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Abstract

In this paper we complement recent studies on the total domination of
prisms by considering generalized prisms, i.e., Cartesian products of an ar-
bitrary graph and a complete graph. By introducing a new domination
invariant on a graph G, called the k-rainbow total domination number and
denoted by γkrt(G), it is shown that the problem of finding the total domina-
tion number of a generalized prism G2Kk is equivalent to an optimization
problem of assigning subsets of {1, 2, . . . , k} to vertices of G. Various prop-
erties of the new domination invariant are presented, including, inter alia,
that γkrt(G) = n for a nontrivial graph G of order n as soon as k ≥ 2∆(G).
To prove the mentioned result as well as the closed formulas for the k-
rainbow total domination number of paths and cycles for every k, a new
weight-redistribution method is introduced, which serves as an efficient tool
for establishing a lower bound for a domination invariant.
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1. Introduction and Preliminaries

Graphs considered in this paper are finite, simple and undirected. If G is a graph,
then D ⊆ V (G) is a dominating set if every vertex not in D is adjacent to some
vertex in D. The domination number γ(G) is the size of a smallest dominating
set of G. If every vertex of G is adjacent to a vertex in D, then D is called a
total dominating set of G. The total domination number γt(G) is the size of a
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smallest total dominating set of G. For graphs G and H, the Cartesian product
G2H is the graph with vertex set V (G) × V (H). Vertices (u1, v1) and (u2, v2)
are adjacent in G2H if and only if either u1 = u2 and v1v2 ∈ E(H) or v1 = v2
and u1u2 ∈ E(G).

A conjecture made by V.G. Vizing in 1968, which asserts that the domina-
tion number of the Cartesian product of two graphs is at least as large as the
product of their domination numbers, has been a motivating force for the study
of domination in Cartesian products (see recent papers and a survey [5, 6, 7]).
Inability of settling this conjecture led authors to pose different variations of the
original problem.

A version of Vizing’s conjecture for total domination, the most fundamen-
tal concept in domination theory besides classical domination, has been stud-
ied by Henning and Rall, [14]. They proved that the product of the total
domination numbers of any nontrivial tree and any graph without isolated ver-
tices is at most twice the total domination number of their Cartesian prod-
uct. Their conjecture that the (sharp) upper bound of the product of the to-
tal domination numbers of arbitrary two graphs without isolated vertices is
at most twice the total domination number of their Cartesian product, was
proved by Ho, [16]. Choudhary et al. [11] extended this result to the n-product
case. In the subsequent studies the total domination number of prisms, i.e.,
Cartesian products of an arbitrary graph and the complete graph on two ver-
tices, was considered. Lu and Hou [18] characterized graphs H which satisfy
γt(H 2K2) = γt(H) and γt(Cn)γt(H) = 2γt(Cn2H), respectively. Brešar et al.
[4] extended their result by characterizing the pairs of graphs G and H for which
2γt(G2H) = γt(G)γt(H), whenever γt(H) = 2. A recent result of Azarija et al.

[3] that γt(Qn+1) = 2γ(Qn) holds for all n ≥ 1 follows from a more general result
on bipartite prisms.

Theorem 1 [3]. If G is a bipartite graph, then γt(G2K2) = 2γ(G).

Motivated by a conjecture from [3], Goddard and Henning [13] proved the
following.

Theorem 2 [13]. If G is a graph, then γt(G2K2) ≥
4
3γ(G), and this bound is

tight.

Another example of a well-studied domination invariant is the k-rainbow
domination, introduced in [8]. Let [k] = {1, 2, . . . , k}. The elements of [k] will be
referred to as colors, and in the remainder of this paper we will assume the vertex
set of the complete graph Kk is [k]. The open neighborhood (or just neighborhood
for short) of a vertex v in G is the set NG(v) = {u ∈ V (G) |uv ∈ E(G)}. Let G
be a graph and let f be a function that assigns to each vertex a subset of integers
chosen from the set [k]. The weight, ‖f‖, of f is defined as ‖f‖ =

∑

v∈V (G) |f(v)|.
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The function f is called a k-rainbow dominating function (kRDF for short) of G
if for each vertex v ∈ V (G) such that f(v) = ∅ it is the case that

⋃

u∈NG(v)

f(u) = [k] .

