x′) = |N+(x′)| ≤ |{v}|+ |N+(x′)∩X ′′| =
1+ |N+(x′)∩X ′′|. Therefore |N+(x′)∩X ′′| ≥ 2. By Lemma 11, D is λ3-optimal,
a contradiction to our assumption. Thus |X ′

X | ≥ 2. Similarly, we can prove that
min

{

|X ′
Y |, |X

′′
X |, |X ′′

Y |
}

≥ 2. �

Claim 2. Either X ′
X0 = ∅ or X ′′

X0 = ∅ and either X ′
Y 0 = ∅ or X ′′

Y 0 = ∅.

Proof. If X ′
X0 6= ∅ and X ′′

X0 6= ∅, then there exists x ∈ X ′
X0 ⊆ X and x ∈

X ′′
X0 ⊆ X such that |N+(x) ∩ N−(x)| ≥

⌈

|V (D)|
4

⌉

+ 1. On the other hand,

since x ∈ X ′
X0 and x ∈ X ′′

X0, N
+(x) ⊆ X ′

Y and N−(x) ⊆ X ′′
Y , which implies

that N+(x) ∩ N−(x) = ∅, a contradiction. Thus either X ′
X0 = ∅ or X ′′

X0 = ∅.
Similarly, we can obtain that either X ′

Y 0 = ∅ or X ′′
Y 0 = ∅. �

We consider the following two cases.

Case 1. X ′
X0 = X ′

Y 0 = ∅ or X ′′
X0 = X ′′

Y 0 = ∅. By symmetry, we only prove
the case that X ′

X0 = X ′
Y 0 = ∅.

Claim 1.1. Either X ′
X1 = ∅ and X ′

Y 1 6= ∅ or X ′
X1 6= ∅ and X ′

Y 1 = ∅.

Proof. Since D is not λ3-optimal, by Lemma 11, we have that X ′
X1 ∪X ′

Y 1 6= ∅.
Suppose X ′

X1 6= ∅ and X ′
Y 1 6= ∅. Take x1 ∈ X ′

X1. Then for any x ∈ X ′′
X , we have

that
⌈

|V (D)|
4

⌉

+ 1 ≤ |N+(x1) ∩ N−(x)| = |N+(x1) ∩ N−(x) ∩ X ′| + |N+(x1) ∩

N−(x)∩X ′′| ≤ |N−(x)∩X ′|+ |N+(x1)∩X ′′| = |N−(x)∩X ′|+1. It implies that

|N−(x) ∩ X ′| ≥
⌈

|V (D)|
4

⌉

≥ 2. So X ′′
X ⊆ X ′′

X2. By a similar proof, we can also

prove that X ′′
Y ⊆ X ′′

Y 2. Therefore D is λ3-optimal by Lemma 11, a contradiction.
The proof of Claim 1.1 is complete. �

Without loss of generality, let X ′
X1 6= ∅ and X ′

Y 1 = ∅.

Case 1.1. |X ′
X1| = 1. Let x1 ∈ X ′

X1. Then 3 ≤ δ(D) ≤ d+(x1) = |N+(x1)| =
|N+(x1)∩X ′

Y |+ |N+(x1)∩X ′′
Y | = |N+(x1)∩X ′

Y |+1, therefore |N+(x1)∩X ′
Y | ≥

2. Let y1, y2 ∈ N+(x1) ∩ X ′
Y . Then D[x1, y1, y2] is connected, and for any

v ∈ X ′\{x1, y1, y2}, |N+(v) ∩ X ′′| ≥ 2. By Lemma 11, D is λ3-optimal, a
contradiction.