Given a graph G, the minimum weight of a k-rainbow dominating function is
called the k-rainbow domination number of G, and denoted by γrk(G). The
authors of [8] observed that γrk(G), for k ≥ 1 and every graph G, equals the
domination number of the generalized prism G2Kk,

γrk(G) = γ(G2Kk).

Similarly, the k-rainbow independent domination number of a graph G, γrik(G),
was introduced in [20] in such a way that it coincides with the ordinary indepen-
dent domination number i of the generalized prism G2Kk,

γrik(G) = i(G2Kk).

In both cases the problem of computing an invariant on the generalized prism
G2Kk was reduced to a problem of finding the value of the corresponding in-
variant on the factor G, which is sometimes easier to consider, see for example
[2, 9, 10, 19].

As a tool in studying the total domination of G2Kk we introduce a new
invariant. A function f : V (G) → 2[k] is called a k-rainbow total dominating

function (kRTDF for short) of G if the following two conditions hold.

1. If v ∈ V (G) and f(v) = ∅, we have
⋃

u∈NG(v) f(u) = [k].

2. For every v ∈ V (G) such that f(v) = {i} for some i ∈ [k] there exists
u ∈ NG(v) such that i ∈ f(u).

In other words, a k-rainbow total dominating function f is a k-rainbow dominat-
ing function such that no vertex v with f(v) = {i} is isolated in the subgraph
of G induced by the set {v ∈ V (G) | f(v) 6= ∅}, and moreover, the color i is
contained in f(u) where u is a neighbor of v in G. For a vertex v ∈ V (G), |f(v)|
will be called the weight of v. As in the case of k-rainbow domination, the weight
of f is defined as ‖f‖ =

∑

v∈V (G) |f(v)|. The minimum weight of a k-rainbow
total dominating function is called the k-rainbow total domination number of G

and is denoted by γkrt(G). A k-rainbow total dominating function with minimum
weight will be also called a γkrt-function. Note that since every kRTDF f of a
graph G is a kRDF, we have

γrk(G) ≤ γkrt(G).
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We will show that for k ≥ 2, γkrt(G) coincides with the total domination of
G2Kk, i.e.,

(1) γkrt(G) = γt(G2Kk).

The above equality holds also in the case k = 1 if G does not contain isolated
vertices, thus the new concept can be seen as a generalization of total domination.

It needs to be mentioned that recently two variations of the k-rainbow dom-
ination have been introduced in [1] and [17], both under the same name, the
total k-rainbow domination, but from different perspectives, however, only our
perspective relates to the original introduction of the k-rainbow domination. Ac-
cording to the equality (1), total k-rainbow domination would be justified choice
of the name for our concept too, however, to distinguish it from already intro-
duced ones, we use the term k-rainbow total domination. Ahangar et al. [1]
defined a total k-rainbow dominating function f of a graph with no isolated ver-
tex as a k-rainbow dominating function such that the subgraph of G induced
by the set {v ∈ V (G) | f(v) 6= ∅} has no isolated vertices. On the other hand,
Kumbargoudra et al. [17] for k ≥ 2 defined a total k-rainbow dominating func-
tion f as a function f : V (G) → 2[k] \ ∅ such that for every v ∈ V (G) we have
⋃

u∈NG[v] f(u) = [k]. In both papers the notation γtrk(G) was used for the min-
imum weight ‖f‖ =

∑

v∈V (G) |f(v)| of a total k-rainbow dominating function
on G. A simple example of a 4-cycle shows, that our concept differs from the
total k-rainbow dominating function in the sense of Ahangar et al., as we have
γ2rt(C4) = 4 and γtr2(C4) = 3. It also differs from the concept as defined by
Kumbargoudra et al., we have for instance γ2rt(C5) = 4 and γtr2(C5) = 5.