Case 1.2. |X ′
X1| ≥ 2. Let x1, x2 ∈ X ′

X1. Then
⌈

|V (D)|
4

⌉

+ 1 ≤ |N+(x1) ∩

N−(x2)| = |N+(x1) ∩ N−(x2) ∩ X ′
Y | + |N+(x1) ∩ N−(x2) ∩ X ′′

Y | ≤ |N+(x1) ∩
N−(x2) ∩X ′

Y | + |N+(x1) ∩X ′′
Y | = |N+(x1) ∩ N−(x2) ∩X ′

Y | + 1. So |N+(x1) ∩
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N−(x2) ∩X ′
Y | ≥

⌈

|V (D)|
4

⌉

≥ 2. Let y1 ∈ N+(x1) ∩N−(x2) ∩X ′
Y . Then

ξ3(D) ≤ ξ({x1, x2, y1}) ≤ |∂+({x1, x2, y1})|

=
∣

∣

[

{x1}, X
′
Y \{y1}

]∣

∣+
∣

∣

[

{x1}, X
′′
Y

]∣

∣+
∣

∣

[

{x2}, X
′
Y \{y1}

]∣

∣+
∣

∣

[

{x2}, X
′′
Y

]∣

∣

+
∣

∣

[

{y1}, X
′
X\{x1, x2}

]
∣

∣+
∣

∣

[

{y1}, X
′′
X

]
∣

∣

≤ 2 ·
(∣

∣X ′
Y

∣

∣− 1
)

+ 2 + |X ′
X | − 2 +

∣

∣

[

{y1}, X
′′
X

]∣

∣ ≤ |S| = λ3(D).

Thus D is λ3-optimal, a contradiction.

Case 2. X ′
X0 = X ′′

Y 0 = ∅ or X ′′
X0 = X ′

Y 0 = ∅. By symmetry, we only prove
the case that X ′

X0 = X ′′
Y 0 = ∅. Without loss of generality, we may assume that

X ′
Y 0 6= ∅ and X ′′

X0 6= ∅. Otherwise, by Case 1, D is λ3-optimal, a contradiction.

On the other hand, since for any u ∈ X ′
Y 0, N

+(u) ⊆ X ′
X , we have

⌈

|V (D)|
4

⌉

+1 ≤

δ(D) ≤ d+(u) = |N+(u)| ≤ |X ′
X |. Therefore |X ′

X | ≥
⌈

|V (D)|
4

⌉

+ 1. Similarly, we

can also prove that |X ′′
Y | ≥

⌈

|V (D)|
4

⌉

+ 1. Thus

(1)

|X ′
Y |+ |X ′′

X | = |V (D)| − |X ′
X | − |X ′′

Y |

≤ |V (D)| − 2 ·

(⌈

|V (D)|

4

⌉

+ 1

)

≤
|V (D)|

2
− 2.

Claim 2.1. |X ′
X | ≥ |X ′

Y |+ 1 or |X ′′
Y | ≥ |X ′′

X |+ 1.

Proof. Otherwise, we have that |X ′
Y |+ |X ′′

X | ≥ |X ′
X |+ |X ′′

Y | ≥ 2 ·
(⌈

|V (D)|
4

⌉

+ 1
)

≥ |V (D)|
2 + 2, a contradiction to (1). �

Without loss of generality, we assume that |X ′
X | ≥ |X ′

Y |+ 1 in the following
discussion.

Claim 2.2. |N+(x) ∩ X ′′
Y | ≥ 3 and |N−(y) ∩ X ′

X | ≥ 3 for any x ∈ X ′
X and

y ∈ X ′′
Y .

Proof. By symmetry, we only prove that for any x ∈ X ′
X , |N+(x) ∩ X ′′

Y | ≥ 3.

Since X ′′
X0 6= ∅, for any x ∈ X ′

X and x ∈ X ′′
X0,

⌈

|V (D)|
4

⌉

+1 ≤ |N+(x)∩N−(x)| =

|N+(x)∩N−(x)∩X ′
Y |+ |N+(x)∩N−(x)∩X ′′

Y | ≤ |N−(x)∩X ′
Y |+ |N+(x)∩X ′′

Y | =

|N+(x) ∩X ′′
Y |, so |N+(x) ∩X ′′

Y | ≥
⌈

|V (D)|
4

⌉

+ 1 ≥ 3. �

Claim 2.3. X ′
Y 2 = X ′′

X2 = ∅.

Proof. Here, we only prove that X ′
Y 2 = ∅. The proof of the statement that

X ′′
X2 = ∅ is similar. Suppose, by a contradiction, there exists y ∈ X ′

Y 2. Let
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x1, x2 ∈ N+(y) ∩X ′′
X . Then

ξ3(D) ≤ ξ({x1, x2, y}) ≤
∣

∣∂+({y}) ∪ ∂−({x1, x2})
∣

∣

=
∣

∣∂+({y})
∣

∣+
∣

∣∂−({x1, x2})
∣

∣− 2 =
∣

∣

[

{y}, X ′
X

]
∣

∣+
∣

∣

[

{y}, X ′′
X

]
∣

∣

+
∣

∣

[

X ′
Y , {x1}

]∣

∣+
∣

∣

[

X ′′
Y , {x1}

]∣

∣+
∣

∣

[

X ′
Y , {x2}

]∣

∣+
∣

∣

[

X ′′
Y , {x2}

]∣

∣− 2

≤ |X ′
X |+

∣

∣

[

{y}, X ′′
X

]∣

∣+
∣

∣

[

X ′
Y , {x1}

]∣

∣+ 2|X ′′
Y |+

∣

∣

[

X ′
Y , {x2}

]∣

∣− 2

≤ 3max
{

|X ′
X |, |X ′′

Y |
}

+ |[{y}, X ′′
X ]|+

∣

∣

[

X ′
Y , {x1}

]
∣

∣

+
∣

∣

[

X ′
Y , {x2}

]
∣

∣− 2 ≤ |S| = λ3(D).

So D is λ3-optimal, a contradiction. �

Claim 2.4. For any x ∈ X ′
X , |N(X) ∩X ′

Y | ≥ 2.

Proof. Let X ′
Y = {y1, y2, . . . , yp} and let S∗ = {s∗ : s∗ ∈ N+(yi)∩N−(yj)∩X ′

X ,
where i, j ∈ {1, . . . , p} and i 6= j}. Then D[S∗ ∪ X ′

Y ] is strong. Besides, by
Claim 2.3, we have that for any i, j ∈ {1, . . . , p} and i 6= j, yi, yj ∈ X ′

Y 0 ∪X ′
Y 1.

Therefore
⌈

|V (D)|
4

⌉

+1 ≤
∣

∣N+(yi)∩N
−(yj)

∣

∣ =
∣

∣N+(yi)∩N
−(yj)∩X

′
X

∣

∣+
∣

∣N+(yi)∩

N−(yj)∩X ′′
X

∣

∣ ≤
∣

∣N+(yi)∩N−(yj)∩X ′
X

∣

∣+
∣

∣N+(yi)∩X ′′
X

∣

∣ ≤
∣

∣N+(yi)∩N−(yj)∩

X ′
X

∣

∣ + 1. So |N+(yi) ∩ N−(yj) ∩ X ′
X | ≥

⌈

|V (D)|
4

⌉

≥ 2. Similarly, we can prove

that
∣

∣N+(yj) ∩N−(yi) ∩X ′
X

∣

∣ ≥ 2. On the other hand, since
∣

∣X ′
Y

∣

∣ ≥ 2, we have
∣

∣S∗ ∪X ′
Y

∣

∣ ≥ 3. For any x ∈ S∗, clearly,
∣

∣N(x) ∩X ′
Y

∣

∣ ≥ 2. Next, we claim that
for any x ∈ X ′

X\S∗,
∣

∣N+(x) ∩X ′′
Y

∣

∣ ≤
∣

∣

[

X ′
Y , {x}

]∣

∣.
Suppose there exists x∗ ∈ X ′

X\S∗ such that |N+(x∗) ∩ X ′′
Y | > |[X ′

Y , {x
∗}]|.