We proceed as follows. In Section 2 various properties and bounds for the
k-rainbow total domination number are presented. The main theorem of this
section shows that for a nontrivial graph G of order n we have γkrt(G) = n

as soon as k ≥ 2∆(G), where ∆(G) denotes the maximum degree of G. In
Section 3 we complement a result by Azarija et al. [3], who considered the total
domination of the Cartesian products Cn2K2 when n = 6ℓ+1 for ℓ ≥ 1, or n is an
even number, by establishing a complete formula for γkrt(Cn) = γt(Cn2Kk) for
arbitrary k. In addition, exact values of the k-rainbow total domination number
of paths for every k are given. Along the way it is demonstrated how a new
weight-redistribution method can be used to find a lower bound for a domination
invariant.

2. Basic Properties and Bounds

It follows from the definition that 1-rainbow total domination in a graph G with-
out isolated vertices coincides with the total domination on G. We next prove
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that for k ≥ 2, the k-rainbow total domination in a graph G is equivalent to the
total domination of the Cartesian product G2Kk.

Observation 3. If k ≥ 2 is a positive integer and G a graph, then

γkrt(G) = γt(G2Kk).

Proof. Let D be a smallest total dominating set of G2Kk. We define a function
f : V (G) → 2[k] as follows: if (v, i) ∈ V (G2Kk) is contained in D, then i ∈ f(v).
The set {(v, h) ∈ V (G2Kk) |h ∈ V (Kk)} will be called a vKk-layer. If none of
the vertices in vKk-layer belongs to D, we set f(v) = ∅. We will show that the
function f is a kRTDF on G. Indeed, if f(v) = ∅, then every vertex (v, i) in
vKk-layer must have a neighbor in D, and since vKk ∩ D = ∅, such a neighbor
must lie within the Gi-layer. The structure of the Cartesian product thus implies
that we find every color from [k] in the open neighborhood of v. If f(v) = {i},
then in vKk there is only one vertex from D, namely (v, i). Since D is a total
dominating set, there must exist (u, i) ∈ D, a neighbor of (v, i). Hence i ∈ f(u)
for u ∈ NG(v). Since f is a kRTDF, we have

γt(G2Kk) = |D| =
∑

v∈V (G)

|f(v)| ≥ γkrt(G).

To prove the opposite inequality, γkrt(G) ≥ γt(G2Kk), let f be a γkrt(G)-
function. We define a subset S of V (G2Kk) as follows: if for v ∈ V (G) we
have f(v) = A and A 6= ∅, then (v, i) for every i ∈ A belongs to S. To show that
S is a total dominating set in V (G2Kk) we need to distinguish three possibili-
ties. Every vertex in a vKk-layer where |f(v)| ≥ 2 is dominated within this layer,
moreover, a vertex in vKk ∩ S has a neighbor which also belongs to vKk ∩ S. If
|f(v)| = 1, i.e., f(v) = {i} for some i ∈ [k], then again all vertices in vKk-layer
except v are dominated by the vertex (v, i) ∈ S. Also, since v has a neighbor
u in G such that i ∈ f(u), (v, i) is adjacent to (u, i) ∈ S. In the last case
let f(v) = ∅. Then in the open neighborhood of v in G all colors appear, i.e.,
⋃

u∈N(v) f(u) = [k]. Thus for every i ∈ [k], (v, i) is dominated by a neighbor
(u, i) where i ∈ f(u) (meaning that (u, i) ∈ S), and as we have seen before, (u, i)
must have a neighbor in S. So S is a total dominating set in V (G2Kk), thus
|S| ≥ γt(G2Kk). To end the proof, observe that |S| equals the weight of the
γkrt(G)-function f .