Since D[S∗ ∪X ′
Y ] is strong and

∣

∣S∗ ∪X ′
Y

∣

∣ ≥ 3, we have X ′\{x∗} is a 3-restricted
edge cut. Therefore |∂+(X ′\{x∗})| = |S| −

∣

∣N+(x∗) ∩X ′′
Y

∣

∣+
∣

∣

[

X ′
Y , {x

∗}
]∣

∣ < |S|,
a contradiction to the minimality of S. Thus

∣

∣

[

X ′
Y , {x}

]
∣

∣ ≥
∣

∣N+(x) ∩X ′′
Y

∣

∣. By
Claim 2.2, we have that

∣

∣

[

X ′
Y , {x}

]∣

∣ ≥ 3. The proof of Claim 2.4 is complete. �

Let x1 ∈ X ′
X such that

∣

∣N+(x1)∩X ′′
Y

∣

∣ ≤
∣

∣N+(u)∩X ′′
Y

∣

∣ for any u ∈ X ′
X , and

let y1, y2 ∈ N(x1) ∩X ′
Y . Then

ξ3(D) ≤ |∂+({x1, y1, y2})| =
∣

∣

[

{x1, y1, y2}, X
′\{x1, y1, y2}

]
∣

∣+
∣

∣

[

{x1, y1, y2}, X
′′
]
∣

∣

≤ 2
(

|X ′
X | − 1

)

+
∣

∣X ′
Y

∣

∣− 2 +
∣

∣

[

{x1}, X
′′
Y

]∣

∣+
∣

∣

[

{y1}, X
′′
X

]∣

∣+
∣

∣

[

{y2}, X
′′
X

]∣

∣

≤ 3
∣

∣X ′
X

∣

∣− 5 +
∣

∣

[

{x1}, X
′′
Y

]
∣

∣+
∣

∣

[

{y1}, X
′′
X

]
∣

∣

+
∣

∣

[

{y2}, X
′′
X

]
∣

∣

(

|X ′
X | ≥ |X ′

Y |+ 1
)

≤
∣

∣

[

{x1}, X
′′
Y

]
∣

∣×
∣

∣X ′
X

∣

∣

+
∣

∣

[

{y1}, X
′′
X

]
∣

∣+
∣

∣

[

{y2}, X
′′
X

]
∣

∣ ≤ |S| = λ3(D).

So D is λ3-optimal, a contradiction.
The proof is complete.
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From Theorem 2, we have following corollaries.

Corollary 13. Let D = (X,Y,A(D)) be a strong bipartite digraph with δ(D) ≥ 3.
If for any u, v ∈ V (D) in the same partite, d+(u) + d−(v) ≥ |V (D)| − 1, then D
is λ3-optimal.

Corollary 14. Let D = (X,Y,A(D)) be a strong bipartite digraph with |V (D)| ≥

6. If δ(D) ≥
⌊

|V (D)|
2

⌋

, then D is λ3-optimal.

x1 x2

x3 x4

y1y2

y3y4

T

(Unordered edges represent two arcs with the same end-vertices and opposite directions.)

Figure 1. The example from Remark 15.

Remark 15. To show that the condition “|N+(u)∩N−(v)| ≥
⌈

|V (D)|
4

⌉

+1 for any

u, v ∈ V (D) in the same partite” in Theorem 2 is sharp, we consider the digraph
T shown in Figure 1. Clearly, |V (D)| ≥ 6 and D is strong. There exists x1, y1 in

the same partite such that |N+(x1) ∩ N−(y1)| = 2 < 3 =
⌈

|V (T )|
4

⌉

+ 1. Clearly,

∂+({x1, x2, x3, x4}) is a 3-restricted edge cut and ξ3(T ) = |∂+({x1, x2, x3})| = 5.
Therefore, λ3(T ) ≤ |∂+({x1, x2, x3, x4})| = 4 < 5 = ξ3(T ) and T is not λ3-
optimal.

Besides, since d+(x3) + d−(y4) = 6 < 7 = |V (T )| − 1 and δ(T ) = 3 < 4 =
⌊

|V (D)|
2

⌋

, this example also shows that the conditions “d+(u)+d−(v) ≥ |V (D)|−1

for any u, v ∈ V (D) in the same partite” in Corollary 13 and “δ(D) ≥
⌊

|V (D)|
2

⌋

”

in Corollary 14 are sharp.
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