For a k-rainbow total dominating function f of G we let V∅ = {x ∈ V (G) |
f(x) = ∅}. For a trivial graph K1 we obviously have γkrt(K1) = 2 for every k ≥ 2.
If a graph G does not contain isolated vertices, then we clearly have γkrt(G) ≤ n

as f : V (G) → 2[k] defined with f(v) = {1} for every v ∈ V (G) is a kRTDF.
Moreover, if k ≥ n and f is a kRTDF with V∅ = ∅, then clearly γkrt(G) ≥ n. But
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the same holds also if there is a vertex v with f(v) = ∅, as every color from [k]
must appear in the open neighborhood of v. Thus γkrt(G) ≥ k ≥ n, and we have
the following observation.

Observation 4. If G is a graph without isolated vertices and k ≥ n, then

γkrt(G) = n.

If G has n vertices and n > k, then clearly γkrt(G) ≥ k. Also, if f is a γkrt-
function of G and S = {v ∈ V (G) | f(v) 6= ∅}, then S is clearly a dominating set
and we have γkrt(G) ≥ |S| ≥ γ(G). If D is a minimum dominating set in G, i.e.,
γ(G) = |D|, then f : V (G) → 2[k] defined with f(v) = [k] if v ∈ D, and f(v) = ∅
otherwise, is clearly a kRTDF. We can summarize the above observations in the
following.

Observation 5. If G is a graph of order n and n > k > 1, then

max{k, γ(G)} ≤ γkrt(G) ≤ kγ(G).

Both bounds in the above observation are sharp, as can easily be seen in the
case of a star graph Sn with n > k. In next proposition all graphs for which
γkrt(G) = k are described.

Proposition 6. Let k and n be positive integers such that n > k > 1. For a

connected graph G of order n we have γkrt(G) = k if and only if G contains a

spanning subgraph isomorphic to a complete bipartite graph Ks,n−s where s ≤
⌊

k
2

⌋

.

Proof. Suppose that γkrt(G) = k and let f be a γkrt-function of G. Since n > k,
there exists x ∈ V∅ such that

⋃

v∈NG(x) f(v) = [k]. Since γkrt(G) = k we have
f(u) ∩ f(v) = ∅ for every u, v ∈ NG(x) such that f(u) 6= ∅ and f(v) 6= ∅. Note
that it must also hold that |f(v)| ≥ 2 for every v ∈ NG(x) such that f(v) 6= ∅,
and every vertex from V∅ is adjacent to every vertex v from NG(x) such that
f(v) 6= ∅. This implies that G contains a spanning complete bipartite subgraph
Ks,n−s where s = |V (G) \ V∅| ≤

⌊

k
2

⌋

and n− s = |V∅|.
Now suppose that G contains a spanning complete bipartite subgraph Ks,n−s

with bipartite sets A and B, and |A| = s ≤
⌊

k
2

⌋

. Since n > k, we already know
that γkrt(G) ≥ k. To prove the opposite inequality one can define a function
f : V (G) → 2[k] such that f(u) = ∅ for every u ∈ B, |f(v)| ≥ 2 for every v ∈ A,
and

⋃

v∈A f(v) = [k]. As f with these properties is clearly a kRTDF of G we
have γkrt(G) ≤ k. Thus γkrt(G) = k.

Besides the obvious condition from Observation 4 we present another non-
trivial and useful condition which assures that γkrt(G) equals the order of a graph.

Theorem 7. Let G be a graph without isolated vertices of order n and k ≥ 2∆(G).
Then γkrt(G) = n.
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Proof. Let f be a γkrt-function, i.e., ‖f‖ =
∑

v∈V (G) |f(v)| = γkrt(G). We
already know that ‖f‖ ≤ n. In order to show ‖f‖ ≥ n we will redistribute
weights |f(v)| of vertices between the neighboring vertices, more precisely, we
will assign new weights to vertices in such a way that their sum will be equal to
the sum of original weights. Let n(v) denote the number of neighbors of v that
belong to V∅. We redistribute weights as follows: each vertex v with |f(v)| ≥ 1

and n(v) ≥ 1 contributes |f(v)|−1
n(v) to the weight of each vertex in N(v) ∩ V∅,

and keeps the rest of the original weight for itself. The new weight of a vertex
v ∈ V (G) will be denoted by c(v). (Figure 1 shows an example where vertices
x, y, z have original weights |f(x)| = 0, |f(y)| = 3 and |f(z)| = 0, and the above
redistribution rule implies that their new weights are c(x) = c(y) = c(z) = 1.) We
claim that after redistributing weights in this way c(v) ≥ 1 for every v ∈ V (G).

0

x

3

y

0

z

1

x

1

y

1

z

−1 −1

Figure 1. Redistribution of weights.

First, suppose v ∈ V (G)\V∅. If n(v) = 0, then c(v) = |f(v)| ≥ 1. If n(v) ≥ 1,

then c(v) = |f(v)| − |f(v)|−1
n(v) n(v) = 1.

If v ∈ V∅, and |NG(v)| − n(v) = ℓ, then v receives parts of weights from
its neighbors v1, v2, . . . , vℓ ∈ V (G) \ V∅. In estimating the value of c(v) we will
use the assumption that k ≥ 2∆(G) and obvious inequalities ℓ ≤ ∆(G) and
|f(v1)| + |f(v2)| + · · · + |f(vℓ)| ≥ k (the later holds by the definition of a γkrt-
function). We derive

c(v) =
|f(v1)| − 1

n(v1)
+

|f(v2)| − 1

n(v2)
+ · · ·+

|f(vℓ)| − 1

n(vℓ)

≥
|f(v1)| − 1

∆(G)
+

|f(v2)| − 1

∆(G)
+ · · ·+

|f(vℓ)| − 1

∆(G)

=
|f(v1)|+ |f(v2)|+ · · ·+ |f(vℓ)| − ℓ

∆(G)
≥

k − ℓ

∆(G)
≥

2∆(G)−∆(G)

∆(G)
= 1.

Thus c(v) ≥ 1 for every v ∈ V (G) and since
∑

v∈V (G) c(v) =
∑

v∈V (G) |f(v)| =
‖f‖ we conclude that ‖f‖ ≥ n. Therefore γkrt(G) = n.

For k = 3 and G = C6 we have k = 2∆(G)− 1, γ3rt(G) = 5 (see Theorem 12
in the next section) and n = 6. This example shows that the lower bound for k
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in terms of ∆(G) in the above theorem cannot be improved. The following result
is a direct corollary of Theorem 7.

Corollary 8. If k ≥ 4, then γkrt(Pn) = γkrt(Cn) = n.

3. Some Exact Values

As a corollary of Observation 3 and Theorems 1 and 2, respectively, we obtain
the following.

Corollary 9. If G is a bipartite graph, then γ2rt(G) = 2γ(G).

Corollary 10. If G is a graph, then γ2rt(G) ≥ 4
3γ(G), and this bound is tight.

By Corollary 8 the remaining interesting cases for cycles and paths are for
k = 2 and k = 3. It is well known and easy to see that γ(Pn) = γ(Cn) =

⌈

n
3

⌉

.
Thus, if k = 2 and G is either a path or an even cycle, by Observation 3 and
Corollary 9 we immediately obtain γ2rt(G) = 2γ(G) = 2

⌈

n
3

⌉

. Azarija et al. [3]
also considered cycles Cn where n = 6ℓ+ 1 and ℓ ≥ 1, and obtained that in this
case γ2rt(Cn) = 2

⌈

n
3

⌉

− 1. To settle the remaining cases, i.e., n = 6ℓ+3 and n =
6ℓ+5, recall the Theorem 2.11 from [15], which states that for a graph G of order
n with no isolated vertex it holds γt(G) ≥ n

∆(G) . Hence γ2rt(Cn) = γt(Cn�K2) ≥
2n
3 . On the other hand, by Observation 5, we have γ2rt(Cn) ≤ 2

⌈

n
3

⌉

. We derive

γ2rt(C6ℓ+3) ≤ 2

⌈

6l + 3

3

⌉

= 4ℓ+ 2 =
2(6ℓ+ 3)

3
≤ γ2rt(C6ℓ+3).

Similarly,

γ2rt(C6ℓ+5) ≤ 2

⌈

6l + 5

3

⌉

= 4ℓ+ 4 and
2(6ℓ+ 5)

3
≤ γ2rt(C6ℓ+5).

However, since γ2rt(C6ℓ+5) is an integer number, it must hold γ2rt(C6ℓ+5) ≥ 4l+4.
To summarize, we have the following complete formula for the 2-rainbow total
domination number of cycles.

Theorem 11. For n ≥ 3 it holds

γ2rt(Cn) = γt(Cn 2K2) =











2
⌈n

3

⌉

, if n = 2ℓ, ℓ ≥ 2, or n ∈ {6ℓ+ 3, 6ℓ+ 5}, ℓ ≥ 0,

2
⌈n

3

⌉

− 1, if n = 6ℓ+ 1, ℓ ≥ 1.

The case k = 3 for cycles and paths is more interesting. We begin with the
observation that for every positive integer k we have

(2) γkrt(Cn) ≤ γkrt(Pn).
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Namely, if f is a γkrt-function of Pn, then it is clearly also a kRTDF of Cn. Thus,
by finding a lower bound for γ3rt(Cn), also a lower bound for γ3rt(Pn) will be
established. By the aforementioned result from [15], γ3rt(Cn) = γt(Cn�K3) ≥
3n
4 . However, this bound can be improved by using the weight-redistribution
method.

Theorem 12. For n ≥ 3 it holds

γ3rt(Cn) =

⌈

4n

5

⌉

.

Proof. First we prove that γ3rt(Cn) ≥
⌈

4n
5

⌉

. This holds for n = 3, as we have
γ3rt(C3) = 3 by Observation 4. It is also straightforward to check that γ3rt(C4)
= 4. Thus assume that n ≥ 5 and let f be a γ3rt-function of Cn, i.e., ‖f‖ =
∑

v∈V (Cn)
|f(v)| = γ3rt(Cn). Similarly as in previous proofs, we will redistribute

weights of vertices of Cn by defining the function c : V (G) → Q according to the
following:

• each vertex v with the initial weight 3, i.e., with the property |f(v)| = 3,
contributes 4

5 to the new weight of each vertex from V∅,

• if |f(v)| = 2, then v contributes 3
5 to each vertex from V∅,

• if |f(v)| = 1, then v contributes 1
5 to each vertex from V∅.

To prove that
∑

v∈V (Cn)
c(v) ≥ 4n

5 we will show that c(v) ≥ 4
5 for every v ∈ V (Cn).

If |f(v)| = 3, then c(v) ≥ 3− 24
5 = 7

5 > 4
5 . If |f(v)| = 2, then c(v) ≥ 2− 23

5 = 4
5 .

If |f(v)| = 1, then by the definition of f , v has at most one neighbor in V∅, thus
c(v) ≥ 1 − 1

5 = 4
5 . Lastly, let f(v) = ∅. Then by the definition of f , v is either

adjacent to at least one neighbor u with |f(u)| = 3 (namely to a vertex u such
that f(u) = {1, 2, 3}) or v has two neighbors u,w such that |f(u)| = |f(w)| = 2,
or v has one neighbor u with |f(u)| = 2 and one neighbor w with |f(w)| = 1. In
either of the three cases, we obtain that c(v) ≥ 4

5 . Now we can derive

γ3rt(Cn) =
∑

v∈V (Cn)

|f(v)| =
∑

v∈V (Cn)

c(v) ≥
4n

5
,

which concludes the proof of the first inequality since γ3rt(Cn) is an integer num-
ber. The opposite inequality, γ3rt(Cn) ≤

⌈

4n
5

⌉

, will follow from the following
constructions of a 3RTDF f of Cn = v1v2 · · · vnv1.

If n = 5k, n = 5k + 3 or n = 5k + 4 we define the function f : V (G) → 2[k]

as follows:

• if i ≡ 1 (mod 5), then f(vi) = {1, 2},

• if i ≡ 0 (mod 5) or i ≡ 2 (mod 5), then f(vi) = ∅,

• if i ≡ 3 (mod 5) or i ≡ 4 (mod 5), then f(vi) = {3}.
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(Small cases are presented in Figure 2, where for the sake of simplicity we write 12,
3 and 0 instead of {1, 2}, {3} and ∅, respectively, and vertices are numbered in a
clockwise manner.) It can easily be seen that f is a 3RTDF, thus γ3rt(Cn) ≤ ‖f‖.
If n = 5k, we obtain ‖f‖ = 4k = 4n

5 , if n = 5k+3, we have ‖f‖ = 4k+3 = 4n
5 + 3

5 ,
and if n = 5k + 4, we obtain ‖f‖ = 4k + 4 = 4n

5 + 4
5 . So in every case it holds

‖f‖ ≤
⌈

4n
5

⌉

.
For the cases n = 5k + 1 and n = 5k + 2 we slightly change the above

definition of f : if n = 5k + 1 we set f(v5k) = {3} and f(v5k+1) = ∅, and if
n = 5k + 2, we set f(v5k) = f(v5k+1) = {3} and f(v5k+2) = ∅. For every other
i, f(vi) is defined as above. In both cases f is a 3RTDF. If n = 5k + 1 we
derive ‖f‖ = 4k + 1 = 4n

5 + 1
5 =

⌈

4n
5

⌉

. Similarly, for n = 5k + 2, we obtain
‖f‖ = 4k + 2 = 4n

5 + 2
5 =

⌈

4n
5

⌉

, which completes the proof.
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Figure 2. γ3rt-functions for small cycles.

For a trivial path it clearly holds γ3rt(P1) = 2, and for n ≥ 2 we have the
following.

Theorem 13. For n ≥ 2 it holds

γ3rt(Pn) =











⌈

4n
5

⌉

, if n ∈ {5k + 2, 5k + 3, 5k + 4},

⌈

4n
5

⌉

+ 1, if n ∈ {5k, 5k + 1}.

Proof. For n = 2 or n = 3, theorem holds by Observation 4. It is also straight-
forward to check that γ3rt(P4) = 4. Thus assume n ≥ 5. It follows from Theorem
12 and inequality (2) that γ3rt(Pn) ≥

⌈

4n
5

⌉

. We distinguish the following cases.
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If n is congruent to 2 or 4 modulo 5, let f : V (G) → 2[k] be the function
defined as follows:

• if i ≡ 1 (mod 5) or i ≡ 2 (mod 5), then f(vi) = {3},

• if i ≡ 0 (mod 5) or i ≡ 3 (mod 5), then f(vi) = ∅,

• if i ≡ 4 (mod 5), then f(vi) = {1, 2}.

(Small cases are depicted in Figure 3.) Observe that f is a 3RTDF in both cases.
For n = 5k + 4 we have ‖f‖ = 4k + 4 = 4n

5 + 4
5 , and for n = 5k + 2 it holds

‖f‖ = 4k + 2 = 4n
5 + 2

5 .

3 3 0 12 0 13 3 3 0 12 0 3 3 0 12

3 3 0 12 1 3 3 0 12 0 3 3 3

3 3 0 12 3 3 0 12 0 3 3

Figure 3. γ3rt-functions for small paths.

If n = 5k + 3, we define the function f as above with one exception: we set
f(vn) = {3}. Then f is a 3RTDF and ‖f‖ = 4k + 3 = 4n

5 + 3
5 . Thus in all of the

above cases we have γ3rt(Pn) ≤
⌈

4n
5

⌉

.

The upper bound in the case n = 5k will be proved by defining f as in the
first case with the exception f(vn) = {1}. It follows from the construction of f
that it is a 3RTDF and ‖f‖ = 4k + 1. Thus γ3rt(P5k) ≤ 4k + 1. To prove the
opposite inequality let g be a γ3rt-function of P5k, i.e., γ3rt(P5k) = ‖g‖. We will
redistribute weights of g by the same rules as presented in the proof of Proposition
12. From this proof we also know that the new weight c(v) is at least 4

5 for every
v ∈ V (Pn). Moreover, if g(v1) = ∅, then g(v2) = {1, 2, 3}, thus c(v2) ≥ 7

5 > 4
5 .

We derive that ‖g‖ =
∑

v∈V (Pn)
|g(v)| =

∑

v∈V (Pn)
c(v) > n · 4

5 = 4k, i.e., ‖g‖ ≥
4k + 1. If |g(v1)| = 1, then it must hold |g(v2)| ≥ 1, hence c(v1) = 1 and thus
∑

v∈V (Pn)
c(v) > n · 45 . If |g(v1)| = 2, we have c(v1) ≥ 2− 3

5 = 7
5 and if |g(v1)| = 3,

we have c(v1) ≥ 3− 4
5 = 11

5 . Thus in every case we have ‖g‖ =
∑

v∈V (Pn)
c(v) ≥

4k + 1 = 4n
5 + 1.

We deal with the last case n = 5k + 1 similarly. For the upper bound
γ3rt(P5k+1) ≤ 4k + 2 we construct a function f as in the first case, with the
only exception f(vn) = {1, 3}. As f is a 3RTDF we have γ3rt(P5k+1) ≤ ‖f‖ =
4k + 2. To prove the opposite inequality, we let g be a γ3rt-function of P5k+1

and consider the following cases. If g(v1) = ∅, then c(v1) = 4
5 and c(v2) ≥ 7

5 ,
thus c(v1) + c(v2) ≥ 11

5 . If |g(v1)| = 1, then |g(v2)| ≥ 1, hence c(v1) + c(v2) ≥
1 + 4

5 = 9
5 . If |g(v1)| = 2, then c(v1) = 2 − 3

5 = 7
5 and c(v1) + c(v2) ≥ 11

5 . In
the last case, when |g(v1)| = 3, we have c(v1) ≥

11
5 . Thus in every case we have
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c(v1) + c(v2) ≥ 9
5 , and by symmetry we also have c(vn−1) + c(vn) ≥ 9

5 . This
implies ‖g‖ =

∑

v∈V (Pn)
c(v) ≥ 2 · 9

5 + (n− 4)45 = 4n
5 + 2

5 = 4k + 6
5 > 4k + 1, i.e.,

‖g‖ ≥ 4k+2. Since 4k+2 = 4n
5 +1+ 1

5 =
⌈

4n
5

⌉

+1, and the proof is complete.

4. Concluding Remarks

In this paper we have introduced a new domination invariant which serves as a
tool for easier study of the total domination of generalized prisms, and presented
the weight-redistribution technique which could be an efficient way of establishing
lower bounds also for other domination invariants. The newly introduced concept
could be interesting on its own. One possible direction for further studies may be
motivated by the question of characterizing graphs which attain bounds in Obser-
vation 5, i.e., graphs for which it holds γkrt(G) = γ(G) and γkrt(G) = kγ(G), re-
spectively, for given k. The characterization of graphs satisfying γkrt(G) = kγ(G)
could be a challenging problem though, see Concluding remarks in [3], where the
case k = 2 is discussed. It would be interesting to explore relationships of the
new concept with already introduced domination invariants, paired domination
[12] for instance, since by Theorem 1, Observation 3 and a result from [13] (see
Theorem 2.1) it follows that the paired domination number and the 2-rainbow
total domination number of a bipartite graph coincide.
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